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CHAPTER 1  

Introduction 

1.1 Background 

The marching-on-in-time (MOT)-based time domain (TD) integral equation (IE) 

methods provide an appealing avenue for solving various transient electromagnetic 

problems arising in scattering analysis [1, 2], electromagnetic interface/compatibility 

(EMI/EMC) analysis [3-5] and new antenna/metamaterial design [6, 7], etc. Compared to 

differential equation (DE) methods, they enjoy several advantages: first, IE methods 

implicitly impose the radiation boundary condition as opposed to DE methods that 

artificially truncate the computation domain; second, for surface scatterers, IE methods 

only require discretization of the scatterer surfaces as opposed to DE methods that 

discretize the volume enclosing the scatterers. However, the widespread use of MOT-

TDIE solvers was oftentimes hindered by their numerical instability and computational 

inefficiency, which has led to extensive research works. In fact, the last decade has 

witnessed unprecedented developments in rapidly converging, accurate, stable and fast 

MOT-TDIE solvers capable of solving large and complex electromagnetic problems 

involving perfect electrically conducting (PEC) and dielectric objects, etc.  

However, these newly developed MOT-TDIE solvers, despite of their efficiencies 

in solving broadband or transient electromagnetic problems, still lag behind the frequency 

domain (FD) IE solvers in their capabilities of simulating real-life electromagnetic 

problems that oftentimes involve millions of spatial unknowns. In fact, the MOT-TDIE 

solvers (with fast algorithm accelerated) typically require at least one order of magnitude 

more computational and memory resources than the FDIE solvers due to the presence of 
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extra temporal dimension in the MOT-TDIE solvers. Therefore, this thesis focuses on 

advancing the capabilities of one specific class of fast MOT-TDIE solvers, viz., the 

multilevel plane-wave time-domain (PWTD) algorithm-accelerated MOT-TDIE solvers. 

The multilevel PWTD algorithm constitutes the time domain counterpart of the 

frequency domain multilevel fast multipole algorithm (MLFMA) [8]. Compared to other 

fast (TD) algorithms such as the time domain adaptive integral method (TD-AIM) [9] and 

nonuniform-grid time-domain algorithm (NGTD) [10], PWTD enjoys favorably low 

computational complexity. Furthermore, PWTD and its various extensions have been 

applied to transient analyses that involve various types of objects, background media and 

frequency regimes. In the past, PWTD-accelerated MOT-TDIE solvers have been applied 

to a broad class of complex and large-scale transient electromagnetic problems. Indeed, 

transient scattering problems that involve half million spatial unknowns have been solved 

using PWTD-accelerated MOT-TDIE solvers. Having said that, in order to solve real-life 

transient magnetic problems via the PWTD-accelerated MOT-TDIE solvers, both 

efficient parallelization and algorithmic improvements of the PWTD algorithms are 

called for. 

1.2 Review of Previous Work 

This section provides a review of MOT-TDIE solvers. Section 1.2.1 describes the 

formulation and space-time discretization of TDIEs for solving transient problems 

involving PEC and dielectric objects. Schemes that improve the convergence, accuracy, 

stability and computational efficiency of the MOT-TDIE solvers are reviewed in Section 

1.2.2-1.2.5, with an emphasis on the PWTD-accelerated MOT-TDIE solvers in Section 

1.2.5.3.  
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1.2.1 MOT-TDIE Solvers for Problems Involving PEC and Dielectric 

Objects 

1.2.1.1 PEC Scatterers in lossless medium 

Transient scattering from PEC scatterers can be efficiently analyzed using TD 

surface integral equations (SIE). Consider a closed PEC surface S  that resides in a 

lossless and unbounded background medium. The surface is illuminated by an incident 

electromagnetic field { ( , ), ( , )}i it tE r H r , which is assumed to be temporally bandlimited 

to maximum frequency maxf  and vanishingly small for. 0t < . The incident field induces 

on S  a current density ( , )tJ r  that, in turn, generates a scattered field { ( , ), ( , )}s st tE r H r . 

By enforcing the boundary condition for the total electric or magnetic field tangential to 

S , the problem can be formulated by time domain electric field integral equation (TD-

EFIE) and time domain magnetic field integral equation (TD-MFIE) respectively as 

 
0

ˆ ˆ ˆ ˆ( , ) = ( , )

ˆ [ ]( , )    , ,

i s

e

t t

t S S Sη + −

− × × × ×
= × ∀ ∈

n n E r n n E r

n J r rL
 (1.1) 

 
ˆ ˆ( , ) = ( , )

[ ]( , )    

i s

h

t t

t S −

× − ×
= ∀ ∈

n H r n H r

J r rL
 (1.2) 

Here, n̂  is the outward unit normal to S , 0η  is the characteristic impedance of the 

background medium, S −  and S +  denote the surfaces conformal to but just inside and 

outside S , respectively. Note: the TD-EFIE in (1.1) is also valid for open PEC surfaces. 

The TD-EFIE operator =e es eh+L L L  composes of a singular (vector potential) 

component 
esL  and a hypersingular (scalar potential) component 

ehL  as  

 
0

1 ( , )
ˆ[ ]( , ) =

4
es

S
t ds

c R

τ
π

′′− × ∫
J r

J r n
&

L  (1.3) 

 0 0
( , )

ˆ[ ]( , ) =
4

eh
S

dt tc
t ds

R

τ

π

′ ′ ′ ′∇ ⋅
′× ∇ ∫∫

J r
J r nL  (1.4) 

The TD-MFIE operator is 
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1 ( ', )

ˆ[ ]( , ) =
4

h
S

t ds
R

τ
π

′− × ∇×∫
J r

J r nL  (1.5) 

Here =| ' |R −r r , 0c  is the speed of light in the background medium 0= /t R cτ − , 

represents the delayed time and the dot on a symbol denotes time derivative. Since both 

eL  and 
hL  have a null space that permits the presence of nonphysical oscillating currents, 

the solutions of TD-EFIE and TD-MFIE are oftentimes corrupted by spurious resonance 

modes. The time domain combined field integral equation (TD-CFIE), free of these 

spurious resonance modes, can be constructed by linearly combining TD-EFIE (1.1) and 

TD-MFIE (1.2) with a combination constant β  as [1] 

 

0
ˆ ˆ ˆ( , ) ( , )

ˆ= [ ]( , ) [ ]( , )

[ ]( , )

i i

h e

c

t t

t t

t S

β η
β

−

× − × ×
+ ×

= ∀ ∈

n H r n n E r

J r n J r

J r r

L L

L

 (1.6) 

Here, cL  is the TD-CFIE operator. Note that the TD-CFIE reduces to the TD-EFIE and 

TD-MFIE when β = ∞  and 0β = , respectively. 

To numerically solve (1.6), the surface S  is discretized by a planar triangle mesh. 

Note: the minimum edge length s∆  is properly chosen to resolve both the geometrical 

details and the wavelength corresponding to maximum frequency, 0 / maxc fλ = . The 

current density ( , )tJ r  is expanded using 
sN  spatial basis functions and 

tN  temporal 

basis functions as 

 ,

=1 =1 =1

( , ) = ( ) ( ) = ( ) ( )

N N N
s t s

n n j n j n

n j n

t f t I T t∑ ∑∑J r S r S r  (1.7) 

Here ( )nf t  is the current time signature associated with spatial basis function ( )nS r  and 

,j nI  is the current expansion coefficient associated with the space-time basis function 

( ) ( )j nT t S r . ( )nS r  is often chosen as the Rao-Wilton-Glisson (RWG) basis function 

defined on the thn  internal edge of the mesh [11]. ( ) ( )jT t T t j t= − ∆  is the time shifted 

local Lagrange interpolant with time step size = 1/ (2 )t maxt fχ∆ ; 1tχ >  is the temporal 

oversampling factor [12]. As an example, the local Lagrange polynomials of order 
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1, 2,3, 4d =  are shown in Figure 1.1(a)-(d). Note that they are piecewise smooth for 

( 1)k t t k t− ∆ ≤ ≤ ∆ , 0,...,k d=  and are nonzero for t t d t−∆ < < ∆ .  

Upon substituting (1.7) into (1.6), spatially testing (1.6) with spatial basis 

functions ( ),  1,...,m sm N=S r  and enforcing (1.6) at discrete times ,  1,..., ti t i N∆ = , the 

following set of linear equations are obtained: 

 
min{ 1, }

0

=1

= ,
maxi k

i i k i k

k

−

−− ∑Z I V Z I  (1.8) 

Here, the entries of the excitation vectors 
iV , current coefficient vectors 

iI  and matrices 

k
Z  are  

 
=0{ } ( ), [ ]( , ) |k mn m c n k tT t−=< >Z S r S rL  (1.9) 

 
=

0

ˆ ˆ ˆ{ } =< ( ), ( , ) ( , ) >|i i

i m m t i tt t
β
η ∆× − × ×V S r n H r n n E r  (1.10) 

and 
,{ } =i n i nII . The number of nonzero impedance matrices 

kZ  is approximately 

0/max maxk D c t=  ∆   where 
maxD  denotes the maximum linear dimension of the scatterer. 

The above set of linear equations (1.8) can be solved by MOT: First, 1I  is computed by 

solving (1.8) for 1i =  using iterative methods. Then, for 2i = , the summation on the 

right hand side (RHS) of (1.8) is computed and the resulting system is solved for 
2I . This 

process is repeated to compute 
3I  and so on.  

The computation of MOT matrices (1.9) in the above-described MOT scheme, 

involves evaluation of the temporal integral in the TD-EFIE operator (1.4), which can be 

computationally expensive and prone to error. An alternative form of the TD-EFIE that 

avoids numerical temporal integration is  

 0
ˆ ˆ ˆ( , ) = [ ]( , )i

et tη− × × ×n n E r n J r&& L  (1.11) 
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Equation (1.11) is called differentiated TD-EFIE. Similarly, differentiated TD-

MFIE/CFIE can be formulated. The MOT scheme for differentiated TDIEs is obtained by 

replacing hL / eL  in (1.9) by h
&L / e

&L , and iE / iH  in (1.10) by iE& / iH&  [13]. 
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Figure 1.1 Temporal basis functions. (a)-(d) Lagrange interpolants of order, 

1, 2,3,4,d =  respectively. (e) Quadratic B-Spline function. (f) Cubic B-Spline 

function. (g) APS function for [ , ]f ft p t p t∈ − ∆ ∆ , 8fp = , oversampling factor 

8tχ = . (h) Fourier transform of (g). 
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1.2.1.2 Homogeneous dielectrics in lossless medium  

Transient scattering from homogeneous (or piecewise homogeneous) dielectrics 

in lossless unbounded medium can be analyzed by solving a coupled pair of TD-SIEs 

involving both equivalent surface electric and magnetic currents radiating in the interior 

and exterior regions. Among many choices of how the equations are coupled, the most 

popular ones are the time domain Müller [14, 15] and Poggio-Miller-Chang-Harrington-

Wu-Tsai (PMCHWT) formulations [16-18]. Upon discretizing the electric/magnetic 

currents using space-time basis functions and spatially testing the equations at discrete 

times, MOT systems similar to (1.8) can be obtained [15]. 

1.2.1.3 Inhomogeneous dielectrics in lossless medium 

Transient scattering from inhomogeneous dielectrics in lossless unbounded 

medium can be analyzed using TD volume integral equations (VIE) [19] in terms of 

equivalent volume electric polarization current ( , )P tJ r  

 
0( , ) = ( , ) ( , )

P
t t tε−J r D r E r& &  (1.12) 

where ( , )tD r  is the electric flux density, ( , )tE r  is the total electric field and 
0ε  is the 

permittivity of the background medium. The flux density and total field are related by the 

following formulas. 

• Lossless dielectrics: ( , ) = ( ) ( , )t tεD r r E r . Here ( )ε r  denotes the frequency 

independent permittivities of the scatterers. 

• Lossy dielectrics: ( , ) = ( ) ( , ) ( ) ( , )t t tσ ε+D r r E r r E r& & . Here the flux density has a 

conduction current contribution [20] and ( )σ r  denotes frequency independent 

conductivities of the scatterers. 

• Dispersive dielectrics: ( , ) = ( , ) ( , )t t tε ∗D r r E r , where ( , )tε r  denotes the 

permittivities of the dispersive scatterers, and ∗  denotes temporal convolution. 
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The unknown electric flux density can be solved using MOT schemes similar to 

(1.8). Note that for lossy and dispersive dielectrics, the total field can be updated from the 

electric flux density via recursive computation [20, 21].  

 

In addition to the abovementioned MOT-TDIE solvers, those applicable to 

problems involving surface scatterers embedded in lossy/structured medium [22, 23], 2D 

objects [24] and wire structures [25], etc., have been developed. 

1.2.2 Well-conditioned MOT-TDIE Solvers 

When solving the matrix equation (8) using iterative methods, the number of 

iterations for the solution to converge is typically proportional to the condition number 

(the ratio between the largest and smallest singular value) of 
0

Z . Unfortunately, the 

standard MOT-TD-EFIE/CFIE solvers suffer from two types of breakdowns, viz., the 

condition number of 
0

Z  grows without bound when time step size 0t∆ →  (i.e., when the 

excitation is a low frequency pulse) or mesh size 0s∆ →  (i.e., when the intricate 

geometry feature results in a dense/mixed-scaled mesh). 

1.2.2.1 Low frequency breakdown  

The low frequency breakdown occurs in MOT-TD-EFIE solvers for reasons 

relating to the inconsistent asymptotic behaviors of the (RWG basis) discretized vector 

potential component esL  and scalar potential component ehL  of the TD-EFIE operator in 

the low frequency regime. As a result, the vector potential component will lose its 

contribution as its magnitude becomes too small compared to that of the scalar potential 

component; on the other hand, the dominating scalar potential component ehL  has a null 

space for solenoidal (divergence free) current that results in an ill-conditioned MOT 

system. This low frequency breakdown can be avoided by discretizing the current using 

(properly weighted) solenoidal/nonsolenoidal sub-domain spatial basis functions. 

Specifically, let P  denote an invertible transformation matrix (Gram matrix) between the 

RWG basis and the (weighted) solenoidal/nonsolenoidal basis, let * ?=
i i

V P V , * =
i i

−1I P I  
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and * ?=
k k

Z P Z P  denote the excitation vector, current coefficient vector and MOT matrix 

after basis transformation, a (low frequency) well-conditioned MOT system can be 

constructed as 

 
min{ 1, }

* * * * *

0

=1

=
maxi k

i i k i k

k

−

−− ∑Z I V Z I  (1.13) 

In the past, Loop-Star/Tree basis transformation techniques [26-28] were used to 

efficiently cap the condition number of *

0
Z  (see the example in Figure 1.2(a)). However, 

these bases typically yield constant but still high condition numbers when applied to 

mixed-scale meshes. More recently, hierarchically constructed nonsolenoidal basis is 

proposed to further reduce the condition number of *

0Z  [29-31]. 

1.2.2.2 Dense mesh breakdown  

The dense mesh breakdown occurs in MOT-TD-EFIE solvers for reasons relating 

to the inconsistent asymptotic behaviors of the EFIE operator’s singular values associated 

with solenoidal and nonsolenoidal singular functions that can be supported by a dense 

mesh. As the mesh size decreases, the singular values associated with solenoidal currents 

go to zero, and those associated with nonsolenoidal currents go to infinity. As a result, the 

condition number of the discretized TD-EFIE system grows without bound. This type of 

breakdown is cured by leveraging the self-regularization property of the time domain 

Calderón identity, viz., the square of the TD-EFIE operator has a well bounded spectrum 

[32, 33]. The Calderón preconditioned TD-EFIE is 

 2

0
ˆ[ ]( , ) = [ ]( , )i

e et tη− ×n E r J rL L , (1.14) 

and can be discretized using the RWG functions and the divergence (and quasi-curl) 

conforming Buffa-Christiansen (BC) functions [32-35]. The effect of eliminating dense 

mesh breakdown using the Calderón preconditioned TD-EFIE is demonstrated by the 

example in Figure 1.2(b).  

The MOT-TD-MFIE is free from dense mesh breakdown as the MFIE operator 

has a bounded singular spectrum, however, the MOT-TD-CFIE is not, due to the 

presence of the EFIE operator. A Calderón preconditioned TD-CFIE that gives rise to 
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bounded condition number irrespective of mesh density is proposed in [32]. Moreover, a 

Calderón preconditioned single source TDIE for analyzing transient scattering from 

homogeneous dielectric has been developed [36]. 
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Figure 1.2 (a) Number of iterations using different time step sizes and spatial basis 

functions for analyzing scattering from a PEC sphere discretized with 32 planner 

triangles. (b) Number of iterations using differentiated TD-EFIE and Calderón 

preconditioned TD-EFIE for analyzing scattering from a PEC sphere discretized with 

different mesh sizes. 

 

1.2.3 Accurate MOT-TDIE Solvers 

Inaccurate discretization of the TDIEs can cause erroneous solutions and late-time 

instabilities. Specifically, the discretization of the TDIEs includes the space-time current 

discretization in (1.7) and the computation of the MOT matrices in (1.9). The former is 

discussed in this subsection as it has direct impact on the accuracy of the MOT-TDIE 

solvers. In contrast, the latter affects more the stability of the solvers and is discussed in 

the next subsection.  

1.2.3.1 Accurate temporal discretization 

The local Lagrange temporal basis functions, though commonly used, can cause 

numerical errors due to their discontinuous derivatives at integer multiples of t∆  [Figure 

1.1(a)-(d)]. Alternatively, other temporal basis functions such as the first order 
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continuous cosine square function [37], all order continuous exponential function [38] 

and smooth B-spline functions [39-41] have been proposed [Figure 1.1 (e),(f)]. Note that 

these functions satisfy the discrete causality condition required for the time marching, 

viz., ( ) = 0T t  for t t≤ −∆ . In addition, the approximate prolate spheroidal wave function 

(APS) [42] has been used as the temporal basis function [43] as its bandlimitedness 

property permits interpolation with spectral accuracy [Figure 1.1 (g) and 1(h)]. However, 

the APS function, locally supported on [ , ]p t p t− ∆ ∆  with 5 ~ 10,p =  is noncausal and 

requires carefully designed extrapolation technique to retrieve the form of MOT in (1.8) 

[43]. 

1.2.3.2 High order spatial discretization  

High order spatial basis function (and high order geometry modeling) is an 

efficient method to avoid refined mesh to achieve the prescribed solution accuracy, or 

equivalently, it improves accuracy super-linearly given a fixed mesh. Among many 

choices of high order spatial basis functions, the most popular one is the divergence 

conforming Graglia-Wilton-Peterson (GWP) function [44] constructed by the product of 

a scalar polynomial of the given order and the RWG basis function. Authors in [27] 

developed higher order TD-EFIE/MFIE/CFIE solvers with GWP functions and the Loop-

Tree decomposition of the pertinent function space [45]. As an example, the bistatic radar 

cross section (RCS) of a PEC sphere at 30 MHz computed using a TD-CFIE solver with 

fourth-order Lagrange temporal basis and GWP spatial basis of orders 0, 1, 2 is compared 

with the Mie series solution [Figure 1.3]. The effect of accuracy improvement using 

GWP basis functions is clearly demonstrated. More recently, high order Calderón 

preconditioned TD-EFIEs [46] are developed that leverages GWP  functions and high 

order divergence (and quasi-curl) conforming BC functions [47]. Other methods to 

improve the spatial discretization accuracy in TDIE solvers include high order Nyström 

method [48] and Generalized Method of Moments using mixed spatial basis functions 

[49], etc. 
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Figure 1.3 Bistatic RCS at 30 MHz of a PEC sphere of radius 1 m discretized with 32 

curvilinear triangles obtained from the TDIE solver with 4th  order Lagrange temporal 

basis and GWP spatial basis of orders 0,1,2. (a) Bistatic RCS. (b) Relative RCS errors 

compared to the Mie series solution 

1.2.4 Stabilized MOT-TDIE Solvers 

The MOT-TDIE solvers are oftentimes plagued by instabilities, viz., the presence 

of non-decaying solutions iI  with respect to decaying excitation vectors iV . The stability 

behavior of a MOT-TDIE solver can be studied by rewriting equation (1.8) in the form of 

a difference equation [50] 

 
1

=c c c

i i−I Z I  (1.15) 

where 1 1= ( , , ... , )
max

c T T T T

i i i i k− − +I I I I  and the companion matrix cZ  consists of matrix blocks 

1 1 1

0 1 0 2 0, ,...,
maxk

− − −Z Z Z Z Z Z , and zero/identity blocks of size s sN N× . According to the 

eigenvalue distribution of cZ , instabilities of the MOT-TDIE solvers can be classified 

into three categories: (i) eigenvalues outside the unit circle lead to wildly oscillating and 

exponentially growing solutions (high frequency instability); (ii) eigenvalue of 1 0i+  

corresponds to constant or slowly growing solutions (DC instability); (iii) eigenvalues of 

form ie θ , 0θ ≠  relate to harmonic solutions with oscillating frequencies corresponding to 

the interior resonance modes (resonant instability). Among these three types of 

instabilities, high frequency instability is mainly due to the numerical discretization 
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errors. In contrast, DC and resonance instabilities are more rooted in the spectral property 

of the pertinent TDIE operators.  

1.2.4.1 High frequency instability 

In the past, high frequency instability in MOT-TDIE solvers was partially 

remedied using methods such as temporal/spatial averaging [51-56], space-time Galerkin 

testing [57, 58], specific collocation-in-time scheme [59], implicit time stepping [60, 61], 

the Laplace/Z-transform-based scheme [62-64] and accurate space-time discretization 

schemes already discussed in Section 1.2.3. More recently, methods that permit highly 

accurate evaluation of the MOT matrix elements and hence prevent undesirable 

eigenvalue shifting of cZ , are developed to stabilize the MOT-TDIE solvers.  

To be specific, the MOT matrix element { }
k mn

Z  in (1.9) represents the 

electric/magnetic field generated by space-time basis function ( ) ( )k nT t− S r  and tested by 

spatial basis function ( )mS r  at time 0t = , which involves two source spatial integrals 

and two test spatial integrals. Accurate evaluation of these four spatial integrals can be 

very challenging using pure numerical quadrature rules. Recently, semi-analytical 

methods that analytically evaluate the two [18, 65] or three [66] out of the four spatial 

integrals in (1.9) and numerically evaluate the rest ones by standard quadrature rules, are 

developed. These methods assume the usage of RWG spatial basis functions and 

Lagrange temporal basis functions. Methods that allow more flexible choices of temporal 

basis functions are developed leveraging closed-form evaluation of the electric [67], 

magnetic [68, 69] and combined fields [70] due to impulse excited RWG spatial basis 

functions. Other methods for accurate evaluation of the MOT matrix include polar 

integration [71], fully numerical integration based on a separable approximation of the 

convolution kernel [72] and radial source integration/smoothed test integration [73]. 

1.2.4.2 DC instability 

DC instability, which occurs mostly in MOT-TD-EFIE solvers, is caused by the 

presence of static (or linear-in-time) solenoidal currents that reside in the null space of 

TD-EFIE operator 
eL  (or its differentiated form 

e
&L ). The first effort at eliminating this 
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type of instability was reported in [27, 43] that leverages the Loop-Tree decomposition to 

extract static solenoidal current and add it back to the solution after solving the system 

equation (1.8). Later, the same authors proposed augmentation of the standard TD-EFIE 

with a differentiated normal field MFIE [28, 74] 

 ˆ ˆ( , ) = ( , )i st t⋅ − ⋅n H r n H r& & , (1.16) 

as the enforcement of (1.16) suffices to, in practice, induce zero normal magnetic fields 

and zero static static solenoidal current during time marching.  

More recently, a “Dottrick” scheme that totally removes the eigenvalue 1 0i+  of 

cZ  is proposed based on the Calderón preconditioned TD-EFIE (1.14) and a judicious 

rearrangement of the time differentiation and integration operations in the operator 2

eL  

[32]  

 2 2=e es eh es es eh+ +& % % &L L L L L L  (1.17) 

where ( ) 0
ˆ[ ]( , ) = ( ', ) / / 4es

S
t ds R cτ π′− × ∫J r n J r%L . Figure 1.4(a) compares the (DC) 

stability behaviors of the standard, normal magnetic field augmented and Dottrick TD-

EFIEs. 

1.2.4.3 Resonant instability 

The solutions of TD-EFIE and MEIE are oftentimes corrupted by resonant 

currents that reside in the null space of the TD-EFIE/MFIE operators. Although in theory 

these resonant modes are not supported by the zero initial current condition, in practice 

they can be excited due to numerical errors accumulated during the time marching. Not 

surprisingly, accuracy improvement in the iterative solver and evaluation of the MOT 

matrix elements can suppress the resonant instability [75]. The TD-CFIE, as already 

mentioned in Section 1.2.1.1, eliminates the eigenvalues ie θ , 0θ ≠  of cZ  and is free 

from resonant instability [1]. The stability behaviors of TD-EFIE/MFIE/CFIE are 

compared via an example in Figure 1.4(b).  

 



 

15 

 

0 250 500 750 1000 1250 1500

10
−29

10
−27

10
−25

10
−23

10
−21

10
−19

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

C
u

rr
en

t 
d

en
si

ty
 (

A
/m

)

Differentiated TD−EFIE

Augmented TD−EFIE

Dottrick TD−EFIE

0 250 500 750 1000 1250 1500

10
−29

10
−27

10
−25

10
−23

10
−21

10
−19

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

Time step  

(a) 

0 500 1000 1500

10
−21

10
−19

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

Time step

TD−EFIE
TD−MFIE

TD−CFIE

0 500 1000 1500

10
−21

10
−19

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

C
u
rr

e
n
t 

d
e
n
si

ty
 (

A
/m

)

 

(b) 

Figure 1.4 (a) Currents on a PEC sphere of radius 1 m obtained using standard TD-

EFIE and DC stabilized TD-EFIEs. The excitation waveform is a modulated Gaussian 

pulse with central frequency 0 8 MHzf =  and bandwidth 3 MHz.bwf =  (b) Currents 

on a PEC sphere of radius 1 m obtained using standard TD-EFIE, TD-MFIE and TD-

CFIEs. The excitation waveform is a modulated Gaussian pulse with central 

frequency 0 120 MHzf =  and bandwidth 80 MHz.bwf = . 

 

1.2.5 Fast MOT-TDIE Solvers 

The computationally most demanding operation in abovementioned MOT-TDIE 

solvers is the evaluation of the sum on the RHS of (1.8) during time marching, which 

requires computation of tested fields at sN  observers due to sN  sources for tN  time 

steps. The computational cost of this operation, if performed directly, is prohibitively 

high and hinders the application of MOT-TDIE solvers to transient problems involving 

electrically large objects. Indeed, when applied to problems that involves 3D objects 

residing in unbounded lossless medium, the computational and memory costs of this 

operation scale as 2
( )t sO N N  and 2

( )sO N ; when applied to problems involving 3D objects 

embedded in dissipative or structured environment, or 2D objects, these costs raise to 

2 2( )t sO N N  and 2( )t sO N N , respectively. Note: the latter estimates are valid due to the 

infinite temporal tail of the Green’s function in these media.  

In the past, the computational efficiency of MOT-TDIE solvers has been 

significantly improved by various fast algorithms. The most popular ones among them, 
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viz, TD-AIM, NGTD and PWTD, are discussed in this subsection. Other methods to 

reduce the computational and/or memory costs of the MOT scheme include the 

accelerated Cartesian expansion (ACE)-based algorithm that is well-suited for 

accelerating low frequency integral kernels [76, 77], wavelet-based adaptive MOT 

scheme [78], envelope tracking technique that permits large time step size in the high 

frequency regime [79, 80] and hybridization of TDIE methods with physical optics (PO) 

methods [81-85] and DE methods [86-90]. 

