

i .

Inlin

GEOLOGY AND ECONOMICS

OF THE

CRYSTAL-FERRIS OIL AND GAS FIELD

By F. K. Heller

01

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Michigan June, 1936

CONTENTS

INTROD Lo Ac	OUCTION Catior knowle	N 1 . edgemer	nts	• •	•	•	• •	• •	• •	•••	• • •	• • •	• • •	•	•	• •	1 1 1
GEOLOG To St	Y pograp Rel Dra pratign Dev Mis Pen Per Ple tructu Reg Loc Ori	ohy lief ainage caphy vonian Monro Trave sissip Antri Coldw Lower Napol Michi Baypo Insylva Parma Sagir "Red- sistoce Drift al cin of Theor Movem Solut	oe ferse piase Ma eon sa eon sa bon Bed 	· · · · orfo.lfo. nafhufor.s. · · · · · · · · · · · · · · · · · ·		on to the second	on lar lar lar		ck lll) f	orn			· · · · · · · · · · · · · · · · · · ·			22222335667889999900111112446789
ECONOM P: T:	ICS . roduct Dis Sub Pro Bri Dec ranspo	ion . covery sequen ration ne Dis line (rtatio	posa posa urvo n	 per al es	ati and	ons Ta	bl e		• • • • •		· · · · · · · · · · · · · · · · · · ·		• •	• • • • •			20 20 20 20 21 22 21 22 23

P	age
Refining and Marketing	26
Character of the Oil	26
Straight Run versus Cracking	27
Shortage of Crude	27
Crude Oil Prices	28
Future of the Field	28

•

ILLUSTRATIONS

Plate	1.	Generalized columnar section of the Crystal-Ferris field	Page 2
	2.	Structural Contour Map of Crystal-Ferris field, contours drawn on top of Monroe formation (in pocket)	
	3.	Southwest-Northeast Cross-Section Along Line AA; Plate 2	. 12
	4.	Northwest-Southeast Cross-Section Along Line BB; Plate 2	. 12
Figure	e 1.	Monthly Production Curve for Crystal-Ferris field and state of Michigan	. 22

GEOLOGY AND ECONOMICS OF THE CRYSTAL-FERRIS OIL FIELD

by F. K. Heller

INTRODUCTION

Location.

The Crystal-Ferris oil field is situated in the central part of the lower peninsula of Michigan in northern Crystal and southern Ferris townships, Montcalm County. The producing area lies about twenty-one miles south of the city of Mount Pleasant and one mile northeast of the resort town of Crystal.

Acknowledgements.

The writer is indebted to members of the Department of Geology of the University of Michigan for aid during the preparation of this thesis; to Drs. A. J. Eardley and T.S. Lovering under whose guidance it was prepared; and to Drs. G. M. Ehlers and R. L. Belknap for helpful suggestions. Messrs. Kenneth Gorton, F. R. Frye, and Gerald Eddy of the Michigan State Geological Survey kindly offered the writer access to state well records.

GEOLOGY

Topography

<u>Relief</u>. - The area is one of low relief, surface elevations ranging from about 770 feet to 900 feet above sea level. There is a gentle regional slope from northwest to southeast. The producing area in Crystal township is almost level, averaging approximately 790 feet above sea level, but low hills rise to the north in Ferris township.

<u>Drainage</u>. - The field lies on the divide between Lake Huron and Lake Michigan, the divide crossing the field in a northwest-southeast direction. Drainage to these two lakes is through the Saginaw and Grand river systems, respectively. The northern part of the field is drained by Ferris Creek, a headwater tributary of the Saginaw River system. The southern part is drained by two small creeks of the Grand River system. Duck Lake, the site of several well locations at the southern edge of the field, extends 1 mile northeast-southwest and $\frac{1}{2}$ mile northwest-southeast in sections 10 and 11, Crystal township.

Stratigraphy

There are no outcrops of bed rock in the area, inasmuch as the Paleozoic section is covered entirely by glacial

-2-

PLATE I-A GENERALIZED COLUMNAR SECTION OF THE CRYSTAL-FERRIS FIELD.

BY F. K. HELLER

drift. As in other oil and gas fields of central Michigan, stratigraphic and subsequent structural studies must be conducted entirely on the basis of evidence afforded by well samples, drillers' logs, and scout reports.

Devonian

<u>Monroe formation</u>. - The term Monroe is used only tentatively for the dolomite below the traverse from which the but production has come₁/the age of the producing formation l has not yet been definitely established. Eddy has reported that one well encountered typical Dundee limestone at the

lEddy, G.E., The Geology of the Crystal Field, Paper read before Michigan Academy of Science, March, 1936.

base of the Traverse. Other than this, the known occurrences of the producing formation consist of brown and black dolomite.

The single producing horizon ranges from the base of the Traverse to about 22 feet below. The single pay horizon commonly ranges from 1 to 6 feet in thickness. Edgewater is immediately below, so that wells are usually drilled carefully into the formation just to the "pay" and no deeper. A few wells reporting substantial initial production have proved disappointing because of encroach-

-3-

ment of edgewater and drowning. Others have produced large quantities of brine along with the oil.

In some respects the producing formation is analogous to that at the Vernon pool in Vernon Township, Isabella County about 33 miles north of the Crustal-Ferris field. In both fields the producing formation is chiefly dolomite; oil and water occur near the base of the Traverse; and 2production is spotty. Fitzgerald and Thomas believe

²Fitzgerald, P.E. and Thomas, W.A., <u>The Occurence of</u> <u>Fluorite in the Monroe Formation of the Mt. Pleasant</u> <u>Pool</u>, Papers Mich. Acad. Sci., Vol. XVI, pp. 415-421, 1931.

that the occurrence of fluorite indicates a pronounced unconformity at the base of the Traverse in the Vernon pool and place the producing formation in the Upper Monroe 3(Detroit River). Newcombe states, and shows by an

³Newcomb, R.B., <u>Oil and Gas Fields of Michigan</u>, Geol. Surv. Mich., Pub. 38, Geol. Series 32, p. 166, 1933.

isopach map that oil and water horizon in the Vernon field occur much nearer the base of the Traverse than in other Mount Pleasant fields, where the Dundee limestone is the producing formation. This interval for the productive area of the Vernon pool is about the same as that in the Crystal-Ferris field.

