

THE UNIVERSITY OF MICHIGAN

PRELIMINARY STUDY OF THE SHEARING STRENGTH OF FIVE BRAZILIAN SPECIES GLUED WITH COLD-SETTING RESINS

A DISSERTATION SUBMITTED IN

PARTIAL FULFILIMENT TO THE SCHOOL OF FORESTRY AND CONSERVATION IN CANDIDACY FOR THE DEGREE OF MASTER OF WOOD TECHNOLOGY

BY

LINO TATTO

ANN ARBOR, MICHIGAN JANUARY, 1947

TABLE OF CONTENTS

FO	REWORD																				Page 11
	INTRODUCTION	ī									•				•						1
	OBJECT																		•		7
	Materials													•							8
	Woods .		•											•						•	8
	Giues .	•		•	•	•		•	*	•	•	•	•	*	*	•	•	•	•	•	0
	Tautimont	*		*	•	*	•	•	•	•	•	•	*	•	•	*	•	•	*	•	à
	rdarbueur		•	*	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
	Procedure																				10
	Gluing																				10
	Testing																				13
	Results .		•																		13
	Discussion	of	Ī	los	sui	Lta	3	•										•,			15
	Gluing Char	ac	te	er:	ist	tic	cs	01	bse	ert	700	1		•	•			•			17
	Doonthilite	00	1	10	m	10	TT	-	a	- (10	ia.				-					
	Resins in	1 H	ire	1Z:	11		*	*			*	*		*		*		•	•	•	18
	SUMMARY																				22
	TABLES 1-22																				23-65
	FIGURES 1-5																				66-70
	LITERATURE C	II	EI	0																	71

FOREWORD

The results herewith presented were obtained at the Wood Utilization Laboratory of the School of Forestry and Conservation of the University of Michigan, where the work was carried out under the supervision of Mr. Louis A. Patronsky, Instructor of Wood Technology.

Due to its preliminary character, it aims to present only a moderate amount of fundamental data with regard to the shear strength of five Brazilian hardwood species when glued with cold-setting resins.

As the field of application of plywood is breadened, new adhesives and new gluing techniques will become more and more necessary as the ones already in use do not fulfill the requirements for most of the new uses to which plywood is put. In the case of the Brazilian plywood industry, casein glues, which are the most extensively used throughout the country, must be replaced by some other kind of an adhesive capable of yielding bonds of satisfactory quality for outdoors applications.

It will be desirable, however, that the new adhesives and gluing techniques are such as to permit the utilization of approximately the same equipment as called for the use of casein and still make bonds resistant chiefly to moisture and to biological deterioration.

The cold-setting resins were chosen for this work because (1) they could be mixed, spread and pressed using

approximately the same equipment required for casein and following a similar technique, and because (2) they were considered as yielding bonds which are resistant to moisture and biological deterioration.

The author is indebted to Mr. Louis A. Patronsky for his constant interest throughout the laboratory work, for the helpful information given and for the constructive criticism of this paper.

> Lino Tatto January 14, 1947

INTRODUCTION

In spite of being one of the newest industries in Brazil, the plywood industry has experienced an extraordinary development that could hardly be matched by any other wood using industry.

It is concentrated in the four southernmost states of Brazil where the availability of the "pinho do Paraná" -Araucaria angustifolia - in almost pure stands insures an ample supply of high quality veneer logs.

According to the latest data available (1) there were in the southern part of the country, 168 veneer mills and plywood plants, of which, 162 were already producing and 66 being installed. The distribution per state of the plants already engaged in production was as follows:

States	No. of plants
Paraná	44
Rio Grande do Sul	22
Santa Catarina	29
São Paulo	
Total	102

Their export in the first half of the year 1944 was as follows:

1 The numbers in parentheses refer to literature cited p.

States		Veneers	
00000	Pinho	Other species	Total
Parana R. G. do Sul S. Catarina São Paulo	1,519,167 130,200 191,230	1,491,599 173,300 558,408 3,530	3,010,706 303,500 749,638 3,530
Total	1,840,597	2,226,837	4,067,434

Stotes	Plywood								
	Pinho	Other species	Total						
Paraná	11,843,893	1,257,725	13,101,618						
R. G. do Sul	1,383,685	148,014	1,531,699						
S. Catarina	2,160,658	1,414,817	3,575,475						
Sao Paulo	288,700	78,000	363,763						
Total	15,676,999	2,898,556	18,575,555						

Because of the shortage of transportation which became critical during the war years the Federal Government has established limits of production. It is expected that with the improvement of the transportation, the industry will be able to reach a total output of 51,700000 cubic meters, distributed as follows:

States	Production expected	(m ³)
São Paulo	3,900	
Parana	21,800	
Santa Catarina	18.200	

7,800

Although the development of the industry is controlled by the Federal Government with view to protecting the native

Rio Grande do Sul

What units

forests from quick depletion and to overcome the transportation difficulties which existed prior to its interference, there have been constant requests for the installation of new plants. Thirty-five new concerns have been permitted to erect new plants and mills, so that the number of veneer mills and plywood plants will be raised to 203 in the near future.(1) The following chart gives a good picture of the situation of the industry in Southern Brazil at the present time and in the near future.

Number	of	venee	er m	ills	and	t plywoo	bc	plants	in	Southern	Brazil
	Pre	esent	and	futu	re	number	of	plants	an	d mills	

States	Producing		Bei	ng Erected	Per	mission Erect	Total No. Mills.Plants		
1	No.	Mo.Ca- pacity(m ³)	No.	pacity(m ³)		Mo.Ca- pacity(m ³)	No.	Mo.Ca- pacity(m ³	
São Paulo Paraná á Santa Catarina Rio Grande á	7 44 a 29 22	3,689 21,868 18,154 7,810	 36 10 20	17,892 6,260 7,100	 14 13 8	6,958 8,138 2,840	7 94 52 250	3,869 46,718 32,552 17,750	
Total 10	202	51,701	66	31,252	35	17,936	203	100,889	

The great majority of the plywood plants in those states use casein glues as the bonding agent; however, the tendency is to change this situation so that a good part of the industry makes use of synthetic resins. How far this policy will succeed is dependent upon several factors of which, foreign markets requirements and the possibility of fabricating the resins at low cost in the region, seem to be the most important.

The development of new foreign markets will certainly be attempted by the plywood industry of Brazil, whose product made up already 99 percent of the plywood imports of Argentine in 1944. To accomplish that, it must face the competition from other countries which already possess a thoroughly organized plywood industry, and so, being in a better position to offer a high quality product at low price.

The encouragement of the use of synthetic resins by the Brazilian plywood industry, which has been the policy since December, 1944, is then a very appropriate step towards improving the serviceability of its product and of increasing its chances to be accepted in the foreign markets.

Although the plywood quality is very important it is not the only factor considered when the product is purchased. Cost, color, figure and density, machinability, and volume available, are very important considerations.

