
Large-Amplitude Long-Wave Instability of a 
Supersonic Shear Layer 

By A. F. Messiter 

For sufficiently high Mach numbers, small disturbances on a supersonic 
vortex sheet are known to grow in amplitude because of slow nonlinear wave 
steepening. Under the same external conditions, linear theory predicts slow 
growth of long-wave disturbances to a thin supersonic shear layer. An 
asymptotic formulation that adds nonzero shear-layer thickness to the weakly 
nonlinear formulation for a vortex sheet is given here. Spatial evolution is 
considered for a spatially periodic disturbance having amplitude of the same 
order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium 
inviscid nonlinear critical layer is found, with effects of diffusion and slow 
growth appearing through a nonsecularity condition. Other limiting cases 
are also considered, in an attempt to determine a relationship between the 
vortex-sheet limit and the long-wave limit for a thin shear layer; there 
appear to be three special limits, corresponding to disturbances of different 
amplitudes at different locations along the shear layer. 

1. Introduction 

According to the linear theory, a vortex sheet in supersonic flow is neutrally 
stable if the Mach number is large enough. For example, if the temperature 
is the same on both sides of the sheet, neutral stability is predicted when the 

Address for correspondence: Department of Aerospace Engineering, University of Michigan, Ann 
Arbor, MI 48109-2118. 

STUDIES IN APPLIED MATHEMATICS 97:167-207 167 
© 1996 by the Massachusetts Institute of Technology 
Published by Blackwell Publishers, 238 Main Street, Cambridge, MA 02142, USA and 108 Cowley Road, 
Oxford, OX4 lIF, UK. 



168 A. F. Messiter 

difference in Mach numbers on the two sides is greater than 2{i; otherwise 
disturbances grow exponentially with time. Thus if the velocities are equal 
and opposite above and below, the Mach number in each part of the flow 
must be greater than {i to avoid instability. For higher Mach numbers, 
there is a stationary mode in this coordinate system, as well as a pair of 
propagating modes that move at speeds depending on the Mach number. 
The definitive presentation of these results was given by Miles [1], who gives 
additional references. 

Artola and Majda [2] have considered the nonlinear growth of a distur­
bance to a vortex sheet that is caused by an incident sound wave. For 
incidence angles such that the component of wave number along the sheet 
equals the wave number of one of the neutrally stable linear modes, the 
nonlinearity causes a wave steepening that leads to the formation of weak 
shock waves and centered expansions on opposite sides of the sheet. The 
slow evolution of disturbances to the vortex sheet occurs on a scale that is 
large in comparison with the wavelength by a factor proportional to the ratio 
of the wavelength to the amplitude of the disturbance. Similar formation 
of nonlinear "kink" modes for specific incidence angles has been obser­
ved in numerical calculations by Pedelty and Woodward [3] and Bassett and 
Woodward [4]. 

For a shear layer of nonzero thickness, linear theory leads to an eigen­
value problem whose solution gives the complex wave speed. Blumen et al. 
[5] have shown that an expansion for wavelengths large in comparison with 
the thickness gives in the limit the same neutral wave speeds as for a vortex 
sheet, subject to the same condition on the Mach number. 1be wave speed, 
however, has a small imaginary part, implying a slow exponential growth of 
small disturbances in a time or distance larger than the period or wavelength 
by a factor proportional to the ratio of wavelength to shear-layer thickness. 

Balsa [6, 7] has observed that nonlinearity influences this shear-layer 
instability when the ratio of disturbance amplitude to shear-layer thickness 
becomes of the same order as the ratio of shear-layer thickness to distur­
bance wavelength. In a long-wave limit when these two ratios are of the 
same small order, the asymptotic description of slow changes in the flow 
requires matching of solutions for the inviscid external flow, for the main 
part of the shear layer, and for the critical layer where the flow velocity is 
close to the wave speed. The result is a pair of partial differential equations 
describing a nonequilibrium, nonlinear, viscous critical layer, coupled with a 
condition for the velocity jump across the critical layer in the form of an 
evolution equation for the amplitude. Numerical solutions show the begin­
ning of vortex rollup within the critical layer on a spatial scale larger than a 
wavelength by a factor proportional to the ratio of wavelength to thickness. 

In the case studied here, the disturbance amplitude and shear-layer 
thickness are taken to be of the same order. The formulation can be thought 
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of as extending the formulation for a vortex sheet by incorporating the 
effects of nonzero shear-layer thickness. That is, a limiting case is chosen 
such that the thin shear layer experiences slow spatial growth of small 
long-wave disturbances that are described in terms of a quasi-equilibrium 
nonlinear critical layer and an external flow with nonlinear wave steepening. 
The problem statement is outlined in Section 2. Solutions for the external 
flow, for the main part of the shear layer, and for the critical layer are given 
in Sections 3, 4, and 5; a preliminary version of these results was given in [8]. 
Some other limiting cases are discussed in Section 6, corresponding to 
different amplitudes and/or locations along the shear layer. The present 
formulation and that of [6, 7] are seen to represent different special limits of 
the equations, and a third special limit can also be identified. 

2. Problem statement 

A thin laminar shear layer between two parallel streams is subjected to a 
two-dimensional disturbance of small amplitude, traveling in the direction of 
shear-layer growth, with parameters chosen such that the relative distur­
bance speed is supersonic both above and below the shear layer and such 
that the growth rate of the disturbance is small. Asymptotic solutions are 
sought in each of three flow regions: the external inviscid flow, the main part 
of the thin shear layer, and the still thinner critical layer where the flow 
speed and disturbance speed are nearly equal. 

There are four independent length scales: a viscous length (based on a 
reference value of flow velocity), a representative shear-layer thickness, a 
disturbance wavelength (or spatial period), and a typical transverse displace­
ment of the shear layer. Three non dimensional ratios can then be defined, 
for example, as follows: 8 is the ratio of disturbance amplitude to wave­
length; 8 is the ratio of shear-layer thickness to disturbance wavelength; and 
Re is a Reynolds number based on the wavelength and on the reference 
values chosen for the velocity and kinematic viscosity, say the values in the 
undisturbed upper stream. Asymptotic solutions for the perturbed flow 
variables are then sought in the limit as the three parameters 8, 8, and 
l/Re approach zero, in terms of suitably defined coordinates corresponding 
to each of the three flow regions. The relative sizes specified for the three 
small parameters will depend on the choice of a particular limiting case to 
be studied. Here the thickness and amplitude are taken to be of the same 
order, so that 

8=0(8). (2.1) 
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A relation between the orders of 0 and 1 IRe is chosen in Section 5 so as to 
provide a balance between viscous effects and slow distortion of the flow. 

All variables to be introduced are nondimensional. Lengths are made 
nondimensional with respect to the wavelength (or spatial period) of the 
disturbance. Velocities and thermodynamic variables are made nondimen­
sional with respect to some convenient set of reference values, say the values 
of these quantities in the undisturbed upper stream. 

The coordinates x and y lie along and normal to the undisturbed stream 
above the shear layer, with origin at the origin of the shear layer. Changes 
occurring on scales 0(1 Ie) are represented in terms of "slow" variables 
i,y, and t chosen to agree with the scales for slow nonlinear wave steepen­
ing in the external inviscid supersonic flow: 

i=e(x-L), y = eY, t = et, (2.2) 

where L is a nondimensional downstream distance characterizing the region 
where nonlinear disturbance growth is to be studied; the use of analogous 
variables in the unsteady one-dimensional case is shown in [9]. The relation­
ship between the orders of 0 and 1 IRe chosen in Section 5 is such that the 
slow changes do occur on a scale larger than a wavelength but smaller than 
the length of the shear layer. The slow spatial growth of the shear layer due 
to viscous diffusion introduces only higher-order changes on the scale 
considered, since the flow is nearly parallel on the scale given by (2.2). 
Moreover, the spatial extent of the assumed disturbance is taken to be 
small in comparison with the distance from the origin of the shear layer, 
but large in comparison with the scale for the slow variable i; solutions are 
sought on the scale of i but not on the still larger scale measuring the 
extent of the disturbance. Temporal or spatial instability can be studied; 
spatial instability will be considered here, since the flow is expected to be 
convectively unstable [10]. The dependence on t is retained only through the 
beginning of Section 3 and is then dropped for spatial instability. 

The non dimensional velocity components in the x- and y-directions are u 
and v, and c is the nondimensional speed of a disturbance traveling in the 
positive x-direction. A coordinate X is measured relative to this distur­
bance, and a coordinate Y is measured from a reference location y = A 
within the shear layer: 

X = x - ct, Y = Y - A(X,i,i). (2.3) 

The nondimensional pressure, density, temperature, and viscosity coefficient 
are p, p, T, and j-t, respectively. The Mach number M is defined in terms of 
the reference quantities mentioned, as is the Prandtl number Pr, which is 
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assumed constant. The nondimensional velocities, temperatures, and densi­
ties in the undisturbed upper and lower streams are denoted by u = u ±' 

T = T ±' and p = p ±' respectively. The undisturbed pressure is taken to be 
the same above and below the shear layer, and it is assumed that the ratio of 
specific heats is likewise the same; the specific heats are taken to be 
constant. If the reference quantities are the values in the upper stream, then 
u+=T+=p+=l and p+=p_=l; the notation u±,T±, and p± is, how­
ever, retained for convenience. We take u+ > u_ and consider disturbances 
traveling in the direction of increasing x, with relative speeds supersonic 
both above and below. Some of the notation, including the expansion (3.5) of 
A, is indicated in Figure l. 

