Halligan, James V Management plan for a mixed hardwood fores in the lake states. 1946

$$
B A=7061
$$

A CRITICAL ANALYSIS

OF A

MANAGEMENT PLAN FOR A MIXED HARDWOOD FOREST

IN THE LAKE STATES

- Forest Musagentiot-Wisonen

A thesis submitted in partial fulfillment of the requirements for a degree of Master of Forestry
University of Michigan
June, 1946
INTRODUCTION 1
PART I - TABLES AND SCHEDULES SHOFING FOREST SERVICE'S BEST SUSTAINED YIELD PLANE
TABLE I Stock and Stand Table for the average acre by species and diameter on a cut and leave basis 5-6
TABLE II Stock and Stand Table for the average acre by diameters only showing cut and leave 8
TABLE III Stock and Stand Table for the average acre by species and diameters at time of next cut 10-11
TABLE IV Stock and Stand Table for the average acre by diameters only at time of next cut 13
SCHEDULS I Dry Lumber Values of trees by species: and diameters and total cost by species $15-16$
SCHEDULE II Derivation of Net Income per MBM. 18
SCHEDULE III Total Revenue and Operating Costs per MBM, pill scale 20
SCHEDULE IV Financial Calculations to determine Present Worth Values 25-26-27
PART II - TABLES AND SCHEDULES SHOWING ALTERNATIVE PLAN OF SUSTAINED YIELD:
FORM I Control Table 32
FORM II Classified Stock and Stand Table of the average acre by age groups 38
TABLE IA. Stand and Stock Table for the average acre by species and diameters on a cut and leave basis. 40_41
TABLE IIA Stand and Stock Table for the average acre by diameters only showing cut and leave 43
TABLE OF CONTENTS-continued
TABLE IIIN Stand and Stock Table for the average acre by species and diameters at time of next cut 45-46
TABLE IVA Stand and stock Table for the average acre by diameters only at time of next cut, showing cut and leave 51
FORM III Dry Lumber Value and cost of Preduction per acre using Sugar Maple as an example $.54-55$
SCHEDULE IA Bry Lumber Values of trees by species and diameters and total cost by species 56-57
SCHEDULE IIA Derivation of Net Income per MBI. 59
SCHEDULE IIIA Total Revenue and Operating Costs per 1BM, mill seale 61
SCHEDULE IVA Financial calculations to determine Present Worth Values 63-64
EUMMARY AND CONCLUSIOI: 65

INTRODUCTION

In 1938 the United States Forest Service completed a report entitled "Timber Management and Financial Plans for the Goodman Working Circle." It was prepared with the cooperation of Mr . R. B. Goodman, president of the Goodman Lumber Company.

Briefly, this report presented five separate plans: of management for consideration with regard to 151,910 acres of mixed hardwood forests in northern Wisconsin, and considered specifically 24,093 acres of virgin timber, area A, and 17,515 acres, area B, that had been selectively cut from 1926 to 1936. Three of the five plans were sustained yield plans and two were liquidation plans. Of the sustained yield plans, the plan entitled, A Selective Cutting and Sustained Operation of Timber and Mill With the Annual Cut Equaling the Annual Growth Ten Years Hence, showed the largest net return and present worth value. This plan did not show a net return or present worth value greater than the plan entitled, Clear Cutting and Liquidation in Ten Years. It did, however, show a return on the investment of 6% which is probably as good a return as can be realized in any business today over a period of years.

The recommendation by the Forest Service with regard to these two areas was that the Goodman Company convert to
the selective cutting and sustained operation plan. Their further proposals were to cut on area A from 1936 to 1946, then to cut on area B from 1946 to 1956. In 1956 the company should then return to Area A and cut until 1966. At this time the two areas would be combined into a single management unit operated on a 20 year cutting cycle.

After intensive study of this report, it is believed that a better plan of management could have been proposed for the 24,093 acre tract; one that would have given a greater net return and present worth value from the first cut and which would have left a stand that shows possibil. ities of a greater volume cut in the more valuable size classes at the beginning of the next cutting cycle. Such a plan should then, when put on a financial basis, show a greater present worth value than the Forest Service's best sustained yield plan.

This paper attempts a critical analysis of the Forest Service plan by comparing the results of that plan with the results of the one composed herein. No alterations have been made in the basic data presented in the Goodman Report. They serve as a foundation of both plans.

Part I of the paper contains those tables and schedules necessary to show the cuts and returns when the 24,093 acres are managed under the Forest Service's best sustained yield plan. Some tables were lifted directly from the Goodman Report. Only the pertinent portions of other tables are presented as many of the tables contain data that are not
necessary to use in the analysis. Each table is preceded by explanatory data where necessary.

Part II contains those tables and schedules necessary to show cuts and returns when the 24,093 acres are managed under the alternative plan. For ease in comparison of tables of the proposed plan with the Forest Service plan, the tables in both parts will have the same number and those in Part II will also have a letter added to the number. For example, in Part I, Table I is the Stand and Stock Table of the 24,093 acres showing the average stocking of all timber combined on a cut and leave basis. Table IA in part II is the same table showing the average stocking of all timber combined on a cut and leave basis as proposed by the alternate plan. These tables also carry explanatory data.

Part III presents a discussion of both plans and the conclusions that can be drawn from the material presented in Parts I and II.

The writer expresses his appreciation to Professor D. M. Matthews of the School of Forestry \& Conservation of the University of Michigan for the use of some materials in his text, Management of American Forests, and for his helpfull. suggestions in the preparation and organization of this paper. The writer is further indebted to his fellow stu. dents for their helpful criticisms and discussion of this problem while the work was in progress.

PART I

TABLE I

Table I represents the Stand and Stock Table of the 24,093 acres, showing the average stocking of all sawtimber combined. This table shows the timber recommended to be cut, and left, separately. In the Report, the Forest Service explains, "characteristics of the stands and species involved indicate the individual tree selection method to be the most desirable silvicultural system of cutting," and further, "the all age character of the virgin stands will be retained by selective cuttingmomethis is accomplished by cutting trees in $a l l$ age classes and of all diameters on the basis of their present condition and environment."

Sugarifaple:	F. Hemlock	Y. Birch	Basswood	Elm	Redmaple
\& NO .Ofs Fl	H0.Ofs Nat	Ho. of : Met	Ho.ofs Net	No. Ofs Net	No. $\mathrm{Of}_{8} \mathrm{Net}$
DBH:Trees:Vol.:	TreessVol.s	Treess ${ }^{\text {Pol. }}$	TreessVol.:	Trees:Vol.:	Trees \% Vol.