 

1.2.5.1 TD-AIM 

Just like its frequency domain counterpart [91], TD-AIM permits fast evaluation 

of the radiated fields by projecting them onto auxiliary uniform spatial grids and 

propagating them using fast Fourier transforms (FFTs). However, unlike the frequency 

domain AIM that leverages space-only FFTs, TD-AIM often utilizes multilevel/blocked 

space-time FFTs as the sparse structure of the MOT matrices need to be accounted for [9, 

92]. When applied to transient analyses involving quasi-planar surface scatterers in 

unbounded lossless medium under high frequency excitations, the computational and 

memory costs of TD-AIM scale as 2( log )t s sO N N N  and 1.5( )sO N , respectively [9]; for 

more general surfaces, these costs become 1.5 2
( log )t s sO N N N  and 2

( )sO N  [9]. Moreover, 

TD-AIM can be applied, with minimal modifications, to transient analyses involving 

surfaces embedded in lossy medium [22] or half space [23]. In [93], TD-AIM is extended 

to the low frequency regime through accelerating the computation of both the RHS and 

left hand side of (1.8) by the space-time and space-only FFTs, respectively. The 

computational costs of these TD-AIM-accelerated MOT-TDIE solvers are listed in Table 

1.1. Note: although TD-AIM is asymptotically inferior to other fast algorithms such as 

PWTD and NGTD, it remains very competitive for many practical problems. Moreover, 

TD-AIM has been applied to accelerate a hybrid field-circuit simulator that couples the 

surface-volume TDIE solver with the modified nodal analysis (MNA)-based circuit 

solver [94]. More recently, a TD-AIM-accelerated multiconductor transmission line 

(MTL) simulator that further combines the TDIE solver, TDIE-based MTL solver and 
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MNA-based circuit solver is developed for electromagnetic characterization of complex 

structures [4, 5, 95]. 

1.2.5.2 NGTD 

The NGTD algorithm accelerates computation of fields produced by temporally 

bandlimited, space-confined sources by representing the delay- and amplitude-

compensated fields at a sparse grid surrounding the observers and evaluating the true 

fields through interpolation and delay/amplitude restoration [96]. The two-level NGTD 

algorithm was first developed using the spherical nonuniform grid [96]. Later, multilevel 

NGTD based on the Cartesian nonuniform grid was developed [10]. When applied to 

field computation due to either surface-bound or volumetrically distributed sources that 

reside in unbounded lossless medium, the computational costs of multilevel NGTD scale 

as ( log )t s sO N N Nµ . Here, = 2µ  in the high frequency regime, = 1µ  in the low 

frequency regime and 1 < < 2µ  for mixed-scale mesh [Table 1.1]. Moreover, NGTD is 

remarkably simple to implement compared with other fast algorithms. 

 

 

Surface 

Volume; high 

frequency 

Unbounded, 

lossless 

medium; high 

frequency 

Unbounded, 

lossless 

medium; low 

frequency 

Structured/ 

dissipative 

medium; high 

frequency 

Direct 2

t sN N  2

t sN N  2 2

t sN N  2

t sN N  

TD-AIM 2logt s sN N N  2logt s sN N N  log logt s t s tN N N N N  2logt s sN N N  

NGTD 2logt s sN N N  logt s sN N N  – 2logt s sN N N  

PWTD 2logt s sN N N  logt s sN N N  log logt s t sN N N N  t sN N  

Table 1.1 Best achievable estimates (multiplicative constants omitted) of the 

computational costs for computing the RHS sum of (1.8) using the direct scheme and 

fast algorithms. 

 

1.2.5.3 PWTD 

This section reviews the advances in PWTD algorithms and their applications to 

various transient electromagnetic problems. First, the PWTD algorithm and its extensions 
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applicable to problems involving different objects, background media and frequency 

regimes are summarized. Next, a few application examples of the PWTD-accelerated 

MOT-TDIE solvers are provided.   

• PEC objects in lossless medium. PWTD permits fast evaluation of interactions in 

(1.9) between spatial basis functions that reside in well-separated group pairs. It 

expands the fields due to time-limited and bandlimited current density in the 

source group into a set of homogeneous plane waves propagating in the 

background medium. When implemented in a two-level framework (i.e., all 

groups have equal sizes), the PWTD algorithm permits efficient evaluation of 

RHS of (1.8) using 1.5( log )t s sO N N N  CPU and 1.5( )sO N  memory resources [97]. 

Moreover, when implemented in a multilevel framework, (i.e., a so-called PWTD 

tree needs to be constructed to efficiently account for interactions between group 

pairs of different sizes), the computational cost of the PWTD-accelerated TD-SIE 

solver can be further reduced to 2( log )t s sO N N N  [13].   

• Homogeneous dielectrics in lossless medium. In the (multilevel) PWTD-

accelerated TD-SIE solvers for analyzing transient scattering from (piecewise) 

homogeneous dielectrics residing in unbounded lossless medium, the PWTD 

algorithm accelerates computation of the fields in each dielectric region due to 

surface electric and magnetic currents [15]. Furthermore, due to different wave 

speed in each region, multiple PWTD trees need to be constructed. The 

computational and memory costs of these PWTD-accelerated TD-SIE solvers 

scale as 2( log )t s sO N N N  and 1.5( )sO N . These cost estimates, though seemingly 

similar to those of the abovementioned solvers for analysis scattering from PEC 
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scatterers, have larger leading constants due to the presence of double surface 

currents and multiple PWTD trees. In [98], a PWTD-accelerated TD-SIE solver 

applicable to composite scatterers that involve piecewise homogeneous dielectrics 

and PEC structures, is developed. 

• Inhomogeneous dielectrics in lossless medium. In the PWTD-accelerated TD-VIE 

solvers for analyzing transient scattering from inhomogeneous dielectrics residing 

in unbounded lossless medium, the PWTD algorithm permits fast computation of 

the fields due to both the electric flux density and the total field contributions in 

the polarization current ( , )P tJ r  [19-21]. Unlike the above-described PWTD 

algorithms, here the dielectric volume (instead of the surfaces) of the scatterers is 

subdivided using the PWTD tree. The computational and memory costs of the 

PWTD-accelerated volume TD-VIE solvers scale as ( )t sO N N  and ( log )s sO N N , 

respectively [Table 1.1]. 

• Surface scatterers in lossy medium. As discussed at the beginning of Section 

1.2.5, the computational cost of the direct TD-SIE solvers for the analysis of 

scattering from surface scatterers embedded in unbounded lossy medium scales as 

2 2( )t sO N N  due to the infinite temporal tail of the lossy medium Green’s function. 

This cost can be reduced leveraging two mechanisms: (i) a scalar lossy-medium 

PWTD algorithm that permits rapid computation of the far field interactions [99], 

and (ii) a Prony series-based scheme that permits fast temporal convolution of the 

lossy-medium Green’s function with space-time basis functions during the 

evaluation of near field interactions [100]. Later, the pertinent PWTD-accelerated 
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TD-EFIE [101] and TD-CFIE solvers [102] are developed. The computational 

costs of these solvers scale as ( log log )t s t sO N N N N  [Table 1.1]. 

• Mixed-scale scatterers. The abovementioned PWTD algorithms will lose their 

computational efficiency when directly applied to mixed-scale scatterers (residing 

in unbounded lossless medium) due to their inefficiency of field computation in 

the dense mesh region. An adaptive MOT-TDIE solver that leverages the standard 

PWTD algorithm in the electrically large region and a low frequency PWTD 

algorithm in the dense mesh region, was developed [103, 104]. As the 

computational cost of the low frequency PWTD algorithm scales at most as 

( log )t s sO N N N , that of the overall solver can be efficiently capped by 

2( log )t s sO N N N .  

In addition to the abovementioned PWTD-accelerated MOT-TDIE solvers, those 

applicable to transient scattering problems that involve surface scatterers embedded in 

half space or layered medium [105], periodic structures [106], 2D objects [24, 107, 108] 

have been developed.  

 

These PWTD algorithms have been applied successfully to many large-scale 

transient electromagnetic problems including large transient scattering problems, 

broadband antenna problems and EMC problems. In addition, the PWTD algorithm has 

been applied to construct fast boundary kernels for the FDTD algorithms [109-111], and 

to accelerate large-scale acoustic scattering [112, 113] and electrodynamics [114] 

problems, etc. 

• Transient scattering problems. The PWTD-accelerated TDIE solvers have been 

widely applied to transient scattering problems that involve large and complex 

targets. In the past, scattering from real-life targets (e.g., aircrafts and vessels) that 



 

21 

 

involve 510  spatial unknowns was analyzed using serial implementation of these 

solvers [13, 97]. A parallel PWTD-accelerated TDIE solver was used to solve 

electrically large problems involving half million spatial unknowns [115].  

• Broadband antenna problems. TDIE methods are well-suited to analyze 

electromagnetic scattering and radiation from broadband antennas. In the past, 

direct TDIE solvers were applied to thin wire antennas [25, 116, 117] and small 

3D antennas [118, 119], etc. In addition, radiation from antennas mounted on 

electrically large (yet geometrically simple) platforms have been studied using 

hybrid TDIE-PO solvers [84, 85]. The PWTD-accelerated MOT-TDIE solvers, 

when augmented with the aforementioned stability improvement techniques, can 

be used to analyze large and complex antenna radiation problems. EMC/EMI 

problems 

• EMC/EMI problems. Real-life EMC/EMI problems often involve complex and 

multi-scale structures, e.g., radiation components, cables and microwave circuits 

that reside in (electrically large) shielding enclosures. MOT-TDIE solvers capable 

of accurately and efficiently modeling PEC surfaces/wires/junctions, 

homogeneous/inhomogeneous dielectrics, and linear/nonlinear lumped elements 

are required. In [120], a PWTD-accelerated TDIE solver was applied to the 

EMC/EMI analysis involving PEC surfaces and wires. Parallel implementation of 

this solver was developed in [121]. In addition, a PWTD-accelerated hybrid 

surface-volume TDIE solver capable of modeling composite structures was 

developed [122]. More recently, EMC/EMI problems involving microwave 

circuits have been analyzed using a field-circuit simulator that couples the 



 

22 

 

PWTD-accelerated TDIE solvers capable of effectively modeling 

volumes/surfaces/wires/junctions, and the MNA-based circuit solver [123]. 

1.3 Advances Proposed by This Work  

Although PWTD-accelerated MOT-TDIE solver have been successfully applied 

to the transient analysis of electromagnetic scattering from various objects, that involves 

up to half million spatial unknowns, they still lag behind the MLFMA-accelerated FDIE 

solvers in their capabilities of solving real-life electromagnetic problems that involve 

millions of spatial unknowns. The main limitations of the existing PWTD-accelerated 

TDIE solvers are: 

• Parallel PWTD-accelerated TDIE solvers do not scale well when executed using 

massive computing resources, mainly due to the lack of an efficient parallelization 

scheme for the heterogeneous computation and memory loads in PWTD.  

• PWTD-accelerated TDIE solvers require much more memory and computational 

resources than the MLFMA-accelerated FDIE solvers when applied to scattering 

problems that involves same number of spatial unknowns. To reduce the gap 

between these two classes of solvers, the temporal, spatial and angular sparsity 

pertinent to the PWTD algorithm need to be exploited. 

• Compared to the widely used TD-SIE solvers, the TD-VIE solvers still remain 

under development. The capability of existing PWTD-accelerated TD-VIE 

solvers is limited by their poor stability and/or computational inefficiency.     

This work presents the following contributions: 

• A provably scalable parallelization scheme for the multilevel PWTD algorithm. 

The proposed parallel PWTD algorithm scales well on thousands of CPU 



 

23 

 

processors and permits fast evaluation transient fields due to tens of millions of 

surface-bounded and over one hundred million volumetrically distributed source 

constellations (Chapter 2).  

• A Graphics Processing Unit (GPU) implementation of multilevel PWTD 

algorithm that achieves significant speedups when compared to serial CPU 

implementations of the PWTD algorithm (Chapter 3).  

•  A parallel PWTD-accelerated TD-SIE solver capable of analyzing transient 

scattering from canonical and real-life PEC objects that involve 10 million spatial 

unknowns (Chapter 4).  

• A wavelet-enhanced PWTD-accelerated TD-SIE solver that exploits the temporal 

sparsity in the PWTD algorithm. The proposed solver is capable of analyzing 

transient scattering from smooth quasi-planar PEC objects spanning well over one 

hundred wavelengths (Chapter 5).  

• An explicit and PWTD-accelerated TD-VIE solver capable of analyzing transient 

scattering from canonical and real-life dielectric objects that involve 25 million 

spatial unknowns (Chapter 6). 
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CHAPTER 2  

 

A Provably Scalable Parallel Multilevel PWTD Algorithm 

2.1 Chapter Introduction 

The analysis of transient fields produced by temporally bandlimited and space-

confined source constellations is of paramount importance in various disciplines 

including acoustics, electromagnetics (EM), elastodynamics, and quantum dynamics. The 

computational complexity and memory requirement of performing this analysis via 

classical schemes scale as 2( )t sO N N  and 2( )sO N , respectively, for 
sN  sources active for 

tN  time-steps. The multilevel PWTD algorithm reduces the computational and memory 

requirements of this analysis to 2
( log )t s sO N N N  and 1.5

( )sO N  for the surface-bound 

sources [8], as well as to ( )t sO N N  and ( log )s sO N N  for the volumetrically-distributed 

sources [19]. These computational cost and memory requirement of the PWTD algorithm 

permit its applications to the fast and accurate analyses of transient 

acoustic/elastodynamic/EM scattered fields when it is used in conjunction with classical 

MOT schemes [13, 15, 19-21, 113, 114]. Despite of its favorable computational and 

memory requirements, the application of serial implementation of the PWTD algorithm 

cannot be extended beyond the transient analyses involving medium scale source 

constellations. To this end, parallelization of the PWTD algorithm for executing on 

distributed memory supercomputers is imperative for its applications to the transient 

analyses involving (very) large-scale source constellations, that is the case in real-world 

transient problems.  



 

25 

 

Parallelization of the PWTD algorithm for distributed memory supercomputers is 

a non-trivial task since the computation and memory loads pertinent to spatial, angular, 

and temporal dimensions of the PWTD algorithm differ at each level of the PWTD tree. 

To date, a spatial partitioning-based [121] and a hybrid spatial/angular partitioning-based 

[115] parallelization schemes have been proposed for the PWTD algorithm. 

Unfortunately, these parallelization schemes are not rigorously proven to be scalable and 

consequently exhibit unfavorable load balance and low computation-to-communication 

ratios (CCRs) at certain levels of the PWTD tree when executed on a large number of 

processors. Similar spatial and hybrid spatial/angular partitioning-based parallelization 

schemes were proposed for MLFMA, viz. frequency domain counterpart of PWTD 

algorithm [124-126], yet not proven to be scalable. The first provably scalable techniques 

for parallelizing the MLFMA did not appear in the archival literature until 2008 [127-

131]. These techniques make use of a hierarchical partitioning strategy that 

simultaneously leverages spatial and angular partitioning at each level of the MLFMA 

tree [127-131]. 

Unfortunately, the direct extension of these MLFMA parallelization strategies to 

time domain does not produce a scalable parallel PWTD algorithm. This is simply 

because of the two important differences between MLFMA and PWTD: (i) MLFMAs 

call for only spatial and angular discretizations, while PWTD schemes require spatial, 

angular, and temporal discretizations. This results in different CPU and memory 

requirements for PWTD schemes. More specifically, from a parallelization perspective, 

communication costs in the translation stage of the PWTD schemes scale significantly 

different from those of the MLFMAs. (ii) MLFMAs often use local schemes to 

interpolate and filter/anterpolate far fields, while PWTD implementations usually rely on 

exact global spherical interpolation/filtering schemes [13]. Load balancing these global 

schemes poses challenges, especially at the coarse PWTD levels involving many plane 

wave directions.  

These differences between MLFMA and PWTD listed above clearly motivate the 

formulation and implementation of a scalable scheme to parallelize the multilevel PWTD 

algorithm. This chapter describes such a scheme that makes use of a hierarchical 

parallelization strategy to quasi-optimally distribute computation and memory loads 
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pertinent to spatial, angular, and temporal dimensions among processors. In addition, a 

novel asynchronous communication technique for reducing the cost and memory 

requirements of the communications at the translation stage of the PWTD algorithm is 

developed. By combining the hierarchical partitioning strategy and this asynchronous 

communication technique to achieve load balancing among processors, the proposed 

scheme produces scalable communication patterns among processors at all levels of the 

PWTD tree. The load balance and scalability of the proposed scheme are theoretically 

proved and numerically validated through the tests performed on thousands of multi-core 

processors. The efficacy and capability of the proposed scheme are demonstrated through 

its applications to the evaluation of transient scalar/vector fields generated by tens of 

millions of surface-bound and volumetrically-distributed scalar/vector sources.  

The rest of the chapter is organized as follows: In Section 2.2, PWTD algorithm 

for rapidly evaluating transient scalar and vector fields generated by temporally 

bandlimited and space-confined source constellations is summarized. The proposed 

parallelization scheme of the PWTD algorithm is expounded in Section 2.3. In Section 

2.4, numerical examples that show the scalability and capability of the proposed scheme 

are presented. 

2.2 Formulation 

2.2.1 PWTD for Evaluating Transient Scalar Fields  

Let ( , )q tr  denote a scalar source distribution defined on a surface S  or in a 

volume V . The transient scalar field generated by ( , )q tr  is  

 ( ) ( ) ( )0, ,u t q t t R c R dδ
Ω

′ ′= −∫r r r  (2.1) 

where | |R ′= −r r  is the distance between the source point ′r  and the observation point 

r , ( )δ ⋅  is the Dirac function, 0c  is the speed of wave propagating in the medium, and 

{ , }S VΩ = . Assume that ( , )q tr  consists of sN  point sources as  
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 ( ) ( ) ( )
1

, =
sN

n n

n

q t f t δ
=

−∑r r r   (2.2) 

where nr  is the position of the thn  point source with the time signature ( )nf t , which is 

temporally bandlimited to maximum frequency maxf  and quasi-time-limited to 0 < <t T .  

To numerically evaluate transient scalar fields, the time signature ( )nf t  is 

oftentimes expressed in terms of Lagrange polynomials ( )jT t , 1, , tj N= K  [12], as  

 ( ) ( ),

1

=
tN

n n j j

j

f t q T t
=
∑  (2.3) 

where 0( ) = ( )jT t T t j t− ∆  (time-shifted), = 1/ (2 )t maxt fχ∆  is the time-step size with 

oversampling ratio tχ , 5 20tχ< < , = /tN T t∆ , and , = ( )n j nq f j t∆  is the time signature 

at the thj  time-step. Substituting (2.2) and (2.3) into (2.1) and computing the scalar fields 

at t i t= ∆  results in a matrix system as 

 
=0

= ,       1,...,
i

sca

i j i j t

j

i N− =∑U Z Q  (2.4) 

where the entries of iU , iQ , and sca

jZ  are ( , )mu i t∆r  and ( , )mq i t∆r , 1, , sm N= K , and  

 
( ) ( )0

,

| | 4 | | ,
=   

0

sca j m n m n

j mn

T c m n
Z

m n

π− − − − ≠
 =

r r r r
 (2.5) 

Direct evaluation of scalar fields on sN  point sources [via (2.5)] requires 2
( )t sO N N  

operations and 2( )sO N  memory when sca

jZ  is pre-computed and stored. These 

computational requirements can be reduced drastically via the PWTD algorithm.  

In multilevel PWTD algorithm, a hypothetical box that encloses the source 

distribution is recursively subdivided into eight smaller boxes until the edge length of the 

smallest boxes becomes a prescribed fraction of the wavelength at the maximum 

frequency, 0 maxc fλ = . This recursive subdivision generates a LN -level PWTD tree, 

where 1/d= log ( )L sN O N , = {2,3}d  for { , }S VΩ = ; the boxes with the same edge length 
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belong to the same level v , 1,..., Lv N= . At level v  of the PWTD tree, there exist 

approximately 
( )

2 Ld N vv

gN
−=  nonempty boxes, each of which can be enclosed by a sphere 

of radius 1 1= 2v vR R−  with 1 (1)R O= . By starting from level LN  (coarsest level), a pair of 

source and observer boxes, labeled as α  and α ′ , centered at c

αr  and c

α ′r , respectively, is 

identified as a “far field” pair if (i) the distance between their centers, 

, ,| | | - |c c

c cR αα αα α α′ ′ ′= =R r r , is greater than a prescribed threshold, ,

v

cR Rαα γ′ >  ( 3 6γ≤ ≤ ), 

and (ii) their parent boxes are not distinguished as a far field pair. The box pairs at level 1 

(finest level) that are not identified as “far field” pairs are labeled as “near field” pairs. 

The contributions to (2.4) due to the interactions between point sources within the near 

field pairs are directly evaluated by (2.5). To compute the contributions to (2.4) stemming 

from the interactions between point sources within a far field box pair ( , )α α ′ , first, the 

time signature of the thn  point source in the box α , ( )nf t , is broken into v

lN  consecutive 

subsignals using the APS function as [42] 

 ( ) ( ) ( )
( )

,

1 1

v v v
l l

v

N N lM
l APS

n n n j j

l l j l M

f t f t q T t
= − +

= =∑ ∑ ∑  (2.6) 

Here, ( ) ( )APS APS

jT t T t j t= − ∆ , v v

l tN M N= , ( )APST t  denotes the APS function, which is 

temporally bandlimited to s t maxf fχ=  and approximately time-limited to 

f fp t t p t− ∆ < < ∆ , 5 10fp≤ ≤ , vM  is set to an appropriate integer so that the duration 

of each subsignal ( )l

nf t , ( 2 )v v

fT M p t= + ∆ , becomes less than , ' 0
( 2 )v

cR R cαα − . The 

scalar field on the thm  point source (in box α ′ ) generated by the thn  point source (in box 

α ), for the thl  subsignal, can be evaluated in three stages. First, a set of outgoing rays 

along directions ˆ v

pqk , ,
ˆ( , )v

l pqq tα
+ k , are constructed by projecting the subsignal ( )l

nf t , 

n α∈ , onto these directions as  

 ( ) ( ) ( ), 0
ˆ ˆ, =v v c l

l pq pq n n

n

q t t c f tα α
α

δ+

∈

 + ⋅ − ∗ ∑k k r r  (2.7) 
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where ∗  denotes temporal convolution and directions ˆ v

pqk , 0 vp K≤ ≤ , v vK q K− ≤ ≤  

are selected as quadrature points on a unit sphere [8]. 0= 4 / 1v v

s sK f R cχ π  +  is the 

number of spherical harmonics with the oversampling factor sχ . Indeed, the total number 

of plane wave directions required is ( 1)(2 1)v v v

kN K K= + + . Second, the outgoing rays of 

box α , ,
ˆ( , )v

l pqq tα
+ k , are translated into the incoming rays of box α ′ , ,

ˆ( , )v

l pqq tα
−

′ k , by 

convolving the outgoing rays with the translation function ˆ( , , )sca v v

pq t KkT , i.e.,  

 ( ) ( ) ( ), ,
ˆ ˆ ˆ, = , , ,v sca v v v

l pq pq l pqq t t K q tα α
− +

′ ∗k k kT  (2.8) 

where 

 ( ) ,0

2
=0, , ,

ˆ
ˆ , , = (2 1)

16

v vK
pq csca v v t

pq k k

kc c c

c t
t K k

R R R

αα

αα αα ααπ
′

′ ′ ′

   ⋅∂− + Φ Φ      
   

∑
k R

kT  (2.9) 

Here, ( )kΦ ⋅  is the Legendre polynomial of degree k , t∂  denotes time derivative, and 

,| | /ct R cαα ′≤ . Finally, the scalar field on the thm  point source (in box α ′ ), ( ),l

mu tr , is 

computed by projecting the incoming rays, ,
ˆ( , )v

l pqq tα
−

′ k , onto the thm  point source and 

summing over all directions with the quadrature weights pqω  as 

 ( ) ( ) ( )0 ,

0

ˆ ˆ, = ,

v v

v

K K
l v c v

m pq pq m l pq

p q K

u t t c q tα αω δ −
′ ′

= =−

 − ⋅ − ∗ ∑ ∑r k r r k  (2.10) 

In practice, only outgoing/incoming rays of the boxes at level 1 are computed using (2.8)

/(2.10) while those of higher level boxes are obtained using a scalar global spherical 

interpolation/filtering scheme [132] and performing a local shifting operation. It was 

proven that the computational complexity and memory requirement of the multilevel 

PWTD scheme scale as ( log )t s sO N N N
κ  and 3/

( log )
d

s sO N N
µ , where = 2κ , = 0µ  for 

= 2d  ( SΩ = ) and = 0κ , = 1µ  for = 3d  ( VΩ = ). 
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2.2.2 PWTD for Evaluating Transient Vector Fields  

The PWTD scheme is often used for rapidly evaluating transient vector fields 

generated by vector sources pertinent to EM scattering problems. Here, we briefly 

summarize the PWTD algorithm for evaluating vector fields, with a focus on its 

difference compared with the abovementioned scalar-field PWTD algorithm. Let ( , )tJ r  

represent a current density defined on a surface S  or in a volume V . The differentiated 

electric field ( , )tE r&  generated by ( , )tJ r  is  

 ( )( )( ) ( ) ( )2 2

0 0 0
( , ) 4 ,tt c t t R c R dµ π δ

Ω
′ ′= ∂ − ∇∇ ⋅ −∫E r J r r& I  (2.11) 

where 0µ  is the free space permeability and I  is the identity dyad. Assume that ( , )tJ r  

is approximated by sN  surface-bound point dipoles as  

 ( ) ( ) ( )
1

ˆ,
sN

n n n

n

t f t δ
=

= −∑J r r r u  (2.12) 

Here nr  and ˆ
nu  are the thn  dipole’s position and direction, and ( )nf t , just as in (2.2), is 

its temporal signature, which is band-limited to maximum frequency maxf  and quasi time-

limited to 0 < <t T . To evaluate interactions between these dipoles, the temporal 

signature ( )nf t  is oftentimes discretized as  

 ( ) ( ),1

tN

n n j jj
f t I T t

=
=∑  (2.13) 

where , ( )n j nI f j t= ∆ . Substituting (2.13) and (2.12) into (2.11) and computing fields 

(excluding self-interactions) at it i t= ∆  yields  

 
0

,      1,...,
i vec

i j i j tj
i N−=

= =∑F Z I  (2.14) 

where the entries of 
iF , 

iI  and vec

jZ  are ˆ ( , )m m i t⋅ ∆u E r& , 
,n iI , , 1, , sm n N= K  and 

 ( )( ) ( ) ( )2 2

, 0 0 0 , 
ˆ ˆ= 4 ,   

j m

vec

j mn m t n n n
t t

Z c T t c m nµ π
= =

⋅ ∂ − ∇∇ ⋅ − − − ≠
r r

u u r r r rI (2.15) 
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with , 0vec

j mnZ = . Direct computation of fields along sN  dipoles via (2.15) requires 

2
( )sO N memory and 2

( )t sO N N  operations for tN  time steps. These computational 

requirements can be reduced significantly via the multilevel vector-field PWTD 

algorithm. 