So far as is known Brazilian hardwoods forests are potentially fit to produce woods suitable for most of human needs due to the large number of species that grow in them. However, technical data concerning the technological characteristics of a great number of the species are still lacking, so that the enormous supply of those hardwoods has not been introduced to the international markets.

In spite of the fact that very little technological information on most of Brazilian hardwoods is available several species are now being regularly exported. As can be seen from the following chart, 29 hardwood and 1 softwood

species have been exported during the years 1939-1945.(2)

Brazilian exports of woods (1939-1945)

Quantity in tons

No.	Species	1939	1940	1941	1942	1943	1944	1945
	Acomi	418	88					
2.	Amono	8958	9047	5921	2677	2780	6083	7683
3	Andinobe	1524	965	159	70	2105	0000	84
1	Becheen	223	369	202	151	36	236	145
	Cobringo	243	93	00	030	553	199	666
6	Capala	345	170	364	000	449	964	302
17	Codro	5341	4496	10/02	14147	1/070	19200	10093
1.	Gentalia	00-21	1200	10490	TATAL	74010	70003	10000
0.	Guptuba	6316	AONC					10
	Freijo	0100	130	80				100
10.	Gonçalo Alv	105 91	100	028	64	04	070	80
11.	Guajuvivo	490	404	306	204	72	230	10
12.	Guaruba	21700	1000			430	1000	141
10.	Imoula	1112	1278	1206	993	413	1282	7890
14.	The	10301	5709	9870	4107	1475	1402	1065
15.	Itauba	94	00	95		298	248	32
16.	Jacaranda	2045	1.189	2475	553	686	493	3275
17.	Jequitiba	10666	11	185	925	1668	799	56
18.	Louro	1030	500		1 m 1			
	vermelho	4216	509		10		565	835
19.	Macacadba	1573	746	50	141	14	143	803
20.	Massaran-							and the second
1.1	duba	132	179	7		105	290	801
21.	Pau amarelo	93	25	11				128
22.	Pau Brasil	7	15	5	3	5		6
23.	Pau d'arco							6
24.	Pau rosa	73	6	272		139		
25.	Pau rôxo	46	28					
26.	Peroba	39	460	1618	4736	3066	2667	405
27.	Finho	307794	247042	293701	321074	272061	282556	238550
28.	Quebracho	2460						
29.	Sucupira	107	774	15	30	4	32	624
30.	Violêta	2			1			

The five species dealt with in this study are all represented in the chart above - Nos. 2, 19, 21, 25 and 29 -

meaning that they have attained some economic importance. The informations presented in this paper acquires, then, a broader significance in that they refer to species which are items of foreign consumption.

OBJECT

The object of the present study is to investigate about the shearing strength of five Brazilian species glued with two cold-setting resins. For that resoninol-formaldehyde and cold-setting urea-formaldehyde were used.

In order to have means of comparing the results obtained with the cold-setting resins, casein glue and phenolformaldehyde were used as controls. The former can be considered the standard glue of the Brazilian plywood industry, which uses it for a rather long time. The latter was chosen as the type of a resin that yields the highest quality bonds, chiefly in relation to its water resistance.

Since 1944 there is a noticeable tendency towards the use of synthetic resins in the manufacture of plywood in Southern Brazil. By the end of that year the President of the "Instituto Nacional do Pinho", which controls the lumber industry in Brazil, decided not to permit the erection of any more plywood plants in the States of São Paulo, Paraná, Santa Catarina and Rio Grande do Sul, that were not equipped to use synthetic resins as the bonding agent of the plywood they produced.⁽³⁾

If the use of synthetic resins proves to be economical, there will be many possibilities of that trend becoming universal for the country. Among the synthetic resins, the cold-setting ones are outstanding in that they require less

expensive equipment and are meant to be used under less exacting gluing conditions than the hot press resins.

Matorials

Woods .-- Woods of the following species(10) were used in this study:

Common name

Aguano Macacauba × Pau amaielo Pau roxo Sucupira Scientific name

Swietenia macrophylla King Platymiscium Ulei Harms Euxylophora paraensis Huber Peltogyne densiflora Benth Bowdichia brasiliensis (tul.) Ducke

In view of the impossibility of getting veneers of the desired species from the importers in this country, all the wood used in this study was obtained from strength test specimens which existed in the collection of the School of Forestry and Conservation of the University of Michigan. Thus, all the wood available was 2-inch by 2-inch in crosssection and not more than 6 inches long.

To make the veneer, the 2-inch wide wood blocks were sawed to a thickness as close to 1/8" as possible and then planed down to either 1/8" or 1/16" according to what extent the small pieces could be handled safely. With few exceptions, at least one of the faces of the veneers was made smooth in order that proper gluing could be accomplished.

It was impossible in some cases to get away from old shear failures resulting from the previous testing to which the woods used now were submitted. How far this factor affected the final results of the present study is difficult to say. Its influence was readily noticeable whenever the plywood shear test specimens broke at an old shear failure, but some specimens might have broken at some initial failures(6) and the fact passed unnoticed.

<u>Glues</u>.-- Four different types of glues were used, namely: ready mixed casein, cold-setting urea formaldehyde, resorcinol formaldehyde, and hot-setting phenol formaldehyde. The commercial makes of each type listed below were those available at the moment at the Wood Utilization Laboratory of the School of Forestry and Conservation.

Casein: Perkins Metal-veneer glue powder, made by

Perkins Glue Company, Landsdale, Pa. Cold-setting urea formaldehyde: Perkins Plastic Resin

No. D.C. 246. Cold press type.

Resorcinol formaldehyde: Durez 12688 and catalyst Durez 12689 made by Durez Plastics & Chemicals Inc., North Tonawanda, New York.

Hot press phenol formaldehyde: Tego film made by Resinous Products & Chemical Company, Washington Square, Philadelphia, Pa.

Water :-- The water used was tap water furnished for public consumption.

Equipment: -- Beakers, erlenmeyers, weighing scale, wax paper, cold and hot presses, and plywood shear test machine.

Procedure

<u>Gluing</u>.-- This operation was carried out at a room temperature between 75° and 80° F. The adhesives mixtures were prepared according to the recommendations given out by the manufacturers.

The proportions used were as follows: Casein glue: 1 part of Perkins Metal-veneer by weight.

2 parts of cold, clean water by weight. Resoninol-formaldehyde: 100 parts of Durez 12638 by weight. 20 parts of Durez 12689 by weight.

Urea formaldehyde: 100 parts of Perkins DC - 246 by weight. 65 parts of clean, cold water by weight. Phenol-formaldehyde: No mixing is necessary.

The following spreads were adopted: Casein glues: single spread of 30 grams per square foot. Resoninol-formaldehyde: double spread of 12.5 grams per

square foot.

Urea formaldehyde: double spread of 12.5 grams per square foot.

Fhenol-formaldehyde: two sheets of the film for each panel glued.

The use of double spread was adhered to because after gluing the first panels with casein, it was found out that the manufacturers of Durez 12689 strongly recommended the use of double spread in connection with that resin. Although that practice is not universally followed in commercial production, it is recommended to be used in connection with phenolic resins in order to secure a uniform penetration in the surface of both plies.(11) Two sheets of Eego were used to take care of any unevenness in the gluing surfaces.