Another consideration which may throw some light on

-4-

the age of the beds is the position of the "black-water" horizon. Few wells in the Crystal-Ferris field have drilled deep enough to reach the top of this horizon but logs of those which have, report it to be 20 to 50 feet below the base of the Traverse. In a study of Gratiot 4 County oil wells, Gorton found that this interval decreased from the eastern to the western part of this

⁴Gorton, Kenneth, Personal Conversation.

countwy, i.e., to the part adjacent to the eastern boundary of Crystal and Ferris townships. The "blackwater" horizon in other Michigan areas is usually below the top of the Monroe. Newcombe states that in most

⁵Newcombe, R. B., op.cit., p. 97.

wells this water horizon has been found 30 to 50 feet below the Detroit River (Upper Monroe) and Dundee break.

While the foregoing evidence may not warrant a positive conclusion, regarding the age of the producing formation, there is probably an important pre-Traverse unconformity.

<u>Traverse formation</u>. - At the base of the formation is the so-called Bello shale, considered by some a member of the Traverse "group." This subdivision is not recognized by the Committee on geologic names of the

⁶ Wilmarth, M. Grace, Tentative correlation of the named units of Michigan (June 1, 1929).

U. S. Geological Survey, however, the Traverse formation being considered by them a single lithologic unit.

This formation is distinguished from the overlying Antrim black and brown shales by the contrast with the limestone beds of the Traverse. The line of separation is not a sharp one, however, since there are beds of shale near the top of the Traverse. In the Crystal-Ferris field, the thickness of the Traverse averages about 475 feet as contrasted with 600 feet in the Mount Pleasant fields to the northeast. A small amount of petroleum is produced from the formation. Crude obtained from the Traverse is notable in that it is free from sulphur.

Mississippian System

Antrim shale. - The contact between the Coldwater formation and Antrim shale can be discerned by means of two criteria; (1) the presence of red dolomite and shale near the base of the Coldwater and (2) the distinct darkening of color below the contact. The color of the Antrim is both black and dark brown. The latter color is probably due to spore cases of Sporangites huronensis.

-6-

7Ehlers, G.W., Personal Conversation.

Heretofore, the Antrim has been classed as both Devonian and Mississippian, because fossils have been found characteristic of these separate systems in the upper and lower part of the peninsula. G.W. Ehlers' favors restriction of the term Antrim to the Mississippian part of the formation. 7a Newcombe, however, does not divide the formation placing

^{7a}Newcombe, R. B., Op.cit., p. 22.

the lower part in the Devonian.

<u>Coldwater formation</u>. - This consists chiefly of about 1050 feet of gray shale that retains remarkably constant lithologic characteristics throughout. In the Gulf-Barger well No. 1, (Appendix), the upper 42 feet was of soft shale, and the underlying 1014 feet of strata of hard shale. There are also several thin beds of brown dolomite, and some pyrite. Near the base of the formation is a horizon of red dolomite and shale.

<u>Absence of Sunbury, Berea, and Bedford formations</u>. -These formations, commonly reported from other areasian central Michigan appear to be absent in the Crystal-Ferris field. Lower Marshall "Red-Rock." - The red-colored sandstones and shales of this formation form a distinct lothologic unit, but the demarcation from the Upper Marshall is not usually a very clean cut one. In general, at this contact, where the hue of the rock becomes a pronounced red throughout, the formation may be considered lower Marshall. Thickness of the formation is about 150 feet.

<u>Napoleon (Upper Marshall) formation</u>. - At the top of the Marshall formation there is probably a slight unconformity. Thomas and Kirkham have presented the evidence for this break. Below this the Napoleon formation is com-

⁸Thomas, W.A., <u>A Study of the Marshall Formation in</u> <u>Michigan</u>, Michigan Academy of Science Papers, Vol. XIV, pp. 487-498, 1930.

⁹Kirkham, Virgil R.D., <u>Unconformity at the top of the</u> Marshall Formation in Michigan, (Abstract) Geol. Soc. America Bull, Vol. 43, pp. 137-138, 1931.

monly a sandstone, white, gray, and brown in color. Near the base of the formation in the Crystal-Ferris Field, brown and pink colors predominate. Similar occurrences in the Mount Pleasant area have been explained by 10 Newcombe as the result of reworking of Lower Marshall

10Newcombe, R. B., <u>Oil and Gas Fields of Michigan</u>, Geol. Surv. Mich., Pub. 38, Geol. Series, 32, p. 160, 1930. "Red-Rock" and its mixing with the other source material of the Napoleon formation. The formation is about 100 feet thick.

<u>Michigan formation</u>. - The Michigan formation is usually set off sharply from the overlying Bayport beds. It is commonly composed of gray shale and gypsum with some anhydrite, and brown dolomite. Near the base of the formation is the so-called Michigan "Stray" sand, which as in other fields of Michigan is the chief gas producing horizon. This sand is very similar lithologically to the underlying Marshall sandstone. Thickness of the whole formation is about 285 feet.

<u>Bayport limestone</u>. - The Bayport formation probably underlies disconformably the Pennsylvanian strata. It consists of limestone, dolomite, black and gray shale, and white sandstone. Its thickness is variable but averages about 40 feet.

Pennsylvanian System

<u>Parma sandstone</u>. - Where separable from the Saginaw, the Parma is usually composed of white sandstone. Its thickness in the Crystal-Ferris Field varies greatly but commonly is about 20 feet.

