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A kidney-paired donation (KPD) pool consists of
transplant candidates and their incompatible donors,
along with nondirected donors (NDDs). In amatch run,
exchanges are arranged among pairs in the pool via
cycles, aswell as chains created fromNDDs. A problem
of importance is how to arrange cycles and chains
to optimize the number of transplants. We outline
and examine, through example and by simulation, four
schemes for selecting potential matches in a realistic
model of a KPD system; proposed schemes take
account of probabilities that chosen transplants may
not be completed as well as allowing for contingency
plans when the optimal solution fails. Using data on
candidate/donor pairs and NDDs from the Alliance for
Paired Donation, the simulations extend over 8
match runs, with 30 pairs and 1 NDD added between
each run. Schemes that incorporate uncertainties
and fallbacks into the selection process yield substan-
tially more transplants on average, increasing the
number of transplants by asmuch as 40% compared to
a standard selection scheme. The gain depends on the
degree of uncertainty in the system. The proposed
approaches can be easily implemented and provide
substantial advantages over current KPD matching
algorithms.

Abbreviations: APD, Alliance for Paired Donation; DPD,
domino-paired donation; HLA, human leukocyte anti-
gen; KPD, kidney-paired donation; MFR, match failure
rate; NDD, nondirected donor; NEAD, nonsimultaneous

extended altruistic donor; PFR, pair failure rate; PRA,
panel reactive antibodies
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Introduction

In a kidney-paired donation (KPD) pool, pairs consisting of

kidney transplant candidates and intended but incompatible

donors are matched with other complementary pairs in an

attempt to find combinations such that enrolled candidates

can obtain a transplant (1–4). An exchange cycle (or simply

‘‘cycle’’) involves a sequence of matches where the donor

of one pair donates to the candidate in the next pair along

the cycle. The cycle is completedwhen the donor in the last

pair gives a kidney to the candidate in the first pair (5). The

cycle is defined so that the candidate in each pair is

matched with a donor who is expected to be immunologi-

cally compatible based upon the candidate’s pattern of

donor-specific antibodies. The initial assessment is referred

to as a virtual crossmatch, which needs to be confirmed by

a laboratory crossmatch. Nondirected donors (NDDs), also

referred to as altruistic donors, can initiate chains of

transplants in the KPD pool that end by transplanting a

candidate on the deceased donor waiting list, called

domino-paired donation (DPD) (6–8). Alternatively, a

nonsimultaneous extended altruistic donor (NEAD) chain

segment can be identified in each match run, where the

donor corresponding to the candidate at the end of the

segment, referred to as a bridge donor (9,10), can continue

the chain in a new segment chosen at a later time.

Traditionally, a KPD pool is managed through a sequence of

match runs, whereby at regular intervals, the pool is

assessed and a solution consisting of cycles and chains is

determined such that no pair is simultaneously involved in

more than one cycle or chain. In larger pools, there aremany

cycles and/or chains and consequently many possible

solutions. The preferred selection would ideally be deter-

mined by prespecified objective standards (11), such as

maximizing the total number of potential transplants (12).

Optimization schemes assign a value to each potential

transplant, based upon candidate and/or donor character-

istics. These values are termed utilities and potential

transplants assigned a higher utility receive precedence
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in the optimization. The solution that yields the maximum

total utility of potential transplants is, therefore, the optimal

solution (13). Note that assigning an equal utility of 1 to all

potential transplants results in a solution thatmaximizes the

number of potential transplants.

In cycles, there is a practical limitation that all transplants

should be performed simultaneously in order to avoid the

possibility of a scheduled donor opting to leave the pool

prior to donation. Without this restriction, the possibility

exists that a donor will donate a kidney without the

associated candidate obtaining a transplant. For this reason,

if any one of the transplants in a proposed cycle cannot be

completed, none of the selected transplants in the cycle

can proceed.On the other hand, if one of the transplants in a

proposed chain segment cannot be completed, transplants

prior to the point of failure can still proceed since the issue

of an untransplanted candidatewith no donor does not arise

(6,7,10). Failure to proceed with a proposed transplant

can occur for a number of reasons, including a positive

laboratory crossmatch, a candidate or physician declining

an assigned donor, or donors or candidates having to leave

the pool due to illness or other reasons (14).