As regards single and double spread in connection with casein glues, the results of tests carried out on plywood glued by both methods showed that only a slight increase in strength was obtained by double spreading.(12)

A 30-minute closed assembly was used for all glues. After glued, the panels were stacked and placed under pressure at room temperature. In order to avoid gluing one panel to another sheets of wax paper were interleaved between the panels.

A Universal testing machine was used to apply a prossure of 150 pounds per square inch in all cases of coldsetting glues. As the machine was not constructed to apply constant pressure throughout the gluing period, the pressure was kept constant during the first three hours. The use of two rubber pads, each approximately one-half inch thick proved very helpful in maintaining constant pressure for at least one hour. The panels were left under pressure overnight.

The hot press bending used in connection with Tego was carried out in an electrically heated press of 5500 pounds of capacity. 150 pounds per square inch - bonding pressure - and 310°F - bonding temperature - were used.

As shown below the bonding time used varied with the species being glued in order that the glue line could be submitted during one minute to a temperature of 310°F.

Species	Bonding time (min.
Aguano Macacauba Pau amarelo Pau roxo Sucunira	4 2 1/3 3 1/2 2 2/3

In order to restore the moisture removed by hot pressing and to obtain a flat panel, the bonded panels were dipped in water immediately after being taken from the press and placed under pressure afterwards.

All the glued panels and test specimens were kept at a room temperature varying between 79-82° F and at a relative humidity of 30 percent for at least six days before testing. Specimens The moisture content of the/varied from 5 to 6.5 at the time of tests.

Two-ply test specimens, with the grain of both plies laid parallel were used throughout the experiment. The twoply laminated construction was given preference because it measures true shear, whereas, in the standard three-ply specimens a combination of shear and rupture is measured.⁽⁷⁾ The relation of two-ply to three-ply construction was found by Truax⁽⁷⁾ to be of 640 to 375 pounds per square inch for dry tests and 300 to 220 for wet tests, using 1/16 inch veneers.

All the test specimens were made so that the area under stress was $\frac{1}{2}$ square inch. That practice was followed in order

to simplify the work of sawing the specimens, as a part of them, those made up of two plies 1/16 inch thick, had to have a working area of $\frac{1}{2}$ inch to be in accordance with the specifications in force in this country.⁽⁴⁾ A part of the test specimens was made 3/4 inch wide in order to overcome the scarcity of wood material.

The test specimens were divided into three groups and tested in three different conditions, namely, dry, after 24-hour soaking(10) and after going through the Douglas Fir Test for exterior type.(5)

Testing.-- Thirty test specimens of each species were tested for each glue. Ten of them were tested dry, ten after a 24hour soaking period, and ten after the cyclic test recommended in the Commercial Standard CS 45-45 published by the U. S. Department of Commerce in 1945.

All the testing was carried out in a Riehle plywood testing machine specially designed for plywood tension shear tests, the load being applied at a rate of 600 to 1000 pounds per minute. The percentages of wood failure were estimated by visual inspection.

Results

The results obtained from the testing are shown in Tables 1-20. The breaking loads obtained from the tests were recorded in the first column. The column under the heading "Total stress (p.s.i.) was obtained by just doubling the

figures in column 1 for the specimens made up of 1/8" thick plies or by doubling the results in column 1 and reducing the total by 10 percent. The remaining columns are selfexplaining. The abbreviation D.F.E.T. means that the specimens were tested in shear after being submitted to the Douglas Fir Test for exterior type.

Table 21 gives the average figures for total stress and for wood failure for the different types of glues and species. In Table 22 the average soaked and D.F.E.T. strengths were transformed into percents of the dry strength. Figures 1-5 are based on the averages given in Table 21.

The results showed in Tables 1-20 were somewhat influenced by the two major causes discussed below which were difficult or impossible to control or to get rid of.

The various thicknesses of the veneer used may have affected the results of the tests and, therefore, may have upset a little their comparative values. $\operatorname{Truax}(15)$ found that the test values vary with the thickness of both the face and core plies. Although his results were based on tests for the standard cross-plie construction, the general rule may hold true for the two-ply laminated wood construction.

Due to the fact that the wood for this study was supplied by old strength test specimens, some of the results obtained may be somewhat lower than if wood entirely free from defects were used.

Another factor that did not affect the numerical values of the test, but which will be significant if any of

the results are to be used to any practical extent, is the fact that the woods used in this experiment were taken from very few trees(10) and so, are not truly representative of the whole range in density and gluing characteristics of the species.

Discussion of the Results

With few exceptions the results for dry strength for each species varied little, regardless of the adhesives used. However, the values for 24-hour soaked and alternate wetand-dry strengths and percents of wood failure for the material glued with casein showed much more noticeable departure from the dry strength than the resins (Table 22).

It seems to be safe to state that, within the scope of this work, the cold-setting resins proved to be superior to casein glue and identical to hot-pressed phenol in strength when used to glue the species under consideration in this paper.

There seems to have been no relationship between specific gravity and dry shear strength in connection with some of the glues and species used. <u>Sucupira</u> and <u>pau rôxo</u> which are, respectively, the heaviest and third heaviest of all, ⁽¹⁰⁾ showed strength values close to those for <u>águano</u> which is the lightest species used, when glued with casein. The same applies to <u>pau amarelo</u> and <u>pau roxo</u> with regard to resoninol-formaldehyde and to <u>sucupira</u> glued with phenolformaldehyde.

Refers to both strength and wood failure after the test specimens have gone through the Douglas Fir Association exterior type test. The results obtained with casein glue confirm that it has a low water-resistance. The decrease in strength from the dry condition to the soaked varied between 78 percent for <u>pau rôxo</u> to 56 percent for <u>águano</u>. The Douglas Fir Association cyclic test⁽⁵⁾ showed for all of the species glued with casein less effect in lowering the joint strength than plain soaking. This unexpected result was also noted in connection with <u>águano</u>, <u>macacaúba</u> and <u>pau amarélo</u> glued with resoninolformaldehyde and <u>sucupira</u> glued with phenol-formaldehyde resins (Table 22).

The cold-setting resins showed good soaked and alternate wet-and-dry joint strengths in all cases but alternate wet-and-dry strength for <u>sucupira</u> and <u>pau rôxo</u> glued with urea-formaldehyde.

Resoninol showed results somewhat higher for alternate wet-and-dry strength in connection with <u>pau roxo</u> and <u>sucupira</u> than urea-formaldehyde and, although dry and soaked strengths were higher for both species glued with the urea resin, the percent of strength maintain after soaking and after the Douglas Fir Association cyclic test was higher for resoninol.

Urea resin did not appear to yield good bonds with <u>pau roxo</u> and <u>sucupira</u> although the results of the tests have been consistent (Tables 14 and 15). The results obtained with <u>pau amarelo</u> bonded with the resortinol resin were inconsistent (Table 10). Apparently the resin had not cured enough when the test specimens were tested dry. The low average percent of wood failure can be taken as an indication

of the poor bond obtained. Additional data on the gluing of those species with the above named glues are necessary in order that a final conclusion can be drawn.