First, a hypothetical box enclosing the point dipoles is recursively subdivided into 

smaller boxes and the box pairs are classified as near field and far field ones by following 

the procedure described in Section 2.2.1. Next, contributions to (2.14) stemming from 

interactions between dipoles belonging to near field box pairs are computed directly by 

(2.15). To evaluate contributions to (2.14) due to interactions between dipoles belonging 

to a far field box pair at level v , the time signature of the thn  dipole in box α  at level v  

is broken into v

lN  consecutive band-limited subsignals as 

 ( ) ( ) ( )( ) ,1 1

v v v
l l

v

N N lMl APS

n n n j jl l j l M
f t f t I T t

= − +
= =∑ ∑ ∑  (2.16) 

where ( ) ( )APS APS

jT t T t j t= − ∆  and v v

l tN M N= ; vM  is chosen such that the duration of 

each subsignal, ( 2 )v v

fT M p t= + ∆ , is less than , ' 0( 2 )v

cR R cαα − . To compute the 

differentiated electric field along the thm  dipole (in box α ′ ) generated by the thn  dipole 

(in box α ) for the thl  subsignal, first, a set of outgoing rays (of box α ) in directions ˆ v

pqk  

is constructed by the convolution of the projection function ˆ ˆ( , , )v

n pq nt+P k u  with the 

subsignal ( )l

nf t  as 

 ( ) ( ) ( ),
ˆ ˆ ˆ, , , *v v l

l pq n pq n nn
t t f tα α

+ +
∈

=∑G k P k u  (2.17) 

Next, the outgoing rays (of box α ) are translated into incoming rays (of box α ′ ) by the 

convolution of ,
ˆ( , )v

l pq tα
+G k  with the translator ˆ( , , )vec v v

pq t KkT  as  

 ( ) ( ) ( ), ,
ˆ ˆ ˆ, , , * ,v vec v v v

l pq pq l pqt t K tα α
− +

′ =G k k G kT  (2.18) 



 

32 

 

Finally, incoming rays are projected onto the thm  dipole by convolving the projection 

function ˆ ˆ( , , )v

m pq mt−P k u  with the incoming rays and summing over all directions with 

quadrature weights pqω  as  

 ( ) ( ) ( ),

0

ˆ ˆˆ ˆ, [ , , ] , .

v v

v

K K
v T v

m m pq m pq m l pq

p q K

t t tαω − −
′

= =−

⋅ =∑ ∑u E r P k u G k&  (2.19) 

In (2.17)-(2.19),  

 { } { } { } 0, , ,
ˆ ˆ ˆˆ ˆ( , , ) = ( ( ) / ) / 4 ,v v v c

pq pq pqm n m n
t t cα αδ π±

′× ± ⋅ −P k v k v k r r  (2.20) 

 
3

,0 0

0, , ,

ˆ
ˆ( , , ) (2 1) ,

v vK
pq cvec v v t

pq k k

kc c c

c t
t K k

R R R

αα

αα αα αα

µ ′

=′ ′ ′

   ⋅∂= + Φ Φ      
   

∑
k R

kT  (2.21) 

In (2.17), the vector outgoing rays, ,
ˆ( , )v

l pq tα
+G k  [as opposed to the scalar outgoing rays, 

,
ˆ( , )v

l pqq tα
+ k , in (2.7)], have two transverse components. Consequently, the translation 

stage is performed for each transverse component separately and the incoming rays are 

projected onto the thm  dipole (in box α ′ ) oriented along ˆ
mu . In addition, the 

outgoing/incoming rays of boxes at level 1v >  are computed via a vector global spherical 

interpolation/filtering scheme [133] instead of the global scalar interpolation/filtering 

scheme [13]. Needless to say, computational and memory resources required by the 

vector-field PWTD algorithm are twice as large as those required by the scalar-field 

PWTD algorithm. 

2.3 Parallelization of the PWTD Algorithm 

This section describes a highly scalable parallelization scheme for the PWTD 

algorithm. The proposed strategy leverages hierarchical partitioning of the multilevel 

PWTD tree among processors and an asynchronous scheme for memory and cost 

efficient communications between processors. This asynchronous scheme is implemented 

using message passing interface (MPI). In what follows, first, an overview of the 

proposed parallelization strategy is provided (Section 2.2). The memory cost of the 
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proposed parallelization strategy is discussed (Section 2.3). Next, the costs estimates for 

computations and communications required at different stages of the PWTD algorithm 

are derived (Sections 2.3.3-2.3.5). Finally, overall computational and communication 

costs of the proposed parallelization strategy are provided and its scalability is 

theoretically proven (Section 2.3.6). 

2.3.1 A Pedestrian Description 

The effective parallelization of the multilevel PWTD scheme calls for a uniform 

distribution of the near field matrix elements (i.e. near field data) in (2.5)/(2.15) and 

outgoing/incoming rays (i.e. ray data) and the pertinent workload among processors. The 

near field data can be uniformly distributed among processors in a straightforward 

manner. That said, distributing the ray data uniformly among processors is a challenging 

task due to the PWTD algorithm’s heterogeneous tree structure. That is, ray data at level 

v  of the PWTD tree is computed for ( / 2 )v dv

g sN O N=  boxes (or spatial samples), 

(2 )v dv

kN O=  angular samples and approximately (2 )v vT O=  temporal samples at each 

PWTD stage and its partitioning along a single dimension results in poor load balance 

and/or congested communications at certain levels. This problem is observed with spatial 

partitioning at higher levels and angular or temporal partitioning at lower levels. A viable 

solution to this problem is adaptively partitioning ray data along more than one 

dimension. To achieve this, the proposed scheme first identifies a “base” level 
bv  as the 

highest possible level at which the number of boxes bv

gN  is no less than the number of 

processors pN . Then it uses two different partitioning strategies for levels bv v≤ and 

bv v≤ : 

• At levels bv v≤ , each processor computes and stores the complete ray and near 

field data for approximately /v

g pN N  boxes. By doing so, the memory and 

computation loads are only partitioned along the spatial dimension.  
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• At levels 
bv v> , computation and storage of the ray data of one box are 

distributed among = /v v

r p gN N N   processors. Each processor is in charge of 

storing /v v

k rN N  angular samples of one box’s ray data, hence the memory load is 

simultaneously partitioned along the spatial and angular dimensions. This 

memory partitioning leads to the following workload partitioning: each processor 

performs the translation operation for /v v

k rN N  angular samples and all, temporal 

samples of the ray data of one box; in contrast, each processor spherically 

interpolates/filters the ray data for ( / )v v

rO T N  temporal samples and all angular 

samples of the ray data of one box. This approach ensures that computation load 

is simultaneously partitioned along the spatial and angular/temporal dimensions.  

This partitioning strategy is perhaps best described by an example. Consider a 

five-level PWTD tree that is partitioned among six processors [Figure 2.1]. In Figure 2.1, 

each set of concentric circles represents one box and its associated ray data. The angular 

and radial dimensions of the circles concern the angular and temporal samples of the ray 

data, respectively. The number printed near the concentric circles and arcs indicates the 

ID of the processor in charge of the data marked with a certain color. For this example, 

9,6,3,2,1v

gN =  for 1,...,5v = , and 6pN = , therefore 2bv = . 

First, the proposed strategy assigns each box at base level = bv v  and with its 

corresponding subtree(s) to one processor. Each processor is responsible for computing 

and storing the ray data of the source/observer boxes at levels lower than the base level, 

i.e., bv v≤ , which it is in charge of. In the example in Figure 2.1, processor 1 is in charge 

of computing and storing the ray data of the leftmost two boxes at the first level and those 

of the single leftmost box at the second level. More specifically, processor 1 

constructs/projects the ray data at the second and first levels by spherical 

interpolation/filtering of the ray data at the first and second level. Since the ray data at 

both levels is stored in processor 1, no inter-processor communication is needed. Each 
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processor performs the translation stage without inter-processor communications if both 

source and observer boxes are handled by the same processor. Otherwise, it carries out 

the translation operation after receiving the outgoing ray data from other processors. 

Similarly, each processor is in charge of computing and storing the near field data 

pertinent to source boxes at the finest level in its corresponding subtree. For the example 

in Figure 2.1, processor 1 only computes and stores the near field data pertinent to the 

leftmost two source boxes at the finest level. This near field data is related to self and 

mutual interactions between the leftmost two source boxes and the mutual interaction 

between the second box (source box) and the third box (observer box) from the left. Note 

that in this example it is assumed that only adjacent (and self) boxes constitute near field 

pairs. Since the near field data pertinent to many box pairs resides on the same processor, 

the communication cost for the near field calculation is very low. 

Second, the proposed strategy partitions the ray data of the boxes at levels higher 

than the base level, i.e., bv v> , among processors by considering the number of 

processors and the number of boxes at that level. For the example in Figure 2.1, the 

processor 1 is responsible for computing and storing 1/2, 1/3, and 1/6 of the ray data (i.e., 

v

rN =2, 3, 6) of the leftmost boxes at levels 3, 4, and 5, respectively. Translation of the ray 

data of one box is split among v

rN  processors in angular dimension. For example, 

processor 1 performs translation stage for half of the angular samples of the ray data of 

the leftmost box at level 3  after receiving from processor 6 the outgoing ray data of the 

rightmost box at that level. Note that in this example it is assumed that, at level 3, only 

the leftmost and rightmost boxes constitute a far field pair. In contrast, 

interpolating/filtering the ray data of one box is split among v

rN  processors in temporal 

dimension. For example, interpolating/filtering the ray data of the leftmost box at level 4  

is carried out by processor 1, 2, and 3; the ray data is redistributed among these three 

processors in temporal dimension, each processor interpolates/filters 1/3 of the temporal 

samples of that box. 
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2.3.2 Overall Memory Cost 

The proposed strategy gives rise to quasi-optimal (uniform) distribution of the ray 

data of boxes at each level of the PWTD tree as well as the near field data among 

processors. In the proposed strategy, the memory load at each processor can be estimated 

as follows. For levels bv v≤ , each processor stores the ray data of /v

g pN N  boxes for all 

( )v

kO N  directions. For levels bv v> , each processor stores the ray data of one box for 

( / )v v

k rO N N  directions, where = /v v

r p gN N N   denote the number of processors in charge 

of partially storing one box’s ray data. As the proposed strategy is based on partitioning 

ray data along its spatial and angular dimensions, its temporal dimension is not split 

among processors. Consequently, each processor stores 1/( ) ( / 2 )vN vv d

sO M O N −=  

temporal samples of the ray data for each direction and box that it is responsible for. 

Hence, the memory requirement for the ray data at each processor, MR , is 

 

( ) ( ) ( )
=1 = 1

3/
(3 )

=1

log
        2

b L

b

L

vv vN
g v v vk

k v
v v vp r

dN
d vs s s

vp p

N N
MR O N O M O O M

N N

N N N
O O

N N

µ

+

−

 
= +  

 

  
= =        

∑ ∑

∑
 (2.22) 

It’s worthwhile to note here that the memory required to store the information 

about all boxes’ parents, children, far field partners, and near field partners may become 

considerably large at each processor as the number of sources/boxes (and the dimensions 

of the hypothetical box enclosing the source constellation) increases. Albeit a fraction of 

the memory requirement of ray data, the memory required to store this data at each 

processor can be reduced by its partition among processors. In the proposed strategy, 

each processor stores only a portion of this data pertinent to the boxes that it is in charge 

of. Therefore, the memory required to store this information at each processor is 

negligible. 

 



 

37 

 

1 2 3 4 5 6

12 3 4 5 6

12

3

4

5

6

3 3 4 5 6 6211

t samples

k samples

v
b

v= 5

v= 4

v= 3

v= 2

v= 1

1

23

4

5 6

 

Figure 2.1 Partitioning of boxes and their ray data in a five-level PWTD tree among 

six processors. 

2.3.3 Construction/Projection of Outgoing/Incoming Rays 

In the proposed scheme, outgoing ray construction and incoming ray projection 

are performed via similar procedures. For the sake of brevity, this subsection only details 

the parallelization of outgoing ray construction .As discussed in Section 2.2, such 

operations are performed separately at the finest level 1v =  and at levels higher than 

finest level (i.e. 1v > ). 

At the finest level 1v = , constructing outgoing rays directly from sources requires 

no communication. Specifically, one processor is responsible for computing 1

lN  outgoing 

rays along all 1

kN  directions for approximately 1

g pN N  boxes. Each outgoing ray is 

computed at 1( )O M  temporal samples. The computational cost of outgoing ray 

construction at the finest level scales as 1 1 1 1( ) ( )l k g p t s pO M N N N N O N N N= . 

At levels 1v > , construction of outgoing rays is performed by spherical 

interpolation and can require communication. Unlike the ray data of boxes at the finest 

level, the ray data of one box at higher levels can be stored by multiple processors [as in 

the example in Figure 2.1]. The construction of outgoing rays at higher levels via 

spherical interpolation can be carried out by considering three possible cases [Figure 2.2 

(a)]. 
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•  Case 1: the ray data of the box at level 
bv v≤  is directly interpolated and shifted 

from the children boxes with no communication. As the spherical interpolation of 

one temporal sample of the ray data requires ( log )v v

kO N K  operations, the 

computational cost for one outgoing ray at level v  scales as ( log )v v v

kO M N K .  

• Case 2: the ray data of the box at 1bv v= +  needs to be stored partially by one 

processor, while that of the each child box is completely stored by the same or a 

different processor. This case requires similar operations for the interpolation as 

in case 1. However, it requires communication before the shifting operation.  

• Case 3: ray data of level 1bv v> +  boxes is computed via interpolating and 

shifting the ray data of the child boxes, which invariably is stored on more than 

one processor. The construction of the outgoing rays [Figure 2.2(b)] is performed 

in four steps. Step 1: ray data of the child boxes stored in 1v

rN −  processors is 

exchanged between them in such a way that each processor handles 1( / )v v

rO T N −  

temporal samples of outgoing rays along all 1v

kN −  directions [Figure 2.2(b)]. Step 

2: each processor performs its own spherical interpolation, requiring 

1( log / )v v v v

k rO T N K N −  operations. Step 3: the interpolated ray data of each child 

box is split along the angular dimension and the resulting data is exchanged 

between 1v

rN −  processors.  Step 4: the interpolated ray data is sent to the 

processors in charge of the parent box via non-blocked MPI communication. Step 

5: the transferred ray data is locally shifted to the center of the parent box. 

For each processor, the computational cost of outgoing ray construction, 1CC , 

scales as  
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where the three contributing terms represent the costs of construction of outgoing rays at 

finest level, in case 1 and 2 (together), and in case 3, respectively. Note that each 

processor is in charge of interpolating the ray data of approximately 1 /v

g pN N−  boxes at 

level 2 1bv v≤ ≤ +  and at most one child box at level 1bv v> + . Assume that the 

communication cost per processor is proportional to the total data amount that each 

processor sends and receives. The communication in this stage is dominated by the data 

exchange required in steps 1, 3, and 4 of case 3 [Figure 2.2(b)]. At steps 1 and 3, each 

processor sends/receives partial ray data of size 1 2( / ( ) )v v v

k rO M N N −  to/from each of the 

other 1 1v

rN − −  processors. Therefore, the total data amount that one processor 

sends/receives at step 1 and 3 is of size 1
( / )

v v v

k rO M N N
− . At step 4, each processor 

sends/receives ray data of size 1( / )v v v

k rO M N N −  to/from (1)O  other processors. 

Therefore, the cost of communication in this stage, 1CM , scales as 
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Similarly, the computational cost of the projection of incoming rays, 
2CC , and the 

communication cost in such stage, 2CM , are proportional to those of construction of 

outgoing rays, i.e.  

 
2 1 2 1,  CC CC CM CM∝ ∝  (2.25) 
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(b) 

Figure 2.2 (a) Three possible cases encountered during the construction of outgoing 

rays of boxes in PWTD tree. Each case requires different communication patterns. (b) 

The steps to construct the outgoing rays in case 3. 

2.3.4 Translation  

The translation between one far field box pair (formulated by (2.8)/(2.18)) is 

performed by multiplying the Fourier transforms of the translation function and outgoing 

ray, as well as computing the inverse Fourier transform of the result [8]. The 

computational cost of this operation (i.e., the fast forward and backward Fourier 

transforms) scales as ( log )v vO M M . Note that there exist v

lN  outgoing rays along each 

direction for one source box at level v  and each observer box only interacts with (1)O  

source boxes. At level bv v≤ , each processor performs translation along ( )
v

kO N  

directions for its /v

g pN N  observer boxes. At the level 
bv v> , each processor carries out 

translation along ( / )v v

k rO N N  directions for at most one observer box. Therefore, the 

computation cost of the translation stage for each processor, 3CC , can be computed as 
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where the first and second summations relate to the computation costs of translations at 

levels bv v≤  and bv v> , respectively. Note that the outgoing ray data of a box at each 

processor is sent to at most (1)O  processors in the translation stage. In fact, some 

translations do not require communications as those are performed between source and 

observer boxes possessed by the same processor. For each processor, the ray data sent 

and received during the translation stage for one box is of size ( )
v v

kO N M  for the level 

bv v≤  and ( / )v v v

k rO N M N  for the level 
bv v> . Therefore, the communication cost in this 

stage, 3CM , scales as 
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Oftentimes, the number of source boxes far field paired with one observer box is 

large (e.g. exceeds one hundred) and the processor in charge of the observer box needs to 

allocate temporary memory for receiving all outgoing rays of source boxes it is 

interacting with. This temporary memory space may become excessively large, especially 

for translations at higher levels. To overcome this potential bottleneck, a novel, memory-

efficient, and asynchronous communication scheme is proposed here. This scheme 

leverages concepts originally proposed in [134]. It no longer separates the computation 

and communication phases and limits the temporary memory to be allocated to that 

available to a single processor. The work flow of this scheme for one processor can be 

summarized as follows [Figure 2.3]. First, the processor allocates a “receiving” memory 
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pool containing memory grains of size ( )
v v

kO T N  or ( / )
v v v

k rO T N N  to receive outgoing 

rays of one source box at level bv v≤  or ,bv v>  respectively. Prior to translation, the 

processor sends out all/partial outgoing rays of source boxes needed by the far field 

observer boxes that are held by different processors. The processor then iterates over the 

following four steps until the translation stage is complete. Step 1: the processor catches 

arriving data packets (i.e., outgoing ray data from source boxes). If a memory grain is 

available, the processor starts receiving the packet by putting it into the receiving queue. 

If not, it temporarily suspends reception of the packet until the next iteration. Step 2: the 

processor moves any completed packets in the receiving queue into a working queue, 

which now contains packets that are complete for translation. Step 3: The processor 

carries out the translation of complete outgoing rays. The working queue is a “priority 

queue” such that translations associated with “nonlocal” packets (as opposed to “local” 

packets that require no temporary memory space) and “higher level” packets that 

correspond to outgoing rays of boxes at higher levels, are executed first. Step 4: After 

translation, the memory grain associated with the packet is returned to the pool and 

becomes available again for Step 1. In this manner, the translation and communication 

are performed asynchronously and the maximum amount of temporary memory allocated 

is fully controlled by the processor. 
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Figure 2.3 Queue-based asynchronous communication during translation stage. 
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2.3.5 Near field calculation  

The interactions between near field box pairs are performed by (2.4) every time-

step. In this work, the near field portion of the interaction matrix sca

jZ  or vec

jZ  is 

calculated on-the-fly. At each time-step, since one source box only interacts with (1)O  

near field observer boxes, the computational and communication costs of near field 

calculation for one source box scales as 1 2(( / ) ) = (1)s gO N N O  and 1( / ) = (1)s gO N N O , 

respectively. As one processor is in charge of approximately 1 /g pN N  source boxes at the 

finest level, the computational cost 
4CC  and communication cost 

4CM  in near field 

calculation stage scale as 

 ( )
1

4 4 = 1 = .
g s t

t

p p

N N N
CC CM N O O

N N

 
∝   
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2.3.6 Overall computational and communication cost 

The above computational and communication cost analysis of PWTD stages 

(from (2.23) to (2.28)) shows that the overall computational cost CC  and communication 

cost CM  of the proposed parallel PWTD algorithm scale as  
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It’s apparent from (2.22) and (2.29) that the overall memory, computational, and 

communication costs are inversely proportional to the number of processors 
pN . 

Furthermore, CCR, which equals to ( )/2/ log sCC CM O Nκ= , is proportional to 

(log )sO N  for SΩ =  and (1)O  for VΩ = . In other words, as 
sN  and 

pN  increase, the 

parallel PWTD scheme for evaluating fields generated by surface-bound and 

volumetrically-distributed sources yields non-decreasing CCR. Hence, the scalability of 

the proposed parallelization strategy is proved.  

 

Test sN  Edge length of 
plate/cube ( λ ) 

1R  ( λ ) Memory per 
processor (GB) 

CPU Time 
(hour) 
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Vector-surface 10,240,000 320  0.54  1.8 2.43 

Scalar-surface 20,480,000 452  0.38  2.5 3.04 

Vector-volume 64,000,000 40  0.27  0.63 16.2 

Scalar-volume 128,000,000 50  0.33  0.75 19.6 

 

Table 2.1 The specifications, memory requirements, and computational times of the 

tests performed to study load balance. 

2.4 Numerical Results 

This section presents several numerical tests that demonstrate the scalability, 

efficacy, and applicability of the proposed parallel PWTD algorithm. In all tests below, a 

set of point sources or dipoles is randomly located on square plates (surface-bound 

source, SΩ = ) or inside cubes (volumetrically-distributed source, VΩ = ). The tests 

pertinent to evaluating transient scalar and vector fields of surface-bound sources (i.e. 

point sources or dipoles) are labeled as “scalar-surface” and “vector-surface”, 

respectively, while those pertinent to evaluating transient scalar and vector fields of 

volumetrically distributed sources are termed as “scalar-volume” and “vector-volume”, 

respectively. In all tests below, the temporal signature of each source is assigned to 

2 2( ) exp(-( - 6 ) / 2 )n nf t m t σ σ= , where = 4 / (2 )maxfσ π , 1 GHzmaxf = , and 
nm  is a 

random real number between 0 and 1, while the sources are assumed to be active for 

= 1000tN  time-steps with = 0.0625 nst∆  in surface tests and 500tN =  time-steps with 

= 0.0333 nst∆  for volume tests. All simulations were carried out on a cluster of Quad-

Core 850 MHz PowerPC CPUs with 4 GB memory located at Supercomputing 

Laboratory at the King Abdullah University of Science and Technology. To minimize 

intra-node communication costs and memory duplications, the parallel PWTD algorithm 

was implemented using hybrid message passing interface/open multiprocessing 

(MPI/OpenMP) standards; one MPI process was launched per processor and four cores of 

each processor were used by OpenMP process. 

First, parallel efficiency of the proposed parallel PWTD algorithm is 

demonstrated. The parallel efficiency is defined as = /ref ref p pN T N Tη , where 
refT  is the 
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reference execution time using 
refN  processors and 

pT  is the execution time using 
pN  

processors. For surface tests, a set of 1,000,000sN = sources are randomly located on a 

plate with 100λ  edge length. The PWTD tree is generated by setting the edge length of 

the boxes at the finest level to 1 0.677 R λ= . The parallel efficiency of the proposed 

algorithm is computed when pN  is changed from 256  to 4096  and refN  is set to 256  

[Figure 2.4(a)]. For volume tests, a set of 1,000,000sN =  sources is randomly distributed 

inside a cube with 10λ  edge length. The edge length of the boxes at the finest level of 

PWTD tree is set to 1 0.27 R λ= . The parallel efficiency of the proposed algorithm is 

computed when pN  is changed from 64  to 4096  and refN  is set to 64  [Figure 2.4(b)]. It 

is apparent from Figure 2.4 that over 85%  efficiencies have been achieved in all tests. 

Moreover, the proposed algorithm yields similar parallel efficiencies for evaluating 

transient scalar and vector fields due to the same load partitioning patterns and CCRs. 
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Figure 2.4 Parallel efficiencies when 1,000,000sN =  sources distributed (a) on a 

square plate with edge length 100 λ  and (b) inside a cube with edge length 10 λ . 

 

Next, the computational time and memory required by the proposed parallel 

PWTD scheme are examined for increasing sN  when 1024pN = . For surface tests, sN  is 

increased from 80,000  to 5,120,000  while the edge length of the plate is changed from 

28.3 λ  to 226 λ  and edge length of the boxes at the finest level of PWTD tree is varied 
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from 0.46 λ  to 0.54 λ .The computational costs for a time-step and memory 

requirements are plotted [Figure 2.5(a)]; those comply with theoretical estimates of 

2( log )s sO N N  and 1.5( )sO N , respectively. For volume tests, sN  is increased from 

128,000  to 32,768,000  as the edge length of the cube is varied from 5 λ  to 31.7 λ  and 

edge length of the boxes at the finest level is changed from 0.21 λ  to 0.34 λ .The 

computational costs for a time-step and memory requirements are plotted [Figure 2.5(b)]; 

those are in good agreement with theoretical predictions of ( )sO N and ( log )s sO N N , 

respectively. It’s worthwhile to note here that the computational resources required by 

parallel PWTD scheme for evaluating transient vector fields is two times more than those 

for evaluating transient scalar fields. In addition, the memory required by scheme in 

volume tests is significantly lower than that in surface tests. 
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Figure 2.5 (a) Total computation time and (b) memory requirement in scalar-surface, 

vector-surface, scalar-volume, and vector-volume tests when  1024pN =  and sN  is 

changed from 80,000 /128,000  to 5,120,000 / 32,768,000  in surface/volume tests. 

 

Finally, the load balance achieved by the proposed parallel PWTD scheme is 

demonstrated when sN  is set to 10, 240,000 , 20,480,000 , 64,000,000 , and 

128,000,000  for vector-surface, scalar-surface, vector-volume, and scalar-volume tests, 

respectively. The memory requirements, total simulation times, and specifications of tests 

are provided in Table 2.1. Furthermore, the computation time per processor for each 
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PWTD stage is plotted [Figure 2.6]. Clearly, excellent load balance is achieved in the 

near field calculation and ray construction/projection stages in all tests, while good load 

balance is observed for the translation stage. For the translation stage, the load balance in 

volume tests [Figure 2.6(c),(d)] appears to be better than that in surface tests [Figure 

2.6(a),(b)]. This is because the overall load balance in volume tests ( 3d = ) is dominated 

by those at lower levels of the PWTD tree as the computational cost of translations 

between level v  box pairs scales as (2 )( 2 )d vO v −  (when 1pN =  and 
sN  and 

tN  in (2.26) 

are fixed). The opposite holds in surface tests ( 2d = ). And the translation operations can 

be better split among processors at lower levels of the PWTD tree. 
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Figure 2.6 Computation time for each PWTD stage in (a) vector-surface test 

( 10, 240,000sN = ), (b) scalar-surface test( 20,480,000sN = ), (c) vector-volume test 
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( 64,000,000sN = ), and (d) scalar-volume test ( 128,000,000sN = ).when 

4096pN = . 

2.5 Chapter Conclusion 

A highly scalable parallel PWTD algorithm for rapidly evaluating transient 

scalar/vector fields generated by large-scale source constellations was presented. The 

proposed scheme leverages a hierarchical parallelization strategy that divides the 

computation and memory loads among processors in spatial, angular, and temporal 

dimensions at all levels of the PWTD algorithm. The scheme employs a mix of non-

blocked MPIs, and a queue-based, memory-efficient, and asynchronous communication 

technique to maintain scalable communications between processors. The scalability of 

the proposed scheme was validated using up to 4096 processors. The proposed scheme 

was applied to the analysis of transient fields generated by tens of millions of point 

sources/dipoles either bound to a surface or volumetrically distributed inside a cube. The 

proposed parallel PWTD scheme will greatly enhance the capabilities of various MOT-

TDIE solvers.  
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CHAPTER 3  

 

A Graphics Processing Unit Implementation of Multilevel 

PWTD Algorithm 

3.1 Chapter Introduction 

The computational complexity for directly evaluating transient fields produced by  

sN  point sources active for tN  time steps scale as 2
( )t sO N N . This cost can be reduced to 

2( log )t s sO N N N  by the multilevel PWTD scheme [8, 13]. However, serial 

implementations of the PWTD schemes still impede their applicability to real-life 

problems. In addition to our work in Chapter 2 to parallelize the multilevel PWTD 

algorithm using CPU-clusters, this chapter studies the acceleration of the multilevel 

PWTD algorithm using GPUs.  

Recently, GPUs have become popular in computational electromagnetics societies 

for their unprecedented computational power and unique memory hierarchy, rendering 

the hardware competitive for parallelizing various computational schemes [135-139]. 

That said, GPU acceleration of the multilevel PWTD algorithm is nontrivial due to 

PWTD’s heterogeneous structure. Boosting the performance of the PWTD algorithm 

using GPUs calls for a complete implementation of all PWTD stages, as well as 

reorganization of the computational and memory management tasks. 