Recent studies suggest that optimization schemes that

take into account the probability that selected transplants

fail to proceed to actual transplantation can improve upon

schemes that ignore this uncertainty. These approaches

aim to maximize expected utility and on average increase

the total utility from completed transplants within each

match run (13–15). In addition, one can plan for fallback

options should the optimal solution fail to proceed.

Strategies that include fallback options for each cycle

and chain under evaluation consider all possible sub-

cycles and sub-chains that could be taken as alternatives

in the event that the main cycle or chain fails to

proceed (13). With fallbacks, the expected utility should

take into account the individual expected utilities of each

sub-cycle or sub-chain. An example is given in Figure 1,

which displays a three-way cycle with a possible fallback

to a two-way cycle. This three-way cycle with the fallback

has higher expected utility and would be preferred to a

three-way cycle with no fallback.

It is also possible to extend the idea of fallback options to

more general subsets of pairs and NDD chain segments,

where each subset may have possibilities for cycles and

chains within it. The more cycles and chains that exist

within a subset, the more useful it will be in arranging

fallback options. In our implementation, we consider

subsets of four or fewer pairs and/or NDDs, and seek a

selection of such subsets that maximize the expected

utility, taking account of the fallback options. An example of

such a subset is given in Figure 2.

In these simulations, we evaluate several optimization

schemes with respect to numbers and characteristics of

transplants over the course of several match runs in a

realistic model of KPD program similar to that outlined in

Ashlagi et al (9).

Methods

Data

We used deidentified data on 538 candidate/donor pairs and 55 NDDs

(including bridge donors) from the Alliance for Paired Donation (APD). The

data set includes donor and candidate blood type, major human leukocyte

antigen (HLA) information for the donors, and candidate donor-specific

antibody information and panel reactive antibody (PRA) values. Using this

information on donors and candidates, a virtual crossmatch was performed

for every possible transplant between donor and candidate by assessing

Figure 1: Example of a three-way cycle with a fallback to a

two-way cycle. Pairs are represented by circles and denoted A, B,

and C. An arrow from one pair to a second pair denotes a potential

transplant from the donor in the former to the candidate in the

latter, based on a virtual crossmatch. Should C be unavailable for

transplantation, or either of the potential transplants involving C be

deemed unviable, one could proceed with the transplant between

pairs A and B as a fallback option.

Figure 2: Example of a subset of four pairs, with multiple

fallback options. Pairs are represented by circles and denotedW,

X, Y, Z. An arrow from one pair to a second pair denotes a potential

transplant from the donor in the former to the candidate in the

latter, based on a virtual crossmatch. This subset contains a three-

way cycle between W, X, and Y, and a two-way cycle between Y

and Z. Depending on availability and viability of pairs and matches,

one would proceed with the best available option.

Uncertainties and Fallbacks in KPD
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ABO blood type and HLA antigen-antibody compatibility (at HLA-A, B, Bw,

Cw, DR, DRw, and DQ).

Uncertainties

For each potential transplant, we assign a probability, based on the PRA of

the candidate, that the transplant will be prohibited. These baseline

probabilities, given in Table 1, are taken from Ashlagi et al (9), who remark

that they are empirically determined crossmatch failure rates. Additional

failure rates of 10% and 20% are added to these baseline values in a

sensitivity analysis to reflect potentially higher probabilities of match failure

due to candidate, donor, or physician preferences. We refer to these

probabilities, all of which are summarized in Table 1, as match failure rates

(MFRs). We also consider the probability that each selected pair would be

unable to proceed to transplant, which we took to be 0%, 10%, and 20% in

our simulations; we refer to these probabilities as pair failure rates (PFRs). In

total, we consider nine probability settings with three levels of PFRs for each

of three levels of MFRs.