<u>Saginaw formation</u>. - The Saginaw is distinctly separable from the overlying rocks in the Crystal-Ferris Field

-9-

but cannot always be differentiated from the underlying Parma formation. It consists of interbedded white sandstone, black, gray, and blue shale, and dolomite. The thickness of the Saginaw averages about 300 feet.

Permo-Carboniferous

"<u>Red-Beds</u>." - The presence of the "Red-Beds" in the field has been inferred from drillers' logs which report red sand and shale about 30 feet in thickness at the base of the drift. The most recent geologic map of 11 Michigan, apparently using this interpretation, places

llMartin, H., Shown before Michigan Academy of Science, March, 1936.

the boundary between the "Red-Beds" and underlying Pennsylvanian strata along the western and northern edge of the field. The interpretation, however, should be regarded as tentative. It is uncertain whether the reported "Red-Beds" are Permo-Carboniferous or the lower 12 part of Pleistocene drift.

¹²In Mich. Geol. Surv., Well Records, reported sediments of red color have been correlated with both the lower drift and the Permo-Carboniferous.

Pleistocene

Drift. - The surficial deposits of the area are glacial till and outwash gravels, formed by the Saginaw lobe 13 of the Laboradorian ice sheet. Well samples are not

¹³Leverett, Frank, Map of the Surface Formations of the Southern Peninsula of Michigan, U.S. Geol. Survey and Mich. Geol. Survey Pub., 1924

usually taken of glacial drift but some of the drillers' logs report clay, shale, sand, gravel, and boulders. The thickness of the drift varies but averages about 350 feet for the field.

Structure

<u>Regional</u>.- The lower peninsula of Michigan is a structural basin, consisting of Pre-Cambrian rocks overlain in normal succession by the Paleozoic strata. The latter dip from all sides toward the center of the peninsula.

The Crystal-Ferris field lies about 28 miles south of the deepest part of the Michigan Basin. Wells drilled north of the field show that there is a regional dip to the north of about 25 feet per mile.

A northwest-southeast anticlinal high connecting the Crystal-Ferris field and the Millbrook-Hinton-Belvi-

PLATE 4-CROSS-SECTION ALONG BB', PLATE 2

00 200 300

F.K. HELLER

ER

Monroe. Two of these, at or near wells No. 2745 (Pure-Preston No. 4) and No. 2426 are reflected directly above on higher horizons. The upfold at well No. 2745 which as shown by Plate II is at or near the top of the closure on the anticline, is reflected on structures of all formations shown, namely, the Traverse, Marshall "Red-Rock," and Upper-Marshall formations. The high at well No. 2426 is reflected on the Marshall "Red-Rock" and Upper Marshall formations. The third high which has highest known elevations at wells No. 2469 and No. 3006 is not reflected above on the structure of the formations shown.

Plate IV is a cross-section along trace BB', Plate II. The high of the highest known part of Monroe structure, well No. 2745, through which cross-sections AA' and BB' intersect, is reflected directly above by a broad fold upon the Marshall "Red-Rock" and Upper Marshall formations.

A study of the relationship of structure to production shows that the two are directly connected. The highest initial production in the field, estimated at 8,500 barrels per day, has come from the well that drilled into the highest known point on structure. This well is the Pure-Preston No. 4, S.W., S.E., N.E., section 3, Crystal township (Plate II).

An average of the initial production obtained from all wells at each contour interval, shows that the average

-13-

initial production progressively decreased toward the lower wells on the structure. Also it has been found that there is a relationship between the smaller highs and lows and production, the former being more and the latter less productive than the immediately surrounding areas.

In section 26, Ferris township, there is some production from what appears to be a northward plunging nose (Plate II).

Extent of Field. - At the close of December 1935 there were 930 producing acres (Table 1, p. 23). This area is confined to sections 1, 2, 3, 4, 10 an 11 Crystal township and sections 26, 34, 35, and 36, Ferris township.

There are, at present, some potential producing areas as yet undrilled. A large part of the area under Duck Lake should give some production. The western part of section 3 and eastern part of section 4, Crystal township, is also an area that would probably yield some oil.

In addition, there is a possibility of there being extensions from the chief structure, as yet not outlined, by drilling.

<u>Unconformities</u>. - The unconformities present in the Crystal Ferris field are those between the Monroe and Traverse, Traverse and Antrim, Antrim and Coldwater, Napoleon and Michigan, and Bayport and Parma (or Saginaw).

The Monroe and Traverse unconformity has been discussed and the evidence reviewed (pp. 4,5).

Evidence for the Traverse-Antrim unconformity has 14 been given by Kirkham who came to the conclusion that

14. Kirkham, V.R.D., Unconformity at the top of the Traverse Formation in Michigan; (Abstract). Geol. Soc. American Bull. Vol. 43, pp. 136-137 (1931).

where the Antrim formation was thicker the Traverse was thinner and vice-versa. In all cases, however, the total thickness of the two formations was about the same.

A Berea and Coldwater Break is found in western Michigan.¹⁵ This appears to be replaced in the Crystal-Ferris field by an Antrim and Coldwater Break.

¹⁵Newcombe, R.B., op. cit., p. 99.

The break between the Upper Marshall and Michigan 16 17 formations has been reviewed by Thomas and Kirkham.

> 16Thomas, W.A., op. cit., p. 8. 17 Kirkham, Virgil R.D., op. cit., p. 8.

Thomas also found evidence for an unconformity within the Upper Marshall. The Bayport and Parma (or Saginaw) unconformity is the break found in many parts of the country between the Mississippian and Pennsylvanian Systems.