Moreover, GPU-clusters, viz., CPU-clusters where each compute-node is 

augmented with at least one GPU device, have emerged as competitive computing 

platforms compared with traditional CPU-clusters. Specifically, they take advantages of 
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the massive distributed memory capacity of CPU-clusters as well as provide significantly 

more computational power at each compute-node. Efficient implementations of the 

PWTD algorithm on GPU-clusters require scalable distributed parallelization strategy of 

the overall algorithm and judicious rearrangement of GPU-accelerated sub-tasks at each 

compute-node.  

In this chapter, we first present a complete GPU-accelerated implementation of 

the multilevel PWTD scheme for evaluating transient vector fields from large-scale 

dipole constellations. The formulation of the vector-field PWTD algorithm is omitted 

here as it can be found in Section 2.2.2. GPU implementation strategies for all PWTD 

stages are detailed and improved. Note that the proposed GPU-acceleration can be 

applied, with minimal modifications, to the evaluation of scalar fields using the scalar-

field PWTD algorithm described in Section 2.2.1. Numerical results show that substantial 

speedups and memory reduction have been achieved over serial CPU implementations. 

Next, we demonstrate the efficiency for the GPU-cluster-based implementation of the 

PWTD algorithm by combining the provably scalable parallelization strategy described in 

Chapter 2 and the single GPU acceleration technique.  

3.2 Single GPU Acceleration 

The PWTD scheme for computing dipole interactions consists of four stages: (i) 

calculation of near field interactions via direct methods; (ii) construction of outgoing 

rays, (iii) translation of outgoing rays into incoming rays, and (v) processing and 

projection of incoming rays. These stages are interleaved by (iv) global interpolation and 

filtering operations. A viable GPU implementation must comprehensively tackle all five 

computational components of the scheme, which complicates its development compared 

to other CEM schemes [138, 139]. Below, we delineate key ideas that guided the 

implementation of these five computational components before embarking on their 

detailed description.   

A NVIDIA GPU consists of many streaming multiprocessors (SMs), each of 

which contains multiple cores. Under the Compute Unified Device Architecture (CUDA) 
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framework, these SMs can execute a multi-threaded function, termed kernel. A group of 

32 threads forms a basic execution unit, dubbed a warp that is dynamically scheduled to 

one SM. Warps are further combined into blocks such that all threads in one block 

perform similar tasks that can be synchronized. Moreover, the GPU provides several 

types of memory, including shared and global units. Shared memory, which is private to 

one block, has small capacity and low-latency while global memory, which is accessible 

by all blocks, has large capacity but higher-latency. To alleviate any performance 

degradation due to the use of high-latency global memory, the following overarching 

strategies drove the development of our GPU-PWTD implementation: 1) Coalescing 

memory access of all threads in a warp to contiguous memory addresses by careful 

arrangement of threads/blocks as well as input/output data layouts. 2) Hiding latency by 

scheduling more warps while a single warp in the SM is accessing the global memory. 

This is achieved by assigning sufficiently large number of warps (or equivalently threads 

and blocks). 3) Minimizing the memory usage by storing only necessary quantities (and 

calculating all others on-the-fly) and parallelizing loops that require the least global 

memory access. 

3.2.1 Near field Calculation  

The interactions between dipoles in near field boxes are computed by (2.15) for 

every time step via launching one GPU kernel. This operation can be performed on a 

GPU by parallelizing loops over source and observer boxes, as well as source dipoles and 

observer dipoles in each box. Note that multiple writing to one entry of 
iF  (in (2.14)) is 

required at each iteration of the loops, which are over source boxes and source dipoles in 

one box. To this end, the loops that are over observer dipoles in a box and observer boxes 

are parallelized via a “one thread per observer dipole” and “one block per observer box” 

strategy, producing coalesced global memory access. This strategy can be illustrated by 

the example in Figure 3.1. Each grid in Figure 3.1 represents interaction between one 

source dipole and one observer dipole, each rectangular block of grids (boundary marked 

in bold) represents interactions between dipoles in a near field box pair. In this strategy, 

each thread (represent one observer dipole) in one block (representing one observer box) 

computes the interactions between the observer dipole (that the thread is responsible for) 
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and source dipoles in all source boxes in the near field interaction list (NIL) of the 

observer box. To this end, threads collectively load nr  and ˆ
nu  of dipoles in each near 

field pair (stored in contiguous spaces in global memory) into their shared memory, 

calculate (2.15) on-the-fly, and update the pertinent entry of 
iF . Note: The threads in one 

block are synchronized after computing the field produced by each source dipole to 

enable better coalesced global memory access patterns.  
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Figure 3.1 Single GPU implementation of the near field calculation. 

3.2.2 Construction of Outgoing Rays  

The outgoing rays of finest level boxes are computed by (2.17) for every 1M  time 

steps by launching one GPU kernel. This computation can be carried out on a GPU by 

parallelizing loops over temporal samples of a subsignal, dipoles of a box, directions, and 

boxes. Note that multiple accesses to the memory occupied by one outgoing ray is 

required in each iteration of the loops over temporal samples of subsignals and dipoles of 

a box. For this reason, the loops that are over directions and boxes are parallelized via a 

“one thread per direction” and “one block per box” strategy. In such strategy, the threads 

in each block collectively load 
nr  and ˆ

nu  of dipoles in one box into their shared memory, 

calculate the APS interpolants on-the-fly, use them to project ,n jI  onto one ray, and sum 

the projections of all dipoles (in the source box) to compute (2.19).  
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3.2.3 Translation of Outgoing Rays into Incoming Rays  

Translation between far field box pair ( , )α α ′  at level v  is performed by (2.18) 

for every vMξ  time steps via launching GPU kernels, where ξ  is a constant that depends 

on 
,cR αα ′ . This operation is executed on a GPU for each pair separately by the following 

steps [Figure 3.2]: Step 1: The thl  outgoing ray of box α , ,
ˆ( , )v

l pq tα
+G k , (depicted by a 

cuboid in Figure 3.2) is Fourier transformed to the frequency domain, ,
ˆ ˆ( , )v

l pqα ω+G k . Step 

2: The Fourier transform of the translator ˆ ˆ( , , )vec v v

pq KωkT  is directly computed in the 

frequency domain on approximately vMξ  samples (see [13] for analytical expressions) 

and then multiplied with the Fourier transform of the outgoing rays of box α , 

,
ˆ ˆ( , )v

l pqα ω+G k ; both operations are parallelized via a “one thread per frequency sample” 

and “one block per direction” strategy thereby producing coalesced memory access. Step 

3: The resulting data is inverse Fourier transformed into the time domain and the thl  

incoming ray of box α ′ , ,
ˆ( , )v

l pq tα
−

′G k , is updated. In steps 1 and 3, Fourier transforms are 

performed by the batched CUDA Fast Fourier Transform (CUFFT) library that allows 

simultaneous execution of ( 1)(2 1)v v v

kN K K= + +  FFTs; the transforms are accelerated 

by extending the sizes of frequency and temporal sequences to powers of two by zero 

padding.  
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Figure 3.2 GPU implementation of one translation operation. 
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3.2.4 Processing and Projection of Incoming Rays  

The incoming rays of finest level boxes are projected onto the dipoles by (2.19) 

for every time step by launching a GPU kernel. This projection can be performed on a 

GPU by parallelizing the loops that are over directions, dipoles of a box, and boxes. Since 

multiple accesses to the memory space of a dipole of a box is required at each iteration of 

the loop over directions, loops that are over dipoles of a box and loops over boxes are 

parallelized by a “one thread per dipole” and “one block per box” strategy. Each thread 

calculates the APS interpolants for all directions and uses them to update fields along the 

dipole.  

3.2.5 Spherical Interpolation/Filtering  

The outgoing/incoming rays of boxes at higher levels (i.e. 1v > ) are computed 

using the global vector spherical interpolation/filtering scheme of [13]. (Note: here only 

the GPU implementation of spherical filtering to obtain incoming rays is explained for 

the sake of brevity as that interpolate outgoing rays is very similar). The incoming rays of 

a box at level v  consist of two transverse components, i.e., 

,
ˆˆ ˆ( , ) ( , , ) ( , , )v v v v v

l pq p q p qt F t F tα θ φθ φ θ φ−
′ = +G k θ φ . Here, v

qφ  and v

pθ  are spherical coordinates 

defined as cos sin , sin sin , cosˆ ( )v v v v v v

pq q p q p pφ θ φ θ θ=k . These components are obtained by 

filtering the transverse components of the incoming rays of the parent box at level 1v + , 

which are 1 1( , , )v v

p qF tθ θ φ+ +  and 1 1( , , )v v

p qF tφ θ φ+ + . This filtering operation is performed on a 

GPU by the following steps [Figure 3.3]: Step 1: The forward FFTs of 1 1( , , )v v

p qF tθ θ φ+ +  and 

1 1( , , )v v

p qF tφ θ φ+ +  are computed along the φ -dimension. Step 2: The Fourier coefficients, 

1( , )m v

pf tθ θ +  and 1( , )m v

pf tφ θ + , 11, , 2 1vm K += +K , are truncated in the spectral domain via 

fast spectral truncation and correction [13] and the truncated Fourier coefficients, 

( , )m v

pf tθ θ′
 and ( , )m v

pf tφ θ′
, 1, , 2 1vm K′ = +K , are obtained. The truncation and correction 

operations are parallelized via a “one thread per ( , )p m′  sample” and “one block per t  

sample” strategy; each thread calculates ( , )m v

pf tθ θ′
 and ( , )m v

pf tφ θ′
 for one v

pθ  and one m′ ; 

again, this procedure yields coalesced memory access. Step 3: ( , , )v v

p qF tθ θ φ  and 
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( , , )v v

p qF tφ θ φ , are obtained by inverse FFTing ( , )m v

pf tθ θ′
 and ( , )m v

pf tφ θ′
. Note that GPU 

kernels performing these steps are launched for each box separately. In steps 1 and 3, 

FFTs are performed by the batched CUFFT library, which allows simultaneous execution 

of 1 1( 1)v vM K+ + +  forward FFTs and 1( 1)v vM K+ +  inverse FFTs. 
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Figure 3.3 GPU implementation of one spherical filtering operation. 

3.3 Multi-GPU Acceleration 

Although the above-described GPU implementation can achieve significant 

speedups compared to serial CPU implementations, the problem size that can be handled 

by single GPU implementation is still limited by the memory capacity of one GPU device. 

One possible remedy is to utilize the GPU-cluster as shown in Figure 3.4. A typical GPU-

cluster consists of several compute-nodes connected with an InfiniBand network, each 

compute-node is equipped with one CPU (multi-core) and several GPUs that are 

connected with a PCI-E network. For simplicity, we assume that each GPU is associated 

with one CPU processor. In our implementation, the memory and computation loads of 

the PWTD algorithm is first distributed among pN  CPU processors using the provably 

scale CPU parallelization strategy described in Chapter 2. Then, the computational tasks 

of each processor are accelerated by one GPU. 
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Figure 3.4 Architecture of a typical GPU-cluster 

 

The multi-GPU implementation strategy greatly resembles the single GPU 

implementation except for the need of inter-node communication and reorganization of 

nonlocal computation tasks. Here the multi-GPU implementation for the PWTD stages is 

briefly summarized, with an emphasis on its difference compared with the single GPU 

implementation. 

• Near field calculation. The GPU-cluster-based implementation still utilizes the 

“one block per observer box” and “one thread per observer” parallelization 

strategy [Figure 3.1]. However, the number of blocks associated with each CPU 

processor becomes approximately 1

g pN N  (recall that 1

gN  is the number of boxes 

at the finest level of the PWTD tree). Moreover, the NIL stored in the device 

memory becomes incomplete and hence the sources need to be communicated 

among processors before the GPU kernel is launched. Despite of these differences, 

good speedups can be achieved given that (i) 1

gN  is sufficiently large, and (ii) the 

communication cost is negligible in this stage. 

• Construction of outgoing rays from sources/projection of incoming rays onto 

observers. In each CPU processor, these stages require no inter-node 

communication, therefore the parallelization strategy is still “one thread per 

outgoing ray, one block per source box” or “one block per observer box, one 
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thread per observer”, except that the number of blocks becomes 1

g pN N  instead 

of 1

gN . 

• Translation. Previously, the speedup using single GPU implementation of the 

translation stage is maximized via performing host-device memory transfers only 

at the beginning and end of the translation stage. However in GPU-cluster-based 

implementations, each arrived data packet (see Figure 2.3) needs to be transferred 

onto the GPU before the translation operation is performed. The overhead 

associated with this memory transfer may reduce the speedup of the translation 

stage when the number of CPU processors is large. 

• Spherical interpolation/filtering. For case 1 and 2 (see Figure 2.2), the multi-GPU 

implementations of these stages remain unchanged except for need of 

redistribution of the filtered field samples via inter-node communication (for case 

2). For case 3, however, the temporal dimension of rays is split by v

rN  CPU 

processors, the batch sizes of the GPU-based forward and backward FFTs become 

1 1
( 1) /

v v v

rM K N
+ + +  and 1

( 1) /
v v v

rM K N
+ + , and the number of blocks for the 

truncation and correction operations becomes approximately /v v

rM N .  

3.4 Numerical Results 

This section presents several numerical results that demonstrate the accuracy and 

efficiency of the proposed single and multiple GPU acceleration of the multilevel PWTD 

algorithm.  
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3.4.1 Fine-Tuning of the Parameters  

First, it’s worth noting that the speedups of GPU-PWTD strongly depend on the 

implementation parameters. This effect is investigated for two PWTD stages, viz., the 

near field calculation and the translation. The tests are performed on a Tesla C2050 

device and an AMD Opteron 2220 SE. Figure 3.5 shows speedups for the near field 

calculation stage. Apparently, increasing the number of dipoles per box or the separation 

cutoff (equivalently, the size of NIL) results in higher speedups due to larger number of 

threads/blocks and more computational load for each thread. Similarly, Figure 3.6 shows 

speedups for the translation operation between one far field pair with varying vK  and 

translation length (proportional to ,cR αα ′ ). Compared to the computation time of the 

translation operation performed using the Fastest Fourier Transform in the West (FFTW) 

library on a serial CPU, that of the GPU-accelerated implementation achieves significant 

speedup, especially when vK  is large (i.e., batch size is large). However, larger transform 

length will not always increase the speedup due to implementation differences between 

the CUFFT and FFTW libraries. 
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Figure 3.5 Speedups of GPU implementations over serial CPU implementations for 

the near field calculation stage 
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Figure 3.6 Speedups of GPU implementations over serial CPU implementations for 

the translation operation between a far field box pair. 

3.4.2 Single GPU Acceleration 

Next, the accuracy and efficiency of the single GPU-accelerated PWTD algorithm 

are demonstrated. All tests involve a set of dipoles that are randomly oriented and located 

on square plates with edge length ranging from 1.5  ( 2500)sm N =  to 9  ( 40,000)sm N = . 

The dipoles’ temporal signature is 2 2

0( ) cos(2 ( - 6 ))exp(-( - 6 ) / 2 )n nf t m f t tπ σ σ σ= , 

where 0= 4 / (2 ( ))maxf fσ π − , 0 800MHzf = , 1 GHzmaxf = , and nm  is a random real 

number between 0 and 1. The magnitudes of the time-derivatives of the electric fields 

along the dipoles, ,| |i mF , 1, , sm N= K , 1, , ti N= K , are computed for 500tN =  time steps 

with -26.25 10  nst∆ = × . In what follows, the GPU and CPU implementations of the 

direct scheme are termed GPU-Direct and CPU-Direct, respectively. GPU and serial CPU 

implementations (double precision) are executed on a Tesla C2050 device and an Intel 

Xeon E5-2670, respectively.  

The field 
,| |i mF  for an arbitrarily selected dipole, obtained by CPU-Direct, CPU-

PWTD, and GPU-PWTD schemes are compared ( 10,000sN = ) [Figure 3.7]. The L
2
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norm error of the field computed by the GPU-PWTD algorithm is 41 10−×  (compared to 

the exact value obtained by the CPU-Direct scheme) while the relative difference 

between the field values obtained by the CPU-PWTD and GPU-PWTD schemes is 

around machine precision. 

The computational time for each stage of CPU-PWTD and GPU-PWTD schemes 

is tabulated for 2500sN =  and 40,000sN =  [Table 3.1]. Note that the computational 

time for GPU-PWTD scheme includes the time of data transfer that is performed at the 

beginning and end of each stage. As sN  increases, the speedup achieved by GPU-PWTD 

scheme at each stage increases due to larger number of threads and blocks that are being 

leveraged. 

The overall computational time and memory required by the CPU-Direct, GPU-

Direct, CPU-PWTD, and GPU-PWTD schemes are compared for increasing 
sN  [Figure 

3.8]. Here the parallelization strategy described in Section 3.2.1 was applied to the GPU-

Direct scheme. The GPU-Direct scheme achieves 54.4X to 76.3X speedup while GPU-

PWTD scheme achieves 30.4X to 53.3X speedup, and outperforms the other three 

schemes as sN  increases [Figure 3.8(a)]. As the GPU-Direct scheme computes matrix 

elements of vec

jZ  on-the-fly as opposed to the CPU-Direct scheme that pre-calculates 

them, it requires ( )sO N  global memory [Figure 3.8(b)]. (Note: Calculating vec

jZ  on-the-

fly would result in dramatically higher computation time for the CPU-Direct scheme.) On 

the other hand, GPU-PWTD scheme achieves substantial memory reduction compared to 

CPU-PWTD scheme since it only stores ray data at one or two levels. The maximum 

number of sources for the GPU-PWTD scheme is 40,000sN =  and limited by the 3 GB 

global memory. In addition, the performance of all schemes complies with the theoretical 

complexities. 
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Figure 3.7 Comparison of ,| |i mF  obtained by CPU-direct, CPU-PWTD, and GPU-

PWTD schemes. 

 

 
Ns = 2500 Ns = 40,000 

CPU GPU Ratio CPU GPU Ratio 

Outgoing ray const. 11.5 2.1 5.5 201.6 30.8 6.7 

Interpolation 2.3 0.2 11.5 332.1 23.1 14.3 

Translation 194.6 6.8 28.6 17,883.1 380.4 47.1 

Filtering 1.2 0.1 12.0 313.5 22.2 14.1 

Incoming ray proj. 13.3 3.6 3.7 153.8 38.5 4.0 

Near field calc. 783.4 20.2 38.8 20,275.9 239.7 84.8 

Total 998.8 32.9 30.4 39,247.1 736.8 53.3 

Table 3.1 Computation time for each stage of CPU-PWTD and GPU-PWTD schemes 

(in seconds) and the ratio between them 
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Figure 3.8 (a) Total computation time and (b) memory requirement of CPU-Direct, 

GPU-Direct, CPU-PWTD, and GPU-PWTD schemes.  

3.4.3 Multi-GPU Acceleration 

Finally, the efficiency of the multi-GPU-accelerated PWTD algorithm is 

demonstrated. All GPU-enabled simulations are carried out on two GPU compute-nodes 

connected with an InfiniBand network; each node consists of four Tesla C2050 and two 

Six-Core Intel Xeon X5650. For simplicity, each GPU device is assigned one MPI 

process (i.e., one CPU processor).  

The speedups of the PWTD stages when the number pN  of GPUs changes from 1 

to 8 [Figure 3.9]. Here, the number of dipoles is set to 40,000sN =  and the number of 

time steps to 500tN = . We first notice that for all PWTD stages, the eight GPU-based 
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implementation does not achieve ideal speedups (i.e., 8X) compared to the single GPU 

implementation. This is because (i) although the computation is greatly accelerated by 

GPUs, the inter-node communication remain unchanged, which leads to reduced CCRs; 

(ii). the overhead associated with each host-device memory transfer reduces the speedups 

of the GPU implementations; this effect is significant especially for the translation stage 

that requires frequent host-to-device transfers for nonlocal data packets. Possible 

remedies to improve the speedups are (i) utilization of GPU-clusters with faster inter-

node networks; (ii) CUDA-aware MPI solution that enables direct inter-node GPU-to-

GPU memory transfers. That said, it's worth mentioning that more than 175X overall 

speedups have been achieved in this example [Figure 3.9]. 

Next, we illustrate the benefits of multiple GPUs to increase the solvable problem 

sizes. Figure 3.10(a) and (b) plot the computation time and memory requirement of single 

GPU and eight GPU-based implementations of the PWTD algorithm with 500tN =  and 

different sN . Apparently, the memory requirement is reduced by approximately eight 

times using eight GPUs compared with single GPU. As expected, the maximum problem 

size is increased from 40,000sN =  to 160,000sN = . However, as explained above, the 

speedups of the eight GPU-based implementation is not ideal. 
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Figure 3.9 Speedups of multi-GPU-accelerated implementations the PWTD stages 

compared to serial CPU implementation.  
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Figure 3.10 Scaling tests of the multilevel PWTD scheme implemented on the 1 GPU 

and 8 GPUs. (a) Computation time. (b) Memory requirement. 
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3.5 Chapter Conclusion 

All-stage GPU-accelerated implementations of the multilevel PWTD schemes are 

presented. Multiple GPU-based implementations have been demonstrated. Substantial 

speedups and memory reductions have been achieved over serial CPU implementations,. 

The proposed single and multiple GPU acceleration of the multilevel PWTD algorithm 

can be used to enhance the classical MOT-TDIE solvers. 
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CHAPTER 4  

A Parallel PWTD-Accelerated SIE Solver for Analyzing 

Transient Scattering from Electrically Large PEC Objects 

4.1 Chapter Introduction 

Transient electromagnetic scattering from electrically large objects involving PEC 

surfaces and piecewise homogeneous dielectric volumes can be analyzed using PWTD-

accelerated MOT-TD-SIE solvers [13, 15]. These solvers can reduce the computational 

cost and memory requirement of unaccelerated MOT-TD-SIE solvers from 2( )t sO N N  and 

2
( )sO N  to 2

( log )t s sO N N N  and 1.5
( ),sO N  respectively. Here, sN  is the number of spatial 

unknowns and 0.5= ( )t sN O N  is the number of time steps. Having said that, the 

applicability of PWTD-accelerated MOT-TD-SIE solver in analyzing transient scattering 

from electrically large objects can further be increased through effective parallelization 

schemes. In the past, problems involving half million spatial unknowns have been solved 

using parallel PWTD-accelerated MOT-TD-SIE solvers [115, 121]. However, these 

parallel solvers do not scale well on distributed memory clusters with large numbers of 

processors and are, therefore, incapable of solving real-life scattering problems that 

oftentimes involve millions of spatial unknowns.   

In this chapter, the provable scalable parallel PWTD algorithm developed in 

Chapter 2 is incorporated into a MOT-TD-SIE solver to enable efficient and accurate 

analysis of transient scattering from electrically large PEC objects. Indeed, numerical 

results demonstrate that the proposed parallel PWTD-accelerated TD-SIE solver can be 
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efficiently applied to real-life electromagnetics problems involving scatterers spanning 

over a hundred wavelengths and discretized with 10 million spatial unknowns. 

4.2 Formulation 

4.2.1 TD-SIEs and MOT Scheme  

Consider the transient scattering problem described in Section 1.2.1.1. Here, the 

problem is formulated using the differentiated TD-EFIE/MFIE/CFIE as 

 0
ˆ ˆ ˆ( , ) [ ]( , )    , ,i

et t S S Sη + −− × × = × ∀ ∈n n E r n J r r&& L  (4.1) 

 ˆ ( , ) [ ]( , )    i

ht t S −× = ∀ ∈n H r J r r&& L  (4.2) 

 
0

ˆ ˆ ˆ( , ) ( , ) [ ]( , )    i i

ct t t Sβ η −× − × × = ∀ ∈n H r n n E r J r r&& & L . (4.3) 

Here, 
e
&L  and 

h
&L  are differentiated TD-EFIE and TD-MFIE operators, and 

ˆ
c h eβ= + ×n& & &L L L  is the differentiated TD-CFIE operator [see Section 1.2.1.1]. Note: the 

TD-CFIE reduces to TD-EFIE and TD-MFIE when β = ∞  and 0β = , respectively.  

To numerically solve (4.3), the current density ( , )tJ r  is discretized using sN  

spatial basis functions and 
tN  temporal basis functions by (1.7). Substituting (1.7) into 

(4.3) and testing the resulting equation with ( )mS r , 1, , sm N= K , at =t j t∆  yields the set 

of linear equations 

 
1

0

=1

=
j

j j i j i

i

−

−−∑Z I F Z I . (4.4) 

Here, the entries of the vectors jI  and jF  and the MOT matrices 
iZ  are 

 ,{ } , = 1,...,j n n j sI n N=I  (4.5) 

 
0

ˆ{ } ( ), ( , )

ˆ ˆ ( , ) , 1, ,

i

j m m

i

s
t j t

t

t m Nβ η
= ∆

= ×

− × × =

F S r n H r

n n E r

&

&

K

 (4.6) 
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0

{ } ( ), [ ]( , ) , 1, ,i mn m c n i s
t

T t m n N− =
= =Z S r S r&

KL . (4.7) 

As mentioned in Section 1.2.5, the computationally most demanding operation is the 

evaluation of the sum on the RHS of (4.4). This computation requires 2
( )t sO N N  

operations for all 
tN  time steps and 2( )sO N  memory. Classical MOT schemes therefore 

are prohibitively expensive when applied to the analysis of transient scattering from 

electrically large structures. The multilevel PWTD algorithm significantly reduces the 

computational cost of the MOT scheme [13] and is summarized next. 

4.2.2 The Multilevel PWTD Algorithm 

Consider a rectangular box enclosing S ; it is recursively subdivided into eight 

boxes until the dimensions of the smallest boxes are on the order of the wavelength at the 

maximum frequency, 
0 max .c fλ = This recursive subdivision strategy gives rise to an 

LN - level PWTD tree with levels labeled ( )0.51, , log( )L sv N O N= =K . The tree’s finest 

level ( 1)v =  contains the smallest boxes while its coarsest level ( )Lv N=  contains the 

box enclosing S . Let v

gN  denote the number of nonempty boxes at level v . For 

(nonfractal) surface scatterers, 1 ( )g sN O N=  and 1 4v v

g gN N+ ≈ . The radius of a sphere 

enclosing a level v  box is ( 1) 12v vR R−=  with 1 = (1)R O .  