Optimization schemes

We consider four general optimization schemes that are defined in

Table 2. Calculations are based on those described in Li et al (13). The

simplest scheme, denoted Utility, involves maximizing the utility, defined

as the number of potential transplants of the selected cycles and chains.

This is equivalent to the approach considered by Ashlagi et al (9), and

forms the basis of matching in some existing KPD systems. The second

scheme, denoted Expected Utility, takes both MFR and PFR into account

to find the solution with the largest expected utility. Two additional

optimization schemes, denoted Fallbacks and Extended Fallbacks,

incorporate the idea of contingency planning. The former selects

nonoverlapping cycles and chain and restricts fallbacks to those within

the chosen cycles and chains, whereas the latter considers general

subsets of pairs and NDDs and takes account of fallbacks to sub-cycles

and sub-chains within the chosen subsets.

Match run example

These optimization schemes are illustrated in a relatively simple example in

the Supporting Information that accompanies this article, and the interested

reader is referred there for more detail. To further illustrate themethodology

here, we include a brief example of the solution envisaged in the Extended

Fallbacks scheme; for this example, a comparison to the Fallbacks scheme is

given in the Supporting Information. The example illustrates a match run on

data from April 2014, for 44 pairs and a single NDD in the University of

Michigan KPD pool. The recommendation based on Extended Fallbackswith

subsets of size 4 or less is displayed in Figure 3A. The scheme has chosen

disjoint subsets of four or fewer pairs (and/or NDDs) which include as many

fallback options as possible. Given the solution presented in Figure 3A, we

would check the viability of each potential match, aswell as the availability of

each pair. It is common at this stage that some potential transplants and/or

pairs/NDDs will fail to proceed to transplant for various reasons including

donor or candidate preferences, sickness, or positive lab crossmatch.

Figure 3B shows the potential transplants remaining after a (hypothetical)

assessment of the proposed transplants. We proceed to carry out those

transplants that result in the largest number of candidates receiving a kidney.

In this example, pair 683was unavailable for thematch run, and several other

potential transplants were ruled out. Remaining are the single transplant

from NDD 693 to pair 702, and the two-way cycle between pairs 701 and

642, as well as between 676 and 700.

Simulation description

Simulation parameters and conditions follow those in Ashlagi et al (9),

although we also note the simulations by Gentry et al (8,16) suggesting that

simultaneous DPD chains are preferable to longer NEAD chain segments in

certain situations. We consider DPD chains with a maximum length of 2

(with implicit final donation to the deceased donor list), as well as NEAD

chain segmentswithmaximum allowable chain segment lengths of 3, 4, and

5 (denoted NEAD3, NEAD4, and NEAD5). Two hundred simulations of

evolving KPD pools over eight match runs are performed. Each simulation

implements each of the different optimization schemes (Utility, Expected

Utility, Fallbacks, and Extended Fallbacks) and chain criteria (DPD, NEAD3,

NEAD4, NEAD5). At the beginning of each simulation, 30 incompatible pairs

and 1 NDD for each of the 8 match runs is obtained by sampling with

Table 1: MFR considered in simulations

MFR

PRA level Baseline1 Baselineþ10% Baselineþ20%

75–100 50% 60% 70%

50–74 35% 45% 55%

25–49 20% 30% 40%

0–24 5% 15% 25%

MFR, match failure rates; PRA, panel reactive antibodies.
1Baseline values are taken from Ashlagi et al (9).

Table 2: Description of optimization schemes used in simulations

Utility The optimal solution is the selection of

disjoint cycles and chains with the

highest total utility. Note that, by

setting the utility value for all potential

transplants to 1, we obtain the

selection with the largest number of

transplants. This scheme is

equivalently used by Ashlagi et al (9).