A shear-layer coordinate y is defined by 

- y 
Y=8" (2.4) 

and the undisturbed velocity and temperature profiles are expressed in 
terms of this coordinate by u = uo(y) and T = fo<y). The displacement 
function A introduced in (2.3) is defined such that y = 0 when Uo = c. A 
critical-layer coordinate y is needed in Section 5 and is defined there by 

" y 
Y = 172· 

8 
(2.5) 

Figure 1. Disturbed shear layer with e = DC /); amplitude depends on X = x - ct and 
x= ex. 
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The starting point should be the full set of conservation laws, containing 
all the terms representing effects of viscosity and heat conduction. For 
brevity, many terms are omitted here because they are not required in the 
leading approximations for the description of an inviscid flow or a thin shear 
layer. The needed terms in the continuity, x-momentum, y-momentum, 
energy, and state equations are, at most, 

PI + ( puL + ( pv)y = 0 (2.6) 

1 1 
p( u l + uUx + vUy) + --zPx = -R (/-LU y) + ... (2.7) 

yM e y 

1 
p( VI + uVx + vVy ) + --2Py = ... (2.8) 

yM 

1 MZ 
= --( liT) + (y -1)-nu2 + ... Re Pr r- y y Re r- y (2.9) 

P = pT. (2.10) 

In the external flow the right side of (2.9) is of higher order than the terms 
needed, and the entropy is nearly uniform: 

where the upper and lower signs again refer to quantities in the undisturbed 
upper and lower streams respectively. Within the shear layer, dissipative 
effects cannot be ignored, and it is convenient to introduce a differential 
equation for the spanwise vorticity component 

(2.12) 

Taking the curl of the vector momentum equation, and using the continuity 
and state equations, again including only terms that will be needed for the 
thin shear layer (as can be verified later), we have 

P ( n) + pu ( n) + p V ( n) = _1_ T P + _1_ ! ( /-Ln) + .... 
PIP x P y yMZp y x Re P yy 

(2.13) 
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3. External flow 

In the external flow the length scale in each direction is the wavelength, or 
spatial period. The perturbed flow variables are functions of the coordinates 
X and Y introduced in (2.3), and of the slow variables defined by (2.2), and 
are assumed to possess expansions of the form 

U = u± + sul(X,Y,x,ji,t) + S2 U2 (X,Y,x,ji)) + ... (3.1) 

v = svl(X,Y,x,ji,t) + S2 vz (X,Y,x,ji,t) + ... (3.2) 

P = 1 + SPI(X,Y,X,ji,t) + s2p2(X,Y,x,ji,r) + ... (3.3) 

L = 1 + SPI(X,Y,X,ji,t) + s2p2(X,Y,x,ji,t) + .... (3.4) 
P± 

The displacement function A is expanded as 

(3.5) 

All the perturbations are expected to depend on the ratio S / {) as well as on 
the variables shown, and the dependence on t is dropped later. It is in fact 
premature to specify the orders appearing in the second approximation 
before the solutions for the first approximation have been completed in all 
three flow regions. Once the matching of these solutions has been carried 
out, each of the functions u2, v2, Pz, and P2 is seen to contain a term 
proportional to In s. These terms do not playa major role in the solution; 
for conciseness of notation, they are not shown explicitly. 

The first approximations to the continuity, X-momentum, and Y-momen­
tum equations are found by retaining only terms of order e, as follows: 

(U+ -C)PIX + ulX + vlY =0 (3.6) 

1 
(u+-c)u IX + 2PlX 

- p±M 
=0 (3.7) 

1 
(3.8) (u+ - c)v lX + 2 PlY = o. 

- p±M 

Here the quantities U + - C and C - U _ can be thought of as the propagation 
speeds of a disturbance in the shear layer relative to the flow speeds in the 
upper and lower streams, or U + - C > 0 and U _ - C < 0 are the flow speeds 
above and below as seen in the X, Y coordinate system moving with the 
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disturbance. The two quantities denoted by M2p ± (u ± - c)2 are then the 
squares of the relative Mach numbers based on these speeds and on P ±. 

The parameters are chosen such that each of these expressions is greater 
than one and thus that the relative speeds are supersonic both above and 
below the sheet. In other words, we consider cases where 

1 1 
u_ + ----vz- < c < u+ - ----vz-. 

p_ M P+ M 
(3.9) 

The equation defining c is given in Section 4 and is the same as for a vortex 
sheet [1]. 

Elimination of U I and VI above leads to a wave equation for PI: 

{3 ~ PlXX - PIYY = 0, (3.10) 

where {3 ~ > 0, as noted previously. Solutions for PI' u I , and VI that describe 
disturbances traveling outward from the shear layer are then found in the 
form 

where g is a coordinate that is constant along linearized outgoing character­
istics: 

g = X - {3±Y. (3.12) 

These are the usual results of linear supersonic aerodynamics. While g has 
not been written with a subscript, it is to be understood that the definition 
requires {3 + when Y > 0 and {3 _ when Y < O. The notation FI ± allows the 
possibility that the function FI + for Y> 0 might be different from the 
function FI _ for Y < O. It is anticipated, however, that in the first approxi­
mation the streamline slopes are the same above and below the shear layer 
as Y ~ ± 0 and that each is equal to the leading term in the slope A x of the 
surface (3.5). Thus, after integration, 

(3.13) 

and therefore also FI + and FI - are the same functions of the argument g 
everywhere, for Y * O. This result is shown more clearly in Section 4, but for 
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simpler notation is assumed here as well, and the replacement 

(3.14) 

is made below, where it might again be emphasized that the definition (3.12) 
for g is different for Y > 0 and Y < o. 

The terms of order 8
2 in the continuity, X-momentum, and Y-momentum 

equations give the equations to be solved for the second terms in the 
expansions of u, v, and p: 

(U ± - c) P2X + U2X + v 2Y 

= (u+-c)AlxPIY -(UIPIX+VIPIY) 

- ( PIt + U ± PuJ + AIXuIy - PI( u lX + v IY ) - (uu + Vlji) (3.15) 

1 
(u + - c) u 2X + M2 P2X 

- P± 

= (u± -c)AIXuly - (UIU IX + VIU IY ) 

1 
-(u li + u+ uu) + M2 (-( Y -2)pI PIX + AIXPIY - PIX) 

- P± 

1 
(u± -c)v2X + 2P2Y 

p±M 

= (u±-c)AIXv ly -(UIVIX+VIVIY) 

1 
-(vii + u±vu) + p±M2 (-(y -2)pI PlY - PlY)· 

(3.16) 

(3.17) 

Elimination of u 2 and v2 leads to an inhomogeneous wave equation for P2: 

P
3 (U c)6M6 

{3 2 = ( + 1) + ± (00 ) ± PZXX - P2YY Y {3 ~ (; (; 

- P ± (u ± - C)2 M~ {3 ~ (2A IX O(;(; + AIXXO(;) 

-2p±(U±-C)2M20(;y - {32± p;(U±-C)3M 40(;t 

- {32± P ± ( U ± - c) 2 M 2 ( M 2p ± U ± ( U ± - c) - 1) 0(; i . 

(3.18) 
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The perturbations are taken to be periodic in X and bounded as y ~ 00. 

In order that the solution for P2 contain no secular terms that grow 
indefinitely as g increases, the terms on the right-hand side of (3.18) that 
depend only on g (and have no separate dependence on X) should add to 
zero: 

(3.19) 

where () = (FI ± )~, as already noted. This equation describes the slow nonlin­
ear evolution of perturbations in the external flow. With the necessary 
changes in notation taken into account, it can be shown that the result (3.19) 
is equivalent to that of [2] in the special case u + = - U _ = T ± = 1. The 
nonlinear term and the term containing a derivative with respect to yare 
the same as for the far field of the flow past a rigid surface; these terms 
could have been derived instead through matching of an inner solution in 
terms of y with an outer solution in terms of y. The remaining terms allow 
for slow spatial or temporal distortion of the surface. Equation (3.19) can be 
integrated twice with respect to g to give a differential equation for Fl. The 
arbitrary function of x and y arising after one integration is zero if FI is 
required to be periodic in g; the second such function remains arbitrary and 
may be also taken equal to zero, since FI plays the role of a potential 
function. For consideration of spatial instability, the derivative with respect 
to t is omitted throughout the following. 

Equation (3.19), after one integration and with the dependence on t 
omitted, states that () is constant along characteristics that can be defined in 
the form 

y = s, 

(3.20) 

where s is measured along the characteristics. On a given characteristic, 
identified by the values of Xo and X o, () is equal to its value at the point 
where that characteristic intersects the surface y = 0, which in turn equals 
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the value of AlX at that point: 

(3.21) 

If AlX(X, x) were known for one spatial period, say 0 < X < 1, and for all 
x > 0, where the disturbance is regarded as introduced at x = 0, the differ­
ential equation (3.19) would allow continuation of the solution away from 
y = O. For a v-ortex sheet, the continuity requirement for p and the kinematic 
conditions for u would lead to a differential equation for Al equivalent to a 
result given in [2]. But in the present case the nonlinear external flow is 
coupled with the flow in a nonlinear critical layer, and so the solutions for 
the main shear layer and critical layer are needed to provide the initial 
values of () at y = 0 and x > O. 

A particular solution for P2 is easily found from (3.18), after the terms 
shown in (3.19) have been omitted; particular solutions for u 2 and u2 then 
follow from (3.16) and (3.17), and of course are also consistent with (3.15). 
Solutions to the associated homogeneous equations are chosen to include 
only outgoing waves, which are represented by undetermined functions of ~ 
denoted by F 2+ for Y> 0 and F 2 - for Y < 0; it is anticipated that F2+ *- F 2 _. 