Upon constructing the PWTD tree, far field box pairs at each level are identified 

starting with level 2LN − , following similar procedures described in Section 2.2.1. Two 

nonempty boxes at level v  are labeled a level- v  far field pair if the distance between 

their centers is greater than vRγ  ( 3 < < 6γ ) and their respective parent boxes do not 

constitute a far field pair. Two nonempty boxes at the finest level, which are not labeled 

as a far field pair are considered as a near field pair; also each nonempty box at the finest 

level forms a near field pair with itself. Interactions between spatial basis functions 

residing in near field box pairs are computed using (4.7) and their contributions are 

directly added to the RHS of (4.4). Interactions between spatial basis functions fully 

contained in far field box pairs are evaluated by the PWTD scheme.  
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Let α  and α ′  denote a far field box pair’s source and observer boxes. Let 

, ,

c c

c c o sR αα αα′ ′= = −R r r  denote the distance between the source and observer box 

centers, c

sr  and c

or  [Figure 4.1]. The source and observer boxes contain spatial basis 

functions ( )nS r , n α∈ , and ( )mS r , m α ′∈ , respectively. For n α∀ ∈ , the temporal 

signature ( )nf t  in (1.7) associated with ( )nS r  is broken into v

lN  consecutive subsignals, 

( ),l

nf t 1, , ,v

ll N= … using APS interpolants [42] that is bandlimited to s t maxω χ ω=  and 

approximately time-limited to 
f fp t t p t− ∆ < < ∆ , 5 10fp≤ ≤ , as 

 ,

1 1 ( 1) 1

( ) ( ) ( )

v v v
l l

v

N N lM
l APS

n n n j j

l l j l M

f t f t I T t
= = = − +

= =∑ ∑ ∑  (4.8) 

where ( ) ( )APS APS

jT t T t j t= − ∆  and v v

l tN M N= ; vM  is chosen such that the duration of 

each subsignal, ( 2 )v v

fT M p t= + ∆ , is less than , ' 0( 2 ) .v

cR R cαα −  Fields due to 

( ) ( )l

n nf tS r , n α∈  tested by ( )mS r , m α ′∈  are expressed as 

 
2 2

00

†

( ), [ ]( , )

1 ˆ ˆ[ ( , , )
8

ˆ ˆˆ( , , )] ( , )

ˆ ˆ( , , ) ( )

v v

v

l

m c n n

K K
v v v

qp m qp qp

q p K

v v

m qp qp

v v l

n qp qp n

f t

t
c

t t

t f t

ω β
π

−

= =−

−

+

=

−

+ ∗ ∗

∗

∑ ∑

S r S r

P k k

P k n k

P k k

&L

T

 (4.9) 

where 0= 4 / 1v v

s sK f R cπ χ  +  represents the number of spherical harmonics effectively 

accounted for in the plane wave expansions, 
sχ  represents the spherical oversampling 

factor, v

qpω  are quadrature weights on the unit sphere, ˆ v

qpk , 0, , vq K= K , 

, ,v vp K K= − K , represent directions of outgoing/incoming rays with a total of 

( 1)(2 1)v v v

kN K K= + +  directions [8], †  denotes the transpose, and ∗  represents time 

convolution. The projection function { },
ˆ ˆ( , , )v

qpm n
t±P k v  is  

 { }
{ }

{ } { }
m,n

0, , ,
ˆ ˆˆ ˆ( , , ) = ( ') ( ( ' ) / ) .v v c

qp qpm n m n o sS
t dS t cδ± ′ × ± ⋅ −∫P k v v S r k r r  (4.10) 
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The translation function ˆ( , )v

qp tkT  is   

 ( )
3

,0 0

0, , ,

ˆ
ˆ( , ) 2 1

2

v vK
qp cv t

qp k k

kc c c

c c t
t k

R R R

αα

αα αα αα

′

=′ ′ ′

   ⋅∂= + Φ Φ      
   

∑
k R

kT  (4.11) 

where ( )kΦ ⋅  is the Legendre polynomial of degree k  and , 0| | /ct R cαα ′≤ .  
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Figure 4.1 A far field box pair in the PWTD tree.  

 

The PWTD algorithm is executed as follows. First, outgoing rays for all directions 

ˆ v

qpk  are constructed by convolving the projection function ˆ ˆ( , , )v v

n qp qpt+P k k  with the 

subsignal ( ).l

nf t  Next, outgoing rays in box α  are convolved with ˆ( , )v

qp tkT
 
and are 

translated into incoming rays in box α ′ . Finally, the incoming rays are projected onto 

testing basis function ( )mS r  by convolving the projection function ˆ ˆ( , , )v v

m qp qpt−P k k  and 

ˆ ˆ( , , )v

m qp t−P k n  with the incoming rays and summing over all directions with quadrature 

weights v

qpω  [8]. Note that only outgoing/incoming rays of the finest level boxes are 

constructed/projected directly from/onto basis functions using the projection function 

(4.10); those of higher level boxes are constructed/projected by an exact global vector 

spherical filtering technique described in [13]. The computational complexity analysis in 

[8] showed that the computational cost and memory requirements of a multilevel PWTD-

accelerated MOT scheme applied to surface scatterers scale as 2( log )t s sO N N N  and 

1.5( )sO N , respectively. 
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4.2.3 Parallelization of the PWTD-Accelerated TD-SIE Solver 

The effective parallelization of the multilevel PWTD-accelerated TD-SIE solver 

calls for a uniform distribution of the near field MOT matrix elements (i.e. near field data) 

and the ray data and the pertinent workloads among processors. These loads are 

partitioned using the probably scalable parallelization strategy [developed in Chapter 2] 

that leverages hierarchical partitioning of the multilevel PWTD tree among processors 

and an asynchronous scheme for memory and cost efficient communications between 

processors. It’s immediately clear from (2.22) that the memory load for each processor 

scales as 1.5( / )s pO N N  upon setting 2d =  and 0µ =  in (2.22). In what follows, 

partitioning schemes for computation and communication loads in different stages of the 

PWTD-accelerated TD-SIE solver are briefly summarized, with an emphasis on their 

difference compared with that those developed in Chapter 2.   

• Construction/projection of outgoing/incoming rays. At level 1v = , each processor 

constructs outgoing rays by convolving the projection function ˆ ˆ( , , )v v

n qp qpt+P k k  in 

(4.10) with subsignals ( )l

nf t  associated with source spatial basis functions ( )nS r  

residing in its /v

g pN N  source boxes; similarly, each processor projects the 

incoming rays using projection functions ˆ ˆ( , , )v v

m qp qpt−P k k  and ˆ ˆ( , , )v

m qp t−P k n  onto 

test spatial basis functions ( )mS r  in its /v

g pN N  observer boxes. At level 1v > , 

the outgoing/incoming rays are constructed using the exact global vector spherical 

filtering technique; hence the parallelization strategy is the same as that used in 

parallelizing the PWTD algorithm for evaluating transient vector fields due to 

surface-bound sources [Chapter 2]. The computation load per processor for these 
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two stages, 1CC  and 2CC , scale as 2

1 2 ( log / )t s s pCC CC O N N N N∝ = , and the 

communication load per processor for the stages, 1CC  and 2CC , scale as 

1 2 ( log / )t s s pCM CM O N N N N∝ =  [Note: these scaling estimates can be obtained 

via setting 2κ =  in (2.23) and (2.24)].    

• Translation. The parallelization strategy is the same as that used in parallelizing 

the PWTD algorithm for evaluating transient vector fields due to surface-bound 

sources [Chapter 2]. As a result, the computation and communication loads per 

processor scale as 2

3 ( log / )t s s pCC O N N N N=  and 3 ( log / )t s s pCM O N N N N= , 

respectively [Note: these scaling estimates can be obtained via setting 2κ =  in 

(2.26) and (2.27)]. 

• Near field calculation. Near field calculations include (i) matrix-vector 

multiplications on the left hand side (LHS) of (4.4) at each iteration of the solver 

executed for solving (4.4) at all time steps and (ii) partial matrix-vector 

multiplications on the RHS of (4.4). Here it is assumed that the solution of (4.4) 

requires (1)O  iterations, a condition that typically is satisfied for nonresonant 

objects under high-frequency illumination. Since each box only participates in 

(1)O  near field pairs, the near field computational and communication costs per 

box scale as 1 2(( / ) ) = (1)s gO N N O  and 1( / ) = (1),s gO N N O  respectively. As one 

processor is in charge of approximately 1 /g pN N  source boxes at the finest level, 

the computational cost and communication cost of the near field calculations, 

4CC  and 4CM , scale as 4 4 ( / )t s pCC CC O N N N∝ = .  
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By summing the computational and communication costs, 
iCC  and 

iCM , 

1, 2,3,4i = , and noting that 4CC  is bounded by {1,2,3}CC  and 4CM is bounded by {1,2,3}CM , 

the total computational cost  and total communication cost of the PWTD-accelerated TD-

SIE solver, CM  and CC , scale  

 
2log log

= ,  =t s s t s s

p p

N N N N N N
CC O CM O

N N

   
      
   

 (4.12) 

These costs are inversely proportional to the number of processors pN . As the memory 

requirements of the solver, 1.5( / )s pO N N , are also inversely proportional to pN , it can be 

concluded that the proposed parallel PWTD-accelerated TD-SIE solver is scalable.  

4.3 Numerical Results 

This section presents numerical examples that demonstrate the efficiency, 

accuracy, and applicability of the proposed parallel PWTD-accelerated TD-SIE solver. In 

all examples considered here, the scatterers are excited by a plane wave with electric field 

given by  

 0
ˆˆ( , ) = ( / )i t G t c− ⋅E r p r k  (4.13) 

where 2 2

0 0 0( ) cos[2 ( )]exp[ ( ) / 2 ]G t f t t t tπ σ= − − −  is a modulated and quasi-bandlimited 

Gaussian pulse, 
0f  is the modulation frequency, 

0 = 6t σ  is the delay, = 3 / (2 )bwfσ π  is a 

measure of pulse duration, and p̂  and k̂  denote the polarization and propagation 

direction of the plane wave. The parameter bwf  represents the “half bandwidth” of the 

pulse. The minimum and maximum frequencies are 0=min bwf f f−  and 0=max bwf f f+ ; 

energy outside this frequency band is only 0.0022% of the pulse’s total energy. A parallel 

generalized minimal residual (GMRES) algorithm and a diagonal preconditioner are used 

to iteratively solve (4.4) at each time step. The GMRES iteration is terminated when the 

condition  
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 ( )

0 <n

j j jε−V Z I V� � � � (4.14) 

is satisfied. Here, ( )n

jI  represents the vector of current coefficients in the thn  iteration, 

1

1

j

j j i j ii

−
−=

= −∑V F Z I  is total RHS at time step j , and ε  is the desired residual error. At 

a given time step, the GMRES solver’s initial guess is constructed by extrapolating 

current coefficients from those obtained in previous time steps. All frequency domain 

(i.e., time harmonic) data presented in this section is obtained by dividing the Fourier 

transform of the time domain waveforms (whose samples are recorded during MOT) by 

that of ( )G t .  

All simulations were executed on a cluster of Quad-Core 850 MHz PowerPC 

CPUs with 4 GB/CPU memory, which is located at the King Abdullah University of 

Science and Technology (KAUST) Supercomputing Laboratory. The proposed scheme 

solved either the TD-CFIE ( 1β = ) or TD-EFIE leveraging a hybrid MPI and OpenMP 

parallelization strategy: one MPI process was launched per CPU and OpenMP utilized 

four cores on each CPU. 

4.3.1 Canonical Examples 

4.3.1.1 Sphere 

The PWTD-accelerated TD-CFIE solver is applied to the analysis of scattering 

from a PEC sphere of radius 1 m  centered about the origin. The sphere is illuminated by 

( , )i tE r  in (4.13) with 0 = 7.68f  GHz, = 2.56bwf  GHz, ˆ ˆ=p x , and ˆ ˆ= .k z  The current 

induced on the sphere is discretized using 9, 433, 437sN =  spatial basis functions and 

fourth-order temporal basis function. The simulation is executed for = 2,300tN  time 

steps with = 5 ps.t∆  A nine-level PWTD tree is constructed upon setting the side length 

of boxes at the finest level to 0.404 λ  and = 4.5γ . Table 4.1 presents the solver 

parameters and CPU and memory requirements of the solver’s different stages. The 

solver requires 7 TB of memory and 20 hours of CPU time when 8192pN = . The 
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solution at each time step is obtained in just one GMRES iteration, which yields 

1210ε −= . 

The broadband RCS along the +z direction ( = 0θ ) obtained using the proposed 

solver is compared with the exact Mie series solution in Figure 4.2; excellent agreement 

is observed. Snapshots of the current density on the sphere at times 380 ,t∆  860 ,t∆  and 

1400 t∆  show a surface wave fading away in the forward scattering direction [Figure 

4.3]. Current densities induced at ( = 180 , = 0)θ φo  and ( = 0, = 0)θ φ  computed using the 

proposed solver are in good agreement with the Mie series solution [Figure 4.4].  

 

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

46

47

48

49

50

51 PWTD−TD−CFIE

Mie

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

46

47

48

49

50

51

Frequency (GHz)

B
ro

ad
b

an
d

 R
C

S
 (

d
B

sm
)

Z

X Y

k̂

p̂

 

Figure 4.2 Broadband RCS of the sphere along the +z direction computed by the 

PWTD-accelerated TD-CFIE solver and Mie series solution. 
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                                                                 (c) 

Figure 4.3 Snapshots of the current density (in dB) induced on the sphere computed 

by PWTD-accelerated TD-CFIE solver at (a) 380 t t= ∆ , (b) 860 t t= ∆ , (c) 

1400 t t= ∆ . 
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(b) 

Figure 4.4 Magnitudes of the current density induced at (a) o( 1, 180 , 0)r θ φ= = =  and 

(b) ( 1, 0, 0)r θ φ= = =  on the sphere computed using the proposed solver and MIE 
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series. Note that the maximum current magnitude at (b) is 25 times smaller than that 

at (a). 

 

 Sphere Plate 

Maximum dimension 2 m (70 λ) 120 m (160 λ) 

Frequency band 
min max[ , ]f f  [5.12,10.24] GHz

 

[200, 400] MHz
 

Number of unknowns 
sN  9,433,437 2,920,476 

Time step size t∆  5 ps   125 ps   

Number of time steps
tN  2,300 1,000 

Number of processors 
pN  8,192 2,048 

Memory for iZ /PWTD 3.28/3.78 TB 0.46/3.02 TB 

Setup time 3 h 1.63 h 

RHS time (near field) 1.38 h 628 s 

RHS time (PWTD) 11.2 h 4 h 

LHS time (GMRES) 3.8 h 108 s 

Number of GMRES iterations 1 1 

RCS calculation time 777 s 300 s 

Table 4.1 Technical data for the setups and solutions of scattering problems involving 

canonical examples. 

4.3.1.2 Plate 

The PWTD-accelerated TD-EFIE solver is applied to the analysis of scattering 

from a PEC square plate with side length of 120 m . The plate is centered at the origin 

and positioned parallel to the xy plane. The plate is illuminated by ( , )i tE r  in (4.13) with 

0 = 300 MHz,f  = 100 MHz,bwf  ˆ ˆ= ,−p y  and ˆ ˆ ˆ= sin(5 ) cos(5 )− ° − °k x z . The current 

induced on the plate is discretized using 2,920, 476sN =  spatial basis functions and 

fourth-order temporal basis function. The simulation is executed for = 1000tN  time steps 

with = 125 pst∆ . A ten-level PWTD tree is constructed upon setting the side length of 

boxes at the finest level to 0.64 λ  and = 3.5γ . Table 4.1 presents the solver parameters 

and CPU and memory requirements of the solver’s different stages. The solver requires 

3.5 TB of memory and seven hours of CPU time when 2048pN = . The solution at each 

time step is obtained in just one GMRES iteration, which yields 1210ε −= . 
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The broadband RCS of the plate along the +z direction ( = 0θ ) obtained using the 

proposed solver is compared the approximate analytical solution (which only accounts 

for specular reflection) in Figure 4.5; good agreement is observed. Snapshots of the 

current density at times 440 ,t∆  560 ,t∆  and 720 t∆  reveal physical optics and edge 

diffracted currents [Figure 4.6]. 
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Figure 4.5 The broadband RCS of the PEC plate along +z direction computed by the 

PWTD-accelerated TD-EFIE solver and analytical formula. 
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                                                        (c) 

Figure 4.6 Snapshots of the current density (in dB) induced on the plate obtained by 

the PWTD-accelerated TD-EFIE solver at (a) 440 t t= ∆ , (b) 560 t t= ∆ , (c) 

720 t t= ∆ . 

4.3.2 Real-World Objects 

4.3.2.1 Rooivalk helicopter 

The PWTD-accelerated TD-CFIE solver is applied to the analysis of scattering 

from a Rooivalk helicopter model, which fits in a fictitious box of dimensions 

7.4 m 22 m 7.1 m.× × The helicopter is illuminated by ( , )i tE r  in (4.13) with 

0 = 1.2 GHz,f  = 0.4 GHz,bwf  ˆ ˆ= ,p z  and ˆ ˆ= .k y  The current induced on the helicopter is 

discretized using = 2,436,813sN  spatial basis functions and fourth-order temporal basis 

function.  

The simulation is executed for = 3000tN  time steps with 31.25 pst∆ = . A ten-

level PWTD tree is constructed upon setting the side length of boxes at the finest level to 

0.48 λ  and = 4γ . Table 4.2 presents the solver parameters and CPU and memory 

requirements of the solver’s different stages. The solver requires around 2 TB of memory 

and 21 hours of CPU time when 8192pN = . The solution at each time step is obtained in 

maximum three GMRES iterations, which yields 145 10ε −= ×  .  

The bistatic RCS of the helicopter at 1.2 GHz is computed using the proposed 

solver and a frequency domain combined field integral equation (FD-CFIE) solver [140, 
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141] [Figure 4.7]; the results agree very well. In addition, the broadband RCS along the 

+z direction ( = 0θ ) is computed using both solvers [Figure 4.8]; again results are in 

good agreement. Moreover, the current densities induced at two points selected on the 

blade (labeled “front” in Figure 4.9) and the tail are computed [Figure 4.9]. Note the 

increase in the current density on the blade due to reflections from the cockpit. Finally, 

snapshots of the current induced on the helicopter at times 950 ,t∆  1200 ,t∆  and 

2300 t∆  are shown in Figure 4.10. The amplitudes of currents on edges and regions 

where multiple reflections exist are larger than those elsewhere. 
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Figure 4.7 Bistatic RCS of the Rooivalk helicopter at 1.2 GHz  computed at 0φ =  

and o[0,180 ]θ =  via the PWTD-accelerated TD-CFIE solver and FD-CIFE solver. 
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Figure 4.8 Broadband RCS of the Rooivalk helicopter along the +z direction 

computed by PWTD-accelerated TD-CFIE solver and FD-CFIE solver. 
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Figure 4.9 Magnitudes of the current density at the front and tail of the helicopter 

computed by the PWTD-accelerated TD-CFIE solver. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4.10 Snapshots of the current density (in dB) induced on the helicopter 

obtained by the PWTD-accelerated TD-CFIE solver at (a) 950 t t= ∆ , (b) 

1200 t t= ∆ , (c) 2300 t t= ∆ .  
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 Helicopter Airbus A-320 

Maximum dimension 22 m (117.3 λ) 37.5 m (33 λ) 

Frequency band 
min max[ , ]f f  [0.8,1.6] GHz

 

[133.5, 266.5] MHz
 

Number of unknowns 
sN  2,436,813 1,020,069 

Time step size t∆  31.25 ps  187 ps  

Number of time steps
tN  3,000 1,600 

Number of processors 
pN  8,192 2,048 

Memory for iZ /PWTD 907/820 GB 1152/70 GB 

Setup time 2.8 h 5.6 h 

RHS time (near field) 42 min 3 h 

RHS time (PWTD) 14 h 2.7 h 

LHS time (GMRES) 21 min 800 s 

Number of GMRES iterations 1-3 2-3 

RCS calculation time 2.53 h 55 min 

Table 4.2 The technical data for the setups and solutions of scattering problems 

involving real-life targets 

4.3.2.2 Airbus-A320 

Finally, the PWTD-accelerated PWTD solver is applied to the analysis of 

transient scattering from an Airbus-A320 model, which fits in a hypothetical box with 

dimensions 34.2 m 11.7 m 37.5 m.× ×  The airplane is illuminated by ( , )i tE r  in (4.13) 

with 0 = 200 MHz,f  = 67.5 MHz,bwf  ˆ ˆ= ,p y  and ˆ ˆ= .−k z  The current induced on the 

airplane is discretized using 1,02= 0,069sN  spatial basis functions and fourth-order 

temporal basis function. The simulation is executed for = 1600tN  time steps with 

187 ps.t∆ =  An eight-level PWTD tree is constructed upon setting the side length of 

boxes at the finest level to 0.38 λ  and = 4.5γ . Table 4.2 presents the solver parameters 

and CPU and memory requirements of the solver’s different stages. The solver requires 

about 1.2 TB of memory and 12.6 hours of CPU time when 2048pN = . The solution at 

each time step is obtained in maximum three GMRES iterations, which yields 

155 10ε −= × . 

The bistatic RCS of the airplane is computed at 200 MHz  and 250 MHz  and 

compared to those obtained using a FD-CFIE solver [Figure 4.11]; results are in good 
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agreement. In addition, snapshots of the current induced on the airplane at times 640 ,t∆  

800 ,t∆  and 1140 t∆  are shown in Figure 4.12. The maximum current densities are 

induced on edges of antennas placed on top of the airplane and the engine intake.  
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Figure 4.11 Bistatic RCS of the Airbus-A320 airplane at (a) 200 MHz  and (b) 250 MHz  

computed at 0φ =  and 
o[0,180 ]θ =  via PWTD-accelerated TD-CFIE solver and FD-

CFIE solver. 
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(a) 

 

(b) 

 

(c) 

Figure 4.12 Snapshots of the current density (in dB) induced on the Airbus-A320 

obtained by the PWTD-accelerated TD-CFIE solver at (a) 640 t t= ∆ , (b) 800 t t= ∆ , 

(c) 1140 t t= ∆ . 

4.4 Chapter Conclusion 

A scheme for efficiently parallelizing PWTD-accelerated TD-SIE solvers is 

presented. Its efficiency is achieved by hierarchically partitioning the computation and 

memory loads along the spatial, angular, and temporal dimensions. The resulting 

partitioned memory, CPU, and communication costs scale as 1.5( / ),s pO N N   

2( log / ),t s s pO N N N N  and ( log / )t s s pO N N N N  respectively. Indeed, numerical results 

validate the scalability and parallel efficiency of the proposed scheme up to 4096 

processors. The resulting PWTD accelerated TD-SIE solver is successfully applied to 

analysis of transient scattering from objects measuring well over one hundred 

wavelengths in size and  discretized using 10 million spatial unknowns. 
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CHAPTER 5  

A Wavelet-Enhanced PWTD-Accelerated SIE Solver for 

Analysis of Transient Scattering from Electrically Large PEC 

Objects 

5.1 Chapter Introduction  

PWTD-accelerated MOT-TD-SIE solvers constitute a viable alternative to finite 

difference time domain solvers for analyzing complex transient scattering phenomena 

involving PEC [13] and homogenous dielectric [15] objects. These solvers are the time 

domain counterparts of MLFMA-accelerated FD-SIE solvers [142]. Their computational 

costs and memory requirements scale as 2( log )t s sO N N N  and 1.5( ),sO N  respectively; here 

sN  is the number of spatial unknowns and 0.5= ( )t sN O N  is the number of time steps.  

These attractive scaling laws aside, the applicability of the PWTD-TD-SIE solver 

to analyzing transient scattering from objects spanning many wavelengths was impeded 

for years due to the lack of an efficient parallelization scheme, for reasons relating to the 

heterogeneous structure of the PWTD algorithm. In Chapter 4, we present such a parallel 

PWTD-TD-SIE solver capable of solving electrically very large transient scattering 

problems involving 10 million spatial unknowns using thousands of CPUs. That being 

said, the overall memory cost of the PWTD-TD-SIE solver is oftentimes, to the our 

knowledge, one order of magnitude higher than that of the MLFMA-FD-SIE solver 

mainly due to the extra temporal dimension of the PWTD ray data.    
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In this chapter, a wavelet compression scheme is developed to alleviate the 

abovementioned computation bottleneck of PWTD-TD-SIE solver. In the past, wavelets 

(and wavelet packets) have been extensively studied and applied to solution of FD-SIEs 

for both low frequency [143] and high frequency [144-147] time-harmonic scattering 

problems, as well as the solution of TD-SIEs for transient scattering problems [148, 149]. 

These works employ mainly the wavelet representation of the surface current for the 

virtue of impedance matrix sparsification. In our work, in contrast, the wavelet is utilized 

to exploit the temporal sparsity of the PWTD ray data. The motivation of this work is as 

follows: in transient scattering problems, the object is oftentimes illuminated by plane 

waves with high frequency temporal pulses. These incident fields induce on the object a 

current density with temporal signatures resembling these incident pulses. As this spatial-

temporal current is locally correlated, the PWTD ray data constructed from the current 

retains, in some extent, the high frequency pulse nature, and can be efficiently 

represented using wavelet-type bases. Specifically, we develop a wavelet-domain 

implementation of the PWTD algorithm by representing the PWTD ray data using local 

cosine wavelet bases (LCBs) and performing most of the PWTD operations in the 

wavelet-domain. The LCBs [150], compared to other types of wavelets, are known to be 

well suited for representing high frequency signals and integral kernels [147, 151], hence 

are chosen as the wavelet bases in this work. The resulting LCB-enhanced PWTD 

algorithm can significantly reduce the memory and computational costs of the 

conventional PWTD algorithm. Furthermore, the LCB-enhanced PWTD algorithm is 

incorporated into a TD-SIE solver to enable efficient and accurate analysis of transient 

scattering from electrically large PEC objects. The capability of this solver is 

demonstrated through its application to canonical and real-life electromagnetics problems 

involving objects spanning well over a hundred wavelengths. 
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5.2 MOT-based Solution of TD-SIEs and its PWTD Acceleration 

5.2.1 TD-SIEs and MOT Scheme  

Consider the transient scattering from a closed PEC surface S  residing in free 

space, as described in Section 1.2.1.1 (and Section 4.2.1). Here, the TD-SIE formulation 

and its MOT-based solution are briefly summarized, more details can be found in Section 

1.2.1.1 and Section 4.2.1. The differentiated TD-CFIE is  

 
0

ˆ ˆ ˆ( , ) ( , ) [ ]( , )    i i

ct t t Sβ η −× − × × = ∀ ∈n H r n n E r J r r&& & L . (5.1) 

Here, ( , )i tE r&  and ( , )i tH r&  are the differentiated total electric and magnetic fields, ( , )tJ r  

is the current density induced on the surface, c
&L  is the differentiated TD-CFIE operator, 

β  is the CFIE combination constant, 
0η  is the characteristic impedance of the free space, 

and S −  denotes the surface conformal to but just inside S . 

Upon expansion of the current density ( , )tJ r  by (1.7), substituting (1.7) into (5.1) 

and testing the resulting equation with ( )mS r , 1, , sm N= K , at =t j t∆ , 1, , tj N= K , a set 

of linear equations can be obtained as 

 
1

0

=1

=
j

j j i j i

i

−

−−∑Z I F Z I . (5.2) 

Here, the entries of the vectors jI  and jF  and the MOT matrices 
i

Z  are 

 ,{ } , = 1,...,j n n j sI n N=I  (5.3) 

 
0

ˆ{ } ( ), ( , )

ˆ ˆ ( , ) , 1, ,

i

j m m

i

s
t j t

t

t m Nβ η
= ∆

= ×

− × × =

F S r n H r

n n E r

&

&

K

 (5.4) 

 
0

{ } ( ), [ ]( , ) , 1, ,i mn m c n i s
t

T t m n N− =
= =Z S r S r&

KL . (5.5) 

This MOT-based solution requires 2( )t sO N N  operations and 2( )sO N  memory.  
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5.2.2 The Multilevel PWTD Algorithm  

First, the PWTD tree can be constructed and far/near field box pairs can be 

identified following the same procedure described in Section 4.2.2. Next, interactions 

between spatial basis functions residing in near field box pairs are computed using (5.5); 

interactions between spatial basis functions fully contained in far field box pairs are 

evaluated by the PWTD scheme. 