The results obtained with phenol-formaldehyde were satisfactory for the majority of the species glued. The low percents of wood failure obtained in connection with <u>sucupira</u> seem to indicate the need of further work for a definite conclusion.

Gluing Characteristics Observed

Throughout this experiment certain gluing characteristics of the species used were noted. As the observations apply to a study based on only a small number of test specimens their value must be properly considered if any of them is to be used in practice.

The casein glue used stained pau rôxo although it did not show through the plies. <u>Sucupira</u> and <u>pau amarélo</u> were stained to less extent.

The wood failure in cangential surfaces of <u>sucupira</u>, except in cases where some sort of grain deviation occurred, was along the vessel lines. This fact can be related to the amount of paratracheal parenehyma in the wood and probably accounts for the low wood failures for the species.

Pau rôxo and <u>sucupira</u> cupped noticeably when glued with casein and <u>pau amarélo</u> showed delamination when glued with urea and resoreinol resins. <u>Aguano</u> and <u>macacauba</u> glued well with all the adhesives tried. The fibers of both species were somewhat compressed when bonding with Tego at 310° Farenheit.

Possibilities of the Use of Cold-setting Resins in Brazil

The preliminary character of this work does not allow broad and final conclusions that could be used to advantage in industrial applications. It confirms, however, for the species used, that cold-setting resins yield bonds superior in water resistance to those accomplished with casein glues.

The commercial use of cold-setting resins in Brazil must be brought about by economic needs. Although they are superior to case in in some respects, the plywood industry in the country has been built up based on the use of case in, which has given and is still giving satisfactory economic and physical results.

To impose the use of the synthetic resins upon the industry, as seems to be the trend in Brazil, may not prove successful because there will always be ground for argument as to the advantages and limitations of the new adhesives as compared with casein. The main drawbacks of the use of casein are its lack of a good resistance to moisture and to biological deterioration. The former can be partly overcome by the use of hydrated lime, and it seems to be possible to get around the latter by the incorporation of certain organic preservatives in the glue powder. It appears as if the durability of the joints glued with a high line content casein glue can be materially increased if some protection against biological deterioration is given to them.⁽⁸⁾ If that can be accomplished without sensibly raising the cost of the glue line, casein glues will be able to stand the competition from cold-setting resins, in most of its present apolications.

The use of the cold-setting resins will bring about few changes in equipment and plant lay up what facilitates their accepting by the Brazilian plywood industry. Their use, however, will be conditioned by technical and economic factors of which the supply of the resins and their cost will be of fundamental importance if they are ever to attain any commercial significance. Their fabrication at low prices in the country, therefore, seems to be a necessary step.

Of both types of cold-setting resins considered in this paper, the urea resins can be produced in Brazil more easily than resorcinol. While it is a product based upon a reaction between annonia and carbon dioxide, resorcinol is a coal-tar derivative and, therefore, based on coal, whose mining is not well developped in the country.

Although the cost of adhesives is only a small fraction of the price of the final products, a question arises as to the price at which the resins could be sold in Brazil. Assuming, for the purpose of this discussion, that they will cost as much as they cost in this country, resoreinol would

19

- 1

be used in straight mixtures only in exceptional conditions, as a pound of it costs about sixty cents at the present time. That price would bring the cost of glue line to approximately twenty dollars per thousand square feet, or as much as 4 and 3 times more expensive than the dearest casein and urea glue lines respectively, (11) if a spread of 40 pounds per thousand square feet is used for resorcinol.

The cost per thousand square feet of straight coldsetting urea glue line varies from five dollars and fortytwo cents to six dollars and sixty-two cents, whereas for casein it goes from a little over three dollars up to five dollars.(11) In other words, the most expensive casein glue line is still below the least expensive straight cold-setting urea glue line.

If the cold-setting resins produce bonds of good durability, the difference in prices mentioned above would be offset by the better quality of the joints. However, data from other⁽¹²⁾ sources, obtained in various tests to which coldsetting urea were put through showed that they exhibit low resistance to exposure to high humidities and ordinary temperature and low durability to combinations of high humidities and high temperatures. Being more acid than other glues of the urea-resin type they appeared to lose strength noticeably when aged at 80°F and sixty-five percent relative humidity during one year period.⁽¹²⁾ Comparing cold-setting urea resins with preservative-treated case in Wangaard⁽¹²⁾ states that the performance of cold-setting urea resins at ninety-seven percent relative humidity and 80°F temperature, for nine months,

was "considerably less satisfactory". Casein glues also showed superiority over cold-setting urea resins in resistance to cyclic exposures involving high temperatures. Therefore, although cold-setting urea resins showed higher water resistance than casein they seem to be inferior to it in certain other respects.

Cold-setting usea resins could be used extended in which case the glue line cost would be brought down to the level of the cost of straight casein glue line. However, the addition of extenders to the mixture seems to decrease the water resistance of the bond to such a degree that its weathering qualities are practically lost.(9)

According to the statements above, the possibilities for cold-setting ureas to replace casein in the Brazilian plywood industry are not entirely favorable because they would have to be used for approximately the same purposes as casein glue is being used now.

Whenever a high water resistance and low glue line price are deemed important the hot-press phenolic resins must be used.

Very little can be said about resorainol resins as . they represent a development of the last three years. They seem to be much superior to the cold-setting use resins, although much more expensive. If they can be sold in Brazil at a price as low as the phenolic resins are sold at present in this country, they will be likely to acquire great importance in the phywood field.

Summary

The cold-setting resins showed better results than casein as judged from the joint strength and wood failure figures (Tables 20 and 22).

Specific gravity was not the only factor governing the dry strength of <u>sucupira</u> and <u>pau rôxo</u> glued with casein, <u>pau amarélo</u> and <u>pau rôxo</u> glued with resortinol-formaldehyde and <u>sucupira</u> glued with phenol-formaldehyde resins.

Pau roxo and <u>sucupira</u> did not seem to glue well with urea formaldohyde resin and <u>pau amarélo</u> showed low strength and low wood failure for its specific gravity when glued with resorcinol-formaldohyde. Additional data will be necessary to permit any final conclusions with regard to the shearing strength of those woods glued with the two cold-setting resins above mentioned.