The full solutions for P2 and u2, with the dependence on t omitted, are then 

(3.22) 

(3.23) 

where Al = A1(X, x) and (}=FI~=(}(~'x,y); the ± subscripts have now 
been omitted from Fl' The particular solution for P2 is chosen for later 
convenience to include the second term, as well as the first, in (3.22). 
The corresponding particular solution for u2 then contains the first three 
terms shown in (3.23). Expressions for u2 and P2 are also easily found. 
Related results for second-order supersonic aerodynamics were given by 
Van Dyke [11]. 

If, after (3.19) is integrated twice, Fly is eliminated from the solution 
(3.23) for u2 , and P2 is found by substituting (3.4), (3.11), and (3.22) in 
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(2.11), then 

(3.24) 

The term proportional to Fa agrees, as it should, with the corresponding 
term given in [7]. The remaining terms can be shown to be consistent with 
the second-order pressure-angle relation for isentropic flow turning through 
a simple wave. For points close to the shear layer, Le., as Y -+ 0, the 
expansions for v and p are found to have the form 

v = 8(U± - c)[A IX - f3± YA IXX + ... ] 

+ 8
2 

[ - (u ± - c) 13 ± AI A IXX + (u ± - c)( F2± h 

+ -A - - ---- p u - c M>,4 +... + ... c y + 1 1 2 ( )5 4 2 ] 
13; Ix 4 f3~ ± ± IX 

(3.26) 

p = 1 + 8yM 2 f31± p± (u± - c)2[AIX - f3± YA IXx + ... ] 

+ 8 2yM2 f31± P±(u± _C)2[ - f3± AIAlxx +(F2± h + ... ], (3.27) 

where (F2 +)x is now evaluated at Y = Y = 0, and e(X, i, 0) has been 
replaced by-Alx(X, i). In contrast to [2], where a vortex sheet is considered, 
here the shear-layer thickness is not taken to be small in comparison with 
the displacement of the sheet, and so the expansions (3.26), (3.27) are to be 
matched with solutions obtained for the main part of the shear layer. 

4. Main shear layer 

Within the shear layer the variables u, p, p, and T are assumed to possess 
expansions in terms of the shear~layer variable y = Y / S in the form 

( 4.1) 
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p = 1 + eP1(X,y,i) + e8P2(X,y,i) + ... 

p = Po(Y) + ep1(X,y,i) + ... 

T = foU) + ef1(X,y,i) + "', 
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( 4.2) 

( 4.3) 

( 4.4) 

where again the perturbations depend on the parameter e / 8 = 0(1) as well 
as on the variables shown. The formulation resembles closely that of [7], 
which also considers a long-wave limit, but certain differences appear 
because the displacement of the shear layer is now larger than in [7], and a 
displacement term y = A has therefore been subtracted in the definition 
(2.3) for Y. It is convenient to define a transformed velocity V by subtract­
ing certain terms to allow cancellation of terms introduced in the differential 
equations as a result of the coordinate shift Y = Y - A. Thus we also set 

v - (u - c)Ax - euA;: = V = e8V2(X,y,i) + "', (4.5) 

where the continuity equation has been used to show that the expansion of 
V contains no term of order e; this is consistent with the anticipated result 
(3.13). As in the case of the external flow, the orders of subsequent terms 
are in fact not determined until the solutions for earlier terms have been 
completed. In particular, each of the functions U1, P2' P1' f1' and V2 is found 
to contain a term proportional to In e; as in Section 3, these terms are not 
shown explicitly. 

It is easily seen from the transverse momentum equation that P1 is 
constant across the shear layer. Matching with the external-flow solution 
(3.27) for the pressure then shows that the quantity p ± (u ± - C)2 / f3 ± has 
the same value, say r, both above and below the shear layer, and that 

( 4.6) 

where r is defined by 

( 4.7) 

Combining (4.7) with the definition (3.10) of f3 ± gives (f3+ - f3- )(1-
f3+ f3-) = 0; the case f3+ =1= f3- leads to a quartic equation for c, 

( 4.8) 

in agreement with the results cited earlier for waves on a vortex sheet [1] 
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and for long-wave disturbances on a shear layer [5]. As anticipated in (3.9), 
each term on the left side of (4.8) is smaller than one. Explicit solutions for c 
can be found in special cases [1]. 

The next terms in the expansions of the continuity and ji-momentum 
equations and the first approximations to the X-momentum and energy 
equations are 

- V- 1(_ )- 0 u lX + Zy + Y U o - C PlX = ( 4.9) 

( - )zA 1 1 - 0 Uo - C IXX + --Z -=-Pzy = 
yM Po 

( 4.10) 

( - ) - V- -, 1 1 - 0 Uo - C u lX + zUo + --Z -=-PIX = 
yM Po 

( 4.11) 

- -- y-1 1 
(u o - c)TlX + VzT~ - --(uo - C)-=-PIX = 0, 

Y Po 
( 4.12) 

where u~ and T~ denote derivatives with respect to ji. The leading terms in 
the expansion of the equation of state are 

( 4.13) 

These equations, along with the energy equation (4.12), have been used to 
eliminate PI from the continuity equation (4.9). 

Elimination of ul from the continuity and X-momentum equations (4.9) 
and (4.11) now leads to an equation for Vz that can be integrated to give 

PlX (-f3Z -+ J.9 (P+(U+_C)Z -l)d-) 
yM2p±(U±-c)z ±Y ±co Po(uo-c)z y 

+(G2±)X' (4.14) 

where Gz ± = G2 ± (X, x) and is to be determined; the upper and lower signs 
are to be taken, respectively, for ji > 0 and ji < O. It is seen in Section 5 that 
each of the functions G z + includes terms containing a factor In 8. The 
results for Pz,u l , and TI are found, from (4.10), (4.11), and (4.12), respec­
tively, to be 
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PI G-' -M-2--"':"(~---) - 2 ± Uo 
y Po Uo - C 
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( 4.16) 

( 4.17) 

where P2 ± = P2 ± (X, i) and is to be determined. The integrals shown here 
are equivalent to those arising in the long-wave derivation of [5]. All the 
terms in (4.14) through (4.17) appear also in the expressions given by Balsa 
[7]; although the limiting cases considered are different, these aspects of the 
disturbances to the main shear layer are the same. Additional terms that 
appear in [7] are absent here as a result of the coordinate change from y / 8 
to Y /8. 

Since u~ ~ 0 and i~ ~ 0 as y ~ ± 00, it is easy to determine the behavior 
of ul and i l for large y, and then to verify that the solutions for u and T 
match properly with solutions obtained for the external flow. But matching 
of the solutions for v and p as Y ~ 0 and y ~ ± 00 is possible only if certain 
relationships among the unknown functions are satisfied. With the help of 
(4.5) and (4.6), the shear-layer expansions as y ~ ± 00 are found to have the 
form 

( 4.18) 

( 4.19) 

From comparison of (3.26) and (3.27) for the external flow with (4.18) and 
(4.19) for the shear layer, expressions for (8/ e)G2 + (X, i,O) + AzCX, i) and 
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P2 ± (X, i) are found in terms of F2 ± (X, i, 0) and Al(X, i): 

( 4.20) 

( 4.21) 

where the constants C ± are defined by 

( 4.22) 

and the result /3+ /3- = 1 has been used. Each of the quantities ei3(G2 ±)x 
and e 2A2X represents a contribution to the streamline slope in the flow at 
the edge of the shear layer, and it is seen that the two terms appear together 
in (4.20), suggesting an indeterminacy. As noted again in Section 5, the 
definition of A can be made precise if y = A (Le., Y = 0) is identified as 
the line where u - c is exactly zero; then ei3( G 2 ±) represents a term in 
streamline displacement relative to the line y = A. The jump G2+ - G 2-, 

rather than the functions G2+ and G2 _ separately, will be needed in the 
derivation of an evolution equation for Al in Section 5. Combining (4.20) 
and (4.21), and using the fact that /3+ /3- = 1 in the final term, 

The behavior of the shear-layer solutions for small y is also needed. As 
y~ 0, expansion of Uo and to in Taylor series shows that the integral 
appearing in V2 , ul , and tl is O(1/y). One way of removing the singular 
part is shown in [7]; a somewhat different procedure is used here, leading to 
expansions of the perturbation quantities as y ~ 0 in the form 

( 4.24) 

( 4.25) 
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( 4.26) 

( 4.27) 

where only those terms that may be needed later have been shown. The 
subscript c indicates that a function of ji is to be evaluated at the location of 
the critical layer, namely at ji = 0, and the integrals J ± and K ± in ul and 
P2 are defined by 

( 4.29) 

The integrands in J + have been modified so as to be integrable at ji = 0 and 
also to approach zero exponentially as ji ~ 00 (if Uo - U ± ~ 0 and To - T ± ~ 
o exponentially); the first few terms in ul appear because of these changes. 
The vorticity (2.12) as ji ~ 0 is 

(""\ ( ~, ~II ~ ) e f' A U Oe Oe 1 (4 30) 1 1 
( 

~II i') 
H = -"8 U Oe + UoeY + ... -"8 ~ nIX -=;- - -~- --;:;- + .... . 

POeU Oe U Oe TOe Y 

An approximate stream function is useful in Section 5 for obtaining 
solutions of the energy and vorticity equations in the critical layer. In terms 
of variables X, Y, and i, the continuity equation is 

[p(U-c)]x +(pV)y + e(pU)x = O. (4.31) 
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For y = 0(1) the solutions derived above show that the third term in (4.31) 
is 0(8 3

/
2

), i.e., of higher order than the first two terms. Thus each of the 
two mass-flow components p(u - c) and pV can be written in terms of a 
stream function 0/, or J, = 0/ / S if the appropriate scaling for the shear layer 
is introduced, plus a higher-order correction term: 

p( u - c) = o/y + ... = J,y + '" 
( 4.32) 

pV = - o/x + ... = - SJ,x + .... 