Consider interactions between all basis functions in the far field box pair α  and 

α ′  shown in Figure 1.1. For all n α∈ , the temporal signature ( )nf t  associated with 

( )nS r  is broken into v

lN  consecutive subsignals ( )l

nf t  using the APS function ( )APST t  

via (4.8). Let ( , ) ( ) ( )l l

n nn
t f tα α∈

=∑J r S r  denote the current due to the thl  subsignal 

associated with all source basis functions in box α , fields produced by ( , )l tαJ r  (and 

tested by ( )mS r  in box α ′ ) can be computed as follows: (i) construct a set of outgoing 

rays (of box α ) in direction ˆ v

qpk  by the convolving the projection function 

ˆ ˆ( , , )v v

n pq pqt+P k k  with subsignal ( )l

nf t  as 

 
2

, 2 2

0

ˆ ˆ ˆ( , ) ( , , )* ( )
16

v v v lt
l qp n qp qp nn

t t f t
c

α απ
+ +

∈

∂= ∑G k P k k  (5.6) 

where  [ , ]s e

l lt t t+ +∈  with starting point ( ) 0( 1) /s v v

l ft l M p t R c+ = − − ∆ −  and ending point 

0( ) /e v v

l ft lM p t R c+ = + ∆ + ; (ii) translate the outgoing rays (of box α ) into incoming 

rays (of box α ′ ) by convolving outgoing rays ,
ˆ( , )v

l qp tα
+G k  with the translation function 

ˆ( , )v

qp tkT  as  

 
, ,

ˆ ˆ ˆ( , ) ( , )* ( , ) ;v v v

l qp qp l qpt t tα α
− +

′ =G k k G kT  (5.7) 

here, [ , ]s e

l lt t t− −∈  with the starting point ( ) , ' 0( 1) ( ) /s v v

l f ct l M p t R R cαα
− = − − ∆ − +  and 

the ending point , ' 0( ) ( ) /e v v

l f ct lM p t R R cαα
− = + ∆ + + ; (iii) project the incoming rays onto 

the test basis function ( )mS r  in box α ′  by convolving the projection functions 
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ˆ ˆ( , , )v v

m qp qpt−P k k  and ˆ ˆ( , , )v

m qp t−P k n  with the incoming rays ,
ˆ( , )v

l pq tα
−

′G k  and summing over 

all directions with quadrature weights v

qpω  as 

 0

†

,

( ), [ ]( , )

ˆ ˆ ˆ ˆˆ[ ( , , ) ( , , )] ( , ) ,

v v

v

K K
l v

m c qp

q p K

v v v v

m qp qp m qp l qp

t

t t t

α

α

ω

β
= =−

− − −
′

=

− + ∗

∑ ∑S r J r

P k k P k n G k

&L
 (5.8) 

where the number of ray directions is ( 1)(2 1)
v v v

kN K K= + + , 
02 1v v

s sK R cχ ω = +   

with a spherical oversampling factor sχ . In (5.6)-(5.8), the projection function is  

 { }
{ }

{ } { }
m,n

0, , ,
ˆ ˆˆ ˆ( , , ) = ( ') ( ( ' ) / ) ,v v c

qp qpm n m n o sS
t dS t cδ± ′ × ± ⋅ −∫P k v v S r k r r  (5.9) 

here 
{ , }m nS  represents the support of { },

( )
m n

S r  and ( )δ ⋅  is the Dirac delta function. The 

translation function is  

 ( ) ( )0 0

0, ,

ˆ( , ) 2 1 cos

vK
v t
qp k k

kc c

c c t
t k

R Rαα αα

θ
=′ ′

 ∂= + Φ Φ  
 

∑kT  (5.10) 

where ( )kΦ ⋅  is the Legendre polynomial of degree k , , ,
ˆcos /v

qp c cRαα ααθ ′ ′= ⋅k R  and 

, ' 0ct R cαα≤ . Note that two out of the three differentiation operators 
t∂  in (4.11) are 

transferred into (5.6) here. In practice, only outgoing/incoming rays of  finest level boxes 

are constructed/projected directly from/onto spatial basis functions using (5.6)/(5.8); 

those of higher level boxes are computed via the global vector spherical 

interpolation/filtering [13, 132]. The computational complexity analyses in [8] showed 

that the computational cost and memory requirement of the multilevel PWTD-accelerated 

MOT scheme scale as 2( log )t s sO N N N  and 1.5( )sO N  for surface scatterers, respectively. 

Note: in the rest of this paper, the computational cost of the PWTD-MOT scheme is 

rewritten as 1.5 2
( log )s sO N N , as 0.5

( )t sN O N=  is a condition typically satisfied for smooth 

objects under high frequency excitations. 
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5.3 LCB-Enhanced Multilevel PWTD Algorithm 

This section describes a wavelet-based compression scheme that further reduces 

the memory and computational costs associated with the PWTD algorithm by leveraging 

the local cosine wavelet compression among the temporal dimension of the ray data. In 

what follows, the memory compression scheme for the PWTD ray data using LCBs is 

first described in Section 5.3.1. Next, the wavelet-domain implementations of the 

translation and spherical interpolation/filtering stages, are expounded in Section 5.3.2 and 

Section 5.3.3. Finally, the memory requirement and computational complexity of the 

LCB-enhanced PWTD algorithm are analyzed in 5.3.4. 

5.3.1 Representation of the Ray Data Using LCBs 

In order to represent the PWTD ray data using LCBs, the temporal support of the 

outgoing/incoming ray [ , ]s e

l lt t± ±  is first partitioned into N  intervals by an increasing 

sequence ( )ra , 1,...,r N=  with 
1

s

la t ε= − , e

N la t ε= +  and 10 ( ) / 2r ra aε +< ≤ −  for 

r N∀ < [Note: the symbol ±  in the superscripts of s

lt
±  and e

lt
±  is dropped]. It’s assumed 

that the length of the thr  interval is integer multiple of t∆ , i.e., 1

r

r ra a M t+ − = ∆ . On the 

thr  interval, the LCB functions ( )ruT t , u ∈N  are  

 
2

( ) ( ) cos (2 1)
2

r
ru r r r

t a
T t B t u

M t M t
π− = − ∆ ∆ 

 (5.11) 

where ( )rB t  is a smooth, compactly supported bell function defined as  

 
1

1
1 1

( ) 1 .

r
r r

r r r

r
r r

t a
b a t a

B t a t a

a t
b a t a

ε ε
ε

ε ε

ε ε
ε

+

+
+ +

 −  − ≤ < + 
 = + ≤ < −

 −  − ≤ < + 
  

 (5.12) 

Here, the cutoff function ( )b t  is chosen as [152] 
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 ( ) sin sin sin ,  1 1 .
4 4 2 2

t
b t t

π π π π  = + − ≤ ≤  
  

 (5.13) 

With this choice of bell function (5.12) and cutoff function (5.13), these LCB functions 

( )ruT t  are locally supported on the interval 1[ , ]r ra aε ε+− +  and they become 

orthonormal, i.e. ( ), ( ) ,ru sw rs uwT t T t δ δ= , , ,r s N∀ <  ,u w∀ ∈N , where rsδ  and uwδ  are 

Kronecker delta functions. Furthermore, the LCB functions are localized in frequency. 

Specifically, their Fourier transforms ( )ruT ω  are  

 ( )1
( ) ( ) ( )

2
r u r uia ia

ru r u r ur
T e B e B

M t

ω ωω ω ω ω ω−= − + +
∆

 (5.14) 

where ( 1/ 2) / ( )r

u u M tω π= − ∆  is the central frequency of ( )ruT ω  and ( )rB ω  is the 

Fourier transform of the bell function ( )rB t . Due to the smoothness (i.e., the quasi-

bandlimitedness) of the bell function, the LCB functions are also quasi-bandlimited. For 

example, the LCB functions on a fixed interval with three different central frequencies 

are plotted [Figure 5.1(a)-(c)]. Clearly, these functions are localized in time and 

frequency. 
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Figure 5.1 The LCB functions ( )ruT t  associated with interval 
1[a , a ]r r + , a 0r = , 

1 st∆ = , (740, 245) MHz , 16ε =  with different central frequencies: (a) 1u = , (b) 

10u = , (c) 25u = . (d) The Fourier transform ( )ruT ω  of (a), (b) and (c). 

 

Next, the outgoing/incoming rays can be represented using the LCBs (5.11). The 

outgoing/incoming rays of a level v  box in direction ˆ v

qpk  consist of two transverse 

components, i.e., ,
ˆ ˆ ˆˆ ˆG ( k , ) ( k , ) ( k , )v v v

l qp qp qpt G t G tα θ ϕ
± = +θ φ , each transverse component is 

expressed using LCBs as 

 
1 1

ˆ ˆ( k , )= ( k ) ( ) .
N

v v

qp ru qp ru

r u

G t I T tψ
ψ

∞

= =
∑∑  (5.15) 

Here, { , }ψ θ ϕ=  and the LCB coefficients are ˆ ˆ( k )= ( k , ), ( )v v

ru qp qp ruI G t T tψ
ψ  due to the 

orthonormality of the LCBs. In practice, these coefficients can be efficiently computed by 

first sampling the outgoing/incoming ray with time step size t∆  and then applying to the 

resulting sequence the discrete local cosine transform (LCT) that requires ( log )r rO M M  

operations for each interval [152]. The LCT results in a coefficient vector:  

 1

†

11 11

ˆ ˆ ˆ ˆ ˆ( ) [ ( ),..., ( ),..., ( ),..., ( )] .N

v v v v v

qp qp qp N qp qpM NM
I I I Iψ ψ ψ ψ

ψ =I k k k k k  (5.16) 

Note that the number of LCB coefficients associated with the thr  interval is rM  and the 

total number of LCB coefficients is 
1

N r

I r
N M

=
=∑ . With a proper choice of the partition 

(a )r , the coefficient vector ˆ( )v

qpψI k  exhibits fast decaying rate on each interval [153] and 

only those coefficients with magnitudes exceeding a prescribed threshold need to be 

stored. Based on the temporal feature of the ray data, two types of efficient partitioning 

mechanisms are considered in this work. 

• Single-resolution bases: Partitioning the support with small intervals of same 

length, i.e., , r minM M r= ∀ , and computing the LCB coefficients by 

( log )min

IO N M  operations.   
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• Multi-resolution bases: Combining adjacent intervals of the single-resolution 

bases that (i) have similar maximum LCB coefficients and (ii) have fast decaying 

coefficients into larger intervals and computing the LCB coefficients on these 

new intervals by at most ( log )max

IO N M  operations where maxM t∆  is the 

maximum allowed interval length. In comparison, the conventional method to 

find the partitions that yield maximum sparsity requires 2
( log )I IO N N  

operations [152].  

Note that in our implementation, the minimum and maximum interval lengths are 

chosen as constants, e.g. 16
min

M = , and 256
max

M = , hence computing the LCB 

coefficients with single- or multi-resolution bases requires ( )IO N  operations.  

In general, the multi-resolution bases can achieve better sparsity in the LCB 

coefficients compared with the single-resolution bases, however, these bases (i.e., the 

optimal partitions) vary for each outgoing/incoming ray, which posts challenges to 

convert the PWTD operations into the wavelet domain. Therefore, in the proposed LCB-

enhanced PWTD scheme, the computation of the outgoing/incoming rays is directly 

conducted in the wavelet domain using single-resolution bases; once computed, the ray 

data is stored as its LCB coefficients using multi-resolution bases. Next, the LCB-

enhanced PWTD stages are explained in detail. 

5.3.2 Translation in the Wavelet Domain 

During the translation stage at level v , the outgoing/incoming rays ,
ˆG ( k , )v

l qp tα
±  

are represented using their LCB coefficient vectors ˆ( )v

qpψ
±I k  in the single-resolution bases 

with r min
M M= . Specifically, consider a far field box pair α  and α ′ . The coefficient 

vector of the incoming ray ˆ( )v

qpψ
−I k  (of length min

IN M N− −= ) in observer box α ′  can be 

computed by translating that of the outgoing ray ˆ( )v

qpψ
+I k  (of length min

IN M N
+ += ) in 

source box α  as  
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 ˆ ˆ( ) ( )v v

qp qpψ ψ
− +=I k TI k  (5.17) 

where the translation matrix T  consists of  matrix blocks 
sr

T , 1,...,s N −= , 1,...,r N +=  

of dimension min minM M× . The entries of these matrix blocks 
sr

T  are [154] 

 
1 1

( )

1 1

ˆ{ } ( ), ( , )* ( )

1
[ ( ) ( )]

4

ˆ[ ( ) ( )] ( , ).s r

v

sr wu sw qp ru

u umin

j a a v

w w qp

T t t T t

d B B
M t

B B e
ω

ω ω ω ω ω
π

ω ω ω ω ω
− +

− +

+∞
+ +

−∞

−− −

=

= − + −
∆

× − − + − −

∫

T k

k

T

T

  (5.18) 

Here, ( )ruT t+  and ( )swT t− , , 1,..., minu w M=  are the LCB functions associated with intervals 

staring with 
ra
+  and 

sa
− , respectively. 

1 ( )B ω±  are the Fourier transformed bell functions 

associated with the first intervals of  the outgoing/incoming ray. ˆ( , )v

qp ωkT  is the Fourier 

transform of the translation function ˆ( , )v

pq tkT  [8]. Note that ( 1)1sr s r− +=T T  if s r≥  and 

sr =T 0  if s r< . Hence, only matrix blocks 
1sT , 1,...,s N −=  need to be computed. The 

computation of these block entries can be further facilitated by the following two 

observations: (i) { } 0sr wu =T  if u w−  is large, due to the narrow band nature of the LCB 

functions; (ii) when u  is large, the translated LCB functions become temporally localized 

(see Appendix):   

 

0
, 0 1

,

0
, 0 2

,

ˆ( , )* ( ) ( / ) (cos )

                         ( / ) (cos )

v

qp ru ru c

c

ru c

c

c
t T t T t R c f

R

c
T t R c f

R

αα
αα

αα
αα

θ

θ

+ +
′

′

+
′

′

≈ −

− +

kT

 (5.19) 

where ( ) ( )1 0
(cos ) ( 1) 2 1 cos

vK k

kk
f kθ θ

=
= − + Φ∑  and ( ) ( )2 0

(cos ) 2 1 cos
vK

kk
f kθ θ

=
= + Φ∑ , 

i.e., the translated LCB function is locally supported on the interval 

, 0 1 , 0[ / ,  / ]r c r ca R c a R cαα ααε ε+ +
′ ′+− ± + ± . Therefore, the nontrivial entries in the matrix 

blocks can be efficiently identified and computed. For example, one translation matrix is 

plotted in Figure 5.2(a). Note that the translation matrices T  depend on the direction ˆ v

qpk  
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and the vector 
,c αα ′R  connecting the box centers, hence can be reused for box pairs with 

the same ,c αα ′R . After the translation stage at level v  is completed, the incoming rays are 

stored as their coefficient vectors in the multi-resolution bases. 
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Figure 5.2 (a) Magnitudes of a translation matrix T  obtained by setting 10,tχ =  

3.5 ,vR λ=  †

, [24  0 0] ,c αα λ′ =R  
†ˆ [0 0 1] ,v

qp =k  64,minM =  7,N + =  and 24N − = . (b) 

Magnitudes of a shifting matrix S  obtained by setting 10,tχ =  7 ,vR λ=  1 3.5 ,vR λ− =  

†

, [4  4  4 ] ,c αα λ λ λ′ =R  
†ˆ [1 3  1 3  1 3] ,v

qp =k  64,minM =  7,N + =  and 13N +′ = . 

The accuracy is set to 41 10−× . 

 

5.3.3 Spherical Interpolation/Filtering in the Wavelet Domain 

The outgoing/incoming rays in 1v >  boxes are constructed/projected by spherical 

interpolation/filtering. [Note that those in 1v =  boxes are constructed/projected by (5.6)

/(5.9) followed by/following the compression/reconstruction of the ray data using (5.16).] 
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In this subsection, only the spherical interpolation used to construct the outgoing rays in 

the wavelet domain is expounded, as the spherical filtering for projection of the incoming 

rays can be carried out similarly.    

Consider construction of outgoing rays ,
ˆG ( k , )v

l qp tα
+
′ ′ , 0,..., vq K= , 

,...,v vp K K= −  in level v  box α ′  from the outgoing rays 1

,
ˆG ( k , )v

l qp tα
+ − , 10,..., vq K −= , 

1 1,...,v vp K K− −= −  in its child box α . Let ˆ( )v

qpψ
+′I k  and 1ˆ( )v

qpψ
+ −I k  denote the LCB 

coefficient vectors that represent ,
ˆG ( k , )v

l qp tα
+
′ ′  and 1

,
ˆG ( k , )v

l qp tα
+ −  using single-resolution 

bases, respectively. 

First, the coefficient vectors ˆ( )v

qpθ
+I k  and ˆ( )v

qpϕ
+I k  whose entries form the 

quantities ˆ ˆˆ ˆ(k ) (k )v v

ru qp ru qpI Iθ ϕ+θ φ  are obtained by directly applying the global vector 

spherical interpolation scheme [13] to the quantities 
1 1ˆ ˆˆ ˆ(k ) (k )v v

ru qp ru qpI Iθ ϕ− −+θ φ  obtained 

from 
1ˆ( )v

qpθ
+ −I k  and 

1ˆ( )v

qpθ
+ −I k .  

Next, the interpolated LCB coefficients are shifted from the center of box α  to 

that of box α ′ . Note that, in time domain, the outgoing ray 
,

ˆG ( k , )v

l qp tα
+
′ ′  in box α ′  is 

obtained by shifting the interpolated outgoing ray ,
ˆG ( k , )v

l qp tα
+  in box α  as  

 
, ,

, ,

ˆ ˆ ˆ( , ) ( , )* ( , ) 

ˆ ˆ                  = ( , ) .

v v v

l qp qp l qp

v v

l qp qp c

t t t

t

α α

α αα

+ +
′ ′

+
′

=

− ⋅

G k k G k

G k k R

S
 (5.20) 

In contrast, in the wavelet domain, the coefficient vector ˆ( )v

qpψ
+′I k  can be computed by  

 ˆ ˆ( ) ( ).v v

qp qpψ ψ
+ +′ =I k SI k  (5.21) 

Here S  is the shifting matrix similar to the translation matrix T , the entries of matrix 

block 
srS , 1,...,r N += , 1,...,s N +′=  where N +′  denotes the number of intervals in the 

support of ,
ˆ( , )v

l qp tα
+
′ ′G k , are expressed as  

 ˆ{ } ( ), ( , )* ( ) .v

sr wu sw qp ruT t t T t+ +′=S kS  (5.22) 
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Here, , 1,..., minu w M= , ( )
sw

T t+′  are the LCB functions associated with the ths  interval in 

the support of ,
ˆ( , )v

l qp tα
+
′ ′G k . Just like the translation matrix, the shifting matrix is highly 

sparse [see the example in Figure 5.2(b)] and can be reused for boxes α  and α ′  that have 

the same ,c αα ′R . After the contributions from all child boxes have been accounted for, the 

LCB coefficient vector ˆ( )v

qpψ
+′I k  of box α  is stored using multi-resolution bases. 

5.3.4 Computational Complexity 

In this section, the memory requirement and computational complexity of the 

proposed LCB-enhanced PWTD scheme are discussed for smooth quasi-planar structures 

under plane wave incidence. Note that these scaling estimations hinge on the 

compression performance of the outgoing/incoming ray data using the LCBs. For a 

general structure, the ray data consists of locally smooth parts that resemble the incident 

pulses, as well as the locally non-smooth parts due to the APS function ( )APST t  used to 

section the temporal signature ( )nf t . These non-smooth parts result in locally very poor 

sparsity when represented using the LCBs and can degrade the overall compression 

performance. However, for quasi-planar structures under certain types of excitation, the 

current density induced on the surface propagates along certain predominant direction, 

which generates specific sparsity patterns in the outgoing/incoming ray data. These 

sparsity patterns greatly alleviate the abovementioned performance degradation and can 

help reduce the memory and computational costs of the LCB-enchend PWTD scheme. In 

what follows, the memory requirement and computational complexity of the proposed 

LCB-enhanced PWTD scheme are discussed for two types of plane wave incidence. 

5.3.4.1 Near-normal incidence 

In this case, the magnitudes of the non-smooth parts of the ray data become 

vanishingly small when the box size is electrically large [Note: as the overall memory 

and computational costs are dominated by those at higher levels of the PWTD tree, its 

assumed in this section that the box sizes are electrically large]. As a result, the memory 

requirement for storing one outgoing/incoming ray in the proposed scheme scales nearly 
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as (1)O , as opposed to ( )vO M  in the classical PWTD scheme. As there is ray data in v

kN  

directions associated with v

gN  boxes, the overall memory requirement scales as 

1
(1) ( log )

LN v v

g k s sv
N N O O N N

=
=∑ . 

The computational costs of the translation stage are dominated by the wavelet-

domain translation operation in (5.17). Although the translation matrix T  is highly sparse, 

its first few columns (corresponding to source LCB functions ( )ruT t+  with small r ) have 

( ) ( )v

IO N O M− =  nonzero entries; the rest columns have (1)O  nonzero entries due to the 

localization property shown in (5.19). Since each LCB coefficient vector ˆ( )v

qpψ
+I k  has 

(1)O  nonzero entries, the computational cost of each translation operation scales at most 

as ( )vO M . As there are (1)O  nontrivial outgoing rays at each direction in one source box, 

the overall computational complexity of the translation stage scales as 

1.5

1
( ) (1) ( )

LN v v v

g k sv
N N O M O O N

=
=∑ . 

The computational costs of the spherical interpolation stage are dominated by two 

operations: the wavelet-domain spherical interpolation and shifting. The spherical 

interpolation of one entry of the coefficient vectors 1ˆ( )v

qpψ
+ −I k  requires ( log )v v

kO N K  

operations [132]; in contrast, shifting one entry of the interpolated coefficient vectors 

ˆ( )v

qpψ
+I k  by (5.21) in all directions requires ( )v

kO N  operations as there are (1)O  nonzero 

entries in each column of the shifting matrix S . Since there are (1)O  nontrivial outgoing 

coefficients vectors each having (1)O  nonzero entries for ( )v

gO N  source boxes, the 

computational complexity of the spherical interpolation stage scales as 

2

1
(1) (1) ( log ) ( log )

LN v v v

g k s sv
N O O O N K O N N

=
=∑ . Note: similar analysis can be performed 

for the spherical filtering stage, however, as there are ( / )v

tO N M  nontrivial incoming 

coefficient vectors in each box as opposed to (1)O  outgoing ones, the complexity 

reduction of the spherical filtering stage is not significant compared to the spherical 

interpolation and translation stages. 
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5.3.4.2 Very-oblique incidence 

If non-smooth parts of the ray data exist, it’s assumed that the compression 

performance of the ray data is dominated by that of the non-smooth part. The 

compression performance can be analyzed, without loss of generality, by an example 

[Figure 5.3]. In Figure 5.3, a set of Hertzian dipoles, with locations ( , , )n n n nx y z=r  and 

orientations ˆ
nu , are randomly scattered across a smooth quasi-planar surface S  

(approximately) parallel to the x-y plane. Here, | |n zz ε<=  for some constant zε λ<< . The 

temporal signature of the thn  dipole is 0
ˆ( ) ( / )n nf t F t c= − ⋅r k . Here, ( )F t  is an incidence 

pulse with time width bwt , and ˆ (sin ,0, cos )i iθ θ= −k , o90iθ ≤  and sufficiently large, is 

the incidence direction. Let α  be a level v  box centered at origin with edge length 

2 / 3v vL R= . The outgoing ray ,
ˆ( , )v

l qp tα
+G k , cos sin , sin sin , cosˆ ( )v v v v v v

qp p q p q qφ θ φ θ θ=k , is 

constructed by (5.6) with ( )ˆ( )n n nδ= −S r u r r . It’s assumed that the each subsignal ( )l

nf t  

is locally non-smooth near vt lM t= ∆  (or ( 1) vt l M t= − ∆ ) due to the presence of the APS 

function. Moreover, it’s only locally non-smooth for those subsignals associated with 

dipoles confined in a rectangular box of dimension 0( / sin ) 2i v

bw zc t Lθ ε× ×  [See Figure 

5.3]. From (5.6) and (5.9), the outgoing ray ,
ˆ( , )v

l qp tα
+G k  becomes locally non-smooth 

near time 

 
0

0cos sin sin sin cos

ˆ ( ) /

 ( ) / .

v v c

qp n s

v v v v v v

p q n p q n q n

t lM t c

lM t x y z cφ θ φ θ θ

= ∆ + ⋅ −

= ∆ + + +

k r r
  (5.23) 

The support length of the non-smooth part of the outgoing ray is therefore at most 

0 0|cos sin sin sin cos| / sin | | / 2 | | /v v i v v v v

bw p q p q z qt L c cφ θ φ θ θθ ε+ + . Apparently, when v

pφ  is small 

(i.e., ray direction close to the plane of incidence), the memory cost for storing one 

outgoing ray using LCBs scales nearly as (1)O ; when v

pφ  is close to o90  (i.e., ray 

direction away from the plane of incidence), the memory cost for storing one outgoing 

ray using LCBs scales as ( )vO M . Note: similar analysis and results can be obtained for 

the incoming rays.  
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As the memory reduction is not significant for ray data in directions that 

correspond to v

pφ  near o90 , the scaling estimates of the memory and computation of the 

LCB-enhanced PWTD scheme remain the same as those of the conventional PWTD 

scheme. That said, these costs can still be significantly reduced (i.e., with smaller leading 

constants) by the proposed LCB-enhanced PWTD scheme. 
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Figure 5.3 Non-smooth part of the outgoing rays from one box with very oblique 

incidence. 

5.4 Numerical Results 

This section presents numerical results that demonstrate the efficiency, accuracy, 

and applicability of the proposed LCB-enhanced PWTD-TD-SIE solver. In all examples 

considered here, the temporal basis function ( )T t  is the fourth-order piecewise Lagrange 

polynomial. Unless otherwise stated, the structures are illuminated by a plane wave with 

electric field as 

 0
ˆˆ( , ) = ( / ).i t F t c− ⋅E r p r k  (5.24) 

In (5.24), 
2 2

0( ) /2

0 0( ) cos[2 ( )]
t t

F t f t t e
σπ − −= −  is a modulated and quasi-bandlimited 

Gaussian pulse, 0f  is the modulation frequency, 0 = 6t σ  is the delay of the pulse, 

= 3 / (2 )bwfσ π  is a measure of pulse duration, the parameter 2 bwf  represents the 
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essential bandwidth. Note that the maximum angular frequency is 
02 ( )max bwf fω π= + . p̂  

and k̂  denote the polarization and propagation direction of the plane wave. All frequency 

domain (i.e., time harmonic) data presented in this section is obtained by dividing the 

Fourier transform of the time domain data by that of ( )F t . A GMRES algorithm and a 

diagonal preconditioner are used to iteratively solve (5.2) at each time step. The GMRES 

iteration is terminated when the condition 

 ( )

0 <n

j j jδ−V Z I V� � � � (5.25) 

is satisfied. Here, ( )n

jI  represents the vector of current coefficients in the thn  iteration, 

1

1

j

j j i j ii

−
−=

= −∑V F Z I  is total RHS at time step j , and δ  is the desired residual error. 

Here δ  is set to 1210− . 

The simulations are performed on two computing platforms: (i) A Sandy Bridge 

compute-node that has four Eight-Core 2.40 GHz Intel Xeon E5-4640 processors and 1 

TB memory. (ii) A Sandy Bridge cluster where each node has two Eight-Core 2.60 GHz 

Intel Xeon E5-2670 processors and 64 GB memory. The proposed solver is parallelized 

by the scalable parallelization scheme described in Chapter 4. One MPI process is 

launched per compute-node and OpenMP utilizes all cores on each node. 

5.4.1 Compression of One Ray 

First, the compression performance of representing one outgoing/incoming ray 

using the LCBs is investigated. To this end, consider a far field box pair α  and α ′ . 

Suppose the source box α  encloses a square plate centered at origin and located in the x-

y plane. A set of Hertzian dipoles are randomly scattered across the plate with 

orientations ˆ
nu  and positions 

nr , n α∈ . The temporal signature of the thn  dipole is 

0
ˆ( ) ( / )n nf t F t c= − ⋅r k  with 

0 7.68 GHzf = , 2.56 GHzbwf = and time step size 

4.88 ps.t∆ =  The outgoing ray is constructed by (5.6) with ( )ˆ( )n n nδ= −S r u r r  and the 

incoming ray is computed by the translation operation in (5.7). Such ray data is 

compressed and reconstructed using its multi-resolution LCB coefficients with accuracy 
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set to 31 10−× . For simplicity, only the θ  component of the ray data is investigated as 

similar compression performance regarding the ϕ  component can be achieved. 

The entries of the coefficient vector ˆ{ ( )}v

qp nθ
±I k  and samples of the ray data 

ˆ( , )s

qp lG n t tθ ∆ +k , 1,..., In N ±=  obtained with 14vR λ=  are plotted for ˆ ˆˆ ˆ,  v

qp= = −k z k x  

[Figure 5.4(a),(b)] and ˆ ˆˆ ˆ,  v

qp= = −k x k x  [Figure 5.4(c),(d)], respectively. Note that the 

vertical dashed lines correspond to the ending points 
ra± , 2,...,r N ±=  of the intervals. 