Expected Utility The optimal solution is the selection of

disjoint cycles and chains that yields

the largest expected utility, taking

account of the probabilities that

potential transplants will be confirmed

by laboratory crossmatches and be

viable at the time of transplantation,

and the probabilities that pairs

involved in these transplants will be

available at the time of

transplantation.

Fallbacks The optimal solution is the selection of

disjoint cycles and chains that yields

the maximum total expected utility,

taking into account the fallback

options offered by all sub-cycles and

sub-chains within the selected cycles

and chains.

Extended Fallbacks The optimal solution is the selection of

disjoint subsets of pairs/NDDs that

yield the maximum total expected

utility, taking into account the fallback

options offered by all sub-cycles and

sub-chains within the subsets. The

calculations of expected utility for

each subset proceed analogously to

those used in the Fallbacks scheme

(13,20).

NDDs, nondirected donors.

Bray et al
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replacement from the data, so that each optimization scheme is applied to

the same data.

The simulations described here aim to maximize the number of transplants.

At each match run, the optimal solution is determined based on the

optimization scheme and the chain criterion. After selection, proposed

transplants can fail to proceed, either due to failure on thematch (positive lab

crossmatch or donor/candidate preferences) based on MFR, or if one of the

pairs involved is unable to proceed to transplant, based on PFR.

NEAD chain segments follow the same procedure as in Ashlagi et al (9).

Bridge donors have a renege rate of 1%, representing the rate at which

bridge donors refuse to continue the chain after their associated recipient

receives their transplant. DPD chains end with a final donation to the

deceased donor list, which is included among realized transplants (i.e.

transplants successfully occurring within the simulation) in our results. As in

Ashlagi et al (9), chains which would leave bridge donors with blood type AB

are not allowed. Following completion of each match run, each pair in the

pool has a 2%chance of permanently leaving the pool prior to the nextmatch

run. NDDs and bridge donors remaining at the end of the eighth match run

are recorded as giving rise to one additional transplant, reflecting their

potential to provide further transplants in future match runs, and to obtain

results that are comparable to those of DPD chains. Specific aspects of the

simulation are summarized in Table 3.

The procedure is repeated for each optimization scheme, each chain

criterion, and each of the nine combinations of MFR/PFR. We collect the

number of transplants realized and the characteristics of the associated

recipients (in terms of blood type and PRA) for each policy. We also

summarize the extent to which transplants are accomplished through the

use of cycles or chains. Note that, due to computational complexity, the

optimization scheme denoted Fallbacks has only been simulated for NEAD

chain segments of up to length 4 on each match run (with only 100

iterations performed for the NEAD4 criterion). Extended Fallbacks

considers subsets of size 3 or less, restricting to DPD chain segments

(of length 2), and alternatively, subsets of size 4 or less, restricting to

NEAD chain segments of up to length 3. Simulations were written in Cþþ,

and optimal solutions were selected using the linear programming

software Gurobi 5.6.3 (17).

Results

Transplants and ratio to DPD-Utility
Tables 4 and 5 show, respectively, the number of trans-

plants achieved and the ratio of the number of transplants

achieved compared to the DPD-Utility simulation for each

optimization scheme and chain length. Figure 4 also shows

a selection of the plots corresponding to Table 5 in our high

and low failure rate simulations. Note that in comparing

Extended Fallbacks to other schemes, subsets of size 3 are

compared to DPD chains, and subsets of size 4 are

compared to NEAD chain segments with a maximum

length of 3.

Evaluation of the Utility simulations demonstrates that

maximizing the number of transplants without taking into

account probabilities of failure delivers diminishing returns

Figure 3: (A) Solution for the example match run using Extended

Fallbacks. The solution displays three disjoint subsets of pairs,

represented by white circles, and a single NDD (693) represented

by a gray circle. An arrow from one pair/NDD to another represents

a potential transplant from the donor in the former to the candidate

in the latter, based on a virtual crossmatch. (B) Hypothetical

reduced solution for the Extended Fallbacks scheme after

assessing compatibility and determining availability of pairs. The

dotted circle indicates the unavailability of pair 683 for this match

run, and dotted arrows represent potential transplants that were

deemed unviable, or otherwise removed from consideration.