Species	S	Ave. Tota		Ave.	Wood Fa	ilure (%
0100100	Dry	Soaked	D.F.E.T.	Dry	Soaked	D.F.E.T
Aguano	577.	292	368	35.5	1.0	1.0
Macacauba	932	382	540	63.5	0.2	1.5
Pau amarelo	1030	278	456	69.5	0.0	3.0
Pau rôxo	778	169	316	49.7	0.0	0.0
Sucupira	709	281	293	22.5	0.0	0.2
Averages	for Re	soreinol	-formalde	hyde R	esin	
Águano	654	696	699	83.3	87.6	79.0
Macacauba	907	910	1106	65.1	79.3	64.5
Pau amarélo	781	707*	910*	11.5	16.0*	14.4*
Pau rôxo	811	696	607	65.5	68.0	73.0
Sucupira	1061	918	824	76.5	26.5	36.5
Ave	rages f	or Urea-i	formaldeh	yde Ro	sin	
Aguano	681	867	819	89.0	83.5	63.5
Macacauba	751	1.088	897	99.5	. 70.0	64.5
Pau amarélo	1150	1176	707	79.5	70.5	36.5
Pau rôxo	1051	856	390	53.5	49.5	15.0
Sucupira	1248	965	554	30.5	45.0	13.0
Avera	ges for	Phenol-1	formaldely	yde Re	sin	
Águano	843	530	600*	80.5	66.0	62.0*
Macacauba	945	1034	945	74.0	60.5	56.0
ALC AND	1114	1187	171717	51.0	41.0	32.5
Pau amarélo	1326	1297	1099	81.0	45.5	61.0
Pau amarélo Pau rôxo	1000	when they have a				
Pau amarélo	8 MA TA MA	1001	T033	97.0	40.0	61.0

Table 21 - Averages of total stress in pounds per square inch and of wood failures in percent

Average of 7 test specimens.

Species	Casein Gine							
	Dry	Soaked	D.F.E.T					
Aguano	100	43	54					
Macacauba	100	41	58					
Pau amarélo	100	27	44					
rau roxo Sucupira	100	40	41					
		1						
Species	Reso	reinol-formal	dehyde					
	Dry	Soaked	D.F.E.T					
Águano	100	106	107					
Macacauba	100	100	122					
Pau amarelo	100	90	117					
Pau rôxo	100	87	75					
Species		Urea-formalde	hyde					
	Dry	Soaked	D.F.E.T					
Águano	100	128	120					
Macacauba	100	144	119					
Pau amarelo	100	101	61					
Sucurira	100	77	44					
and claure a	200							
		5 · · · · ·						

Table 22 - Soaked and D.F.E.T. strength in percent of dry strength

Table 22 - continued.

Species	Phenol-formaldehyde							
	Dry	Soaked	D.F.E.T.					
Águano	100	75	71					
Macacaúba	100	109	100					
Pau amarelo	100	106	70					
Pau rôzo	100	97	82					
Sucupira	100	78	89					

LITERATURE CITED

1. Anonymous. A nova efflorescente industria de modeira compensada - Brasil Madeireiro, Ano I, No. 1, Marco, 1945. Pp. 10-11.

2.

3.

4.

5.

Woods - Brazilian Exports from 1939-1945-Brazil Trade Journal. Vol. II, No. 2. April, June, 1946. P. 8.

Resolução No. 28 de 6 de Dezembro de 1944 -Brasil Madeireiro - Ano I, No. 1. Marco, 1945. P. 34.

Testing and mixing of aircraft glues. U. S. Dept. Agr. For. Prod. Lab. Report No. 1338. Nov., 1941.

Douglas Fir Plywood Commercial Standards CS 45-45. Pp. 5-6. U. S. Dept. Comm. 1945.

- 6. Garratt, G. A. Mechanical Properties of Wood. John Wiley and Sons, Inc., New York. 1931. P. 276.
- 7. Grinsfelder, H. and Collins, M. R. Plywood Bonding. Ind. Eng. Chem. Vol. 36. P. 153. 1944.

8. Kaufert. "Increasing the durability of casein glue joints with preservatives" U. S. Dept. Agr. For. Prod. Lab. Report No. 1332. Oct., 1943.

- 9. Kynoch, W. and Norton, N. A. "Mechanical properties of certain tropical woods chiefly from South America." University of Michigan, School of Forestry and Conservation, Bull. 7. Ann Arbor. 1938.
- 10. Patronsky, L. A. Mimeographed Laboratory Exercises. Unpublished. 1946.

11. Perry, Thomas D. Modern Wood Adhesives. Pitman Publishing Co. New York. 1944. Pp. 15-16, 68, 100-102. Illust. p. 208.

12. Truax, T. R. Gluing wood in aircraft manufacture. U. S. Dept. Agr. Tech. Bull. 205. 13. Wangaard, F. F. Summary of information on the durability of aircraft glues. U. S. Dept. Agr. For. Prod. Lab. Report No. 1530. 1944.

TABLE 1.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: AGUANO

Glue used: CASEIN

Area under Stress: 1/2".

Plies Thicknesses: 1/8".

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
350	700	50	Shear	Dry	12/1/46	
310	620	10		• •		
890	780	40		•	•	
365	+ 730	10				
375	750	95		•		Radial section
300	600	90				
375	750	100	Tension			
380	760	10	Shear			11 - 11 - 11 - 11 - 11 - 11 - 11 - 11
390	780	5				
150	300	10				Dry joint
120	240	0		Soaked		
100	200	0				r
130	260	0				
140	280	0				
225	450	0		•		Dry patches of glue
120	240	0				
125	250	0				
300	600	10				Dry patches of glue
100	200	0				
100	200	0				
120	240	0		D.F.B.T.	12/5/46	Radial section
190	380	0				75% of working area dry

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remark	•		
285	570	0	Dry		12/5/48	30% of	workin slots out	ng area improp	dry erly
200	400	0				20%			
105	210	0		New		30%			
130	260	0				ange in			
175	350	0							
356	710	10				70% of	worki	ng area	dry
185	370	0							
95	190	0							

TABLE 2.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: MACAUBA

Glue used: CASEIN

Area under Stress: 1/2"

Plies Thicknesses: 1/8"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
350	700	25%	Shear	Dry	11/30/4	• *********
680	1360	85%				the second second
505	1010	85%				
475	950	50%				
625	1250	20%				
495	990	15%				
325	650	90%				
\$25	650	95%				
410	820	85%				and the second se
470	940	85%				
150	280	0		Sasked	12/7/46	$\frac{1}{1} \left(\left(\frac{1}{2} \right)^{\frac{1}{2}} + \left(\frac{1}{2} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} = \frac{1}{2} \left(\left(\frac{1}{2} \right)^{\frac{1}{2}} + \left(\frac{1}{2} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} + \left(\frac{1}{2} \right)^{\frac{1}{$
100	260					
130	200	•				Generation follow while antheims
00	00	0				in machine.
245	490	0				Dry patches of glue
320	640	0				30% of working area dry.
240	480	0				
145	290	0				
185	370	0				20% of working area dry.
300	600	2				30% " " " "
215	430	0				•
300	600	0		D.F.E.T.	12/5/48	80% " " " "
200	400	0				50 ** * *
TABLE 2. (cont d).

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
385	770	10	Shear	D.F.E.T.	12/5/46	80% of working area dry
315	630	5				80% " " " "
150	300	0				to a get a survey of the
380	760	0				3% of working area dry
245	490	0				
240	480	0				30% of working area dry
210	420	0				
275	550	0				30% of working area dry.