When ˆ ˆ=k z , the temporal signature given by 
0

ˆ( / )nF t c− ⋅r k  resembles that associated 

with the current induced by normal incidence, hence the outgoing/incoming ray is smooth 

(when the box is electrically large)  and can be well compressed by the LCBs. In contrast, 

when ˆ ˆ=k x , the temporal signature resembles that associated with the current induced by 

incidence at a very oblique angle. In this case, the outgoing/incoming ray has locally non-

smooth parts due to the presence of the APS function. These non-smooth parts can be 

automatically identified by the LCBs [Figure 5.4(c),(d)].  

The compression ratio κ  is defined as the length of the coefficient vector 
IN ±  

divided by the number of nontrivial entries in the vector. The compression ratios of the 

outgoing [Figure 5.5(a)] and incoming [Figure 5.5(b)] ray with ˆ ˆˆ ˆ,  ,v

qp= =k z k y  

ˆ ˆˆ ˆ,  ,v

qp= =k z k z  ˆ ˆˆ ˆ,  ,v

qp= =k x k y  and ˆ ˆˆ ˆ,  v

qp= =k x k z  obtained from boxes with different 

radius are plotted. For ˆ ˆ=k z , the compression ratio improves as the box size increases, 

which justifies our assumption about the (1)O  memory requirement to store one ray in 

Section 5.3.4.1. However, when ˆ ˆ=k x  (i.e., o90iθ = ), the compression ratio in direction 

ˆ ˆv

qp =k y  (i.e., o90v

pφ = ) remains the same as the box size increases. That said, significant 

memory reduction can be achieved when storing the ray data in all directions using LCBs. 
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Figure 5.4 LCB representation of one ray (θ  component) in direction ˆ ˆv

qp = −k x  of 

a box of radius 14 .vR λ=  (a) Outgoing ray, ˆ ˆ.=k z  (b) Incoming ray, ˆ ˆ.=k z  (c) Outgoing 

ray, ˆ ˆ.=k x  (a) Incoming ray, ˆ ˆ.=k x  
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(b) 

Figure 5.5 Compression ratio κ  of one ray in a box with radius vR varying from 3.5λ  to 

55λ . (a) Outgoing ray. (b) Incoming ray. 

5.4.2 Complexity Validation 

Next, the memory requirement and computational complexity of the proposed 

LCB-enhanced PWTD scheme are validated. To this end, a set of sN  Hertzian dipoles 

are randomly scattered across a square. The orientation and position of the thn  dipole are 

ˆ
nu  and nr ,  1,..., sn N= . The temporal signature of all dipoles is ( ) ( )nf t F t=  with 

0 768 MHzf = , 256 MHzbwf =  and discretized using step size 62.5 pst∆ = . The 

number of time steps is chosen as 0.53.44t sN N= . The ray data is compressed using LCBs 

with 16
min

M =  and accuracy set to 410− . In the test, sN  is increased from 40,000  to 

2,560,000  while the edge length of the plate is changed from 20 λ  to 160 λ  and edge 

length of the boxes at the finest level of PWTD tree is set to 1.25λ . The test is performed 

on the Sandy Bridge cluster with 8 processors. The memory costs on one processor for 

the classical PWTD scheme and the LCB-enhanced PWTD schemes are plotted in Figure 

5.6(a). Those costs comply with the theoretical estimates of 1.5( )sO N  and ( log )s sO N N , 

respectively. Apparently, the LCB-enhanced PWTD scheme achieves significant memory 

reduction compared with the classical PWTD scheme. The computation times for the 

translation and spherical interpolation stage of the classical PWTD and LCB-enhanced 

PWTD scheme are plotted [Figure 5.6(b),(c)], those of the LCB-enhanced PWTD scheme 
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are in good agreement with the theoretical predictions of 1.5
( )sO N  and 2

( log )s sO N N , as 

opposed to the 1.5 2( log )s sO N N  scaling of the classical PWTD scheme. 
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 (c)  

Figure 5.6 (a) Memory cost of the ray data on one processor, and computation time of 

the (b) translation and (c) spherical interpolation stages of the PWTD and LCB-
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PWTD schemes using the Sandy Bridge cluster. 
sN  is changed from 40, 000  to 

2,560, 000 . 

5.4.3 Canonical Example 

First, the proposed LCB-enhanced PWTD-TD-CFIE solver is applied to the 

analysis of transient scattering from a NASA almond that can be enclosed by a 

hypothetical box with dimensions 25 cm 9.7 cm 3.2 cm× × . The almond is illuminated 

by a modulated Gaussian plane wave with 0 = 42f  GHz and = 15bwf  GHz. The current 

density induced on the almond is discretized using 507,156sN =  spatial basis functions. 

The PWTD ray data is compressed using LCBs with 16minM =  and accuracy set to 310− . 

The simulation is performed = 1300tN  time steps with = 1 pst∆  on the Sandy Bridge 

compute-node.   

Three incident fields with different polarizations and directions are tested, i.e., 

ˆ ˆˆ ˆ( = , = )k x p z , ˆ ˆˆ ˆ( = , = )k x p y  and ˆ ˆˆ ˆ( = , = )k z p y . The snapshot of the current density on 

the almond due to each incidence field is plotted [Figure 5.6]. Table 5.1 presents the 

memory costs of the ray data and computational costs of  the translation and spherical 

interpolation stages. These results are compared with the reference data obtained by the 

classical PWTD-TD-CFIE solver with ˆ ˆˆ ˆ( = , = )k x p z . In this example, up to 4.4-fold 

memory reduction and 1.5-fold speedup can be achieved. 

 Next, the almond is illuminated by ( , )i tE r  in (5.24) with 0 = 160 GHz,f  

= 60 GHz,bwf  ˆ ˆ= ,p y  and ˆ ˆ= .k z  The current density induced on the almond is 

discretized using 5,371,092sN =  spatial basis functions. The PWTD ray data is 

compressed using LCBs with 16minM =  and accuracy set to 310− . The simulation is 

performed = 960tN  time steps with = 0.25 pst∆  and run on the Sandy Bridge cluster. 

An eleven-level PWTD tree is constructed upon seting the edge length of box at the finest 

level to 0.488 λ  and = 4γ . 

Table 5.2 presents the solver parameters and CPU and memory requirements of 

the solver’s different stages. The solver requires around 988 GB of memory and 11 days 
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of CPU time when 32  processors are used. Note that the memory cost for the ray data is 

reduced from 1.95 TB to 454 GB by leveraging the LCB-based compression. The bistatic 

RCS of the almond is computed at 140 GHz , 160 GHz  and 180 GHz  and compared to 

those obtained using a frequency domain combined field integral equation (FD-CFIE) 

solver [Figure 5.8]; results are in good agreement. In addition, snapshots of the current 

induced on the almond at times 300 ,t∆  440 ,t∆  460 ,t∆  and 560 t∆  reveal physical 

optics-induced current on the light side of the almond and edge diffracted current on the 

shadow side [Figure 5.9]. 

 

 Ray data (GB) Translation (h) Interpolation (h) 

Reference 36.8 50.5 12.6 

ˆ ˆˆ ˆ= , =k x p z  8.42 26.1 15.5 

ˆ ˆˆ ˆ= , =k x p y  10.6 32.1 18.4 

ˆ ˆˆ ˆ= , =k z p y  12.1 32.8 20.7 

Table 5.1 Memory cost of the ray data and computational costs of the translation and 

spherical interpolation stages for the problem involving the NASA almond with 

507,156sN =  spatial basis functions 

 

 

 

(a) (b) (b) 

Figure 5.7 Snapshots of the current density induced on the NASA almond with 

507,156sN =  spatial basis functions obtained by the LCB-enhanced PWTD-TD-CFIE 

solver with (a) ˆ ˆˆ ˆ= , =k x p z  at = 520 t t∆ , (b) ˆ ˆˆ ˆ= , =k x p y  at = 520 t t∆ , (c) ˆ ˆˆ ˆ= , =k z p y  

at = 600 t t∆ . 
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Figure 5.8 Bistatic RCS of the NASA almond discretized with 5,371,092sN =  spatial 

basis functions at (a) 140 GHz  (b) 160 GHz  and (c) 180 GHz  computed at 0φ = °  

and [0,180]θ = °  by LCB-enhanced PWTD-TD-CFIE solver and FD-CFIE solver. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.9 Snapshots of the current density (in dB) induced on the NASA almond with 

5,371,092sN =  spatial basis functions obtained by the LCB-enhanced PWTD-TD-CFIE 

solver at (a) = 300 t t∆ , (b) = 440 t t∆ , (c) = 460 t t∆ , (d) = 560 t t∆  

 

 NASA almond Airbus A-320 

Maximum dimension 0.25 m (185.26 λ) 37.5 m (123.46 λ) 

Frequency 
0( , )bwf f  (160, 60) GHz  (740, 245) MHz  

Number of unknowns 
sN  5,371,092 4,086,129 

Time step size t∆  0.25 ps  50 ps  

Number of time steps tN  960 1,040 

Number of processors 
pN  32 40 

Memory (near field) 534 GB 775.7 GB 

Memory (PWTD) 1951 454 GB→  601 158 GB→  

Setup time 3.2 h 8.7 h 

RHS time (near field) 2 h 2.7 h 

RHS time (PWTD) 10.5 days 41 h 

LHS time (GMRES) 4.6 h 42 min 

RCS calculation time 18.8 h 768.5 s 

Table 5.2 The technical data for the setups and solutions of scattering problems 

involving real-life targets. 

5.4.4 Real-Life Target 

Finally, the LCB-enhanced PWTD-TD-CFIE solver is applied to the analysis of 

transient scattering from an Airbus-A320 model, which can be enclosed by a fictitious 

box with dimensions 34.2 m 11.7 m 37.5 m.× ×  The airplane is illuminated by ( , )i tE r  in  

(5.24) with 0 = 740 MHz,f  = 245 MHz,bwf  ˆ ˆ= ,p z  and ˆ ˆ= .k y  The current induced on 

the airplane is discretized using 4,08= 6,129sN  spatial basis functions. The PWTD ray 
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data is represented using LCBs with 16
min

M =  and accuracy set to 310− . The simulation 

is executed for = 1040tN  time steps with 50 pst∆ =  and run on the Sandy Bridge cluster. 

A ten-level PWTD tree is constructed upon setting the side length of boxes at the finest 

level to 0.467 λ  and = 4γ . 

Table 5.2 presents the solver parameters and CPU and memory requirements of 

the solver’s different stages. The solver requires around 933.7 GB of memory and 53.4 

hours of CPU time when 40 processors are used. Note that the memory cost for the ray 

data is reduced from 601 GB to 158 GB by leveraging the LCB-based compression. The 

broadband RCS of the airplane along the +z direction ( = 0θ ) is computed using the 

LCB-enhanced PWTD-TD-CFIE solver and the FD-CFIE solver [Figure 5.10]; the 

results agree well. In addition, the current densities induced at two points selected on the 

engine intake and the tail are computed [Figure 5.11]. Finally, snapshots of the current 

induced on the airplane at times 380 ,t∆  480 ,t∆  and 640 t∆  are shown in Fig. 12. 
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Figure 5.10 Broadband RCS of the Airbus A-320 model along the +z direction 

computed by LCB-enhanced PWTD-TD-CFIE solver and FD-CFIE solver. 
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Figure 5.11 Magnitudes of the current density at the engine intake and tail of the 

Airbus A-320 model computed by the LCB-enhanced PWTD-TD-CFIE solver 
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Figure 5.12 Snapshots of the current density (in dB) induced on the Airbus A-320 

model obtained by the LCB-enhanced PWTD-TD-CFIE solver at (a) = 380 t t∆ , (b) 

= 480 t t∆ , (c) = 640 t t∆ . 

5.5 Chapter Conclusion 

This chapter presents a local cosine wavelet-based compression scheme to reduce 

the memory and computational costs of the multilevel PWTD-accelerated MOT-based 

TD-SIE solver. The proposed scheme compresses the PWTD ray data along the temporal 

dimension using LCBs and carries out the PWTD operations including translation, 

shifting, and spherical interpolation/filtering in the wavelet domain. The resulting LCB-

enhanced PWTD-TD-SIE solver yields reduced memory and computational costs 

compared to the conventional PWTD-TD-SIE solver. Indeed, when applied to the 

analysis of transient scattering from smooth quasi-planner objects under high frequency 

excitations with near-normal incidence angle, the memory cost of the solver scales as 

( log )s sO N N  and the computational cost scales nearly as 1.5( )sO N . These scaling 

estimates are theoretically proved and validated by numerical examples. This LCB-

enhanced PWTD-TD-SIE solver is successfully applied to the analysis of transient 

scattering from canonical and real-life objects measuring well over one hundred 

wavelengths in size. 
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CHAPTER 6  

An Explicit and PWTD-Accelerated TD Electric Field VIE 

Solver for Analyzing Transient Scattering from Electrically 

Large Dielectric Objects 

6.1 Chapter Introduction 

Transient analysis of electromagnetic scattering from large inhomogeneous 

dielectric objects has various engineering and scientific applications ranging from the 

design of optoelectronic devices and broadband antenna radomes to the study of blood 

cell aggregations. Among simulators capable of electromagnetic characterization of such 

objects, MOT-based time domain electric field volume integral equation (TD-EFVIE) 

solvers are rapidly gaining ground [19]. The TD-EFVIE is constructed by enforcing that 

the total electric field is equal to the incident electric field plus the scattered electric field 

due to electric flux density induced throughout the scatter. To numerically solve the TD-

EFVIE, the unknown electric flux density is expanded using spatio-temporal basis 

functions. Inserting this expansion into the TD-EFVIE and testing the resulting equation 

in space and time yield a set of linear systems that can be solved by the MOT scheme.  

The MOT scheme can be implicit or explicit, depending on the types of the 

spatio-temporal basis functions. The implicit MOT, oftentimes using Schaubert-Wilton-

Glisson spatial basis functions [155] and piecewise polynomial temporal basis functions 

[12], requires implicitly solving the linear system every time step [19-21, 156]. In 

contrast, the explicit MOT scheme, usually leverages pulse spatial basis functions and 

low order temporal basis functions. These simple basis functions render the explicit MOT 

scheme computationally more efficient, yet less stable than their implicit counterpart [51, 
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55, 56, 61]. Recently, a stable explicit MOT-TD-EFVIE solver that updates the flux 

density using a predictor-corrector (PC) scheme is proposed [157]. Moreover, CPU 

parallelized [158] and graphic processing unit accelerated [159] implementations are 

developed to further advance the capability of the solver. That said, the real-life 

applicability of this solver is still limited by its computational complexity, i.e., 2( )s tO N N  

where sN  is the number of spatial basis functions and tN  is the number of simulation 

time steps. To overcome this computational bottleneck, fast algorithms such as multilevel 

PWTD algorithm [8] and TD-AIM [9] must be considered.  

In this work, a PWTD-accelerated PC-based MOT-TD-EFVIE solver is 

developed. In the past, PWTD has been successfully applied to the acceleration of MOT-

based TD-SIE and TD-VIE solvers [13, 15, 20, 21]. When used in tandem with TD-

EFVIE solvers, it reduces the abovementioned computational complexity to 2( )s tO N N  

[20, 21]. Previously, various PWTD-accelerated implicit MOT-TD-EFVIE solvers were 

developed wherein the PWTD scheme permits fast computation of electric fields due to 

past flux density [20, 21]. However, in the proposed explicit solver, the electric fields are 

computed from vector potentials using finite difference. Hence the PWTD scheme is used 

to accelerate computation of the vector potentials due to the flux density. Specifically, in 

the predictor step, the interactions between far field box pairs are evaluated by 

decomposing vector potentials into their three Cartesian components that are propagated 

independently using a scalar field PWTD scheme; in the corrector step, the electric fields 

are updated using a time-dependent averaging factor that improves the accuracy while 

maintaining the stability as opposed to the constant averaging factor used in [157]. The 

parallelization strategy developed in Chapter 2 is also integrated into this solver. The 

efficiency and accuracy of this parallel PWTD-PC-EFVIE solver are demonstrated via its 

application to transient scattering from canonical objects involving 25 million spatial 

unknowns. Furthermore, the solver is applied to characterization of light interaction with 

red blood cells involving 12 million spatial unknowns.   

The rest of this Chapter is organized as follows. Section 6.2.1 explains the PC-

based MOT-TD-EFVIE solution. Section 6.2.2 delineates the PWTD scheme used to 

accelerate the MOT solution. Section 6.2.3 describes the parallelization of the PWTD-
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PC-EFVIE solver. Numerical examples that demonstrate the efficiency, accuracy and 

applicability of the proposed solver are presented in Section 6.3, followed by the 

concluding remarks in Section 6.4. 

6.2 Formulation 

6.2.1 PC-Based TD-EFVIE Solution  

Let V  denote the support of inhomogeneous dielectric scatterers that reside in an 

unbounded background medium with permittivity 0ε . It’s assumed that the scatterers are 

isotropic, non-magnetic, non-dispersive, lossless and have permittivity ( )ε r . Let ( , )i tE r  

denote an incident electric field that is bandlimited to maximum frequency maxf ; it’s 

assumed that ( , ) 0,  i t V= ∀ ∈E r r  for 0t < . This incident field induces, in the scatterers, 

an electric flux density ( ) ( , )tε r E r  which in turn generates a scattered electric field 

( , )s tE r . Here ( , )tE r  is the total electric field. A TD-EFVIE can be formulated by 

decomposing the total field ( , )tE r  into the incident field ( , )i tE r  and the scattered field 

( , )s tE r  as 

 2

2

0

( , ) = ( , ) ( , )

         ( , ) ( , ) ( , ).

i s

i t

t t t

t t t
c

+

∂= + ∇∇ ⋅ −

E r E r E r

E r P r P r
 (6.1) 

Here, 
0c  is the speed of light in the background medium, 

t∂  denotes time derivative and 

( , )tP r  represents the modified magnetic vector potential due to the induced electric flux 

density that is expressed as  

  
( )0 0

0

( ) ( , / )
( , ) =  .

4V

t R c
t d

R

ε ε
πε

′ ′− −
′∫

r E r
P r r  (6.2) 

Here =| |R ′−r r  is the distance between source point ′r  and observer point r . 

To numerically solve (6.1), the computation domain is discretized using cubic 

elements with edge length s∆ . Here s∆  needs to resolve the minimum wavelength inside 



 

116 

 

the scatterers. It’s assumed that the permittivity inside the thn  element is constant, i.e., 

( ) ( )nε ε=r r  where nr  is the center of the thn  element. Next, the total electric field in the 

scatterers, ( , )tE r , is discretized using spatial basis functions ( )nS r , 1,..., sn N=  and 

temporal basis functions ( )jT t , 1,..., tj N= , as 

 
=1 1

( , ) = ( ) ( ).
s tN N

n, j n j

n j

t S T t
=

∑∑E r E r  (6.3) 

Here, n, jE  is the vector (with three Cartesian components) expansion coefficient 

associated with spatio-temporal basis function ( ) ( )n jS T tr . The spatial basis function 

( )nS r  is the pulse basis function defined in the thn  cubic element, i.e., 

( ) = 1, | | / 2n nS s∞− ≤ ∆r r r , where | |∞⋅  denotes the Linfinity norm. The temporal basis 

function ( ) = ( )jT t T t j t− ∆  is the shifted Lagrange polynomial [12]. Here, the time step 

size t∆  is chosen by a Courant-Friedrichs-Lewy (CFL)-type condition, as 

0 02c t s c t∆ ≤ ∆ ≤ ∆ . With such choice of spatio-temporal basis function, the expansion 

coefficient n, jE  simply becomes the electric field sampled at the thn  element center and 

time step j , i.e., = ( , )n, j n jtE E r . To compute 
n, jE  via explicit MOT, equation (6.1) is 

enforced at space-time ( , )m itr , 1,..., sm N= , 1,..., ti N= , and the spatial operator ∇∇ ⋅  

and temporal operator 2 2

0/t c∂  in (6.1) are approximated by finite difference. Note that the 

finite difference schemes require computation of vector potential ( , )tP r  at times 

1 1, ,  i i it t t− + , and at element centers mr , 1,..., sm N ′= . Here, s sN N′ >  denotes the number of 

elements that have adjacent elements (including themselves) residing in the scatterers. 

Note: the element indices are sorted such that the first sN  elements correspond to those 

in the scatterers and the following 
s sN N′ −  elements correspond to those in the 

background medium. Upon substituting (6.3) into (6.2), the vector potential 

( , ),m itP r 1,..., sm N ′=  is computed as  

 ( , ) = ( , ) ( , ) ( , ) .m i s m i c m i nc m it t t t+ +P r P r P r P r  (6.4) 
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Here, ( , ) ( ( ) ) ( , )
s

s m i m b m it tε ε β= −P r r E r  is dubbed the “self-term” contribution, 

0= ( ) (4 | |)
m

s

m m
V

d Sβ πε −∫ r r r r  and mV  denotes the support of ( )mS r . Note: sβ  is a 

constant independent of m  and can be computed analytically [160]. The second term 

( , )c m itP r  and third term ( , )nc m itP r  on the RHS of (6.4) are computed by  

 
0( / )

( , ) =
m imn

n n, j j i mn

r m i

n r j I mn

w T R c
t

R

−

∈ ∈

−
∑ ∑

E
P r  (6.5) 

Here, n m≠ , { , }r c nc∈ , 3

0 0= ( ( ) ) (4 )n nw s ε ε πε∆ −r , =| |mn m nR −r r , 

0 0= { / ,..., / }imn mn mnI i R c t i R c t p− ∆ − ∆ −        and p  denotes the order of the temporal 

basis function. Note: in order to derive (6.5), the single point quadrature rule is used for 

the integration in (6.2). In (6.5), mc  and mnc  denote the “causal” and “non-causal” set of 

source points for observation point mr . Specifically, 0= { :| | 2 }m m nc n c t− ≥ ∆r r  and the 

computation of 
1( , )c m it +P r  does not require the field coefficients 

n, jE  at time steps j i≥ . 

In contrast, 0= { :| |< 2 , }m m nnc n c t m n− ∆ ≠r r  and the computation of 1( , )nc m it +P r  requires 

the knowledge of 
n,iE , which is not yet available. For this reason, 

cP  and 
ncP  represent 

the “causal” and “non-causal” contributions, respectively. As an example, a H-shaped 

structure is discretized by cubic elements with their element centers represented by small 

dots [Figure 6.1]. Consider an observer element m , m  resides inside or outside the 

scatterer if sm N<  or s sN m N ′< < . The self element and causal/non-causal set of source 

elements are plotted in Figure 6.1. Under the CFL condition, the size of the non-causal 

sets is relatively small. 
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Figure 6.1 A H-shaped structure discretized using source cubic elements. One far 

field box pair is shown in the figure. 

 

Next, the proposed explicit MOT scheme for solving (6.1) is elucidated. At each 

time step i , the electric field sampled at the thm  element center, ( , )m itE r , is computed by 

a predictor-corrector scheme. The predictor step estimates a total electric field throughout 

the scatterers, ( , )pre

m itE r , without knowledge of the unknown quantity 1( , )nc m it +P r , by     

 

1

( , ) = { ( , ) [ ]( , )

              [ ]( , ) [ ]( , )

              [ ]( , ) [ ]( , )}

pre i b

m i m m i s m i

c b

c m i nc m i

c nc m i s m i

t t t

t t

t t

β δ
δ δ

−

−

− −
+ + +

E r E r P r

P r P r

P P r P r

%

G G

 (6.6) 

where 2 2

0 01/ (1 2 ( ( ) ) / ( ))s

m m c tβ β ε ε= + − ∆r , [ ]cδ ⋅  and [ ]bδ ⋅  are the second order central 

and backward difference approximations of the temporal operator 2 2

0t c∂ . Specifically, let 

( ) ( , )i r m if t t= P r , { ,  , }r s c nc∈ , these finite difference formulas are  

 

2 2

1 1 0

2 2

1 2 3 0

[ ]( )=( ( ) 2 ( ) ( )) ( )

[ ]( )=(2 ( ) 5 ( ) 4 ( ) ( )) ( ) ,

c

i i i i

b

i i i i i

f t f t f t f t c t

f t f t f t f t f t c t

δ
δ

+ −

− − −

− + ∆

− + − ∆
 (6.7) 

and 2 2

0[ ]( ) [ ]( ) 2 ( ) ( )b b

i i if t f t f t c tδ δ= − ∆% . In (6.6), [ ]⋅G  is the first order central 

difference approximation of the spatial operator ∇∇⋅ , which can be found in Appendix 

of [157]. 
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The corrector step uses ( , )
pre

m itE r  to update the self-term and non-causal 

potential contributions that, in turn, are used to correct the total electric field. 

Specifically, the self-term contribution can be computed as 

0( , ) ( ( ) ) ( , )
pre s pre

s m i m m it tβ ε ε= −P r r E r ; the non-causal contribution at time step 1i + , 

1( , )pre

nc m it +P r , is computed using ( , )pre

m itE r  via (6.5). The (corrected) electric field, 

( , )m itE r , can be computed as 

   
1

( , ) = { ( , ) [ ]( , )

               [ ]( , )

               (1 ) [ ]( , )

               [ ]( , )

               (1 ) [ ](

i b pre

m i m m i s m i

c pre

mi c nc m i

c

mi c nc m i

pre pre

mi s c nc m i

mi s c nc

t t t

t

t

t

β δ
ω δ

ω δ
ω

ω

−

−

− +

− − +

+ + +
+ − + +

E r E r P r

P P r

P P r

P P P r

P P P

%

G

G 1, )}.m it −r

 (6.8) 

Note that the central difference [ ]cδ ⋅  is now applied to both the causal and non-causal 

contributions. In (6.8), miω  denotes an averaging factor that stabilizes the corrector step. 

Throughout this paper, it’s assumed that the incident electric field is a plane wave 

propagating in direction k̂ . In this case, 
miω  can be chosen as 

 0 1
1 2

2 1 0 0

ˆ ˆ ˆ( / )1
1 cos ,  

2 2( )

i m m m
mi i

t c
t

c c

π τω τ τ
τ τ

 − ⋅ − ⋅ ⋅= + + ≤ ≤ + − 

k r k r k r
 (6.9) 

and 1miω =  for 
0 1

ˆ /i mt c τ< ⋅ +k r , 0.5miω =  for 
0 2

ˆ /i mt c τ> ⋅ +k r . Here, 
2 1 0τ τ> >  are 

parameters related to the bandwidth of the plane wave. Note: larger miω  leads to better 

accuracy, yet worse stability, and 1miω =  indicates that no averaging is applied. 

Apparently, the averaging factor varies smoothly as a function of m  and i , and stabilizes 

the MOT solution in the “late time”. Once ( , )m itE r  is computed, the vector potential 

contributions ( , )s m itP r  and 
1( , )nc m it +P r  can be updated, and the MOT scheme moves to 

the next time step 1i + .  

In the above-described PC-based MOT scheme, the memory and computational 

costs depend on those associated with computation of the electric fields via finite 

difference in (6.6)/(6.8) and computation of the vector potentials by (6.5). The former 
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requires only space-time localized operations and is computationally inexpensive. The 

latter, in contrast, involves interactions between sN ′  observer points and sN  source points 

for tN  time steps, and requires storage of n, jE  at sN  source points for 

1/3

max 0( ) ( )sO D c t O N∆ =  consecutive time steps. Here maxD  is the maximum distance 

between source and observer points. As a result, the computational and memory costs of 

the latter (and the solver) scale as 2( )t sO N N  and 4/3( )sO N , respectively. These costs are 

prohibitively high when the solver is applied to the analysis of transient phenomena 

involving electrically large objects. Next, a PWTD-accelerated PC-based MOT scheme 

that requires only ( )t sO N N  CPU and ( log )s sO N N  memory resources is explained. 