PROPOSED

10:	.028	:	1.39:	$25:$. 098	$2:$.03:	18	.0\%:	:	:	
128	. 308	14:	1.068	43:	. 298	10:	. 158	8:	.058	3:	.02:	1:
$14:$	-24:	208	.928	73 :	. 60 :	41:	. 068	$6:$.05:	$5:$.06\%	4:
168	. 59	78 \%	-51:	59 :	.77:	81:	.14:	20:	. 03	$4:$.05:	6:
18:	1.028	196:	. 518	$88:$. 87	129:	.178	35:	.088	158	.06:	10:
$20:$	1.028	261:	. 37 :	898	. 548	109:	.13:	36:	.088	208	.038	7:
22:	-82:	260 :	-348	104:	. 46	126:	. 208	68:	.08:	27:	.02:	6:
24:	.718	268:	. 438	1698	.33:	115:	. 15	62:	. 19 :	85:	:	
26:	. 488	218:	. 278	131:	.18:	76 :	.11:	538	.12:	65	8	
28:	.118	58:	-298	168:	. 088	40:	. 068	34:	.05:	358	:	
30:	.078	44:	.11:	758	.02:	$11:$. 05	34:	. 058	39:	:	
32:	.03:	22:	.03:	2\%:	.02:	12:	. 028	15:	.03:	27:	:	
34:	.028	16:	.028	16:	8	:	8	:	.028	$20:$	-	
Total5.43 1455			6.251068		4,25	752	1.27	372	. 85	341	. 24	34

PROPOSED

NetCut
and

	Northern		Northern	$\mathrm{Bl}^{\text {ack and }}$		
	W. Codar	Balsam Fix	White Pine	W. Spruc	Aspen	Tot

Wo.Of:Net : No.Of:Net : Mo.Of:Net : No.Of:Net: No.Of:Net :No.Of:Net :No.Of:Met Mrees:Vol.: Trees:Vol.: TreesiVol.: Trees\&Vol.: Trees:Vol. ATrees:Vol. :Trees:Vol.

TABLE II

Table II has been drawn up from Table I and shows: the Stand and Stock Table of the average acre by diameter classes only, with the addition of columns showing the proposed cut and leave and Basal Area in square feet by diameter classes.

TABLE II

STAND AND STOCK TABLE - 24,093 ACKERS
1936

DBH :	NO.OP Irees	:	B. A., Sq. Ft.		Volume ft.b.m.	$\begin{aligned} & : \\ & : \end{aligned}$	Proposed Cut			8	Proposed Leave		
							No.of Trees	8	$\begin{aligned} & \text { Volume } \\ & \text { It.b.m. } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \\ & \hline \end{aligned}$	No. 01 Trees	8	Tolume ft.b.m.
										:			
10 :	21.94	1	11.94	8	403	:	3.68	$:$	53		18.26	:	550
12 :	17.09	:	13.42	:	705	:	4.77	:	145	:	12.32	:	560
										1			
14 :	13.67	:	14.60	1	1121	:	4.04	:	255		9.63	:	866
										:			
16 :	9.36	:	13.08	:	1225	:	3.04	:	327		6.32	:	898
							3.38	:	547	:	3.80	:	817
	7.18	:	12.69	:	1364	:	3.38	:	547	:		:	
208	4.41	:	9.63	:	1145	:	2.59	:	595		1.82	:	550
									608	:	.77	:	305
	2.78	8	7.33	:		:		:		:		-	
24	4.20	1	15.64	$:$	2014	:	4.14	:	1983		. 06	:	31
Total:	80.63		98.30		8890		27.65		4513		52.98		4377

The total basal area cut per acre was 46.68 square feet, leaving
a basal area of 51.62 square feet in the residual stand.

TABLE III

Table III represents the Stock and Stand Table for the average acre of the 24,093 acres in 1957 or time of the next cut. Ten percent of the trees of the residual stand have been deducted to allow for mortality and the volumes have been projected twenty years into the future in the following manner: If the 8 inch diameter class tree would grow to become 11 inches in 20 years, the number of 8 inch trees today would be multiplied by the volume of an 11 inch tree. This calculation gives the volume of the present 8 inch trees 20 years hence.

This volume increase is based on an average growth rate of about 0.15 inches per year. "This assumption was made necessary due to the lack of more intensive information, " the report states, "but preliminary studies on this point indicate the increase in diameter by inches is remarkably close for all diameter classes after selective cutting."

TABLE III

SHOCK AND STAND TABLE FOR THIS AVERAGE ACRE PROPOSED SELECTIVELY CUT STANDS-20 TEURS HENG:

```
Yolumes in Board Feet
24,093 cofes Goodman Report-1936
```

	Suganmeple	E. Hemlock	Y. Birch	Bassumod	E1m	Rederaple
DBH :	No.0fint	H0.0f: ${ }^{\text {Not }}$	No.of sTot	He.ofinet	$\mathrm{HO} 0 . \mathrm{Of}_{8} \mathrm{Het}$	H0.0filet
Todeys	Ireesstol.	Prees:Tol.	TreesiTol.	Treess 701	Irees; ${ }^{\text {VOl }}$	Trees:Vol.

Estimated Stend

8 8	2.268	90	1	7.001	238	:	1.679	37	8	.628	35	8	.678	19	:	.168	4
10	2.56	205	:	5.45:	391	1	1.99:	100	:	. 55	34	:	.81;	49	8	.14:	9
12	2.00:	270	\%	5.68:	423	8	1.94:	176	:	.468	71	8	. 86	89	8	.051	6
148	1.97	404	,	2.79	502	:	1.75	239	8	. 388	64	:	. 59:	89	-	.10:	19
16	1.58:	458	:	1.50:	390	:	1.318	252	:	- 38	117	8	. 50	105	:	.02:	6
$18:$	1.13:	424	\%	. 942	529	8	.73:	197	:	. 268	102	:	. 271	79		:	
20 :	. 688	309	:	. 23.	105	8	. 278	97	8	.20:	89	8	. 228	86		,	
$22:$.55;	192	1	.118	66	:	.08:	37	:	.05:	30	8	. 088	42			
24.	-1		1	1		1	.02\%	11	1	.02:	14	1	-		8	- 8	
tel:	. 43	352		1.68	444	8	$9.79: 1$	1145		$\dot{2}_{2} 78_{i}^{t}$	583	8	4.008	558	8	. 478	4