Origin of Structures. - The origin of the Crystal-Ferris structure is probably closely related to the formation of the Michigan Basin. The latter probably originated in Pre-Cambrian time¹⁸ and during most of its

18Pirtle, G.W., Michigan Structural Basin and its Relationship to the Surrounding Areas, pp. 145-153, A.A. P.G. Bull., Feb. 1932.

Newcombe, R.B., op. cit., pp. 101-112.

structural evolution has been elongated northwest-south-It has many of the characteristics of a geosynclinal east. area. Postive masses surrounding the basin include the Canadian shield on the northeast, the two northward extending prongs of the Cincinnati Arch from southeast to southwest, and the Wisconsin Arch on the west. Negative areas surrounding the area were probably connected at various period during its history with the seas of the Michigan Basin. These areas include the Appalachian geosyncline on the southeast, the Logansport sag and Indiana and Illinois coal basin on the southwest, and the Lake Superior geosyncline to the northwest. An extended discussion of the origin of the Michigan Basin

cannot be given here, but the theories of the origin of the folds within the basin will be reviewed briefly.

Theory of Differential Compaction. - Prior to the intensive drilling for oil in the Michigan Basin, it was thought that the dominant folds of the lower peninsula were elongated with and plunging toward the center of the basin. It was considered that these folds were formed during the subsidence of the basin due to differential compaction.

Characteristics of this type of fold include (1) thinning of compacted strata over the crest and thickening off of the flank of anticlines, and (2)/progressive decrease of dip above the irregularities of bed rock over which compaction occurs. The first characteristic is found in folds of the Michigan Basin: In the Crystal-Ferris field it was found that, in general, the Traverse formation thickened off structure. The second characteristic would seem to indicate that if the compaction occurred over an irregular Pre-Cambrian rock surface, folding would have to be the result of deflection that would be effective through several thousand feet of sediments. If folding occurred in this manner, their dips would be gentle.

Theory of Horizontal Compression. - Regional

-17-

diastroplasm, resulting in the transmission of horizontal 19 forces has been suggested as a factor causing folds within

19Pirtle, G.W., op. cit., p. 153.

the Michigan Basin. Simple horizontal compression does not seem in itself to be a tenable explanation. Folds thus formed are (1) elongated at right angles to the direction of compressive stresses and (2) have high dips. There is some indication of an elongation of folds in the Michigan Basin in a northwest-southeast direction. However, folds of high dip are extremely uncommon in the area.

Movements in Pre-Cambrian Rocks. - In Pre-Cambrian time it is probable that the Michigan Basin was elongated northwest-southeast, parallel to a Wisconsin mountain 20 range to the west. It seems likely that predominate

²⁰Pirtle, G.W., ibid., p. 153.

folds and faults were oriented parallel to this direction of elongation. These folds and faults were an initial line of weakness. After the burial of these folds and faults, subsequent movements along the old lines of weakness may have resulted in the deflection of overlying sediments.

-18-

21 Solution theory. - Newcombe has suggested that the

²¹Newcombe, R.B., op. cit., pp. 116, 118, 119.

dissolving of beds of salt, gypsum and anhydrite, may have resulted in faulting and folding of overlying beds. However, definite evidence for or against this theory has not been found in the Michigan Basin.

In each of the foregoing theories, only one factor was stressed as a possible cause of folding in the Michigan Basin. The writer is of the opinion that the most tenable explanation may not be found in any one theory, but will be developed from a combination of theories.

-19-

ECONOMICS

Production

<u>Discovery</u>. - The Crystal Ferris field was discovered March 29, 1935 by the Leonard-Durbin No. 1, located NW, NW, NE, section 11, Crystal township. The well was a wildcat, being the first drilled for oil in this township. Before the discovery the only oil production from Montcalm county had been about 12 miles northwest in Home township. Here three wells had been producing from the Traverse formation. During the previous summer two wells had been drilled for oil in northern Ferris township in sections 11 and 16, six miles north of the discovery. Both had been dry holes.

<u>Subsequent Operations</u>. - Initial production of the Leonard-Durbin amounted to about 3600 barrels per day. Immediately there was a rush for leases, and drilling rigs were erected at a rapid pace. A number of wells were drilling in the area before the second well was completed. The latter was the Eastern Gulf-Barger no. 1 brought in May 24, 1935. The well flowed 55 barrels in the first 35 minutes, but this was followed by encroachment of water. This was the first definite indication of the thinness of the "pay" horizon and proximity of the water beneath. Since that date care has been exercised in order not to drill too far into the "pay."

The first trend of development was to the northwest extending the field into Ferris township. The finding of oil by the Strange and Fortney-Rockelman Lott No. 1, NW, SW, SE, Section 10, on their location southeast of Duck Lake, has resulted in an extension to the south. This includes one producing well and several locations in Duck Lake. A number of wells have reported several thousand barrels initial production. Pure-Preston No. 4, NW, SE, NE, Section 3, Crystal Township has reported the highest, viz., 8,500 barrels estimated.

Proration. - Proration did not become effective until 22 the middle of 1935. The percentage of allowable production

²²Wiedeman, A.J., Umpire, Michigan Oil Producers Committee, Written Communication.

varied each month depending upon market conditions. The percentage was based upon potential production as determined by open flow for a limited number of hours. However, the wells were pinched in for only a few months.

<u>Brine Disposal</u>. - The large amount of brine which comes out with the oil provides a problem in the matter of its disposal. Pits have been excavated for this purpose but are, of course, not fully satisfactory. Plans are

-21-

now being perfected for returning waste to sub-strata 23 which could readily absorb it. The Parma and Monroe are two horizons which may be used for this purpose. In the case of the former, brine waste could be let down

²³Weideman, A.J., Umpire, Michigan Oil Producers Committee, Written Communication.

between casing, while to the latter it could be let down through wells at the border of the field where edgewater is present.

<u>Decline Curves and Table</u>. - Figure 1 shows a production curve for the field together with one for the state as a whole from which the marked influence of the field on the trend of Michigan's production may be noted.