Substitution of the expansions for p, u, and V into (4.32) allows calculation 
of derivatives of J, as y ~ 0: 

o/y = PoJi'ocY + "', ( 4.33) 

Thus, as Y ~ 0, 

( 4.34) 

5. Critical layer 

5.1. Temperature and vorticity 

One way to recognize the scale for the critical layer is to note from (4.34) 
that the first approximation for J, is no longer given by the undisturbed 
value when y = 0(8 1

/
2

) and therefore J, = 0(8). This is the expected scale 
for the thickness of a nonlinear critical layer, as given first by Benney and 
Bergeron [12]. Thus an appropriate coordinate for the critical layer is 
y = y / 8 1/2, as anticipated in (2.5). The orders of the largest flow perturba­
tions in the critical layer are determined by matching with the solutions for 
the main part of the shear layer. The asymptotic expansions are then 
assumed to have the form 

p = 1 + 8Pl(X,y,i) + 8SP2(X,y,i) + ... 

V = 8SV2(X,y,i) + 83
/ 2SV5/ 2(X,y,i) + ... 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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- 1/2A (X A -) A (X A -) P = POe + B PI/2 ,y,x + BPI ,y,x + ... (5.5) 

n 1 -, BI/2 A (X A -) B A (X A -) 

U = - SU OC + -8-UI/2 ,y,x + SUI ,y,X + ... (5.6) 

(5.7) 

The largest terms in the temperature and the vorticity have been taken as 
constants, equal to the values in the undisturbed flow close to y = 0; from 
the definition (2.12) of the vorticity, the largest term in the velocity differ­
ence U - c is then linear in y. In the expansion of p, it has been anticipated 
that there will be no term of order B

3
/

2
, since terms of this order are not 

needed in p for the external flow or the main part of the shear layer. 
Certain functions appearing in the asymptotic expansions for these other 
parts of the flow will be found to contain a factor In B, since, as seen below, 
the matching of solutions for the critical layer and the main part of the 
shear layer requires the appearance of a term proportional to In B in each of 
the functions G2+. The factor In B is not, however, present in any of the 
functions shown in the expansions (5.1) through (5.7) above. 

The first two terms in the y-momentum equation (2.8) show that PI and 
P2 are independent of y, i.e., are constant across the critical layer. Matching 
as y ~ ±oo and y ~ 0 then shows that PI is equal to PI and that P2 is equal 
to the value of P2 at y = 0; the latter also of course implies that there is no 
jump in P2 across the critical layer. From (4.6) and (4.25), it follows that 

PI = yM 2 rA lX 

P2+ - P2- = yM 2rA IXX ( K+ - K_). 

(5.8) 

(5.9) 

Substitution of (5.9) into (4.23) leads to an expression for the jump G 2+ -

G 2 - in terms of derivatives of Al and known quantities. The largest term in 
the continuity equation (2.6) shows that also V2 is independent of y, i.e., is 
constant across the critical layer. Matching as y ~ ± 00 and y ~ 0, with the 
help of (4.24), shows that 

(5.10) 

The definition (4.32) of the stream function can be rewritten in terms of 
J, where, as before, the stream function satisfies the continuity equation 
only approximately, because the higher-order term B( PU)i in (4.31) has not 
been taken into account. The largest terms give 

(5.11) 
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Thus in the first approximation the streamlines are lines with slopes 
dy / dX = V2 /(ii~eY). The first approximation to the stream function is then 

where, for each X, (/Joo is the value of (/Jo at y = 0, and (AIX)m is an 
integration constant (which may be a function of x) defined as equal to the 
maximum value of AlX in one period, say for 0:::;; X:::;; 1; this choice is made 
so that (/Joo:::;; o. Also, it is seen that the derivatives of (5.12) match properly 
with (4.33) as y ~ ±oo and y ~ o. Since Al is periodic in X, the streamlines 
have a cat's-eye structure. The saddle points and centers of the cat's eyes are 
the points where (/Joo, PI' and AlX reach their maximum or minimum values 
respectively; (/Joo = 0 at the saddle points and (/Joo < 0 elsewhere. For each X, 
the approximate stream function (/Jo lies in the range (/Joo:::;; (/Jo < 00, with 
(/Jo = 0 at the boundaries of the cat's eyes. 

The first approximations to the energy and vorticity equations (2.9) and 
(2.13) are given by 

(5.13) 

(5.14) 

where, from (5.8) and (5.10), PlX and V2 are proportional to A lXx ; the 
equation of state (2.10) and the result (5.13) have been used in obtaining 
(5.14). Thus the temperature perturbation is constant along the approximate 
streamlines, and the vorticity changes along a streamline as a result of the 
bar~clinic torque. That is, fl/2 and the unforced term in 0 1/2 are functions 
of % and x, and the solutions have the form 

fl/2 A (A _) PI/2 
--- = E>1/2± %,X = - ---

TOe POe 
(5.15) 

(5.16) 

where the particular solution for 0 1/2 can be verified by direct substitution, 
with the help of (5.12); the equation of state (2.10) has been used to relate 
PI/2 and f 1/2 , and the functions 01/2± «(/Jo, x) and QI / 2 ± «(/Jo' x) are still to 
be determined. The notation 01/2 ±' QI / 2± is intended to emphasize that 
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these are different functions of (fio above and below the cat's eyes; in each 
of these regions 0 < ~o < 00, while within the cat's eyes ~oo:s:: ~o < O. 

The second-order energy and vorticity equations are 

y-1~, ~ 1 ~ 1 fLoe(f) (517) 
+ -y-UoeY POe PlX + 8 25 2 RePr POe 1/2 yy • 

~, ~ ( A -, PI) V~ (A ~'PI) 1 A T~ UOeY HI + UOe-~- + 2 HI + UOe-~- - --2PlX IY 
POe X POe y yM 

( 
~ _, f1/2) 1 fLoc ( ~ ) 

- C 0,1/2 - U Oe --- + 252 R -~- 0,1/2 --, 
T. 8 e POe YY 

Oe x 
(5.18) 

where fl/2 and 0 1/2 are given in terms of 0 1/2 ± and <21/2 ± by (5.15) and 
(5.16); Eqs. (5.13) and (5.15) have been used in simplifying (5.18), and PI is 
r~lated to PI and fl thr,?ugh the equation of state (2.10). Since 01/2 ± and 
Q I/2 ± are functions of 1/10' derivativ~s of these quantities with respect to y 
are found using oj oy = PoJi'ocY aj al/lo. 

In each of (5.17) and (5.18) the first two terms on the right-hand side can 
be rewritten and grouped with the terms on the left-hand side. Combining 
the second terms in the definition of the stream function ~ with (5.11) gives 

(5.19) 

(This is simply the second approximation to the statement that the stream 
function is constant along a streamline') Equations (5.17) and (5.18) then 
can be shown to become 

(5.20) 
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(5.21) 

where the notation on the left-hand sides indicates differentiation with ~o 
fixed, and so these terms represent derivatives along the approximate 
streamlines. Since the quantities i l and nl appear only in the combinations 
iJ - ~1/iil!2)~o Aand n l - ~V2(n}l2)~o' the solutions for iJ and n l con­
tain terms r/J1/iTI/2).J,o and r/J1/inl/2)~o' respectively. Thus the quantities 

A A • A A 1/2 A e l/2± and QI/ 2 ± can be thought of as functIons of r/J = r/Jo + 8 r/JI/2 + ... 
rather than ,fro, and the terms mentioned (with a factor 8

1
/

2
) are then the 

linea~ terms in Taylor expansions of 01/2±(~'X) or QI/2±(,fr,X) abo~t 
r/J = r/Jo· A reformulation of the entire critical-layer problem in terms of r/J, 
however, does not seem to offer any substantial advantage, and the present 
formulation in terms of X, y, and x is therefore retained. 

The order of the Reynolds number Re» 1, still unspecified in terms of 
the small parameters 8 and 8, is chosen at this point such that the diffusion 
terms are of the same order as the other terms appearing in (5.20) and 
(5.21). Since 8 and 8 have been taken to be of the same order in (2.1), the 
choice for Re can be expressed by 

( 5.22) 

and then also (8 28 2 Re)-I = 0(1) in (5.20) and (5.21). The choices (2.1) and 
(5.22) specify the particular limiting case 8 ~ 0, 8 ~ 0, Re ~ 00 with 8/8 
and 8 4 Re held fixed, for which all the physical effects represented in (5.20) 
and (5.21) are retained at the same level of approximation. 