TABLF III-Continued

$\begin{aligned} & \text { A8h } \\ & \text { सo. } 0 \text { fivet. } \\ & \text { Trees:Yol. } \end{aligned}$	1	Horthern Wo Ceder Ho.ofiNot Trees: Vol.	1	$\begin{aligned} & \text { Balaam Fire } \\ & \text { Mo.afinvt } \\ & \text { Treanvol. } \end{aligned}$	$\begin{aligned} & \text { Wertharn } \\ & \text { White Pine } \\ & \text { 耳o.of } \\ & \text { Preosivz } \end{aligned}$	2 Bl ack and 1 W. Spryue iso. Ofilite areenivol.		
					10 re			
. 59229	:	5.17\% 98	1	2.37: 53	9071	.40: 20	. 022	\$21.26: 636
.40: 57	1	3.77: 151	1	.70. 34	.11, 9	.19: 20	31	\$16.45:1039
.328 47	:	1.40. 101	1	. 121101	.0518	. $21: 83$	81	111.09:1238
.15: 31	1	. 64161	:	.023 3	.14332	\%-16: 88	18	- 8,6781508
.05: 14	8	.23: 35	1	$1{ }^{1}$.058 17	$1.05: 17$	12	: 5.67:1411
$\bigcirc 1$	8	.05: 11	1	+	-08, 28	:	11	\% 3.4581165
8	8	.	$:$	88	$.05 \%$ 50	18	13	1 1.658 725
8	1	1	!	81	.02\% 15	$:$	18	\% .69, 882
8	8	1	1	8	.08, 18	18	11	1.061 .45
1.51158		11.26. 457		$3.21 \quad 99$	$.56 \quad 155$	1.01124	. 02	68.91:8156

TABLE IV

Table IV has been drawn up from Table III and shows the Stand and Stock Table of the average acre by diameter classes only. The additional columns show Basal Area in square feet by diameter classes and the estimated DBH in 20 years.

The Forest Service states that a 50% cut or a volume of $4,221 \mathrm{ft} ., \mathrm{b}$. m. can be made on this stand.

Note that the total Basal Area is 83.30 square feet. This is a reduction of 15.00 square feet per acre over the original stand that carried 98.3 square feet of Basal Area.

qable IV

STAND AND STOCK TABIE OF AVERAGE ACRE 24,093 LCRES - 20 YRARS HETCE

$\begin{gathered} \text { DBH } \\ \text { Toder } \\ \hline \end{gathered}$		$\begin{aligned} & \text { Ho. of } \\ & \text { Treos } \end{aligned}$		B. A., Sq. Pt.		$\begin{aligned} & \text { Tolume } \\ & \text { ft.b.m. } \\ & 20 \text { yrs. } \end{aligned}$		$\begin{gathered} \text { Rst. } \\ \text { DBH } \\ 80 \text { trs. } \end{gathered}$
8	3	21.26	8	14.05	8	636	8	11
10	:	16.45	1	15.19	8	1039	8	13
12	8	11.09	1	13.60	1	1233	8	15
14	1	8.67	1	13.68	:	1502	8	17
16	8	5.67	1	11.18	8	1411	8	19
18	1	3.45	9	8.25	!	1165	:	21.
20	8	1.65	:	4.76	8	725	1	23
22	3	. 69	1	2.55	:	382	\%	25
24	\%	. 06	;	. 24	!	45	8	27
Totel		68.97		-83.30		8136		-

SCHEDULE I

Schedule I is the tabulated results of the dry lumber values per acre of trees by species and diameters, and the total cost per acre by species as derived by the Forest Service. The difference between the values per acre and cost of production per acre is the gross realization per acre (before taxes and depletion.)

These figures for each species were derived in the same manner as those in Form III, Part II. See explanatory data to Form III.

SOHIDUI I

DRY LUMBELR VALUES PER LCEE OF TRHES BY SPECIES AND DIAMETLRS

schendie I-Gontinued

Ash		F. White Coder	1	$\begin{gathered} \hline \text { Balsam } \\ \hline 10 \end{gathered}$	1	N. Whi to Pine	1	Soruce	8	Aspen	1	$\begin{aligned} & \text { Grgnd } \\ & \text { Sotal } \end{aligned}$	DBH
	8		:		:		8		:				
		. 81		.81			:	. 06		. 03	:	2.558	10
. 12	8	1.87	:	. 49	8	. 08		. 87	1	. 16	8	6.28 \%	12
. 36	8	3.17	:	. 15	:	.18	8	.38	:	. 28	:	10.56 :	14
. 28	:	2.02	:	. 25	:	. 18	1	. 38	:	. 06	:	13.09	16
$\text { . } 23$:	1.86	:		:		8	.71	:		:	21.67:	18
	:	1.77	:		:	. 36	:	. 62	©		:	23.74 :	
	:	. 59	:		$:$:		:		:	25.09	42
	8	. 25	:		:		:		8		8	28.98 :	24
	:	. 19	:		:		:		:		:	22.91 :	26
	:		:		:		:		:		:	23.36	28
	:		:		:	1.06	:		:		:	9.55	30
	$:$:		:		:		:		:	4.36	32
	:		:		:	1.37	:		:			5.47	84
.99	8	18.53	8	1.18	:	3.23	8	2.48	8	. 47	8	185.59	
. 96	8	12.12	1	1.19	8	1.77	8	2.28	8	. 45	\%	143.26	
					GRO	$\begin{aligned} & \text { SS REALL } \\ & \text { re Taxes } \end{aligned}$	$\begin{aligned} & 2 \mathrm{AI} \\ & \mathrm{ax} \end{aligned}$	ION PER deple	$\begin{aligned} & \triangle O R \\ & \text { ion } \end{aligned}$			42.26	

Schedule II shows the net income per MBM before land - and timber taxes and forestry expenses are deducted. The 'Source of Data' column shows how the figures in column two were derived. The figures for taxes, social security, etc. are taken directly from pages of the Report; hence where 'Report' appears it means that the data came from a table in the Report which does not appear in this paper.

SOHEDULE 11

Derivation of liot Income per MB3I
Before Land and Timber Taxes and Forestry Expenses are deduc ted.

TOTAL REVENUE AND OPGRATING OOSIS EER M, MILL SCAIS

SCHEDULE IV

Schedule IV shows the results of the financial calculations in determining the present worth values of the first cycle and all subsequent cycles. The figures used to develop item L, Total net realization annually, are taken from Schedule II. Total revenue per M and total current operating costs per M were derived in Schedule III.

The following explanation relates how the Forest Service determined the present worth value of the future incomes under their best sustained yield plan. It is quoted directly from the Goodman Report:
"The present worth values are determined on the basis of a risk-free rate of interest of 3 per cent, and also on the rate of interest indicated by discount for hazard of 30 per cent.

It is believed that a 3 per cent risk-free rate of interest in conservative. The results obtained by using 4 per cent as the basic rate of interest would not differ radically from those obtained. Governments bonds, for oxample, have earned 3 to 4 percent annually over the course of the last 50 years, and it does not seem likely that present economic conditions will alter these earnings for some time in the future.

If the business of holding and cutting timber and
of manufacturing lumber had no hazards the values indicated under the 3 per cent rate would be reliable. To allow for the actual hazards of operation some provision must be made for risk. In an attempt to reach a reasonable discount for these hazards the following risks are listed, and an effort made to appraise how much each might affect the average annual net realizations.