TABLE 3.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: PAN AMARILO

Glue used: CASEIN

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
475	950	5	Shear	Dry	12/14/40	and the same
440	880	60				
390	780	40				Diagonal grain.Radial surface
550	1100	100				Cross grain
440	880	100				
440	880	100				Radial surface
550	1100	80				
865	1730	10				
630	1260	100				
370	740	100				Diagonal grain.Radial Surface
260	520	0	Shear	Sosked	12/1/48	30% of the working area dry
	000		-			conservation and
0	0	0				Specimen failed before testing
165	330	0				
00	00	0				Specimen failed before testing
00	00	0				
75	150	0				
65	130	0				
100	200	0				
170	340	0				
00	00	0				Specimen failed before testin
00	. 00	0		D.F.E.T.	12/21/46	Specimen failed during 2nd soaking
50	100	0				A COMBREME

TABLE S. (cont'd)

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
50	100	0	Shear	D.F.E.T.	12/21/46	I A CARACTER AND A C
00	00	0	•	•	•	Specimen failed while setting it into machine
575	1150	0				Slots not out deep enough
355	710	30				
75	150	0				100 m 100
255	510	0				
320	640	0				30% of the working area dry.
145	290	0				$\sigma_{i}^{2}(\omega_{i}) = \mathcal{O}\left(\frac{1}{2}\Pi\right)_{i} = \frac{1}{2}\left(\frac{1}{2}\Pi\right)_{i} = $
	ALC: NO					

TABLE 4.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: PAU ROXO

Glue used: CASEIN

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Rems	rki		dan ya	esteriori di U
260	468	2	Shear	Dry	11/30/4	6				
520	936	25								
560	1008	70		n						
425	765	20				-				
475	855	70								
270+	486	80								
495	891	90								
335	603	50								
395	711	15%								
585	1053	75			• .					
000200	360	0		Soaked	12/1/46	80%	of	working not cut	area deep	dry. Slots enough.
00050	90			Ħ		30%	10	working	area	dry
000. 75	135	0				50%	of	working	area	dry.Slots
000 17	0 306	0			H	50%	11	not cut	deep	enough.
000.15	5 279	0				70%				
000140	252	0				30%				
000.50	90	0				60%				
000100	180	0			R	Spec	im	m faile	d whi	le setting
000000	00	0						it in	to ma	chine.
000000	00	0								
140	252	0	Shear	D.F.E.T.	12/5/4	6 305	6 0	f workin	g are	a dry.

TABLE 4. (cont'd)

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Rema	rk		100	-
175	315	0	Shear	D.F.E.T.	12/5/46					
225	405	0				50%	of	working	area	dry.
300	540	0				30%				
135	243	0								
115	207	0		ú						
135	243	0	11		11					
200	360	0				30%	or	working	area	ary.
195	351	0				40%	of	working	area	dry.
135	245	0				30%	of	working	area	dry.

TABLE 5.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: SUCUPIRA

Glue used: CASEIN

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
370	666	70	Shear	Dry	12/14/40	3
365	657	8				
480	864	10				
350	639	70				Cross grained
365	657	0				
390	702	0				
450	810	0				
300	540	0				2% dry joint
455	819	70				
410	738	0				
000		0	Shear	Soaked	12/1/40	
225	105	0				
175	315					
00	00	0				Specimen failed while settin
375	675	0				it in the machine
00	00	0				Specimen failed while settin
185	\$33	0				it in the machine
125	225	0				
230	504	0				
195	35]	0				
170	306	0		D.F.F.T.	19/5/	16
	000			R		
00	0	0				specimen railed while settin it in the machine

TABLE 5. (cont'd).

Total Load (1bs.)	Total Stress (p.s.1.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
170	306	0	Shear	D.F.E.T.	12/5/46	
00	00	0				Specimen failed while setting
120	216	0				it in the machine.
135	243	0				
335	603	0	Tension			Tension due to improper
75	135	0	Shear			setting of slates
325	585	0				50% of working area dry
300	540	2				40% of working area dry

TABLE 6.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: AQUANO

Glue used: RESORCINOL

Area under Stress: 1/2"

Plies Thicknesses: 1/8"

Total Load (1bs.)	Total Stress (P.s.1.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
435	870	98	Shear	Dry	12/1/46	
255	510	90				Radial section
530	1060	35				
190	380	100				Radial section
250	500	100		•		
\$70	740	80				
230	460	50				Radial section
245	490	95				
395	790	85				
370	740	100				
430	860	85		Seaked	12/2/46	and the second
325	650	98		•	•	
405	810	90		•		
375	750	50				
275	550	98				Radial section
115	230	100				Specimen broke at an ol
360	720	95	•			Shear failure
325	650	100				A DA A A A A A A A A A A A A A A A A A
435	870	60				
435	870	100				
450	900	70		D.F.E.T.	12/17/4	8
410	820	90				

d

TABLE 6. (cont'd.)

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
890	780	70	Shear	5	12/17/4	6
360	720	100				
455	910	95			•	
445	890	95				Cross grain
310	620	85			*	1
305	610	95			•	Specimen broke at an old shear failure
370	740	90				Radial section

TABLE 7.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: MACACAUBA

Glue used: RESORCINOL

Area under Stress: 1/2"

Plies Thicknesses: 1/8"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
410	820	98	Shear	Dry	12/6/48	
370	740	70				 and the brack of the second sec
450	900	50				a lot metalor
605	1210	50				
650	1300	98				
500	1000	60				
345	690	85				
450	900	40				Academic and
440	880	98				
315	650	10				
375	750	85	Shear	Soaked	12/2/4	6
460	920	98				
545	1090	70				
615	1230	85				Cross grain
315+	630	90				
560	1120	85				
485	970	100				
435	870	5				
435	870	100				
325	650	75				
820	1640	15		D.F.E.T.	1/2/47	
580	1160	95				

1243

TABLE 7. (cont 'd.)

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
500	1000	20	Shear	D.F.E.T.	1/2/47	
590	1180	90				
555	1110	40				
590	1180	95				
455	910	100				
185	370	5				
255	510	5				
1000+	2000+	95				

TABLE 8.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: PANAMARELO

Glue used: RESORCINOL

Area under Stress: 1/2"

Total Load (1bs.	Total Stress)(p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
400	800	15	Shear	Dry	1/4/47	and the second second
400	800	0		•	•	
565	1130	0				
730	1460	5				
555	1110	60				
395	790	20				
0	0	0				Specimen failed before any
500	600	0				load could be read
0	0	0				Specimen failed before any
560	1120	15				load could be read
240	480	0		Seaked	1/5/47	
490	980	50				
195	390	20				
415	830	5				
270	540	10				
420	840	0				
545	1090	60				
525	650					
285	570	15				
			-			
755	1510	60		D.F.E.T.	1/9/47	
675	1350	5				
490	980	0				

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
520	1040	10	Shear	D.F.E.T.	1/9/47	
520	1040	10		•		
580	1160	30				
00	0	0				Specimen collapsed while
435	970	15				setting it in the machin
125	250	0				

TABLE 9.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: PAUROXO

Glue used: RESORCINOL

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
600	1080	15	Shear	Dry	12/6/45	
690	1242	70		•		
310	558	70	18			Cross grain
375	675	70			•	• •
370	666	90		•		Specimen broke at an old
305	549	10				a a a
450	810	80		•		
395	711	95		•		all na the gar said an
370	656	80				
640	1152	75				
320	576	30	Shear	Soaked	12/2/4	6
425	765	60				Diagonal grain.Radial section
375	675	70				
320	576	80				
390	702	90				
435	785	40				
395	711	15				
275	495	100		•		
555	999	95	•			
375+	675	100		•		Cross grain
350	630	80	•	D.F.E.T.	12/7/4	6 Specimen broke at an old shear failure.
340	612	60				

TABLE 9. (cont 'd.)