Bolded arrows represent a choice of transplants resulting from

this reduced solution. In this example, remaining are the single

transplant from NDD 693 to pair 702, and the two-way cycles

between pairs 701 and 642, as well as between 676 and 700. NDD,

nondirected donor.

Table 3: Steps in the simulation procedure for each match run

1 30 pairs and 1 NDD are selected at random with

replacement, and added to the pool.

2 The optimal solution of cycles, chain segments, or

subsets of pairs/NDDs (based on the current

optimization scheme) is obtained using two-way and

three-way cycles, and either DPD chains or NEAD

chain segments.

3 Failure or success of each potential transplant and

selected pair is determined by simulation. Failed

matches are removed from future match runs. Failed

pairs return to the pool for the next match run.

4 For Utility and Expected Utility, if failure occurs

anywhere in a cycle, none of the selected transplants

proceed. If failure occurs in a chain, all the candidates

prior to the point of failure are transplanted. Once

viability of transplants and pairs is determined, the

Fallbacks and Extended Fallbacks schemes may still

contain cycles/chains/subsets with multiple possible

transplant choices. For each of these, a (much

simpler) Utility optimization is applied to select the

transplants within the cycle/chain/subset to

implement.

5 Realized transplants are recorded and corresponding

donors and candidates are removed from the pool.

6 Pairs and bridge donors are removed from the pool

based on attrition and renege rates respectively.

NDD, nondirected donor; DPD, domino-paired donation; NEAD,

nonsimultaneous extended altruistic donor.

Uncertainties and Fallbacks in KPD
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as chain segment length increases past 4. Results for

Utility are qualitatively similar to those reported in Ashlagi

et al (9).

As compared to DPD-Utility, we obtain between 2% and

44% more transplants by using the Extended Fallbacks

scheme. In general, the advantage of Fallbacks and

Extended Fallbacks over Utility increases as the failure

rates increase. Extended Fallbacks outperformed all other

schemes for all maximum chain lengths considered, and

this strategy provided the largest number of transplants in

all simulations.

Transplant distribution
Figure 5 illustrates the distributions of achieved transplants

over the course of our high and low failure rate simulations.

For Utility, the proportion of transplants completed via

chains increases as chain segment length increases.

Expected Utility shows relatively little change in transplant

distribution asmaximumchain segment length ranges from

3 to 5, especially as the probabilities of failure (MFR and

PFR) increase. The analogous result for Fallbacks and

Extended Fallbacks is not clear since to date, time and

memory resources have restricted simulations for the

longer chain segment lengths in these cases.

Figure 4: Ratio of number of transplants for each scheme compared to the DPD Utility scheme. Maximum chain length of two

corresponds to the DPD strategy applied to each optimization scheme. Parenthetical remarks under each panel indicate the values of MFR

and PFR, where ‘‘MFR: BLþ0%’’ refers to Baseline MFR, and ‘‘MFR: BLþ20%’’ refers to Baselineþ20% MFR (see Table 1). DPD,

domino-paired donation; MFR, match failure rate; PFR, pair failure rate.
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Blood type and PRA distributions
The distribution of blood type among transplant recipients is

similar for all schemes and failure rates. Similarly, we do not

observe any differences between schemes in the propor-

tion of candidates of each blood type receiving a transplant

over the course of the match runs.

Figure 6 displays the proportion of patientswithin each PRA

grouping that receive a transplant. We find that a higher

proportion of the Utility transplants are of candidates with

high PRA compared to Expected Utility simulations with no

fallbacks; this is as expected since the Expected Utility

approach introduces bias against higher PRA candidates for

whom selected transplants are less likely to be completed.