When one attempts to appraise the present value of future incomes, it is necessary to make use of present worth factors. If, for example, one wishes to arrive at the present value of ten annual payments of $\$ 1$ each to be received during the next 10 years, one can consult present worth tables in text books on valuation and find that these ten future payments are worth $\$ 8.53$, if 3 per cent is assumed as a safe rate of interest. In other words, $\$ 8.53$ would, if now placed in a bank or investment ylelding 3 per cent annually, produce enough interest to increase the value of the original deposit in 10 years to a sum that equals the ten annual payments and interest on them during the same period.

Since it was decided that this plan has an average annual hazard of about 30 per cent of the net realization, the present worth values have been determined by using the rates
of interest indicated in Grimes and Craige's curves on Page 152 of their book Principles of Valuation." These curves indicate the rate of interest that one should use to secure a specific factor of safety (the complement of discount for hazard secured by subtracting the latter from 100) in analyzing present worth values. If the present worth of ten annual payments of $\$ 1$ is $\$ 8.53$ at 3 per cent and $\$ 8.11$ at 4 per cent, the factor of safety between these two appraisals of value is obtained by dividing the value of the lower by that of the higher value as follows:

$$
\begin{aligned}
& \$ 8.11 \\
& 8.53
\end{aligned}=\frac{95 \text { or } 95 \% \text { factor of safety }}{(100 \%-95 \%-5 \% \text { discount for hazard) }}
$$

Grimes and Craige express their factors of safety in decimals-as. 95 for 95 per cent shown above. To take the ten annual payments of \$1 each and learn what rate of interest should be used to allow a discount of 30 per cent for hazard (or factor of safety of 70 per cent) the following is necessary.

First : Take the value shown by the safe rate of Intenest (3 per cent) and multiply it by the factor of safety: $\$ 8.53 \times .70=\$ 5.97$.

Second : Refer to Table IX (Page 235) of Grimes and Craige, ant see what rate of interest would indicate the closest value to $\$ 5.97$ in ten years. This will be found to be 11 per cent.

Third: Refer to the curve for factor of safety of .70 on Page 152 of Grimes and Craige, and it will be found that it also indicates 11 per cent for a tenyear period. Under Table IX the present worth factor under 11 per cent indicates $\$ 5.98$ as the value of ten annual payments of $\$ 1$ each, when the factor of safety is about $\cdot 70$.

The first two steps indicate how the curves are built
up; the third step is all that is necessary now to determine the rates that should be used to secure values in line with a factor of safety of .70. In the manner indicated by the third step the rates of interest were obtained and new present worth factors secured from Table IX, page 235, of Grimes and Craige.

This detailed explanation is show, to give the foundation for the use of the present worth factors shown in the plan. In this plan the following factors are used:

Present Worth Factors for Series of Equal Annual Payments (Compound interest annuity valuation formula)

No. of
Years
10
perpetuity

Using 3\% as a

 risk-free rate of interest8.530
3% capitaliza tion rate

Using rate of interest
indicated by Grimes \& Craige curves_hazard 30%

$$
5.889(11 \%)
$$

3.9 capitalization rate

Discount Factors for Single Payments
(Compound interest deferment valuation formula)
10
1.344
1.967 (7\%)

Sinking Fund Factor:

20
.037216

The Present Worth Factors for series of Equal Annual Payments were identified in the manner as described above with the exception of the 3.9% capitalization rates in perpetuity when allowing a discount for hazard of 30%.

It is believed that this figure is in orror. The factor is based on the compound interest anmuity premise, and when the time is perpetuity, it can be calculated by the fellowing formula:

Factor of safety $=$ Risk free rate of interest Rate of interest allowing a discount for hazard.
$\operatorname{\theta r} F=\frac{\theta_{p}}{O_{p}}$
By substitution in this formula of the known values we can solve for op, the capitalization rate in perpetuity when allewing a discount for hazard of 30%.
$F S=100 \%-30 \%=70 \%$
Risk free rate of interest $=.03$
Therefore

$$
\begin{gathered}
.70=\frac{.03}{.0 p} \\
.70 \times .0 p=.03 \text { and } \\
\frac{.0 p=\frac{.03}{.70}}{} \quad \text { or } \\
.0 p=4.3 \%
\end{gathered}
$$

This correction necessitated recalculating the financial calculations in Schedule IV from item R through item U to get values that can be compared with the alternate plan proposed herein.

These new values are show on page 27, in schedule IV.

Selective Cutting and Sus tained Operation of Timber and Mill With the annual Cut Fqugling the Annual Growth 10 years Hence.

Basic Deta

A. Armual Out $\quad-13,932 \mathrm{MBM}$, mill scale.

In this plan it is recommended that 1,674 yBM of the annual out be purchased amually.
B. Present Volume - $308,838 \mathrm{MBM}^{2}$ log scale
C. Period of conversion to gustained yield - 10 years

Avarege Net Returns During Period of Conversion

D. Total revenue per $M_{;}$all products $\quad \$ 9.93$ mill scale
I. Dotal current operating costs per M $\quad 25.66$ "
F. Gross realization per M (D - E) $\quad \$ 14.27$ n
G. Iotal amual gross realization for period of 10 years before depletion, depreciation and income taxes (4 x F) $\$ 198,810$

- Less cost of purchases stumpage of 1,674 uncill
at an assumed cost of $\$ 6.50$ per M I Cg scale.
10,881 (187,929
H. Federal and state income and capital stock texes. \quad 速 13,635
I. Social Security tax.

11,160
J. Estimated losses from obsolescence, etc. $\quad \mathbf{4 , 0 0 0}$
K. Total reductions of amual gross reali zation (H, I, J)

28,795
I. Total net realization anmally. 159,134

Present Worth Value of 111 Future Net Realizations

Using 3% as a Usirg rate of interest risk-free rate indicated by discount of intorest of 30% for hazard
M. Present worth of 10 ennual incomes of $\$ 1$ each.
$\$ 8.530$
N. Present worth of net realizations of the next 10 years (5×4)
0. Lverage anmal cut, 10 acale, after next 10 years
P. Estimated average net returm per M. Log eoale
(First 10 years it is ${ }^{3} 13.26$ per M, \log scale, and although a slight reduction of the annual cut is provided for it is believed the net realization per whis would be maintained)
Q. Lverage net return after next 10 years
R. Capitalized value of average net return of \$132,600 on a continuous basis at 3\% and 3.9% respectively
S. Value of $\$ 1$ at compound interest in 10 jears
I. Present val ue of realizations efter the next 80 yeere
U. Present wo rth talue of all future not realizations mt rag
$\$ 4,646,103$
Using rate of interest Indiceted by discount of 30% for hazard
$\$ 937,140$

10,000 MBM
$\$ 13.36$
$\$ 13.26$
10,000 MBI
\$132,600
\$3,400,000
$\$ 1.967$
*1,726,521
$\$ 2,665,661$

Sinking Fund Regrired Annugily - First 10 Years

$$
7 / 4 \text { of } \$ 2,771,128=\$ 692,782
$$

$$
\$ 692,782 \times .087251 \quad \$ 60 ; 482
$$

$$
200,000 \times .031215 \quad 7,443 \text { (To raplace plant every } 20 \text { years) }
$$