Bearing in mind the expansions (5.4) and (5.6) for T and n, one can see 
that the ratio of diffusion terms to convection terms in the critical layer is 
0[(8 3/

28 2 Re)-I], which tends to zero in the present limit with 84 Re and 
8/8 held fixed. The significance of this ratio was pointed out by Benney and 
Bergeron [12] and explored in further detail by Haberman [13]; the critical 
layer is inviscid and nonlinear, or viscous and linear, when the parameter 
A = (8 3/ 28 2 Re) -I is small or large, respectively. (If the reference length 
were the shear-layer thickness instead of the spatial period, as in [12, 13], the 
factor 8 2 would be absent in the definition of A.) The present case, for small 
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values of A, is a different limiting case from that of [6, 7], in which A is held 
fixed in the limit and the amplitude is taken to be e = O( 8 2). The critical 
layer is thinner in [6, 7], with y = O( 8) there, and terms representing effects 
of diffusion and slow distortion appear in the first approximation. The result 
is a pair of nonlinear partial differential equations in the fast and slow 
longitudinal variables and the transverse critical-layer coordinate. In the 
present case the complete problem formulation for the largest perturbations 
requires consideration of the second approximation as well. 
~ The additional conditions needed for the determination of 01/ 2 ± and 

Ql / 2 ± in (5.15), (5.16) take the form of statements about integrals of the 
right-hand sides of (5.20) and (5.21). Since the left-hand sides of these 
equations are derivatives along streamlines, integrals with respect to X 
along streamline segments having the same values of Tl and 0 1 at both end 
points are zero; the right-hand sides then also have zero integrals along the 
same paths. Outside the cat's-eye streamlines, for ;;'0 > 0, the solution is 
required to be periodic in X. It follows that the integrals over one period 
must be zero. Since lengths have been made nondimensional with a spatial 
period of the disturbance, the integrations may be taken, e.g., from X = 0 to 
X = 1. For the closed streamlines inside the eat's eyes, it is required that Tl 
and 0 1 be single valued, and therefore the integrals around any closed 
streamline must be zero. It can be seen that the right-hand sides of (5.20) 
and (5.21) are od,? functi(~ns of y. This follows because 0lj2 ± and Ql/2 ± 

are functions of 1/10' and 1/10 is an even function of y; that the first term on 
the right side of (5.21) is odd follows from (5.20). From symmetry considera­
tions, then, an integral over the upper half of a closed streamline is just 
one-half the integral around the entire curve. Thus, not only are the 
integrals of (5.20) and (5.21) equal to zero around a closed streamline, but 
also are zero separately over the upper and lower halves of the streamline. 

The conditions for "'0 > 0 and "'0 < 0 can be written in a single form if 
integration limits denoted by Xo and Xl are functions of ;;'0 having 
different definitions for ;;'0 > 0 and ;;'0 < O. Outside the eat's eyes, the 
integrations are to be taken over one period, and so we may take 

when ;;'0 > O. (5.23) 

For the closed streamlines, Xo and Xl are such that ;;'00 =;;'0 at these 
values of X. The definitions are then expressed in the implicit form 

when ;;'0 < 0, (5.24) 

where we take 0 < Xo < Xl < 1. 
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Since the integrals of the left-hand sides of (5.20) and (5.21) are necessar­
ily zero, the required conditions are expressed by setting the integrals of the 
right-hand sides equal to zero: 

o = _l_fXl PIX (f - ~1/2 (f )) dX 
M2 -, A 1 - -, A 1/2 Y 

"Y Xo UOcY POcUOcY y 

(5.26) 

where the integrands are understood to be evaluated along streamlines. 
Each of the equations (5.25) and (5.26) contains terms representing effects 
of diffusion and of slow variation; the vorticity equation (5.26) also contains 
an additional integral associated with the baroclinic torque, which can be 
rewritten in terms of fl/2 and PI with the help of (5.20). 

A result of this kind was given in another context by Goldstein and 
Hultgren [14], for a stage in the downstream development of disturbances to 
an incompressible shear layer when the appropriate slow variable becomes 
large. The present formulation is a generalization of that given by Goldstein 
and Hultgren, but in terms of parameter expansions rather than coordinate 
expansions, and with the temperature as an additional dependent variable. 

For streamlines near the centers of the eat's eyes, the diffusion terms in 
(5.25) and (5.26) can be approximated by substituting (5.12), (5.15), and 
(5.16), with ~oo expanded in Taylor series about the value of X at the 
center, where "'00 has its minimum value ~oom' If just the constant and the 
quadratic term are retained in each case, the integrations over X can be 
carried out, giving differential equations in the variables ~o and x that 
describe the local flow behavior. After this is done, (5.25) becomes 

where the derivatives of 91/ 2 ± are evaluated at the center of a eat's eye; a 
corresponding equation is found from (5.26), with the help of (5.20). The 
results show that one solution for each of 91/ 2 ± and Ql/2 ± has a logarith-
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mic form as ;;'0 approaches its value at the center. Since derivatives with 
respect to ;;'0 become larger here, it is to be expected that there will be a 
small region in which the diffusion terms should no longer be neglected in 
comparison with the convection terms and that the solution to an appropri­
ate new set of limiting equations in this region could serve to remove the 
singular behavior. Goldstein and Hultgren [14] show this to be the case for 
incompressible flow and conclude that the logarithmic behavior is not suffi­
cient to justify omission of the singular solution. Instead they derive an 
integral condition, a "generalized Prandtl-Batchelor theorem," which shows 
that the vorticity is not constant inside the cat's eyes and which excludes the 
singular solution since the integration constant multiplying this solution is 
found to be zero. 

In the present case, supplementary integral conditions for the flow inside 
the cat's eyes are found by following a procedure quite similar to that of [14]. 
The differential equations (5.17) and (5.18) for Tl and 0,1 can be regarded 
as vector equations, with convection terms in the form (U~eyf)x + (V2 f)y 
each considered as the curl of a vector normal to the streamlines dy/dX = 

V2 /(U~eY); the terms involving it l and VS/ 2 are rewritten in the desired 
form with the help of (5.19). The line integrals of these vectors around 
closed streamlines are of course zero, and by Stokes' theorem (or Green's 
theorem in the plane) the area integrals of the remaining terms are zero; 
these latter terms are the same as those on the right-hand sides of (5.20) and 
(5.21), except for the factor u/OeY- For each closed streamline, the results can 
be expressed in terms of line integrals around that streamline: 

¢ { jY( A ) A 1 ;J.Oe (A )} o = - C Tl/2 _ dy + 2 2 --- Tl/2 A dX 
o x s 8 Re Pr POe Y 

(5.28) 

1 ;J.Oe ( A )) + 28 2 --- 0 1/ 2 A dX, (5.29) 
s Re POe Y 

where, of course, y > 0 and y < 0 for the upper and lower parts of a 
streamline, respectively, and the first integral in (5.29) can be rewritten with 
the help of (5.20). 

The conditions (5.28) and (5.29) are analogous to the condition obtained 
in [14] for the vorticity in the incompressible case. With a coordinate change 
from X, y to X,;;'o the area element is transformed from dX dy to 
(Poeu~ey)-ldXd,j,o, and, as for the vorticity equation in [14], the conditions 
(5.28) and (5.29), except for a constant factor, can be thought of as integrals 
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over ~o of Eqs. (5.25) and (5.26). Again as in [14], (5.28) and (5.29) provide 
additional information about the behavior of the solutions near the center of 
a cat's eye. By expanding ~oo in Taylor series about the value of X at the 
center, we can approximate (5.28) and (5.29) for streamlines close to the 
center. As ~o ~ $oom' (5.28) leads to a relation between the values of 
(8 1/ 2 ±)i and (8 1/ 2 ± ),fro at the center, ipdicating that (8 1/ 2 ± ),fro is bounded 
there, and a corresponding result for QI/2 ± follows from (5.29). Thus it is 
found that the conditions (5.28) and (5.29) require the absence of logarith­
mic terms in 8 1/ 2 ± and 01/2 ± as ~o approaches its value at the center 
and'A moreAover, that the derivatives (81/ 2 ± ),fro and (Ql/2 ± ),fro remain finite 
as !/Io ~ !/lOOm. These conclusions represent the new information that is 
contained in (5.28) and (5.29) but not in (5.25) and (5.26). The situation is 
analogous to that in [14], where, as already noted, the additional condition 
shows that an integration constant mUltiplying a logarithmic term must be 
zero. 

Throughout the regions with closed streamlines, the temperature as well 
as the vorticity is not constant, since, as disturbances move downstream, 
diffusion effects have acted for a limited period of time that is not sufficient 
to allow the development of an equilibrium state for these quantities. The 
transverse spatial scale for spreading (in dimensional form, the square root 
of the product of kinematic viscosity and time) is the same as the scale for 
the critical-layer thickness, and so 8 1/ 2 ± and 01/2 ± are still nonuniform in 
the region considered, for i = 0(1). 

5.2. Evolution equation 

To obtain an evolution equation for AI' it is necessary to match the 
expressions obtained for the velocity u in the main shear layer and in the 
critical layer, and thus to obtain another expression for the difference 
G2+ - G2 _, which can be combined with that given by (4.23). This in turn 
requires knowing the form of 8 1/ 2 ± and 01/2 ± as ~o ~ 00. 

As y ~ 0, the behavior of the solutions for T and n in the main part of 
the shear layer is found from (4.4), (4.27), and (4.30). If it is assumed that 
direct matching is possible, the leading terms in the expansions of the 
critical-layer solutions for 8 1/ 2 ± and 01/2 ± as Y ~ ± 00 are found from 
(5.15) and (5.16) as 

(5.30) 

(5.31) 
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where y has been related to J,o by (5.12) and we have expanded (J,o - J,00)1/2 

for large J,o. This proposed direct matching with solutions in the main shear 
layer does not contradict (5.25) and (5.26); it is assumed here that no 
additional terms of order J,OI/2 or larger are needed in (5.30) and (5.31) and 
that the matching can be carried out as proposed. That is, in contrast to [14], 
there appears to be no need for an additional flow region between the main 
shear layer and the critical layer. 