6.2.2 PWTD Acceleration 

The PWTD algorithm described in the section permits fast evaluation of the 

vector potential 1( , )r m it +P r  in (6.5), rather than evaluation of the electric fields due to the 

flux density as in the PWTD-accelerated implicit MOT-based TD-EFVIE solvers [20, 

21]. In what follows, the PWTD algorithm is briefly summarized while only those details 

pertinent to the aforementioned differences are expounded.  

First, a fictitious box enclosing the 
sN ′  elements is recursively subdivided into 

eight smaller boxes until the edge length of the smallest boxes reaches a prescribed 

portion of the minimum wavelength at the maximum frequency, 
0 maxc fλ = . An element 

n  is said to reside in a box if its center nr  locates inside that box; empty boxes are 

immediately discarded. This procedure constructs a hierarchical tree structure of 

( )1/3log( )L sN O N=  levels. At each level v , 1, , Lv N= K , there exist 8 LN vv

gN −≈  nonempty 

boxes. The radius of a sphere enclosing a level v  box is ( 1) 12v vR R−=  with 1 (1)R O= .  

Next, starting from the coarsest level 
LN , two boxes α  and α ′  centered at c

αr  

and c

α ′r  are termed a far field pair if (i) their center distance 
, ,

c c

c cR αα αα α α′ ′ ′= = −R r r  

satisfies the condition ,

v

cR Rαα γ′ > , (4 6)γ≤ ≤ , and (ii) their parent boxes do not 

constitute a far field pair. Those box pairs at the finest level 1v = , which do not 
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constitute far field pairs, are termed near field pairs; also each box at the finest level 

forms a near field pair with itself. The interactions between elements in near field pairs 

(self interaction excluded) –henceforth called near field calculation– are directly 

evaluated by (6.5), while those between far field pairs are handled by the PWTD scheme. 

When the finest level box size is properly chosen, all non-causal contribution 1( , )nc m it +P r  

and partial causal contribution 
1( , )c m it +P r  are handled by the near field calculation; the 

rest causal contribution 1( , )c m it +P r  is accounted for by PWTD. Consider a far field pair 

α  and α ′  [Figure 6.1], the total electric field at the thn  source element in box α , 

( , )n tE r , is first represented using an approximate prolate spheroidal (APS) function 

( )APST t  that is bandlimited to s t maxf fχ= , where 1 (2 )t maxf tχ = ∆  is the temporal 

oversampling factor, and approximately time-limited to f fp t t p t− ∆ < < ∆ , 5 10fp≤ ≤  

(see [42] regarding more details about the APS function). This allows splitting ( , )n tE r  

into v

lN  consecutive bandlimited “sub-fields”, ( , )l

n tE r , as  

 
( )1 1

( , ) ( , ) ( , ) ( ).

v v v
l l

v

N N lM
l APS

n n n j j

l l j l M

t t t T t
= − +

= =∑ ∑ ∑E r E r E r  (6.10) 

Here, v v

l tN M N= , vM  is chosen such that the duration of each sub-field, 

( 2 )v v

fT M p t= + ∆ , satisfies that condition , ' 0( 2 )v v

cT R R cαα< − , and 

( ) ( )APS APS

jT t T t j t= − ∆  is the shifted APS function. Next, the potential (causal 

contribution) at element center mr  due to the thl  sub-fields of all source elements that 

reside in box α , ( , )l

c m tP r , is computed in three stages. (i) A set of outgoing rays 

associated with box α  is constructed by projecting the sub-field ( , )l

n tE r , n α∈  in 

directions ˆ v

pqk , as 

 
, 0

ˆ ˆ( , ) = [ ( ) / ] ( , ).v v c l

l pq pq n n n

n

t t c w tα α
α
δ+

∈

+ ⋅ − ∗∑G k k r r E r  (6.11) 
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Here ∗  denotes temporal convolution, [ ]δ ⋅  is the Dirac function, 0, , vp K= K , 

, ,v vq K K= − K , 
0

4 1v v

s sK f R cπχ = +   is the number of spherical harmonics with 
sχ  

being the spherical oversampling factor, and ( 1)(2 1)
v v v

kN K K= + +  is total number of 

directions [8]. Note that the outgoing ray ,
ˆ( , )v

l pq tα
+G k  has three Cartesian components 

that can be independently constructed from the Cartesian components of ( , )
l

n tE r . (ii) 

The outgoing rays are translated into incoming rays associated with box α ′ , ,
ˆ( , )v

l pq tα
−

′G k , 

by convolving ,
ˆ( , )v

l pq tα
+G k  with the translation function ˆ( , )v

pq tkT , as 

 , ,
ˆ ˆ ˆ( , ) = ( , ) ( , ).v v v

l pq pq l pqt t tα α
− +

′ ∗G k k G kT  (6.12) 

Here, the translation function is 

 
,0

=0, , ,

ˆ
ˆ( , ) (2 1)

4

v vK
pq cv t

pq k k

kc c c

c t
t k

R R R

αα

αα αα ααπ
′

′ ′ ′

   ⋅−∂= + Φ Φ      
   

∑
k R

kT  (6.13) 

where ( )kΦ ⋅  is the Legendre polynomial of degree k  and , ' 0ct R cαα≤ . (iii) The causal 

contribution ( , )l

c m tP r  are computed by projecting the incoming rays ,
ˆ( , )v

l pq tα
−

′G k  onto the 

observer element m  and summing over all directions with weights pqω  [8]  

 0 ,

0

ˆ ˆ( , ) [ ( ) / ] ( , ).

v v

v

K K
l v c v

c m pq pq m l pq

p q K

t t c tα αω δ −
′ ′

= =−

= − ⋅ − ∗∑ ∑P r k r r G k  (6.14) 

Note that in (6.11), (6.12) and (6.14), ( , )l

c m tP r  is computed by decoupling its three 

Cartesian components and evaluating them independently be the scalar-field PWTD 

scheme. In practice, only outgoing/incoming rays of boxes at the finest level are 

constructed/projected directly from/onto the elements using (6.11)/(6.14), those at higher 

levels are computed by a scalar  spherical interpolation/filtering scheme described in 

[132]. 

The computational and memory costs of the abovementioned PWTD-accelerated 

PC-based TD-EFVIE solver is briefly summarized here. Note that the analysis in [8] 

showed that computational costs of spherical interpolation/filtering and translation 
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operations for one ray in one box along all directions scale as ( log )
v v v

kO T N T . As there 

exist v

lN  rays and v

gN  boxes at each level, the overall computational costs of the 

spherical interpolation/filtering and translation scale as 

1
log ( )

LN v v v v v

k l g s tv
N N N T T O N N

=
=∑ . Meanwhile, the computational costs of the 

construction/projection of outgoing/incoming rays at the finest level, near field 

calculation and the evaluation of the electric field via finite difference, all scale as 

( )s tO N N . Therefore, the computational cost of the proposed PWTD-PC-EFVIE solver 

scales as ( )s tO N N .     

The memory cost of storing one outgoing/incoming ray in one box along all 

directions scales as ( )v v

kO T N . As there are (1)O  rays in v

gN  boxes at each level that need 

to be stored, the memory cost for storing the ray data scales as 

1
(1) ( log )

LN v v v

g k s sv
N T N O O N N

=
=∑ . On the other hand, storing the electric fields 

n, jE  for 

evaluation of the potentials requires only ( )sO N  memory. Hence, the memory cost of the 

PWTD-PC-EFVIE solver scales as ( log )s sO N N . 

6.2.3 Parallelization of the PWTD-PC-EFVIE Solver  

Despite its attractive computational and memory costs estimates, the above-

described PWTD-PC-EFVIE solver, if implemented using a serial CPU, still has limited 

applicability to electrically large transient scattering problems that oftentimes involve 

millions of spatial unknowns. Here, a highly scalable parallel implementation of the 

solver using distributed-memory CPU clusters is described. Note that the proposed solver 

has two computation phases in the predictor/corrector step, viz., the computation of 

vector potentials by the PWTD algorithm and the computation of electric fields by finite 

difference. In what follows, the parallelization of these phases are expounded.  

First, efficient parallelization of the potential computation phase requires uniform 

partitioning of the memory and computation workloads associated with 

outgoing/incoming rays (i.e., ray data) in the PWTD algorithm. However, this task is 

nontrivial due to the PWTD algorithm’s heterogeneous tree structure, as at each level the 
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ray data is computed for ( / 8 )v v

g sN O N=  boxes in spatial dimension, (4 )v v

kN O=  

samples in angular dimension, and (2 )v vT O=  samples in temporal dimension; 

partitioning along a single dimension leads to poor load balance at either higher or lower 

PWTD tree levels [115, 121]. 

 The proposed parallelization scheme leverage the partitioning strategy developed 

in Chapter 2 that distributes the loads hierarchically in more than one dimension 

depending on the number of boxes v

gN  at each level and the number of processors pN . 

Let bv  denote the highest possible level at which v

g pN N≥ . At level bv v≤ , each 

processor stores the ray data for all angular and temporal samples in approximately 

/v

g pN N  boxes; at level bv v> , each processor stores /v v

k g pN N N  angular samples and all 

temporal samples for one box. This parallelization strategy results in computation and 

memory load balancing and produces scalable communication patterns among processors 

at all levels of the PWTD tree [see Chapter 2]. The computation loads of the PWTD 

stages are partitioned as follows: 

• Construction/projection of outgoing/incoming rays at the finest level. Each 

processor constructs outgoing rays by (6.11) for the source elements in its 

1 /g pN N  boxes; similarly, each processor computes the partial causal potential 

contribution (due to PWTD) by projecting the incoming rays in (6.14) onto the 

observer elements in its 1 /g pN N  boxes.  

• Construction/projection of outgoing/incoming rays via spherical 

interpolation/filtering. At level bv v≤ , each processor spherically 

interpolates/filters the complete ray data for its /v

g pN N  boxes; at level 
bv v> , 

each processor spherically interpolates/filters the ray data for ( / )v v

g pO T N N  

temporal samples and all angular samples of the ray data of one box. In other 
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words, the main computation workloads are split along the spatial and temporal 

dimensions.  

• Translation. At level bv v≤ , each processor performs translation in all directions 

for the /v

g pN N  observations boxes it is responsible for; at level bv v> , each 

processor carries out translation at /v v

k g pN N N  directions for the observer box it is 

in charge of. In other words, the computation workloads are distributed along the 

spatial and angular dimensions.  

• Near field calculation. Each processor computes the noncausal potential 

contribution 
1( , )nc m it +P r  and partial causal potential contribution 

1( , )c m it +P r  for 

the observer elements in its 1 /g pN N  boxes.  

Next, the parallelization of the second phase is described. Note that the 

computation of electric field ( , )m itE r  at the thm  observer element in box α  by the finite 

difference schemes in (6.6)/(6.8) requires the vector potential ( , )r itP r  and 
1( , )r it −P r  at its 

neighboring elements, which resides in box α  and its adjacent boxes [Figure 6.1]. 

Therefore, the second computation phase can be easily parallelized using a partitioning 

strategy similar to that used in the near field calculation stage of the PWTD algorithm: 

each processor computes the electric fields at the observer elements in its /v

g pN N  boxes. 

6.3 Numerical Results 

This section presents several numerical examples that demonstrate the efficiency, 

accuracy, and capability of the parallel PWTD-PC-EFVIE solver. In all examples 

considered here, the scatterers are excited by a plane wave with electric field given by  

 
2 2

0 0
ˆ( / ) /2

0 0
ˆˆ( , ) = cos[2 ( / )] t c ti t f t c e σπ − − ⋅ −− ⋅ r kE r p r k  (6.15) 
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where 
0f  is the central frequency, 

max 0= 3 / (2 ( ))f fσ π − , and 
0 = 8t σ . The polarization 

direction p̂  and propagation direction k̂  of the plane wave are chosen as ˆ ˆ=p x  and 

ˆ ˆ=k z , respectively. All scatterers, unless otherwise stated, are centered at origin and 

located in free space (i.e., 0 = 1ε ). All simulations were executed on a cluster of Quad-

Core 850 MHz PowerPC CPUs with 4 GB/CPU memory, which is located at the King 

Abdullah University of Science and Technology (KAUST) Supercomputing Laboratory. 

The solver leverages a hybrid MPI and OpenMP parallelization strategy; one MPI 

process is launched per CPU and OpenMP uses four cores of each CPU. 

6.3.1 Parallel efficiency 

In this subsection, the parallel efficiencies of different stages of the PWTD-PC-

EFVIE solver are investigated. Here, the parallel efficiency κ  is measured as 

= /ref N p N
ref p

N T N Tκ , where 
N

ref
T  is the reference execution time using 

refN  processors 

and N
p

T  is the execution time using pN  processors. Note: refN  is chosen as the minimum 

number of processors required to perform a given simulation. 

6.3.1.1 Cube  

First, the PWTD-PC-EFVIE solver is applied to the analysis of transient 

scattering from a dielectric cube of edge length 4.7 µm  and permittivity ( ) = 1.5ε r . The 

cube is illuminated by an incident electric field in (6.15) with 0 = 400 THzf  and 

= 600 THzmaxf . The cube is discretized by = 804,357sN  source elements and 

= 804,357sN  observer elements upon setting = 0.05 µms∆ . The simulation is 

performed = 240tN  time steps using = 0.167 fst∆ . A six-level PWTD tree is 

constructed upon setting the edge length of boxes at the finest level to 0.294 λ  and 

= 6γ .  

The parallel efficiencies κ  and computational costs of the predictor and corrector 

steps of the PWTD-PC-EFVIE solver are listed using = 64refN
 
and = 1024pN  [Table 

Table 6.1]. As discussed in Section 6.2.2, the computational costs and parallel 
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efficiencies of the predictor step dominates those of the solver as the computationally 

most demanding part, i.e., calculation of causal potential contribution 1( , )c m it +P r , is 

performed in this step. In this example, an efficiency of over 80% is achieved for the 

proposed solver. The parallel efficiencies κ  of different PWTD stages for computation of 

1( , )nc m it +P r  and 1( , )c m it +P r  in the predictor/corrector step are plotted with pN  varied 

from 64 to 1024 [Figure 6.2(a)]. Apparently, the parallel efficiency of the PWTD scheme 

is dominated by those of the translation and near field calculation stages. 

6.3.1.2 Sphere 

Next, the proposed solver is applied to the analysis of transient scattering from a 

dielectric sphere of radius 3 µm  and permittivity ( ) = 1.2ε r . The sphere is excited by an 

electric field in (6.15) with 0 = 400 THzf  and = 600 THzmaxf . The sphere is discretized 

with = 904,089sN  source elements and = 973,283sN ′  observer elements upon setting 

= 0.025 µms∆ . The test is run = 100tN  time steps with = 0.084 fst∆ . A seven-level 

PWTD tree is constructed upon setting the edge length of boxes at the finest level to 

0.2 λ  and = 6γ .  

The parallel efficiencies κ  and computational costs of the predictor and corrector 

steps of the PWTD-PC-EFVIE solver are listed using = 128refN
 
and = 2048pN  [Table 

Table 6.1]. Again, an efficiency of over 80% is achieved for the solver. The parallel 

efficiencies κ  of the PWTD stages in the predictor/corrector step with pN  varied from 

128 to 2048 are plotted in Figure 6.2(b). 

 

Cube 

 Predictor Corrector Overall 

64pN =  17.87 h 38.6 min 18.76 h 

1024pN =  1.35 h 3.7 min 1.44 h 

κ  82.7% 65.7% 81.7% 

Sphere 

 Predictor Corrector Overall 

128pN =  17.4 h 1.3 h 19 h 

2048pN =  1.3 h 8.3 min 1.74 h 
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κ  83.6% 60% 80.5% 

Table 6.1 Computational Costs and Parallel Efficiencies of the Predictor and 

Corrector Steps 
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Figure 6.2 Parallel efficiencies κ  of different PWTD stages used in the 

predictor/corrector step for the examples involving (a) a dielectric cube and (b) a 

dielectric sphere. 

6.3.2 Canonical Examples 

In this subsection, the accuracy of the PWTD-PC-EFVIE solver is demonstrated 

by two canonical examples: a shell and a two-layer sphere. In both examples, the radar 

cross section (RCS) of the scatterers is computed using the discrete Fourier transform of 

the time domain data generated by the solver. In addition, the x component of scattered 

field, ( , )s

xE tr , is computed at several positions outside the scatterers. These results are 

compared with the Mie series solutions. 

6.3.2.1 Shell 

First, the proposed solver is first applied to the analysis of scattering from a 

dielectric shell with inner radius 2.55 µm , outer radius 2.7 µm  and permittivity 

( ) = 1.21.ε r  The shell is excited by an electric field in (6.15) with 
0 = 0 THzf  and 

= 600 THzmaxf . The sphere is discretized with = 481,906sN  source elements and 

= 770,828sN ′  observer elements upon setting = 0.03 µms∆ . The test is run = 800tN  

time steps with = 0.1 fst∆ . A six-level PWTD tree is constructed upon setting the edge 
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length of boxes at the finest level to 0.341 λ  and = 5.5γ . The averaging factor 
miω  is 

chosen by setting 1 03.2 tτ =  and 2 03.5 tτ =  in (6.9). The simulation requires 4.5 hours of 

CPU time using = 1024pN .  

The bistatic RCS of the shell at 299.4 THz obtained using the proposed solver is 

compared with the exact Mie series solution in Figure 6.3; excellent agreement is 

observed. Apparently, the maximum value of the RCS is achieved along the forward 

direction (i.e., 0θ = ). Moreover, the scattered fields ( , )s

xE tr  at Cartesian coordinates (0, 

3 µm , 0), (0, 0, 3 µm ) and (0, 0, - 3 µm ) are computed [Figure 6.4]. The results agree 

well with the Mie series solutions. Note that these fields consist of contributions from 

wave refraction, reflection and diffractions. 
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Figure 6.3 Bistatic RCS of the shell at 299.4 THz  computed at o0φ =  and  

o[0,180]θ =  via the PWTD-PC-EFVIE solver and Mie series solution. 
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Figure 6.4 Scattered electric fields (x component) of the shell at positions (a) (0, 

3 µm , 0), (b) (0, 0, 3 µm ) and (c) (0, 0, 3 µm− ) obtained from the PWTD-PC-

EFVIE solver and Mie series solution. 

6.3.2.2 Two-layer sphere 

Next, the proposed solver is applied to the analysis of scattering from a two-layer 

sphere with inner radius 5.25 µm  and outer radius 5.4 µm . The permittivities of the 

inner and outer layers are ( ) = 1.02ε r  and ( ) = 1.08ε r , respectively. An electric field in 

(6.15) with 
0 = 0 THzf  and = 600 THzmaxf  is used to excite the object. The object is 

discretized with = 24,427,317sN  source elements and = 25,042,247sN ′  observer 

elements upon setting = 0.03 µms∆ . The simulation is performed = 1000tN  time steps 

with = 0.1 fst∆ . A seven-level PWTD tree is constructed upon setting the edge length of 

boxes at the finest level to 0.34 λ  and = 5γ . The averaging factor miω  is chosen by 

setting 1 03 tτ =  and 2 03.5 tτ =  in (6.9). The simulation requires 15.5 hours of CPU time 

using = 4096pN . To the best of authors’ knowledge, this is the largest problem ever 

solved using TD-VIE solvers.   

The bistatic RCS of the two-layer sphere at 199.7 THz obtained by the solver is 

compared with the Mie series solution [Figure 6.5]. The results show good agreement. 
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Figure 6.6 plots the scattered fields ( , )
s

xE tr  at Cartesian coordinates ( 5.7 µm , 0, 0), (0, 0, 

5.7 µm ) and (0, 0, -5.7 µm ) obtained from the solver and the Mie series solution. Again, 

good agreement demonstrates the accuracy of the proposed solver. 
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Figure 6.5 Bistatic RCS of the shell at 199.7 THz computed at o0φ =  and  

o[0,180]θ =  via the PWTD-PC-EFVIE solver and Mie series solution. 
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Figure 6.6 Scattered electric fields (x component) of the two-layer sphere at positions 

(a) ( 5.7 µm , 0, 0), (b) (0, 0, 5.7 µm ) and (c) (0, 0, -5.7 µm ) obtained from the 

PWTD-PC-EFVIE solver and Mie series solution. 

6.3.3 Real-Life Example 

Finally, the applicability of the PWTD-PC-EFVIE solver is demonstrated through 

its application to the transient analysis of light interaction with a red blood cell 

aggregation. The aggregation consists of eight red blood cells, which fit in a fictitious box 

with dimensions 18.3 µm 8.7 µm 14.5 µm× ×  [Figure 6.7]. The geometrical details of each 

cell are described in [11]. The permittivities of the scatterers and the background medium 

are ( ) = 1.97ε r  and 0 = 1.81ε , respectively. The scatterers are illuminated by an electric 

field in (6.15) with 
0 = 400 THzf  and = 600 THzmaxf . The scatterers are discretized 

with = 11,746,563sN  source elements and = 13,775,837sN ′  observer elements upon 

setting = 0.03 µms∆ . The simulation is performed = 700tN  time steps with 

= 0.134 fst∆ . An eight-level PWTD tree is constructed upon setting the edge length of 

boxes at the finest level to 0.375 λ  and = 6γ . The averaging factor miω  is chosen by 

setting 1 01.3 tτ =  and 2 01.6 tτ =  in (6.9). The simulation requires 23.5 hours of CPU time 

using = 4096pN . 

The scattered fields ( , )
s

xE tr  at Cartesian coordinates (19.3 µm, 4 µm,  7.5 µm)  

and (10 µm, 4 µm,  0)  are computed [Figure 6.7]. In addition, Figure 6.8 plots snapshots 

of the total electric fields ( , )tE r  inside the cells on the plane 4 µmy =  at times 220 t∆ , 

340 t∆  and 500 t∆ . These results help better understand the diffraction and refraction 

phenomena for light interacting with red blood cells. 
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Figure 6.7 Scattered fields (magnitudes of x components) of the cell cluster at 

positions 1=(19.3 µm, 4 µm,  7.5 µm)r  and 2 =(10 µm, 4 µm,  0 µm)r  obtained from 

the PWTD-PC-EFVIE solver. 
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Figure 6.8 Snapshots of the total electric fields (in dB) induced in the red blood cell 

aggregation computed by PWTD-PC-EFVIE solver at (a) 220 t t= ∆ , (b) 340 t t= ∆ , 

(c) 500 t t= ∆ . 

6.4 Chapter Conclusion  

This chapter presents a PWTD-enhanced, explicit MOT-based TD-EFVIE solver 

for analyzing electrically large transient scattering problems that involve inhomogeneous 

dielectric objects. The proposed solver leverages simple pulse spatial basis functions and 

Lagrange temporal basis functions for discretization of electric flux density, and employs 

finite difference to compute electric fields from magnetic vector potentials. An improved 

predictor-corrector scheme is proposed to maintain the stability of the solver. The 

computation of the vector potentials are accelerated by a scalar-field PWTD scheme, 

which reduces the overall memory and computational cost of the solver from 4/3( )sO N  

and 2( )t sO N N  to ( log )s sO N N  and ( )t sO N N , respectively. In addition, this PWTD-PC-

EFVIE solver is parallelized on distributed-memory clusters by employing a hierarchical 

partitioning strategy that yields favorable load balance and parallel efficiencies when the 

number of processors is large. The proposed solver is applied to the analysis of transient 

scattering from canonical objects that involve 25 million spatial unknowns, which to the 

authors’ knowledge, is the largest scattering problem ever simulated using TD-VIE 

solvers. In addition, the proposed solver is applied to the transient electromagnetic 

characterizations of a red blood cell aggregation that involves 12 million spatial 

unknowns. 
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CHAPTER 7  

Conclusions 

7.1 Summary 

This thesis presents several techniques to advance the capabilities of multilevel 

PWTD-accelerated MOT-TDIE solvers in solving real-life and electrically large transient 

scattering problems.  

Scalable CPU parallelization of the PWTD algorithm: We developed a highly 

scalable parallelization scheme of the multilevel PWTD algorithm for fast evaluation of 

transient fields due to surface-bound and volumetrically distributed source constellations. 

The load balance and scalability of the proposed parallelization scheme are rigorously 

proved and numerically validated. This parallel PWTD algorithm is capable of evaluating 

fields due to tens of millions of surface-bound and over one hundred million 

volumetrically distributed sources. 

GPU implementations of the PWTD algorithm: We present GPU implementations 

of the multilevel PWTD algorithm using single and multiple GPUs. The single GPU 

implementation accelerates all stages of the PWTD algorithm and achieves 50X speedup 

compared to a serial CPU implementation; the multi-GPU implementation combines the 

single GPU acceleration and the CPU parallelization of the PWTD algorithm, and 

achieves 150X speedup compared to the serial CPU implementation. 

Parallel PWTD-accelerated TD-SIE solver: We developed a highly scalable 

parallel PWTD-accelerated TD-SIE solver capable of analyzing transient scattering from 
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electrically large canonical and real-life PEC objects that involve 10 million spatial 

unknowns.  

Wavelet-enhanced PWTD-accelerated TD-SIE solver: We further enhance the 

capability of the abovementioned TD-SIE solver by leveraging a wavelet-domain PWTD 

algorithm. The computational and memory costs of this wavelet-enhanced PWTD-

accelerated TD-SIE solver are theoretically proved and numerically validated for smooth 

quasi-planar PEC objects. The efficiency and accuracy of the proposed solver are 

demonstrated through its applications to the analysis of transient scattering from targets 

spanning well over one hundred wavelengths.  

Explicit and PWTD-accelerated TD-EFVIE solver. We developed a PWTD-

accelerated explicit MOT-TD-EFVIE solver capable of analyzing transient scattering 

from electrically large inhomogeneous dielectric objects. The efficiency and accuracy of 

the proposed solver are demonstrated through its applications to the analysis of transient 

scattering from canonical and real-life objects that involve 25 million spatial unknowns.  

7.2 Future Work 

First, although the CPU parallelized PWTD algorithm has been incorporated into 

the TD-EFIE/MFIE/CFIE and TD-EFVIE solvers for analyzing transient scattering from 

PEC and inhomogeneous dielectric objects residing in lossless background medium, its 

integration into TDIE solvers capable of handling transient analysis involving other types 

of objects and background media has not been studied. Second, the proposed GPU 

implementations of the PWTD algorithms have not been incorporated into MOT-TDIE 

solvers and may require more research work. Finally, the wavelet-enhanced PWTD-

accelerated TD-SIE solver needs to be massively parallelized in order to solve large 

problems beyond those reported in this thesis.  

7.3 Contributions 

This research resulted in the following contributions [161-175]: 
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APPENDIX A  

Derivation of Equation (5.19) 

To prove the temporal localization property of the convolution of the LCB 

function with the translation function ˆ( , )* ( )v

pq rut T t+kT , we consider its Fourier transform 

ˆ( , ) ( )v

qp ruTω ω+kT . The Fourier transform ˆ( , ) ( )v

qp ruTω ω+⋅kT  is: 
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where ι  is the imaginary unit and ( )kj ⋅  is the spherical Bessel function of order k . As 

discussed in Section 5.3.1, the spectrum ( )ruT ω+  of the LCB function has central 

frequency ( 1/ 2) / ( )r

u u M tω π= − ∆  and bandwidth bwω . Here / ( )r

bw C M tω π≈ ∆  for 

some constant C . In other words, ( ) 0ruT ω+ =  if u bwω ω ω< −  or u bwω ω ω> + . When ω  

is sufficiently large (equivalently, u  is large), the spherical Bessel function 

asymptotically behaves as 
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Substituting (A.2) into (A.1), ˆ( , ) ( )v

qp ruTω ω+kT  can be re-written as  
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where ( ) ( )1 0
(cos ) ( 1) 2 1 cos

vK k

kk
f kθ θ

=
= − + Φ∑  and ( ) ( )2 0

(cos ) 2 1 cos
vK

kk
f kθ θ

=
= + Φ∑ . 

Upon inverse Fourier transform of (A.3), the convolution of the LCB function and the 

translation function, ˆ( , )* ( )v

pq rut T t+kT , can expressed as  
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