Table I showing detail and figures of production for the field was obtained through the courtesty of Mr. F. R. Frye, petroleum engineer of the Michigan Geological Survey. From the table it may be noted that at the close of March, 1935, 4,535,861 barrels of oil had been produced from the Crystal-Ferris field. Monthly production advanced steadily from the time of the discovery until October, 1935. During the latter month, a flush production of 747,936 barrels per month was reached. Since then there has been a steady decline in monthly yields. In March, 1936, 218,155 barrels were produced,

Figure I - Chart Showing Monthly Oil Production Curve of Michigan and the Crystal-Ferris Field.

approximately 29% of the October, 1935 production.

Date	Monthly Produc- tion (Barrels	Cumulative Production (Barrels)	No. of Wells	Daily Ave. Produc- tion (Bar- rels)	Prod. Per Well (Barrels)	Prod. Ac.	Yield Per Prod. Acre (Bar- rels)
1935							
Mar.)	123,343	123,343	1	3,628	123,343	10	12,334
May June Jul. Aug. Sept. Oct. Nov. Dec.	130,601 208,936 282,573 397,368 547,716 747,936 632,692 534,099	253,944 462,880 745,453 1,142,821 1,690,537 2,438,473 3,071,165 3,605,264	4 6 17 28 47 65 79 93	4,213 6,964 9,115 12,818 18,257 24,127 21,089 17,226	32,850 34,821 16,622 14,191 11,653 11,686 8,008 5,743	40 60 170 280 470 650 790 930	6,348 7,715 4,385 4,081 3,509 3,751 3,887 3,876
1936 Jan. Feb. Mar.	414,242 298,200 * 218.155	4, 019, 506 4,317,706 4.535.861	108 112	13,363 10,283 2,003	3,835 2,663		

TABLE I.

*Obtained from Mich. State Tax Commission.

Transportation²⁴

Crude is shipped from the field by tank trucks, pipe lines, and railroad tank cars. At the time of the discovery trucking was the only available means of moving the crude to refinery centers. A number of tank trucks were then

²⁴A review, chiefly from Pipe Line News and Arcitles by P.W. Elliott, Michigan Correspondent, Oil and Gas Journal, April 4, 1935 to May 7, 1936.

used for this purpose in the emergency brought on by the first production of the Leonard-Durbin no. 1. This method of movement was a temporary one, however, and has since been replaced almost altogether by pipe lines, supplemented to some extent by railroad tank cars.

Pure Transportation Co., a subsidiary of Pure Oil Co., and largest crude transporting company in Michigan, is the owner of two pipe lines from the field. One of these is a 4-inch line extending 9 miles north to loading racks on the Pere Marquette Railroad near the village of Vestabury. The same company owns a 4-inch line running due south 7 miles to Carson City on the Grand Trunk Railroad. This line which was the first to be laid to this railroad, made possible a one-line railway haul to the Old Dutch Refinery Company at Muskegon.

Simrall Pipe Line Co., which is the second largest crude transporting company in Michigan, owns and has interest in the most extensive system of pipe lines serving the field. The largest of these is owned with the Standard Oil Co. of Ohio, each company having a 50 percent interest in the line. This is a 140 mile, 8-inch, welded line extending from the field to Toledo, Ohio. The dhief outlet for this line is the refining plant of Standard Oil Company of Ohio. The present capacity of this line is about 100,000 barrels per day although this probably can be

-24-

increased if necessary. These companies have on the field two 35,000 barrel storage tanks and a station with two pumping engines.

In addition Simrall owns a 9-mile, 4-inch line, extending north to loading racks at Riverdale on the Pere Marquette Railroad, this line offering about the same facilities as Pure Transportation Co.'s line to the same railroad. Another line in which Simrall has sole ownership is a 6-inch line connecting the field with the Roosevelt Refinery at Mount Pleasant.

A 6-inch line of the Wolverine Pipe Line Co., follows the Montcalm-Gratiot County line, along the eastern edge of Crystal township, to Carson City. Part of the oil transported on this line is refined by Crystal Refining Co. of Carson City, and part is shipped to Muskegon. Still another line has been laid 8 miles south to Butter nut on the Grand Trunk Railroad west of Carson City.

Mid-West Refinery Co. is the owner of a lo-mile, 4-inch line supplying its plant at Alma directly from the field. The same company has a gas line from the field, gas being used as fuel at the refinery.

A 4-inch line, having a capacity of 6000 to 8000 barrels per day, has been constructed by the McClanahan Pipe Line Co. from the field to the McClanahan Refinery

-25-

at St. Louis, about 20 miles distant.

Refining and Marketing.

Most of the refining of Crystal-Ferris crude is done at Toledo, Ohio and at a number of cities and towns in Michigan. The latter includes Naph-Sol and Old Dutch Refining Companies, of Muskegon, McClanahan Refineries, Inc., St. Louis, Roosevelt Refining Co. of Mount Pleasant, Mid-West Refining Co. of Alma and others including many small independent refineries.

<u>Character of the Oil</u>. - Crystal-Ferris crude compares favorably with other Michigan crudes but not with mid-continent oils, which have a higher octane rating. It has typically a greenish cast. Following are the results reported from a series of tests upon this crude: Gravity

 25 Conine, R.C., Outlook for Michigan Refineries is a Question of Cracking, Oil and Gas Journal, June 20, 1935.

42.4 degrees A.P.I.; flash below room temperature; pour, below -35; B.S. & W. O.4 per cent; viscosity at 70 degrees F., 40 seconds; sulphur 0.52 per cent; water 0.4 per cent.