In the critical layer, integration of the terms 0(8 1
/

2 /8) in the definition 
(2.12) for the vorticity gives 

1 f,f,o( (A ) A (A _)) dJ,o ul = =+= (2 _ -, )1/2 , rAlx 0 1/ 2± ';'0 + Ql/2± I/Io,x (A A )1/2' 
POe U Oe 1/100 1/10 - 1/100 

( 5.32) 

where the lower integration limit is chosen so that ul = 0 when y = 0, 
consistent with the definition given earlier for the line y = A as the line 
where U - c is zero. With the help of (5.30) and (5.31), we can now calculate 
the largest terms in ul as Y ---) ± 00. After addition and subtraction of u'beY 
inside the brackets in the integrand of (5.32), the expansion (5.1) for U gives, 
as Y ---) ± 00, 

(5.33) 

where H ± and I ± are defined by 

(5.34) 

( 5.35) 

and are functions of X and x. The notation is intended to indicate that the 
finite part should be taken; the need for this notation is seen to disappear in 
the evolution equation for AI' since singular terms cancel. 
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Matching with the expansion of (4.1) as ji ~ 0, using the expansion (4.26) 
for ul and setting .9 = ji / 81/Z, leads to an expression for G2±: 

_ fAlx (U_'bc _ ~bc )In( pocU~c) _ J A 
Gz ± = 2 - -,z u' T- 28 ± IX Pocuoc Oc Oc 

(5.36) 

~hus, as anti~ipated, the functions Gz ±' and therefore also the solutions for 
Vz, Ul' and Tl given by (4.14), (4.16), and (4.17), each contain a term with a 
factor In 8. From (4.20) it follows that the functions Fz ± include such a 
term, and therefore each of the perturbations in the external flow will have a 
term proportional to In 8. On the other hand, (5.32) shows that there is no 
term of this kind in 12 1; the other solutions for the critical layer likewise have 
no term containing In 8. 

The result (5.36) can now be combined with (4.23) and (5.9), which were 
obtained from the matching conditions for v and p. The result is an 
evolution equation for the displacement function AI(X, x): 

The integrals H ± and I ±' given by (5.34) and (5.35), are functions of X and 
x, since they depend on the disturbed temperature and velocity profiles in 
the critical layer, through 01/ z ± and QI/2 ±' and on the disturbed pressure, 
through 1/100 and therefore AlX and PI' according to (5.8) and (5.12). The 
integrals J ± and K ±' defined in (4.28) and (4.29), depend only on the 
undisturbed velocity and temperature profiles Uo and to = 1/ Po in the main 
part of the shear layer, and are thus independent of both X and X. The 
terms containing these integrals also appear in the evolution equation 
obtained in [7], but with a somewhat different treatment of the singular 
integrand, as noted earlier. The term on the left-hand side of (5.37) likewise 
is the same as that found in [7], whereas the term proportional to Aix arises 
from nonlinearity in the external flow and is absent in [7] because a smaller 
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amplitude is considered there. Each of the integrals H ±' I ±' J ±' and K ± 
appears in a linear way in the velocity u, and (5.37) is obtained by matching 
solutions for u; thus no products of integrals appear in (5.37). The inte­
g~ands of (H + -: H _) anAd (I + - 1_) involve the combinations (01/2+ )tfro + 
(8 1/ 2 - )1/10 and Q I/ 2+ + (JI/2-' Acc,?rding to (5.30) and (5.31), each of these 
sums is smaller than 0(1/10 1

/
2

) as 1/10 ~oo; thus the integrals (H+ - H_) and 
(I + - 1_) exist. These terms in (5.37) arise from integration of the vorticity 
across the critical layer and differ from the corresponding terms in [7] 
because the critical-layer solutions are different. 

The evolution equation (5.37) for the displacement function Al is the 
main result of the derivation. Its solution requires an initial condition that 
specifies Al for one period in X at a large negative value of i. The integrals 
in (5.37) involve the functions 01/2± ~nd QI/2 ±' ~nd so Eqs. (5.25) and 
(5.26), which contain Al as well as 8 1/ 2 ± and QI/2 ±' must Abe solved 
simultaneously with (5.37). Initial and boundary conditions for 8 1/ 2 ± and 
QI / 2 ± are also needed. It is expected that these functions will approach zero 
as i ~ - 00; the manner in which they might approach zero is considered 
briefly below. The forms of 01/ 2 ± and QI / 2 ± as ;;'0 ~ ± 00 are given by 
(5.30) and (5.31). For the closed streamlines inside the cat's eyes, the integral 
conditions (5.28) and (5.29) must be satisfied; i.e., (0 1/ 2 + )tfro and (0 1/ 2 - )tfro 
remain bounded as the cat's-eye centers are approached. As in the analo­
gous incompressible problem, the vorticity, and now also the temperature, is 
presumed to be continuous at the boundaries ;;'0 = 0 of the cat's eyes, but 
the derivatives (0 1/ 2 + )tfro and (0 1/ 2 - )tfro might be expected to have jump 
discontinuities there. For a numerical solution, it may be necessary, as in 
[14], to study the thin viscous layers about ;;'0 = 0, following Brown and 
Stewartson [15]; this is not done here. 

Further upstream, in terms of the slow variable i, it is expected that the 
amplitude is smaller, and so At is smaller. From the expression (5.12) for 
;;'0' the critical layer should be thinner, with values of 5'2 of the same order 
as a typical value of AI- From matching with the temperature and vorticity 
in the main part of the boundary layer, the values of 01/ 2 ± and QI/2 ± will 
presumably decrease as Ay2. If these suppositions are all correct, then the 
integrals J + - J _ and K+ - K_ across the main part of the boundary layer 
and H + - H _ and 1+ - I _ across the critical layer will all remain in the 
evolution equation (5.37), but the nonlinear term proportional to Aix will 
be absent in the leading approximation. Since the integrals that remain will 
again lead to slow changes on the scale of the i coordinate, it is necessary 
that the derivative Au remain in the equation while At decreases. A 
power-law decay of Al would not permit the needed balance of terms, 
whereas for an exponential decrease A t and A I i would change at the same 
rate as i ~ - 00. Thus it appears that the upstream decay of At will be 
exponential in i; this is noted again in Section 6. 
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The small parameters 8, 15, and Re- I enter the problem formulation in 
the combinations 81 Band B4 Re, which may be thought of as similarity 
parameters for this particular limiting case. The result (5.37) for the evolu­
tion equation, as well as the solutions for the vorticity and temperature, may, 
however, not be uniformly valid for large or small values of these similarity 
parameters. Any such non uniformity implies the need for a different prob­
lem formulation in another special limiting case corresponding to a different 
pair of order relations among 8, B, and Re -I. To identify other special 
limiting cases, it may be convenient to replace the shear-layer thickness 15 
(nondimensional with the spatial period) in terms of the Reynolds number 
Re and the nondimensional distance L from the origin of the shear layer. If 
the shear layer is regarded as having zero initial thickness at some upstream 
location, a self-similar solution is available, and the thickness is known to 
grow as the square root of the distance. Thus we may set 

(5.38) 

We might then think of taking 1 I L instead of B as one of the basic small 
parameters. If, for example, the viscous length and the wavelength are 
regarded as specified, the choice of a relation between Band 1 IRe is 
equivalent to a statement about the distance L. That is, if Re is specified, we 
can think of various possible choices for the position L and the nondimen­
sional amplitude 8. The results obtained thus far are based on the assump­
tion that L = O(Rel

/
2

), with 8 and B of order Re- I
/

4
• Some suggestions 

are made in the next section concerning the nature of the local solutions 
when different choices are made for the orders of 8 and D (or 1/ L). 

6. Other limiting cases 

6.1. Vortex-sheet limit 

If a disturbance at a location where 8 = O(Re- I
/

4
) has amplitude 8» 8, it 

follows from setting 1518 = 0 in (5.37) that the terms depending on the 
velocity and temperature distributions within the shear layer disappear in 
the limit. Thus the shear layer appears as a vortex sheet in the first approxi­
mation, with the evolution equation given by 

! = 13+ - 13- (1- l' + 1 r2 ~"'4) 2 a C - C 4 jVl. 
+ -

( 6.1) 

(This result can, of course, be found more directly by combining the 
conditions that the pressure be continuous across the vortex sheet and that 
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there be no flow through the sheet.) The sign of a in (6.1) depends on the 
velocity and Mach number in the flow above and below the sheet. To 
illustrate the behavior of the solution we consider a > 0. One special case 
for which a is in fact positive is that in which the temperature is the same 
above and below, so that also p+ = p_ = 1. For a verification that a> ° in 
this case, the three factors appearing in the definition of a can be consid­
ered separately. First, (4.8) can be rewritten [1] as a quadratic equation for 
{c -(u+ + u_ )/2}2. The solution for c shows that 0< u+ - c < c - u_ and 
therefore (since f3+ f3- = 1) that f3+ < 1 < f3-. Thus the relative velocity and 
Mach number are lower on the upper side of the sheet and higher on the 
lower side. Next, from the second form of the definition (4.22) for C ±' with 
the help of the result f3+ f3- = 1 and the inequalities just noted, it can be 
seen that C + - C _ > ° for the present case. Finally, the definition (4.7) for r 
can be rewritten to show that r M 2 = (1 + f3 ~ ) / f3 + = (1 + f3 ~ ) / f3 _. The 
minimum of (1 + f3 2) / f3 occurs at f3 = 1 and is equal to 2, so that r 2 M4 is 
no smaller than 4; since,), > 1,1-(,), +1)r 2M 4 /4 is necessarily negative. 
Thus a > ° if p+ = p_ = 1; we take a > ° in the following without, of 
course, restriction to only this case. 