When contingency plans are taken into account at the

optimization stage as in Fallbacks and Extended Fallbacks,

however, these biases are reduced. This is an empirical

result that is not easily explained on intuitive grounds. It

appears, however, that incorporating fallback options in the

allocations tends to includemore candidates with high PRA

in the chosen sets since the penalty for their inclusion is

reduced by the presence of fallbacks.

Discussion

In the Utility approach, where no account is taken of

potential failures, long chain segments tend to be selected

as opposed to smaller cycles or chain segments. When the

probability of failure is substantial, long chain segments will

tend to end early resulting in fewer transplants than one

would have obtained with a selection that takes these

probabilities into account. In Figure 5, we see that the

proportion of transplants from chains increases markedly

with chain segment length under the Utility scheme.

Although less dramatic, this increase is also seen in the

other schemes considered.

The primary finding of this work is that there is substantial

advantage for KPD programs from taking into account

possible fallback options at the optimization stage, as in the

Fallbacks and Extended Fallbacks schemes. This confirms

and extends the results of previous studies (13,14,18). An

ad hoc approach would be to select cycles and chains

simply by maximizing utility, but then to look for fallback

options within that selection. We have also simulated this

Figure 5: Transplant distribution charts for each optimization scheme indicating average number of transplants achieved via

cycles, chains, anddonations to thewaiting list. The top (bottom) panel corresponds to simulationswithBaseline (Baselineþ20%)MFR

and 0% (20%) PFR. MFR, match failure rate; PFR, pair failure rate.
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approach; although this offers improvement over a Utility

scheme alone, there remains a substantial advantage to

taking account of contingency or fallback options at the

planning stage.

The probabilities assigned are meant to encompass all

possible failures within a KPD: the MFR represents all

match-specific failures, including the willingness to accept

a proposed match, and the PFR represents the potential

unavailability of a pair. We have modeled a range of

probabilities of failure for the match and the pair in what

might be viewed as a sensitivity study. Ideally, these

probabilities on the match and the pair would be empirically

determined based on experience in KPDs. In the absence

of such data, however, it is still useful to incorporate an

overall level of uncertainty that is more or less reflective

of experience. The values for the MFRs and PFRs we

specify are perhaps low given experience at the APD

and the Michigan KPD programs. If more precise values

for the failure rates were available from data, they could

be incorporatedwithout difficulty. Ignoring uncertainties, as

is done in traditional schemes, is equivalent to assuming

that the failure rates are null and is certainly suboptimal;

including even approximate uncertainties and introducing

fallbacks would be expected to achieve more transplants.

Optimization schemes that take account of the probability

of failure may introduce bias toward potential transplants

that are most likely to move ahead to completion. Thus,

one might expect biases against high PRA candidates and

in favor of lower PRA candidates where the success

probability for the match is higher. Figure 6 examines the

issue of PRA for the optimization schemes considered.

There may be advantage to proactively giving preference to

highly sensitized candidates by assigning additional utility

to a potential transplant when the candidate is highly

sensitized. Evaluating such schemes is an area under

current investigation. All of these methods can be

generalized to allow utility assignments to potential trans-

plants which assign extra value, for example, to high PRA

candidates, O to O transplants or candidates with long

waiting times. Alternatively, one could use utilities that

reflect the likely outcome of the proposed transplant,

such as the probability of 5-year graft survival. We are

Figure 6: Distributions of the proportion of candidates of each PRA level transplanted over the course of the match runs in each

scheme. The top (bottom) panel corresponds to simulations with Baseline (Baselineþ20%) MFR and 0% (20%) PFR. PRA, panel reactive

antibodies; MFR, match failure rate; PFR, pair failure rate.
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investigating such utility schemes in further research,

but the general conclusions that taking uncertainties

and fallbacks into account increases the number of realized

transplants seem to hold for all such utility assignments.