Straight Run versus Cracking. - Most Michigan Refineries have "straight-run" equipment, exceptions being Naph-Sol and Old Dutch Companies of Muskegon which have cracking equipment. It is doubtful if many of the smaller independent refineries could profitably support installation of cracking units. As has been pointed out the refineries which have skimming units must depend in a large measure on production of heavy lubricating stock for retail markets. The "straight-run" Michigan gasoline with its low octane rating cannot compete on an equal basis with that from mid-continent oils having a much higher anti-knock value. Dubbs engineers are quoted as stating that maximum octane values can be obtained foom Michigan oil if cracking is done on a two coil basis, one for the "straight-run" and 26 product, and one for the remainder of the crude.

26Ibid.

Shortage of Crude. - Another problem, namely that of crude shortage, is being faced by the smaller independent refineries of the state. This is due in part to (1) declining production and (2) new crude markets outside of the state. Larger refineries having their own private source of supply do not have this factor to contend with. <u>Crude Oil Prices</u>.- At the time when the Leonard Durbin No. 1 was brought in, the crude was bought at about \$1.02 per barrel. This has since been increased, the latest price quoted for Crystal-Ferris crudes by Pure Oil Company and Simrall Corporation being \$1.32 per barrel.²⁷ This is

²⁷011 and Gas Journal, p. 90, May 7, 1936.

somewhat higher than prices paid, for crude in most other areas, probably the result of demand by refiners. Michigan retail gasoline, as pointed out, is handicapped in the open market by its low octane rating.

Future of the Field.

The Crystal-Ferris field has passed the period of flush production and is now in the period of declining yields. It has certain producing conditions which indicate that it will not be a long-lived field. Perhaps the primary factor which will determine this is the thinness of the "pay" horizon. There is no lower horizon which may be considered a potential future source of oil. The large amount of brine produced with the oil is in itself an indication that the present magnitude cannot be maintained. The cumulative production, however, compared to that of other Michigan oil fields is already sufficient to give it a position of one of the state's major fields.

APPENDIX

Crystal	(Montcalm)
0-3000-	

Gulf Refining Company

Permit #2395

Geo. Barger #1	I	Permit #2395
Location: SW, SW, SE, section2, T.10N., R. 330 feet from S line and 330 fee quarter section.	.5₩. et from W lir	ne of
Elevation: 787 feet above sea level.		
Record by F. K. Heller from driller's log*	and samples.	,
Commenced: 4/15/35. Completed: 5/24/35.	Initial Pro 55 bbls. then sto went to	oduction: in 35 min. opped and water.
	Thickness (Feet)	Depth (Feet)
<pre>Pleistocene Drift: *Clay *Sand *Clay *Sand *Gravel; Clay *Gravel; Sand *Clay *Gravel; Sand *Clay *Gravel; Sand Pennsylvanian: Saginaw and Parma Formations (undivided) *Shale, dark *Sandstone *Sandstone *Sandstone *Sandstone *Shale, gray Sandstone, white, black shale, Pyrite No sample Shale, grayish-blue Sandstone, white, brown dolomite Limestone, black and blue shale</pre>	$ \begin{array}{c} 20\\ 20\\ 10\\ 15\\ 20\\ 115\\ 10\\ 140 \end{array} $ i: 109 51 10 24 9 32 and 40	20 40 50 65 200 250 210 350 450 25 44 555 55 55 55 55 55 55 55 55 55 55 5
Mississippian: Bayport Formation: Dolomite, brown white sandstone, Pyrite Sandstone, white, calcarious Sandstone, white, limestone Dolomite, brown, white, sandstone Dolomite, brown, gray Dolomite, brown	14 8 18 13 9 2	639 647 665 678 687 689

Page 2 Gulf Refining Co. Geo. Barger #1

Geo. Darger #1	Th ickness (Feet)	Depth (Feet)
Bayport Formation (cont'd): Sandstone, brown limestone Sandstone, white, pyrite Sandstone, white, brown limestone Limestone Limestone, limestone Limestone, brown Limestone, brown	8 4 6 6 7 7 15	697 703 709 715 721 728 735 750
Michigan Formation: Shale. gray. gypsum, dolomite	260	1010
Shale, gray, gypsum, sandstone Pyrite	10	1020
Napoleon (Upper Marshall)Formation: Sandstone, white, gray shale, Dolomite, gypsum, pyrite Sandstone, white Sandstone, white Sandstone, brown, white Sandstone, white, brown, micaceous	10 26 60 9 10	1030 1056 1116 1125 1135
Lower Marshall (Red-Rock) Formation: *Red rock Sandstone, white, micaceous *Red rock Sandstone, red, micaceous Sandstone, brown, black shale Dolomite, gray, gray shale Sandstone, red, micaceous, gray shale	21 9 10 21 9 15 10	1156 1165 1175 1196 1205 1215 1225
Coldwater Formation: Shale, gray, soft Shale, gray, brown dolomite, pyrite Shale, gray red dolomite	42 993 21	1267 2260 2281
Antrim Formation: Shale, black, brown Shale, black	404 15	2685 2699
Devonian: Traverse Formation: Shale, bluish-gray brown limestone *Shale, brown Shale, gray, brown limestone, dolomit Limestone, brown, gray shale Limestone, brown Limestone, brown, gray shale Limestone, brown	14 7 53 51 7 23	2713 2720 2773 2824 2831 2836 2859

Page 3 Gulf Refining Co. Geo. Barger #1		Thickness (Feet)	Depth (Feet)
Traverse Formation (cont'd): *Limestone Limestone, brown, gray *Limestone, brown, gray Limestone, brown, gray Shale, gray, limestone Limestone, gray shale *Limestone, gray shale Shale, gray Shale, gray Shale, gray, limestone	shale	10 98 10 25 18 13 39 10 41 42 7	2869 2980 3005 3023 3075 3085 3126 3168 3178
Monroe (?) Formation: Dolomite, brown, gray *Limestone *Pay-3185 *Gas increase	and salt water	21 2 3183 - 86	3199 3201

Total Depth 3201

Crystal Township (Montcalm County)

Fred W. Turner

McConkey #1

Permit #2409

Location: NE, SE, SW, section 10, T. 10N, R.5W. 990 feet from the south line and 725 feet from the east line of quarter section.