Total sinking fund $\quad \$ 67,875$

Pate Sarnad - F1rst 10 Years

$$
\begin{aligned}
& \begin{array}{l}
\text { Net realization } \\
\text { Sinking fund }
\end{array} \begin{array}{r}
\frac{159,134}{67,875} \\
\frac{91,259}{} \\
\frac{91,259}{8,771,128} \times 100=3.3 \text { per cent. }
\end{array}
\end{aligned}
$$

Net realization Sinking fund
\$132;600
7,443 (To replace plant every 20 years)
$\overline{\$ 2} 25,157$
125,157 $x 100 \geqslant 6.0$ per cent.
2,078,346
Calculations of present worth values, 1 tem Q thru U, based on the
correct capitalication rate in perpetuity when allowing for a hazard of 30%.
Q. Average net return after net10 years.
\$ 152,600
R. Capitalized value of average netreturn of 732,600 on a continuousbais at 4.3\% o 4.3\%
3,081,000
S. Value of $\$ 1$ at compound interestin 10 years.1,967
T. Present value of realizationafter next 30 years. F © S$1,567,000$
U. Present worth value of all futurenet realizations. $T+\mathbb{I}$2,504,140

PART II

THE THEORY OF THE BASAL AREA METHOD OF CONTROL

TO DETERMINE HARVEST CUTS
"Normal yield tables present data with regard to yield, number of stems, and basal area per acre to be expected in even age fully stocked stands at different ages throughout the life of a forest from youth to old age. Our all age forests, as nature or previous logging operations present them to us for management carry various grouping of different aged trees all on one acre, and the comparison of the data presented by the ordinary stock and stand table for an all age forest with that contained in a yield table for the same species will get us nowhere _-. What we require for comparison with the all age stand and stock table is data for the same or similar species on the all age arrangement, which is normal. Such data can rarely, if ever, be found and measured in natural stands, but we can prepare such an arrangement of data from ordinary yield tables. n^{I}

When the Basal Area Method of Control is to be used as a management tool, the only data necessary to take from a normal yield table are the Basal Area figures. These figures then arranged in predetermined cyclic age groups become applicable as a control table for use in classifying

[^0]the stand and stock table of the actual all age forest. Such an arrangement is justified when we see that the basal area percentages of age groups in all age normal yield tables as constructed by Matthews show that species of similar habit and growth have appreximately the same percentage distribution of basal area for a definite cutting eycle regardless of what site conditions or total basal area

[^1]FORM I

A control Table has been prepared using the Basal Area figures from S. R. Gevorkiantz and William A. Duerr's "Yield Table For Average Well Stocked Stands of Northern Hardwoods in the Lake States". ${ }^{1}$

As the forest to be classified is of medium site, the medium site table was used in the calculations though the basal area figures of either of the other two site tables could have been applied as well.

The steps to set up the Control Table are as follows:

1. Draw a curve of basal area over average stand diameter from medium site yield table. (see Graph 1). Graph 1 was prepared from the above mentioned yield Table.
2. Determine the growth rate, mean annual increment, in inches to be expected for the acútal forest. As the Forest Service in the Goodman Rep ort determined this as 0.15 inches a year, this growth rate has been used.
3. Decide what the probable maximum size timber to be produced in the regulated forest will be. This size has been set at 22 inches with an average of about 20 inches. The Forest - Service proposed cutting clear to 24 inches, but it is believed that the interest return on keeping trees beyond 22 inches does not cover the cost of carrying them.
4. Decide upon the cutting cycle for the actual forest. The 20 year cutting cycle has been used as that is the aim of the p lan proposed by the Forest Service.
5. Determine the limit of cruise. This has been set at 10 inches, the lower limit of merchantibil. ity. There is an adequate growing stock below this limit to assure the success of a sustained yield program.
[^2]From the data of 2,3,4, and 5 above, the number of cyclic age groups into which the total basal area of the Control Table will be arranged, and after, the stand and stock table, can be determined by the following formula:
maximum size timber to be expected - lower limit of cruise cutting cycle x MAI in inches equals $\frac{22^{\prime \prime}-10^{\prime \prime}}{20 \times 0.15}$ equals $\frac{12}{\times 3}$ equals 4 cyclic age groups.
6. The probable average diameter of trees within each age group is determined. For the four age groups the diameter range is from 22 inches. down to 10 inches or a range of 12 inches. Therefore each group will have a diameter range of 3 inches, i.e., Group I will range from $10^{\prime \prime}$ to $13^{\prime \prime},-$ and Group IV from $19^{\prime \prime}$ to $22^{\prime \prime}$. The averages of these groups are then calculated being $11.5^{\prime \prime}$ for Group I, $14.5^{\prime \prime}$ for Group II, 17. $5^{\text {n }}$ for Group III and $20.5^{\prime \prime}$ for Group IV. The quantity of basal area in square feet which one fully stocked acre of these average diameters would carry is then read from the Basal Area curve in Graph I.

The preceding data are tabulated in Form I and the percentage of basal area which should be allocated to each age group is determined by dividing the basal area of each age group by the total basal area of all groups. These percentages of basal area per age group can now be used as a control in classifying the stand and stock table of the actual forest.

posin I

CONTROL TABLE - DETHRMINED FHOM YIELD QABIE

Ase Group	DaH Hemge	$\begin{aligned} & \text { Arerage } \\ & \text { pianater } \end{aligned}$	Banal Lrea Se. Fét	$\begin{aligned} & \text { Basal AFes } \\ & \text { Per Cont } \end{aligned}$
I	10-15	11.5	123	21.9
II	13-16	14.5	141	24.6
III	16-19	17.5	155	26.3
IT	19-22	20.5	164	27.2
Totel			583	100.0.

FORM II
Form II shows the stand and stock table of the actual forest as classified into age groups under the Basal Area Method of Control. The following discussion explains how it was classified.

The total square feet of basal area of the stand and stock table of the actual forest is 98.3 square feet. From the Control Table we see that Group IV should carry 27.2% of this total basal area or 26.7 square feet. Adding up from the bottom of the basal area column of the Stand and Stock Table of the actual forest, we see that the basal area $22^{\prime \prime}$ and up totals 22.97 square feet. As a cut of 26.7 is allowable, 26.7 minus 22.97 or 3.73 square feet can come from the $20^{\prime \prime}$ class. The $20^{\prime \prime}$ class contains 9.63 square feet of basal area, 4.41 trees and $1145 \mathrm{ft}, \mathrm{b} . \mathrm{m}$. Therefore, $3.73 * 9.63$ or 38.8% of the basal area, number of trees and volume in the $2 Q^{\prime \prime}$ class will be included in Group IV. Similar calculations are done for each group and are shown in total on page 37. The totals of the number of trees and volumes in each group as calculated are then tabulated into the classified stand and stock table. (Form II)

The Estimation of the Possible Cut

From the calculations to classify the stand and stock table and the classified table itself an estimation of the annual possible cut can now be made.