Compatible pairs can also be included into KPD programs,

especiallywhen there ispotential advantage to thecandidate

in the compatible pair (19). Our simulations do not include

such pairs, although their inclusion would not fundamentally

change modeling strategies. In the APD and University of

Michigan KPD experience, compatible pairs tend to be

less likely to participate in an exchange, which would

correspond to a higher MFR, and it is likely that such pairs

would tend to leave the pool early if no suitable match is

obtained. Additional complexities arise in multi-program

setups, where pairs are enrolled and can potentially

participate in several programs. These methods may still

be valuable in a given program, even with interference

from other programs; the interference would tend to

increase the uncertainties as represented by MFR and

PFR, but more work would need to be done to estimate

probabilities under these circumstances. Several assump-

tions in our simulations may not hold for all KPD programs,

depending on protocols. For example, some KPD programs

may turn down entire selected chains that cannot be

completed, instead of allowing them to proceed until a point

of failure. We would expect such a protocol to increase the

desirability of shorter chain segments of only 2 or 3 in a given

match run.

We believe the match runs as described provide an orderly

approach that alleviate the logistical issues associatedwith re-

selecting and then reconstituting the pool whenever an

exchange is found to fail.Althoughquestionsof lengthofchain

are not completely settled, especially for Extended Fallbacks,

it appears fromour results that theremaybe little advantage in

considering chain segments longer than 3. It should be

emphasized,however, that longNEADchainsarestill valuable

as they build up through a series of shorter segments

determined in a strategic manner over several match runs. In

ourExtendedFallbackssimulationwithNEAD-3, thefirstNDD

gives rise to a chain of average length roughly 5.5 (Baseline

MFR,0%PFR) to4.5 (Baselineþ 20%MFR,20%PFR)by the

end of the 8th match run, even though each match run

segment is of size 3 or less (75th percentile ranged from6 to 7

dependingonMFR/PFR;maximumlength ranged from10 [for

20% PFR, Baselineþ10%, and Baselineþ 20% MFR] to 15

[for Baselineþ 10% MFR, 0% PFR])..

The algorithms discussed in this article require extensive

computation, especially for optimization using fallback

options. This might become a problem for large nationwide

pools, where the pool size could be on the order of

thousands (14), as opposed to a few hundred maximum in

these simulations. It should be noted, however, that

implementing these strategies for a single match run, as

opposed to simulations with hundreds of replicates, is a

much simpler problem and feasible for fairly large pools.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article.

Supplemental Methods

Appendix: Illustration of optimization schemes, match run

example revisited.

Table S1: Number of transplants and expected number of

transplants for cycles and chains in the example of Figure

S1, both without and with fallbacks.

Table S2: Optimization schemes and their expected

utilities taking account of fallbacks where appropriate.

Figure S1: An example of a small KPD pool to illustrate
the optimization schemes used. Pairs 1 through 5 are

denoted by white circles; NDD 6 is represented by a gray

circle. An arrow fromone pair/NDD to a second pair denotes

a potential transplant from the former to the latter.

Figure S2: Illustration of the results of the optimization
schemes applied to the KPD pool in Figure S1. The

panels (i), (ii), (iii), and (iv) correspond, respectively, to

the solutions obtained under the Utility, Expected Utility,

Fallbacks, and Extended Fallbacks schemes.

Figure S3: (A) Solution for the example match run from

the main paper using the Fallbacks scheme. The solution

contains two three-way cycles and a chain of length 1,

consisting of pairs, represented by white circles, and a

single NDD (693) represented by a gray circle. An arrow

from one pair/NDD to another represents a potential

transplant from the donor in the former to the candidate

in the latter, based on a virtual crossmatch. (B) Hypothetical

reduced solution for the Fallbacks scheme after assessing

compatibility and determining availability of pairs. The

dotted circle indicates the unavailability of pair 683 for

this match run, and dotted arrows represent potential

transplants deemed unviable, or otherwise removed from

consideration. Bolded arrows represent a choice of trans-

plants resulting from this reduced solution. In this example,

remaining are the single transplant from NDD 693 to pair

702, and the two-way cycle between pairs 701 and 642; no

transplants result from the final (right-most) selected cycle.
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