Elevation: 792 feet above sea level.

Recorded by F.K. Heller from dtiller's log and samples.

Casing Record: 10" <u>389</u>; 8-1/4" <u>762</u>; 6-5/8" <u>1250</u>', 5-3/16" <u>3145'</u>.

Commenced:	4/30/35	Completed:	6/11/35	Initial Production
) - •			Dry Hole
			Р.	& A. 6/29/35

No record	Thickness (feet) O	Depth (feet) 700
Mississippian:		
Bayport Formation: Dolomite, limestone, gray, white Sandstone white gray and white	9 10	710
limestone	10	731
Sandstone, white, gray and brown Dolomite, pyrite No sample Sondatono white brown	10 9	741 750
Dolomite, pyrite No sample	12	750 7 62
Michigan Formation: *Shale, green *Shale, grey *Shale, dark Gypsum, gray shale Shale, gray, gypsum, dolomite *Shale, dark Gypsum, gray shale, dolomite No sample Gypsum, gray shale, dolomite Gypsum, gray shale, dolomite No sample	13 35 48 7 10 15 10 7 9 17	775 810 855 865 8750 900 914 923 940

Page 2 Crystal, Montcalm Fred W. Turner McConkey

Tr	nickness (feet)	Dep th (feet)
Dolomite, gypsum, gray shale Gypsum, white, dolomite, gray sha Dolomite, gypsum Dolomite, gray, dolomite, gypsum Shale, gray, dolomite, gypsum No sample Shale, gray, dolomite No sample	10 ale 8 9 18 7 15	950 958 966 975 993 1000 1000 1015
Dolomite, gypsum, gray Shale, pyrite #Shells"	19	1015 1034
Napoleon (Upper Marshall) Formation: *Sandstone (water 1055') Sandstone, white Sandstone, white Sandstone, white Sandstone, white No sample Sandstone, white, brown Sandstone, white, brown	28 6 78 8 29 51	1062 1068 1075 1083 1091 1120 1125 1126
Lower Marshall Formation: Sandstone, red micaceous *"Red-Rock" Sandstone, red, micaceous Sandstone, red, micaceous Sandstone, red, micaceous	2 17 5 7 6	1128 1145 1150 1157 1163
Sanastone, white, red, micaceous, Gray shale Shale, gray, micaceous sandstone Shale, gray, pyrite Sandstone, red, gray shale *Shale, blue	8 6 10 21 47	1171 1177 1187 1208 1255

#24**0**9

Page 3 Crystal, Montcalm Frod W. Turner	#2	#2409		
McConkey	Thickness (feet)	Depth (feet)		
*Shale, dark *Grit"	495 8	1750 2287		
Antrim Formation: *Shale, black Shale, black, pyrite No sample	313 60	26 00 2600 266 0		
Devonian:				
Traverse Formation: Shale, gray, blue, pyrite No sample Shale, gray, blue, pyrite No sample Shale, gray, dolomite No sample Limestone, gray, brown, gray shale No sample Limestone, gray, gray shale, pyrite No sample Limestone, white, gray, brown, pyri No sample Limestone, white, gray, brown	20 30 5 35 30 20 te 41 8 20 ¹	2660 2680 2710 2710 2715 2715 2750 2750 2750 2750 2750 2750 2750 275		
No sample Shale, bluish-gray Shale, bluish-gray Shale, bluish-gray No sample Shale, gray No sample	10 7 9 5 9 7	3153 3163 3170 3179 3184 3193 3200		
Monroe (?) Formation: Dolomite, brown Dolomite, brown Dolomite, brown	4 12 4	3204 3216 3220		

Ferris (Montcalm)

E. J. Fulford #1 Daily Crude Oil Company	Per	mit #2976	
Location: SW, NW, SW, section 36, T.11N., I from the north line of quarter se from west line of quarter section	R.5W., 990 f ection and 3 n.	eet 30 feet	
Elevation: 809 feet above sea level.			
Record by F. K. Heller from incomplete set of samples, and state drilling record (driller's log destroyed by fire).			
Commenced: 12/28/35. Completed: 2/25/36.	Initial Pro 30 bbls. Acid, 40	duction: After 00 bbls.	
	Thickness (Feet)	Depth (Feet)	
No record Mississippian: Michigan Formation:	0	915	
Shale, gray, brown dolomite, Gypsum, pyrite No sample	5 5	92 0 925	
Gypsum, pyrite No sample	10 84	935 1019	
Shale, gray, gypsum, gray (Micaceous) sandstone	క	1027	
Gray (Micaceous) sandstone No sample	8 7	1035 1042	
Napoleon (Upper Marshall) Formation: Sandstone, white, fine No sample Sandstone, white, fine No sample	8 35 5 80	1050 1085 1090 1170	
Lower Marshall Formation: Sandstone, red, fine Sandstone, red, fine Shale, red	10 5 7	1180 1185 1192	
Shale, gray, sandstone, gypsum, Dolomite Shale, red, gray No sample Shale, gray	11 8 4 5	1203 1211 1215 1220	
Sandstone, white, Micaceous, gray shale, pyrite	8	1228	