We can take all of Group IV, plus any thinnings in the other age groups over and above the number of trees that
are necessary to leave to carry forward for the next cut, and which should have the basal areas as shown in the classified stock and stand table. The present stand is about 86% stocked as determined by the Forest Service. To help bring the stand up towards full stocking no thinnings were considered in Groups I and II. Unless there were defective trees in these groups that would not carry through to the next cycle these two groups would remain as they are. A thinning was made in Group III and is calculated in the following manners

The average diameter of trees in Group III is 17.7". In 20 years, the time of the next cut, they sheuld average 20.7" (MAI 0.15" per year) and should carry 26.7 square feet of basal area. The number of trees in Group III to carry forward thens

Basal Area in square feet of Group IV
Basal Area of a $20.7^{\prime \prime}$ tree
equals $\frac{26.7}{2.337}$ equals 11.42 trees
As there are 15.05 trees in Group III now, $15.05-11.42$ or 3.63 trees can be taken as a thinning aleng with Group IV for the harvest cut. The thinning should take trees of poorest form or trees of the smallest diameter class in the Group which In this case are the 16n trees. The volume, figured by species was calculated at 402 feet, b.m.

The total cut then is:

These data are tabulated by diameter classes in Table IIA.

STOCK AND STAND TABLE - 84,093 ACRES

 1936| MBH | Ho. Of greea | B. A., Sg. Ft. | Tolune; it., b.am. |
| :---: | :---: | :---: | :---: |
| 10 | 21.94 | 11.94 | 403 |
| 12 | 17.09 | 13.42 | 705 |
| 14 | 13.67 | 14.60 | 1121 |
| 16 | 9.36 | 13.08 | 1225 |
| 18 | 7.18 | 12.69 | 1364 |
| 80 | 4.41 | 9.63 | 1145 |
| 24 | 2.78 | 7.35 | 915 |
| 84 | 4.80 | 15.64 | 2014 |
| Totel | 80.63 | 98.53 | 8890 |

group IV	B. A_{2}	Ho. Trees	Volume
B. A. required	26.70		
through 22" 22.97	22.97	6.98	2927
Balance from 20" clase	3.73		
\% BA from $20^{\prime \prime}$ class $3.73+9.63=38.8 \%$			
No. trees $20^{\prime \prime}$ class $4.41 \geq .388$		1.71	
Volume $20 \mathrm{class} 1145=.388$		86	444
Group III			
B. A. required	25.80		
Balance from $20^{\prime \prime}$ clase			
- BL 9.63-3.75 $=5.90$		2.70	701
18° Class $\quad 18.69$	18.59	7.18	1363
Belance frem $16^{\prime \prime}$ class	7.21		
\% BA from $16^{\prime \prime}$ class 7.21 $13.08=55.2 \%$			
Ho. trees $16^{\prime \prime}$ class $9.36 \times .552$		5.17	
Tolume 16" class $1225 \times .552$			676
Groun II			
B. A. required	24.20		
Balance from 16° clase $\text { BA } 13.08-7.21=5.87$		4.19	549
$14^{\prime \prime}$ Class $\quad 14.60$	20.47	13.67	1121
Balance from $12^{\prime \prime}$ clasa TOTAL	3.73		
\% BA fran 12^{*} class $3.73 \div 13.42=27.8 \%$			
No. trees 12^{n} clase $17.09 \times .278$		4.74	
Volume 18" ${ }^{\text {class }} 705 \times .278$			195
Group I			
B. 4. required	21.60		
Balance 12* class			
BA $13.42-3.73=9.69$		12.55	510
10^{0} Class $\quad 11.94$	21.65	21.94	405
TOTAL	0.004	34.29	915

1OBL II

CLASSIFIED STOCK AND STAMD TABIS $-24,093$ ACKISS -BASAL \triangle FA METHOD OF CONTROI

c Group	${ }_{8}^{8} 1$.	$\begin{aligned} & \text { Lotruel } \\ & \text { B. } L_{0} \\ & \text { Sq. Pt. } \end{aligned}$	Y0. Trees	Tolym	$\begin{aligned} & \text { Be Lu } \\ & \text { Per Pree } \end{aligned}$	Are. DBH	$\begin{aligned} & \text { Dispeter } \\ & \text { Range } \\ & \hline \end{aligned}$
I	21.9	21.6	34.20	915	. 630	10.75	10-12
II	24.6	24.2	22.60	1865	1.070	14.00	12-16
III	26.3	25.8	15.05	2741	1.715	17.70	16-20
IV	27.2	26.7	8.69	3371	8.078	23.75	204
TOMAL	100.0	98.8	80.65	8892			

TABLE IA

Table IA represents the stand and stock table of the 24,093 acres, showing the average stocking of all timber combined. This table shows the timber to be cut and left, separately, when determined by the Basal Area Method of Control.

In determining what number of trees of each species in the $16^{\prime \prime}$ and $20^{\prime \prime}$ classes should be cut it was decided to cut in the same percentage as was calculated by the Forest Service in their plan. For example, using sugar Maple as an illustration, .59 trees were recommended to be cut out of a total of 3.04 trees in the $16^{\prime \prime}$ class, or 19.4\%. To keep the percentage cut comparable in the Basal Method of Control plan where a tetal of 3.63 trees were to be cut in the 16" class, 19.4% of 3.63 or . 70 trees in Sugar Maple were cut.

This procedure was followed for all other species in the $16^{\prime \prime}$ and $20^{\prime \prime}$ classes. The volume to be cut inithese classes was then calculated on the basis of this number of trees.

TABIE IA
STOCK AND STAND TABIB FOR THE AVFRAGY ACDR HINHAINIIG UECUT SAM-TIMBEMR TYPISS COMBINED

Sugarifaple:	F. Hemloak	Y0, Bixch	Basswood	Blm	Redmaple
Ho.01s NTt DBH: Trees:Tol.s	No.of\&Net Preesivol.s	No.arimot Trees:Vol.:	$\begin{aligned} & \text { No.0Isivet } \\ & \text { PreessVole: } \end{aligned}$	No.Ofsmet Preessiol.s	No.of ivet TreesiTol.:

PROPOSEA

168	.708	961	.618	73	. 93 :	1018	.178		8	.048	5:	.06:	78
208	. 678	195:	. 258	678	. 35 \%	82:	. 088	27	;	-.05:	15:	.02:	$5:$
22.	1.21:	4238	.468	151:	. 55 :	157\%	. 268	90	1	.178	60:	.02:	6:
24.	.71:	2688	.431	169	. 35 :	124:	.178	71	:	.19:	85:	:	:
268	. 48	218:	-278	131:	. 18 :	768	.11:	53	:	.128	63:	8	:
$28:$	-11:	58\%	-298	168:	. 088	408	.06:	34	\%	. 058	338	:	:
308	.078	44:	. 118	$75:$.02:	$11:$.06:	34	:	. 05 :	398	:	:
328	.038	22:	.038	22.	.02:	12:	.02:	15	:	.088	27:	8	:
34:	.028	16:	.02:	16:	8	8	-		1	.028	20:	:	:
TOTAT 4.001340			2.47	872:	2.48	603.	.98	349	-	.72	347:	. 10	18:

PROPOSED

NetCut

and

TABLE IA-Contimed

sh	Horthern 17. Cedar	Balsam Fir	Northem White Pine	Black and H. Spruce	Abpen	Total
WO.OP: ${ }^{\text {Pet }}$	NO.0f: ${ }^{\text {Fet }}$	NO.Of: Mot	No.0fiFt		No.01: ${ }^{\text {drat }}$	W0.018\%
Trees:V01.s	Trees:Voles	Trees:Volues	Trees:701.	Trees:V01.	Trees:Volas	Trees: 70 I

COT

ITPATM

7.57\%	8	10.638	8	29.618	8	8	8	.968	;	.188	: 122.518
1.56	8	8.238	8	13.338	8	.12\%	8	-42\%	1	. 068	\% 51.588
. 66	8	7.81:		6.37\%	\%	. 068	8	-188	8	-	: 33.698
.65	,	5.748	1	2.63:	1	م08:	1	4.4.	1	-028	, 23.61.
10.44	32.41		51.94			26	2.00		26 231.39:		
-44:	158	5.598	768	1.408	148	.128	48	. 278	4:	¢058	18 21.948 4038
. 418	27:	3.72:	758	. 578	148	.08:	38	-348	19:	.128	4: 17.0987058
. 288	29:	2.45:	111:	. 08 :	48	.188	178	.268	29 :	. 098	$6: 13.67811218$
. 038	6:	.128	10:	:	\%	. 068	108	.05:	88	2	: 5.7.3: 8258
. 038	68	.62:	55:	8	8	. 068	158	. 078	188	8	7.18:13648
		.118	18:	1	1	. 068	208	01.	5.	2	- 2.70 \% 7018
1.19	81.	12.61	3408	20.05	32:	-56	69.	1.00	83:	26	11. 68.31 5117\%

TABLE IIA

Table IIA has been drawn up from Table IA and shows the stand and stock table of the average acre by diameter classes with the addition of columns showing the proposed cut and leave, and square feet of Basal Area by diameter classes.

TABIE IIA

STOCK AND STAND TABIE - 24,093 ACRBS
1936

DBH	No. Of Irees	B. A., Sa. Ft.	Velumeft.b.mo	Proposed Cut		Proposed Leave	
				Ho. Of Treee	Volume ft.bom.	$\begin{aligned} & \text { Ho.Of } \\ & \text { Trees } \end{aligned}$	$\begin{aligned} & \text { Volume } \\ & \text { ft.b.m. } \end{aligned}$
10	21.94	11.94	408	none		21.94	403
12	17.09	13.42	705	unless		17.09	705
14	13.67	14.60	1121	defective		13.67	1121
16	9.36	15.08	1225	3.63	402	5.73	823
18	7.18	12.69	1364			7.18	1564
20	4.41	9.63	11.45	1.71	444	2. 70	T701
22	2.78	7.33	913	2.78	913		
24	4.20	15.64	2014	4.20	2014		
TOTAL	80.63	98.33	8890	12.32	3773	68.31	5817

The total basal area cut per acre is 31.76 square feet leaving a basal
area of 66.54 square feet per acre in the residual stand.

TABLE IITA

Table III represents the Stock and Stand Table for the average acre of the 24,093 acres in 1957 or time of the next cut. The number of trees in the residual stand as found in the proposed leave in Table IA was reduced 10% to allow for mortality and the volumes of the trees left projected ahead 20 years in the same manner as described in the explanatory Qata of Table III, Part I.

TABIE IIIA

SHOCK AND STAND TABLE FOR THE AVERAGE ACRE PROPOSED SELEOTI VELY CUT STANDS-20 TEARS HENGE

	Sugramaple	T. Hemlock	Y. Birah	Bessumod	31m	Reduaple
DBH:	No.OfiNet	Ho.ofinet	Ho.of sNet	Ho.of: NOt	No.Of: NFet	NO.Of; Fe

Istimated Stand

$8:$	2.26: 90	:	7.00:	238	8	1.68: 37	:	.62:	33:	.67:	19	:	.16:	4
10:	2.58: 200	:	6.68:	462	:	2.07: 127	:	.38:	$28:$.81:	63	\%	.14:	8
12:	2.27: 300	:	4.64:	533	:	2.20: 229	:	.60:	$73:$.91:	108	:	.06:	7
14:	2.19: 447	:	3.628	634	8	2.27: 348	:	-43:	80 :	.64:	109	:	.15:	29
16:	1.49: 430	:	1.41:	353	:	1.17: 252	:	. 35	90 :	. 50%	119	:	.01:	3
18:	2.05: 761	:	1.40:	482	:	1.51: 447	:	. 41 :	159:	.34:	111		.05:	21
208	1.00: 452	:	. 348	155	:	-44: 173	8	. 248	103:	.24:	108	\%	.01:	4
8	8	$:$:		1	$:$:	:	:	-		8	:	
Total:	3.84:2680	:	25.09:	2857	:	11.34:1613	:	$3.03 \%^{\prime}$	546:	4.11:	637	:	. 588	76

TABIE IIIA-Continued

Ash	Nor thern T. Cadar	Balsam Pir	Morthern White Pine	Black and 险. Spruce	Aspen	Rotel
Wo.0f: Net	NO.OP: Net	NO.OfiNet	No.Ofinet	Ho.Of\& ${ }^{\text {NTEt }}$	Ho.0ftiret	N0.018 ${ }^{\text {Ne }}$
Trees:VOL.	Trees:Vol.	Trees:Vol.	Preos:Vol.	Trees:Vol.	Trees: ${ }^{\text {PO}}$	Treesivol.

Per Acre

TABLE IVA

Table IVA has been drawn up from Table IIIA and shows the stand and Stock Table of the average acre by diameter classes only, with additional columns showing Basal Area in s quare feet by diameter classes, estimated DBH in 20 yeara: and estimated cut and leave at time of the next cut.

The cut and leave coluns necessitate further explanation. The results as tabulated must be an estimation inasmuch as they are derived from a table that is an estimation itselfof that is going to be the situation twenty years in the future, However, based on all the data available it coes appфroximate what can be taken from this stand at the time of the next cut when calculated under the Basal Area Method of Control.