If now (6.1) is differentiated with respect to X, it is seen that A\X 

remains constant along characteristics dX / di = - aAlX . The solution is 
given implicitly by 

it(X) = AlX(X,O), (6.2) 

where it is a function of a single argument and is defined in terms of its 
form at i = 0, which is considered to be known. Thus (6.2) describes the 
evolution of the shape of the vortex sheet in terms of an initial disturbance 
represented by AlX(X,O). The solution of (3.19) with the proper values at 
y = 0, as well as at i = 0, can then be expressed in implicit form by 
evaluating (6.2) at X o, io and combining with (3.21). Substitution for Xo and 
io from (3.20) allows representation of the argument Xo + aOio in terms of 
o and the coordinates ~,i,y. Thus 

o = it(2), (6.3) 

where 

-....., = -
( 6.4) 
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Equations (6.3) and (6.4), in combination with (3.11) and (3.14), can be used 
to provide a representation of the complete flow field in terms of the initial 
surface deformation. 

A simple example of a periodic shape A l( X,.X) is provided by the initial 
values 

A lX ( X,O) = 1'}( X) = -sin X, (6.5) 

where the spatial period here is taken to be 27T rather than one. For x > 0, 
(6.2) gives the surface slope, and the curvature AlXX(X, x) is found by 
differentiation as 

AlXX(X,x) 
-cos(X + aXAlx(X,x)) 

(6.6) 
1+ axcos(X+ aXAlX(X,x))' 

This expression becomes infinite when aX = 1 and the cosine is equal to -1, 
i.e., when Alx=O and x=a-l, at X=(2n+1)7T, for n=0,±1,±2,···. 
The sheet thus undergoes a distortion, with the minima of Al developing 
corners such that weak shock waves appear for Y> 0 and weak centered 
expansions for Y < O. The result is consistent with that of [2] for p ± = 1, with 
the shocks appearing on the side of the sheet where the relative flow speed 
u - c is smaller, and the expansions appearing on the side where the speed 
lu - cl is larger. 

The flow field is found from the solution (6.3) for e, which is proportional 
to the local streamline slope and which for this case becomes () = FI g = 
- sin 2, where 2 is again defined by (6.4). Above the sheet the flow 
undergoes compression when the curvature is positive, i.e., in the range 
where cos 2 < 0, while below the sheet compression occurs where cos 2 > 0 
and the curvature is negative. The derivative FI gg' proportional to the local 
streamline curvature, becomes infinite at the values of ji where its denomi­
nator first becomes zero, for Icos 21 = 1. The singular behavior arises be­
cause the characteristics in the X, Y plane are not exactly parallel, an 
intersection of characteristics occurring at each of the points where FlU 

first becomes infinite; a sketch of the wave pattern near the sheet is shown 
in Figure 2. Weak shock waves form at large distances above and below the 
sheet as a consequence of the coalescing of isentropic compression waves, at 
the points where characteristics first intersect. This is the far-field result for 
steady flow past a wavy wall, but now the "wavy wall" deforms, with 
increasing or decreasing curvature in portions of each spatial period that 
contain the minimum or maximum values of A l , respectively. The shocks 
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Figure 2. Disturbed shear layer for B » 0, with associated compression and expansion waves. 

appear at 2 = (2n + 1)7T for Y > 0 and at 2 = 2n7T for y < 0, at values of y 
given by 

(6.7) 

where the values cos 2 = += 1 are to be taken for y ~ O. 
As the downstream distance x increases, the point of formation for each 

shock wave gradually moves downward, toward the sheet for y > 0 and away 
from the sheet for y < O. When ax = 1, shock waves reach the upper surface 
at the locations X = (2n + 1)7T, and centered expansion waves appear at the 
same points on the lower surface. With further increase in downstream 
distance, a discontinuity in the slope of the sheet is present at X = (2n + 1)7T, 
and the solution for AlX shows that the magnitudes of these jumps continue 
to increase until ax = 7T /2, when IAlXl = 1 immediately ahead of and 
behind each jump. Thus for 1 < ax < 7T /2 and y> 0, the shock waves at the 
surface continue to overtake, or to be overtaken by, compression waves, so 
that the strengths of the shocks and expansions increase at the sheet: the 
"kinks" at the sheet become stronger. For still larger distances, when 
ax> 7T /2, the shocks at the surface are weakened by interaction with 
expansion waves, the flow turning angles at the sheet decrease, and the 
"kinks" become weaker. All disturbances then decay, according to this 
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system of equations, as ax -) 00. Although the effects of changes inside the 
very thin shear layer are ignored in the vortex-sheet limit, it would nonethe­
less be of interest to consider these higher-order effects, taking the function 
AlX to be prescribed by the external-flow solution for a vortex sheet, 
modified in some way to allow for shock discontinuities; with increasing 
downstream distance, changes within the shear layer may possibly grow large 
enough that their effect on the outer flow is no longer of higher order. 
When the value of 8/ S is not large, the effects of nonzero thickness shown 
in (5.37) do of course influence the outer flow for all x, but the shock-wave 
behavior is expected to be qualitatively similar to that in the case of a vortex 
sheet. 

6.2. Disturbances at other locations 

The formulation of Sections 3 through 5 is characterized by a relatively thick 
critical layer, with diffusion effects appearing first in a periodicity or single­
valuedness condition. It might be anticipated that some other limiting case 
would correspond to a different balance at a location further upstream, 
where the disturbance amplitude would be somewhat smaller and the critical 
layer somewhat thinner, so that the diffusion terms would appear earlier. In 
particular, a first approximation showing a balance of convection and diffu­
sion terms in nonlinear temperature and vorticity equations might be 
expected. 

One way to start is by considering the behavior of the evolution equation 
(5.37) as the slow variable x -) - 00, i.e., by moving upstream from the region 
discussed in previous sections. The amplitude function A 1 then decreases, 
and the quadratic term proportional to Aix is expected to become smaller 
in comparison with the other terms. The slow changes in amplitude now are 
the result of the changes in pressure and streamline slope across the main 
part of the shear layer and the jump in velocity across the critical layer, 
corresponding to the terms O( S / 8) in (5.37). Since these terms do imply a 
slow growth, the slow derivative should remain in the equation, and so the 
slow variable originally defined in (2.2) should be redefined with scale S 
rather than 8. Retaining the slow derivative in (5.37) as x -) - 00 also implies 
the functional form of AI as x -) -00 and requires that Al decrease 
exponentially. However, the anticipated balance of convection and diffusion 
terms will occur when the amplitude is only algebraically small in terms of 
the parameters, and so the magnitude of x need only be logarithmically 
large; i.e., it is only necessary that - x = OOn Re). The slow variable should 
now be measured from a different reference location, say x = x o' and 
redefined as x = S(x - x o). Taking o(x - x o) = 0(1) and S(x - L) = 
OOnRe) and recalling that L = 0(Re1

/
2

) for the derivation in Section 5, it 
follows that the relative change in the reference locations is given by 
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(L - xo) / L = O(Re - 1/
4 In Re) and is therefore small, so that the relative 

change in shear-layer thickness is also small, and we again have 84 = 

O(Re -I) as in (5.22). 
Next we can look for a possible asymptotic flow description having 

downstream behavior that matches with the upstream behavior found from 
the previous formulation. A balance between convection and diffusion shows 
that the critical layer appears when y = O( 8 2/3) rather than O( 8 1/ 2 ) as 
before. This is the familiar result for a viscous critical layer, as given by Lin 
[16]. Nonlinearity is again indicated through the need for a correction to 
the undisturbed stream function, as suggested by (4.34) evaluated for small 
y, implying a smaller order for the amplitude, namely s = 0(0 4

/
3

) rather 
than O( 8). This is then an example of a limit in which the parameter 
(S3/28 2 Re)-I of [12, 13] is held fixed. Asymptotic expansions are intro­
duced, as before, for the external flow, the main part of the shear layer, and 
the critical layer, with various differences appearing because of the smaller 
amplitude and thinner critical layer. The derivations resemble those of 
Sections 3 through 5 in many respects, the greatest difference arising in the 
now simpler formulation for the critical layer. The new representations are 
presumed to describe a stage in the evolution of a small disturbance that 
precedes the stage considered in Sections 3 through 5. It is suggested that 
this earlier stage exhibits nonlinearity in the critical layer but not in the 
external flow and that in the later stage the amplitude has grown large 
enough that nonlinearity enters the description of the external flow as well, 
giving the term proportional to Aix in (5.37). Since the disturbance growth 
is expected to be exponential, the changes occur within the relatively small 
distance indicated above. 

It seems convenient to express this order-of-magnitude information about 
the position and amplitude in terms of logarithms, defining 

Lt = (InL)/(lnRe), st = {In(l/s)}/(lnRe). (6.8) 

With these definitions, Lt increases as the downstream distance L increases, 
but st decreases as the amplitude s increases. Since L = 0(Rel / 2 ) and, as 
noted, Xo is close to L, the quantity Lt remains nearly constant and equal to 
t even if L is replaced by xo, while in passing from the earlier stage to the 
later stage st decreases from ~ to t, as can be seen by substituting s = 0 4

/
3 

in (2.1) and (5.38). Each of the two stages can then be regarded as 
represented by a point with coordinates Lt and st, namely by the points (~, t) 
and (~, t). 

In the formulation given by Balsa [6, 7], different order relations were 
chosen among the small parameters. The choice that allowed a balance of 
convection and diffusion terms in the first approximation for the critical 
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layer was, in the present notation, 8 5 Re = 0(1) rather than 8 4 Re = 0(1). 
From the interpretation (5.38) of 8 as a measure of downstream location L, 
it follows that the present formulation describes flow disturbances at a 
location further upstream and with larger amplitude. In the present case, 
L = 0(Rel / 2) and the amplitude is 0(8), or 0(Re- I / 4 ); in [6, 7], L = 
0(Re3/ 5 ) and the amplitude is 0(8 2 ), or 0(Re- 2 / 5). Thus the two represen­
tations correspond to different paths of approach to the origin in the 8, 0, 
Re- l parameter space. Or, in the coordinates Lt and 8 t , Balsa's solution 
[6, 7] corresponds to the point (~, ~) rather than the present (~, ±) for the 
later stage. 