Page 2 Daily Crude Oil Co. E. J. Fulford #1

	Thickness (Feet)	Depth (Feet)
Coldwater Formation:		
Dolomite, gray, brown,	_	
Micaceous, fossiliferous	7	1235
Dolomite, gray, brown,	15	1250
Sandy No cample	19	1256
Sandstone white, fine.	~	10,00
Grav shale. gypsum	7	1263
No sample	2	1265
Dolomite, gray, micaceous	_	
Gray, shale, pyrite	5	1270
Shale, gray, soft	ž	12/5
No sample	0	1201
Snale, gray, solu	10	1290
NO Sample Shale gray soft	5	1305
No sample	895	2200
Shale, gray, brown dolomite	13	2213
Shale, gray, brown dolomite	10	2223
Shale, gray, brown dolomite	6	2229
Shale, gray, brown dolomite	_5	2234
Shale, gray, brown dolomite	14	2248
Shale, gray, brown dolomite	20	2255
Shale gray brown and red dolomite	9	2271
Share, gray, brown and roa doromite		
Antrim Formation:	•	0000
Shale, black	110	2280
No sample Shala black punita	10	2390
Shale, black, pyrite Shale, black, pyrite	10	2400
Shale black pyrite	14	2428
Shale, black	12	2440
Shale, black	10	2450
Shale, black	10	2460
Shale, black	15	2475
Shale, black, gray	10	2485
Shale, black, gray	14	2499
No sample Shalo area brown purito	101	2000
Shale, gray, brown, pyrite	12	2624
Shale gray, brown	16	2640
No sample	8	2648
Shale, gray, brown dolomite, pvrite	12	2660
Shale, black, brown, gray,		
Brown dolomite, pyrite	57	2717
Shale, gray, brown dolomite, pyrite	ర	2725

Page 3 Daily Crude Oil Co. E. J. Fulford #1

	Thickness (Feet)	Depth (Feet)
Devonian:		
Traverse Formation:		
Limestone, brown, white, pyrite	9	2734
Gray shale, pyrite	9	2743
Limestone, brown, gray, Black shale, pyrite	7	2750
White, gray shale, pyrite Shale, gray, brown dolomite	9 11	2759 2770
Limestone, brown, white, Gray shale, pyrite No sample	38 9	2808 2817
Limestone, white, brown, Gray shale	18	2835
Gray shale No sample	15 5	2850 2855
Limestone, brown, white, Black shale No sample Limestone, white, brown	8 12	2863 2875 2875
Limestone, brown, white, bluish- Gray shale	21	2896
Limestone, white, brown, Gray and black shale No sample (top "Dundee" of state drilling record)	10	2906
	310	3216
Monroe Formation: No sample	52	3221 1
· · · · · · · · · · · · · · · · · · ·	a	

Total depth

32212

Crystal Township (Montcalm County)

Gordon Oil Company

W.E. Strait #4

Permit No.2781

Drilling Contractor - Gordon Oil Company

Location: NE 1/4 of SE 1/4 of section 3, T 10N, R. 5W

660 feet from the S line and 330 feet from E line 1/4 sec.

Elevation: 796 feet above sea level

Record by Frederick K. Heller from driller's log and scout reports

Casing record 14", 10" <u>399</u>, 8-1/4" <u>765</u>, 6-5/8" <u>1260</u>, 5-3/16"<u>3174</u>.

Commenced:	9/25/35	Completed:	11/27/35	Initial Produc-
				after acid 1416 bbls

	Thickness (feet)	Depth (feet)
Pleistocene: Drift:	386	386
Pennsylvanian:	-	
Saginaw and Parma Formations undivid Sand Shale Sandstone, white	ed: 89 85 115	475 560 675
Mississippian:		
Bayport Formation: Limestone, shell	60	735
Michigan Formation: Mud, blue Gyp. shell S hale Limestone, shells Shale Gyp. and shell Limestone, shell (show gas 916- Shale, shells Shale Limestone	11 5 34 8 27 30 975) 75 30 20 3	746 751 785 793 820 850 925 975 975 978

Page 2 Crystal, Montcalm W.E. Strait

.E. Strait	Thickness (feet)	Depth (feet)
Shale Sandstone Shells, shale	27 15 20	1005 1020 1040
Napoleon (Upper Marshall)Form Sandstone, water 1045	mation: 70	1110
Lower Marshall Formation: Red Rock SLM	కం	1190
Coldwater Formation: Shale, blue Limestone shell Shale, bule Shale Shale, black Shale, red Shale, black "Berea," grit	25 10 35 795 195 8 8 10	1215 1225 1260 2055 2250 2258 2266 2276
Devonian		
Antrim Formation: Shale, black Shale, brown - SLM Shale, gray	20 39 7 23	2296 2693 2715
Traverse Formation: Limestone - Traverse SL Shale Limestone - Traverse Oil & Gas (576 bbls. 2	M 22 9 18 4 hrs.)	2737 2746 2764
Traverse Limestone - Traverse, w No record Limestone Shale	ater 2776 275 30 30 73	2775 3050 3080 3010 3183
Monroe (?) Formation: Limestone "Dundee" SLM Limestone Limestone, coarse, shel Oil & Gas	ly 7 4	3183 3190 3194 3194

Total Depth

3194

Crystal Township (Montcalm County)

Evans #1

Permit #2492

Location: NE, NE, NE, section 22, T. 10N., R5W.

Elevation: 787 feet above sea level.

Record by F. K. Heller from incomplete set of samples.

Completed 9/6/35 Initial Production - Dry Hole

	Thickness (feet)	Depth (fe et)
No. samples	3159	3159
Traverse Formation		
Shale, bluish gray, limestone Shale, bluish gray, limestone Shale, bluish gray, limestone Shale, blue, hard No sample Shale, bluish gray, limestone No sample Shale, blue Shale, blue Shale, blue Limestone, blue shale Limestone, blue shale No samples (?)	2 3 3 8 4 6 2 2 4 3 2 2 4 3 2 2 12	3161 3164 3175 3175 3185 3187 3189 3193 3196 $3198\frac{1}{2}$ $3210\frac{1}{2}$
Monroe (?) Formation Dolomite, brown Dolomite, black, brown	83 1 13	3293 3306
Total Depth		3306

Geol. M.T. Heller 1