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks		
425	765	90	Shear	D.F.E.T.	12/7/46			
250	450	100				Specimen	broke	at an ol
350	630	100	п				shear "	n n
255	459	10						
300	540	60						
580	1044	70						
225	405	100	a	•		Specimen	broke shear	at an eld failure.
300	540	60						

TABLE 10.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: SUCUPIRA

Glue used: RESORCINOL

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
425	765	100%	Shear	Dry	12/6/46	
765	1377	70%				Cross grain
680	1224	80%				
690	1242	95%				
450	810	100%	Tension	Dry		Specimen warped
600	1080	100				
625	1125	100	Shear			
475	855	20%				
750	1350	100%		•		Specimen broke at an old shear failure.
435	785	70%				Radial section.
715	1287	10		Soaked	12/2/4	6
335	603	10				Cross grain
555	999	60				
385	693	50				Radial section.
575	1035	10				
455	819	35				
625	1125	10				
505	909	15				
385	693	40				
565	1017	25	•	•	•	Specimen broke at an ele shear failure.
410	738	20				

TABLE 10. (cont'd.)

w. of the prove

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
530	954	5	Shear	D.F.E.T.	12/17/40	5
220	396	5				
425	765	50				
490	882	40	•			
505	909	25				e see all
500	900	80				
450	810	60				
515	927	60				
535	965	40				

2000 1000

.

TABLE 11.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: AGUANO

Glue used: UREA

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (D.S.1.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks	
460	920	100	Shear	Dry	12/22/4	6	
410	820	100					
330	660	95					
385	770	100				Radial s	ection
290	580	100					
350	700	100					
435	870	100	•		•	Specimen	broke at an old shear failure.
420	840	100				Radial Se	ection
330	660	100		•			•
195	390	95	•	•		Specimen	broke at an old shear failure.
370	740	100	Shear	Soaked	12/20/	46 Radial	Section
360	720	95					
375	750	100				Radial a	Section
420	840	95					
560	1120	100					
450	900	30					
360	720	70				Specimen	n broke at an old
455	910	70					shear failure.
475	950	95				Radial :	Section
510	1020	80					
505	1010	40		D.F.E.T.	12/24	/46 *	

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks	
385	770	100	Shear	D.F.E.T.	12/24/40	Radial	Section
405	810	100		n			•
370	740	16					
615	1230	100					
365	730	30				Specimen	broke at an ol
290	580	10					shear failure
385	770	100				Radial s	ection
505	1010	60		n			
270	540	70				Radial s	ection.

TABLE 12.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: MACACAUBA

Glue used: UREA

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
485	970	100	Shear	Dry	12/21/46	
325	650	100				*******
435	870	95				
300	600	100	Tension			Cross grain
140	280	100				
350	700	100	Shear			
245	490	100	Tension			Cross grain
515	1030	100	Shear			
350	700	100				
610	1220	100				
530	1060	35		Soaked	12/20/4	6
680	1360	80				Radial Section
580	1160	95				
550	1100	95		· •		Radial Section
460	920	50		•		75% of working area dr
425	850	30				40% of working area dr
410	820	95				
5500	1100	90				30% of working area dr
570	1140	50				30% n n
635	1370	100				Cross grain
590	1180	30		D.F.E.T.	12/24/	/46
690	1580	100				

TABLE 12. (cont'd.)

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
280	560	25	Shear	D.F.E.T.	12/24/46	Dry joint
375	750	100				Cross grain
485	970	100				Radial section
610	820	40				
275	550	30				Dry joint
425	850	100				Radial section
485	970	100			•	
470	940	15				

TABLE 13.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: PAN AMARELO

Glue used: UREA

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.1.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
625	1250	100	Shear	Dry	12/20/46	and the west of the second
700	1400	100				
455	910	40				
550	1100	95				
445	890	100		H		
640	1280	30				
340	680	100				
800	1600	40				
590	1180	100				
655	1310	90		Soaked		
535	1070	100				Radial section
540	1080	5				
555	1110	95				
530	1050	100				
635	1270	95				
485	970	10				
775	1550	90		•	•	Specimen broke at an old shear failure
565	1130	100				Radial section
675	1350	40				
585	1170	70				
345	690	40		D.F.E.T.	12/24/46	Radial section

TABLE 13. (cont 'd.)

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
465	930	15	Shear	D.F.E.T.	12/24/46	
525	1050	95			•	
125	250	35				
200	400	0				and a second
415	830	40				
555	1110	85				
310	620	10				
370	740	40				
175	850	5				

TABLE 14.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: PAUROXO

Glue used: UREA

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks	
470	940	15	Shear	Dry	12/21/46	Radial section	
670	1340	30					
475	1950	70					
385	770	15					
435	870	75					
425	850	30		•			
525	1050	90				Radial section	
565	1130	70					
535	1070	90					
770	1540	50					
165	330	10		Soaked	12/20/46		
440	880	70				50% of working area	dry
680	1360	10				30% of working area	dry
290	580	0			n		
345	690	50					
575	1150	40					
500	1000	80					
495	990	100					
270	540	50					
520	1040	85	•	D.F.E.T.	12/24/46	Specimen showed del 1/2" deep in one	amination edge
185	\$70						

TABLE 14. (cont d.)

	Remarks	Date Tested	Condition Tested	Type of Failure	Wood Failure	Total Stress (p.s.1.)	Total Load (1bs.)
		12/24/46	D.F.E.T.	Shear	50	650	825
				n	30	550	275
led while in the mach:	Specimen fail being set in	•	•	•	0	00	00
nough	Slots not cut deep en	•	•		30	1070	535
led while in the mach:	Specimen fail being set in		•	•	00	00	00
wed	Specimen show				5	200	100
n 1/4" deer	delamination in one edge						
					20	380	190
		•				100	50
					10	580	290

TABLE 15.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: SUCUPIRA

Glue used: UREA

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks	
875	1750	85	Shear '	Dry	12/21/46		
550	1100	20					
435	870	10					
530	1060	40					
445	890	10					
735	1470	20	п				
670	1340	30					
550	1110	40					
720	1440	40					
725	1450	10					
545	1090	100	Shear	Soaked	12/20/46	Radial	section
385	770	5					
500	1000	80					
425	850	35				Radial	section
360	720	100			. m		
345	690	40					
615	1230	10					
550	1110	60					
580	1160	10					
515	1030	10					
650	1300	15		D.F.E.T.	12/24/4	6 Radia)	section
165	330	5					

TABLE 15. (cont d.)