We can also consider various other limits, i.e., other choices for the 
orders of magnitude of 0 and 8 in terms of Re, corresponding to different 
points in the L t, 8 t plane. Each of the special points (~, ~) and (~, ±) 
corresponds to a problem formulation that is distinguished in the sense that 
the proper approximate equations at each of these points is "richer" (e.g., 
[17]) than the equations at any location in a small neighborhood of the 
point; the associated limits might be called "distinguished," in the sense 
defined, e.g., in [9]. It appears that only three points in the plane (for Lt > 0 
and 8 t > 0) have this property; the third such point is identified below. 
There are also lines in the plane with the analogous property that along 
each such line the proper approximate equations are "richer" than the 
equations at neighboring points on either side of the line. Each of these 
lines represents a boundary, such that some particular effect or effects are 
important on one side of the line but not on the other. The special points 
and lines identified are shown in Figure 3. 

If the amplitude is of the same order as the thickness, then 8 = D( 8) and 
it follows, with the help of (5.38), that 

(6.9) 

Below this line (8)> 8) the motion is dominated by nonlinearity in the 
external flow, and the motion is approximated in terms of a vortex sheet, as 
described in Section 6.1. Above this line (8 « 0) nonlinearity in the external 
flow does not enter into the leading approximation. Clearly the point (~, ±) 
of the formulation in Section 5 lies on the line. One end point of the line is 
at (O,~), where L = 0(1) and 8 = 0(Re- I

/
2
); here the distance L has 

decreased to the same order as the spatial period, whereas all of the present 
discussion has assumed that L is larger. The other end point is at (1, 0), 
where L = O(Re) and 8 = 0(1); here the shear-layer thickness 0 has 
increased to the same order as the period, whereas it has been assumed 
throughout that 8 is smaller. 
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Figure 3. Identification of special limiting cases for disturbances at different locations and 
having different amplitudes. 

The limiting forms of the equations are different on different portions of 
the line (6.9). For Lt> t, and therefore 8 4 Re ~OO, diffusion effects are 
absent in (5.25) and (5.26), so that TI/2 is independent of x and 0 1/ 2 varies 
with x only because of the term in the baroc1inic torque; however, a 
diffusion effect is still present in thin layers bounding the cat's eyes. For 
Lt < 1/2, i.e., for 8 4 Re ~ 0, the critical-layer thickness is 0(tY28) and 
diffusion terms become as large as the convection terms at the point (~, t), 
where L = 0(Re3

/
7

) and 8 = 0(Re- 2 / 7 ). Since 8 = 0(8), this point corre­
sponds to a limit with 8 7

/
2 Re held fixed. For still smaller L, i.e., for Lt < ~, 

the energy and vorticity equations continue to show a balance of convection 
and diffusion terms, and the thickness of the viscous critical layer remains 
0(8 1/ 3 Re- I /

3
), i.e., 0(8L -1/3). Thus, as L continues to decrease, the 

critical-layer thickness now increases relative to the overall shear-layer 
thickness, and the velocity jump across the critical layer is associated with a 
smaller term in the critical-layer vorticity. It appears that the second terms 
in both temperature and vorticity are now linear in .9, as in the undisturbed 
motion, and that the third terms are the unknown functions, matching as 
1.91 ~oo with terms 0(8/.9) as .9 ~ 0 in the main part of the shear layer. The 
evolution equation remains nonlinear because of the quadratic term and 
also because the integral across the critical layer will involve the displace­
ment through the solutions for temperature and vorticity. 

The point (~, t) is then another special point, with nonlinearity in the 
external flow as well as within a quasi-equilibrium critical layer. The external 
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flow and the main part of the shear layer would be described here in 
essentially the same way as in Sections 3 and 4 above, whereas the critical­
layer equations would be similar to those of [6, 7], but without the slow 
derivative, and written in terms of a displaced coordinate Y defined by (2.3). 
A detailed study of the equations obtained in this limit, for e = O( 8) and 
8 = 0(Re- 2/ 7

), might be of interest; the associated numerical problem 
should be considerably easier than that of solving the equations in Section 5. 

If instead the disturbance amplitude e is smaller than the overall shear­
layer thickness but of the same order as the thickness of the critical layer, 
then two possibilities arise. A nonlinear critical layer, with relative changes 
in the stream function ,fr near y = 0 that are not small, has thickness 
O( e 1/28), or 0[( eL /Re)1/2], whereas a balance of inertia and diffu­
sion terms for a viscous critical layer gives a thickness 0[(8 2 Re)-1/38], 
or 0(L1/ 6 Re -1/2). Equating the orders of the amplitude and the critical­
layer thickness then gives, respectively, e = O( 8 2) = O(L /Re) and e = 
0(8 1/ 3 Re- 1/ 3) = 0(L1/ 6 Re- 1/ 2); the two estimates are the same when 
8 = O(Re- l / S), or L = 0(Re3/ 5

). An inviscid nonlinear critical layer is 
found if 85 Re -) 00, Le., for L» Re3/ 5, and a viscous critical layer if 
8 5 Re -) 0, i.e., for L« Re3/ 5

• In the former case, then, 

( 6.10) 

and diffusion effects are expected to be absent from the differential equa­
tions describing the critical layer, but still to be present in thin layers 
bounding the cat's eyes. The line (6.10) extends from (~,~) to (1,0). On the 
other hand, the latter case gives 

(6.11) 

and the differential equations for temperature and vorticity contain a 
balance of convection and diffusion terms; as on the line e t = (1- Lt)/2 for 
o < Lt < t, the unknown functions appear in the third terms in the expan­
sions. The line (6.11) extends between (0, i) and (~, ~). It can be seen that 
expressions (6.10) and (6.11) coincide when L = 0(Re3/ 5

) and e = 

0(Re-2/ 5 ), which is the case in [6, 7]. The two lines (6.10) and (6.11) 
represent the first appearance of nonlinearity, when Re3/ 5 « L «Re and 
1 « L «Re3/ 5 respectively: above these lines the amplitude is small enough 
that the disturbances are described by linear theory, but on or below these 
lines the critical layer is nonlinear. 

At least two other line segments also correspond to systems of equations 
that are special in some way. The line e t = (3Lt -1)/2, where e / 8 -) 0 such 
that e = 0[( 8 3 Re) -1], connects the points (i, t) and (~, ~). Along this line 
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the formulation is similar to that of Section 5, but the scale for i is 1/8 
rather than 1/ B. The integrals in (5.25) and (5.26) again contain terms 
representing diffusion and slow variation, but B« 8, so that the external 
flow is described by linear equations and the evolution equation (5.37) for 
Al therefore no longer contains the term proportional to Aix' The line 
B t = 2Lt /3 passes through (~, ~) and (i, t) and intersects B t = (1- Lt) /2 at 
(t, ~). Along the segment between (~, ~) and (t, ~) the formulation differs 
from that of [6, 7], since 8 2 « B « 8 and the critical layer is a quasi-equi­
librium critical layer: the critical-layer equations show a balance of convec­
tion and diffusion, but slow derivatives are absent. 

The special line segments divide the plane into a number of regions 
within which the flow development is described by simplified equations 
obtained by taking suitable intermediate limits. (In the case of an incom­
pressible shear layer, Churilov and Shukman [18] have identified ranges of 
parameters for which nonlinearity or viscosity or slow growth may be 
neglected.) In each of the examples considered above, the growth of small 
disturbances with increasing downstream distance is exponential and there­
fore occurs at a nearly constant value of L, i.e., along a vertical line in the 
B t, Lt plane. In the upper part of the plane, as already noted, the distur­
bances are small enough to be represented in terms of the linear theory. As 
B increases (and B t decreases), one or more of the special lines is crossed 
until the line B = 8 is reached. 

7. Concluding remarks 

The main purpose here has been to suggest a limiting case that incorporates 
effects of nonzero shear-layer thickness into the description of the weakly 
nonlinear instability of a supersonic vortex sheet. This limit is such that 
nonlinearity appears in a critical layer as well as in the external flow. Thus 
the slow changes in amplitude are influenced not only by the wave steepen­
ing in the external flow, as in [2], but also by the changes in pressure and 
transverse velocity across the main part of the shear layer and the velocity 
jump across the critical layer, as in [6, 7]. A set of approximate equations is 
derived for each of the three regions, such that asymptotic matching of the 
solutions should be possible. The description of the external flow reduces to 
that of [2] for the case considered there; effects of shear-layer structure are 
added in the present derivation. The perturbations in the main boundary 
layer are described in essentially the same way as in [7], but nonlinearity in 
the external flow is included here, and the formulation for the critical layer 
is different from that of [7], since terms representing diffusion and slow 
distortion now appear in the second approximation, implying a pair of 
integral conditions, which are coupled with an evolution equation that also 
differs from that of [7]. 
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The equations obtained correspond to specific orders, expressed in terms 
of the Reynolds number based on the spatial period, for the distance from 
the origin of the shear layer and for the amplitude of the small disturbances, 
and would differ if other choices were made. The particular limiting case 
considered here appears to be just one of three special limiting cases. The 
other two correspond to a nonequilibrium viscous nonlinear critical layer, 
but with linear external flow, investigated in [7], or a quasi-equilibrium 
viscous nonlinear critical layer, with nonlinear external flow, that is men­
tioned briefly here. Asymptotic descriptions of the growth of small distur­
bances thus are characterized by different sets of approximate equations, 
depending on the location along the shear layer and on the disturbance 
amplitude. 
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