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
0	00	0	Shear	D.F.E.T.	12/24/46	Specimen failed while being set in the machine.
385	770	50				Radial section
415	830	10				L' B
220	440	20		п		Radial section
70	140	0				
290	580	10				
175	350	10				
400	800	10				

TABLE 16.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: AGUANO

Glue used: PHENOL-FORMALDEHYDE - TEGO

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
415	830	100	Shear	Dry	12/29/46	Radial section
440	880	70		8		
415	830	85				
365	730	95				Radial section
275	550	100				" " cross grain
470	940	100	Tension			
560	1120	15	Shear			
490	980	100				
325	650	100				
460	920	40				
500	1000	70		Soaked	12/30/40	5
330	660	95				Radial section
345	690	35				
295	590	100	Tension		•	Specimen broke at an el shear failure
315	630	95	Shear			
335	670	80				
280	560	80				
330	660	90				
225	450	0				
195	390	15				
145	290	0		D.F.E.T.	1/3/47	
365	730	95				

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
315	630	60	Shear	D.F.B.T.	1/3/47	
375	750	70				
360	720	100		n		
225	450	100	Tension			Specimen broke at an old shear failure
240	480	30	Shear			
480	960	80				Radial section
195	390	100	e			

TABLE 17.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: MACACAUBA

Glue used: PHENOL FORMALDERYDE TEGO

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
510	1020	95	Shear	Dry	12/29/46	
525	1050	60				1
415	830	100				
340	680	5		п		
425	840	50				
400	800	100				Cross grain
460	920	50	n			
515	1030	90		8		
650	1300	85				
490	980	95	8			
320	640	10		Soaked	12/30/46	
525	1050	60				
600	1200	90				
615	1230	30				
520	1040	50				
540	1080	50				
475	950	100				
560	1120	95				
605	1210	50				
410	820	90	8			
550	1110	95	0	D.F.E.T.	1/3/47	
120	240	5				

TABLE 17. (cont 'd.)

Total Load (1bs.)	Total Stress (P.s.i.)	Weod Failure	Type of Failure	Condition Tested	Date Tested	Remarks
305	610	20	Shear	D.F.E.T.	1/3/47	Cross grain
415	830	20				
380	760	100		н		
550	1110	100				
520	1040	40				
655	1310	50				
610	1220	50				
610	1220	80				

TABLE 18.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: PAN AMARELO

Glue used: PHENOL FORMALDEHYDE TEGO

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
450	900	100	Tension	Dry	12/29/46	
500	1000	95	Shear			
355	710	100				and the
525	1050	6				
585	1170	40				Lucia e
435	870	100				
665	1330	10		R		Para Para
690	1380	5				
690	1380	5				
675	1350	50				
535	1070	95		Soaked	12/30/46	Radial section
765	1530	5		n		
645	1290	0	n		Ħ	
610	1220	60				
605	1210	100				19
605	1210	40		n		
415	830	0				
620	1240	70				
505	1010	0				
630	1260	40				
530	1060	5	n	D.F.E.T.	1/3/47	
470	940	30				

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
595	1190	100	Shear	D.F.E.T.	1/3/47	
450	900	25			n	
220	440	0	n			
550	1100	30				
460	920	0		n	11	
550	1100	50	Tension			Specimen broke at old shear failur
510	1029	15	Shear			
550	1100	70				

an

TABLE 19.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: PAUROXO

Glue used: PHENOL FORMALDEHYDE TEGO

Area under Stress: 1/2"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Remarks Tested
760	1520	75	Shear	Dry	12/29/46
785	1570	85			• • • • • • • • • • • • • • • • • • •
545	1090	30			· · · · · · · · · · · · · · · · · · ·
850	1300	80			
675	1350	90			u
600	1200	100			
740	1480	90			
745	1490	60	/ .		
635	1270	100			
540	1080	100			
730	1460	10		Soaked	12/30/46
515	1030	95			
390	780	10		п	n
630	1260	90			
655	1310	100			•
750	1500	60			
785	1570	90			
610	1220	40			· Anna
580	1160	10			
840	1680	50			
470	940	70		D.F.E.T.	1/3/47

TABLE 19. (cont *d.)

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
620	1240	80	Shear	D.F.E.T.	1/3/47	
565	1130	90				
535	1070	80			U	
460	920	20				
665	1330	90	Ħ			
600	1200	45		R	Ħ	
745	1490	90				
310	620	15				
525	1050	30				

TABLE 20.

Stress in pounds per square inch, percent of

Wood Failure and Type of Failure.

Species: SUCUPIRA

Glue used: PHENOL FORMALDEHYDE TEGO

Area under Stress: 1/2"

Plies Thicknesses: 1/8"

Total Load (1bs.)	Total Stress (p.s.i.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Kemarks
255	510	0	Shear	Dry	12/29/46	
630	1260	60				
405	810	0				
510	1220	0				
705	1410	20				
460	920	0				
645	1290	0				
855	1710	15				
555	1110	20				
710	1430	0				
690	1380	30		Soaked	12/30/46	
735	1470	15				
190	380	0		n		
655	1310	50				Cross grain
380	760	40				
440	880	5				
420	840	20				
505	1010	0				
410	820	5				
175	350	0				Resin was not oursel
550	1100	5		D.F.E.T.	1/8/40	novan mes nov ouror

R.
TABLE 20. (cont ^{*}d.)

Total Load (1bs.)	Total Stress (p.s.1.)	Wood Failure	Type of Failure	Condition Tested	Date Tested	Remarks
590	1180	20	Shear	D.F.E.T.	1/3/47	
0	0	0	-		•	Specimen broke while setting it into machine
0	0	0	•			Experimental error.
525	1050	15	Shear			and the second second
530	1060	10		n		
455	910	50				
540	1080	40				
440	880	20				
0	0	0	-		•	Specimen broke while setting it into

machine.

Average Average Total Stress in Ibs. 1 sq inch. Percent Wood Failure in 400 800 10 60 80 100 200 600 1000 1200 210 Macacaúba Joaken ł. OFET ULRICH'S BOOK STORE ANN ARBOR, MICH. Dry ary Pau rôxo Soaked BE.E.T Soalead aren Dry ory Aguano Soaked D.F.E.T. Southat OFFT 359 9 NO. ory Sucupira Engraving 7 × 10 in. to the $\frac{1}{20}$ inch, 5th lin Santed Soaked ater QEE.T KEUFFEL Pauamarélo Dry ory Soaked D.F.E.T. Seaded OFET Average wood failure Fig. S. Resorainal Formaldehyde: Average joint strengthe

1.1

BUS 2507 EMB.

MADE BY ACCO PRODUCTS, INC. ONG ISLAND CITY, N.Y. U.S.A.