By reference to the table it is seen that the total Basal Hrea is 103.13 square feet. This is an increase over the original stand of almost five square feet. This figure is significent in that it shows that the cut in the first cycle left a stand that not only recovered to its former stocking but increased about 5\%.

To arrive at the figures in the cut and leave columens, it was first necessary to classify the Stock and Stand Table (first four columns of Table IVA) with this new Basal Area. The same procedure was used as outlined in the explanatory data for

Form II. From the results, which are show on the following two pages, the estimation of the cut was calculated in the same manner as for the orginal stand. That is, the cut will be:

In Group IV, 11.66 trees with a volume of $3,888 \mathrm{ft} ., \mathrm{b} . \mathrm{m}_{\text {. }}$
In Group III: The average diameter of trees in Group III now is 17.1". At the time of the next eut these trees should average 20.1" (MAI of $0.15^{\text {¹ }}$) and should carry 28 square feet -f Basal Area. The number of trees to carry forward then:

Basal Area in square feet in Grour IV Basal Area of a 20.1^{10} Tree
equals $\frac{28.00}{2.204}$ equals 12.70
As there are 17.13 trees in Group III now, 17.1312.70 or 4.43 trees can be taken as a thinning along with Group IV for the harvest cut. The thinning again will be trees of poorest form or in the smallest diameter classes of the Group. As $15^{\prime \prime}$ trees are included in the Group, they are taken plus enough other in the 17" class to make up the 4.43 trees. In total, the thinning will bes

15" Class
$\frac{\text { Mo.of Trees }}{2.41}$
$\frac{\text { Volume }}{252}\left(f t . b . m_{0}\right)$
17" Class
$\frac{2.02}{4.43}$
330
582
The Total Cut is

Group IV
Group III
$\frac{\text { No. of Trees }}{11.66}$
$\frac{4.43}{16.09}$

$\frac{582}{4470}$

These data are tabulated by diameter classes in Table IVA.

Class IV-Harvest
BA required
Thru 21" class 22.57
Bal. fram 19" Class
\%BA from 19" Olassen $\frac{5.43}{10.20}=53.3 \%$
No. Trees $19^{\prime \prime}$ Class $=5.18 \times .535$
Vol. $19^{\prime \prime}$ Class $=1303 \times .533$
TOTAL
Olass III
BA required
Bal. from 19" Class
BA $10.20-5.43=4.77$
17" Class $\quad 19.38$
Bel. fram 15" Clasa
\%BA from $15^{\prime \prime}$ Class $\frac{2.95}{18.90}=15.81 \%$
No. trees $15^{\text {n }}$ Class $=15.40 \times .1581$
Vol. $\quad 15^{\prime \prime}$ Class $=16$ /2 $\times .1581$
TOTAL
Class IIA
BA required
Bal. from 15 ${ }^{\text {Ht }}$ Class $=18.90-2.95=15.95$
25.40
15.95
9.45
\%BA firm $13^{m} \frac{9.45}{18.21}=51.9 \%$
No. trees $13^{\prime \prime}$ Class $=19.75 \times .519$
Vol. $13^{\prime \prime}$ Class $=1187 \times .519$
TOTAL

Class I

BA required
Bel. from 13" Class $18.21-9.45=8.76$
22.60 11" Class

2\%.80
B. A.
28.00
22.57
5.45
24.15
2.95
2.42

608
12.30

No. Irees

8,90

695
3888

$$
0000
$$

Volume

3193
2.76
$\overline{11.66}$

$$
2003
$$

2003
2.41
$\overline{17.13}$
256
2867

CUSSIFIED SMAMAXD sH0CK mABLE FOR TABLE IVA

$\begin{aligned} & \text { प⿱宀女口 } \\ & \text { reoup } \end{aligned}$	\％B．A．	Aotival BHL．	Mo．of Irees	$\begin{aligned} & \text { Volume } \\ & \text { fto,bom. } \end{aligned}$	$\begin{gathered} \text { B.A. } \\ \text { per Tree } \end{gathered}$	Ave．DBH	Dismeter Range
I	21.9	22.6	50.53	1195	.741	11.65	11－18
II	24.6	25，4	23.22	1971	1.096	14．80	13－15
III	26.3	27.1	17.15	2867	1.590	17.10	15－19
IV	27.2	28.0	11.66	3888	2.381	80.9	19¢
TOMAL	100.0	103.1	82.54	9921			

STAID AND STOCK TABLE IN 20 YRARS-24;093 ACRES -BASAL AREA METHOD OF COIVTROL-

$\begin{array}{r} \text { DBH } \\ \text { Todey } \end{array}$	HO. Of Trees	B. A., Sq. Pt.	Volume$f t_{0}, b_{o m}$	Fst.DBH 20 years	$\begin{gathered} \text { Estimsted } \\ \text { Cut } \\ \hline \end{gathered}$		Estimated Leave	
					Trees	Volume	Trees	Volume
8	81.01	13.87	623	11			21.01	623
10	19.75	18.21	1187	13			19.75	1187
12	15.40	18.90	1612	15	2.41	252	12.99	1560
14	12.30	19.38	2003	17	2.02	330	10.28	1673
16	5.18	10.20	1303	19	2.7 .6	695	2.42	608
18	6.47	15.56	2137	21	6.47	2137		
20	2.43	7.01	1056	23	2.43	1056		
TOTAL	82.54	103.13	9921		16.09	4470	66.45	64.51

schedule Ia

Schedule IA shows the dry lumber value per acre and the cost of production per acre by species of the proposed cut in the original stand,(1936).

The derivation of these values are explained by the use of Form III. Form III goes into the details of obtain ing the dry lumber values per acre for the sugar maple volume as given in the stock and stand table for the orginal 24,093 acres. The results are carried over to Schedule IA. This practice was repeated for each species in the stand until the Schedule was complete. The following detailed notes explain the column heading in Form III:

Column 1-Diameter class of tree, based on breast height measurements.

Column 2 - Obtained from the Stand and Stock Table.
Column 3-Overrun factors obtained from USDA Technical Bulletin \#164 ontitled "Selective Logging in the Lake States." The overrun factors, by diameter classes, for the three main speciessugar,maple, yellow birch, and eastern hemlockwere used as the basic data on overmun for all the other species. Since these three species represent 74 percent of the volume in the stand, the overrun used in this report should be fairly representative of the entire stand. Whether these overrun factors apply to the sawing done by the Goodman Lumber Company will depend again on the average thicknesses and widths sawed, the general methods and efficiency of manufacture, and the practice followed by the company in scaling its lots. The Scribner Decimal C log Rule is used throughout the report, and this rule is also used by the Goodman Lumber Company.

Column 4-Represents the products of Column (2), times Column (3).

Column 5 - Indicates the volume left after apply. ing a 5 percent shrinkage factor for air drying. For the lumber which is kiln dried, a higher shrinkage factor would be required at this point and higher values per M board feet would have to be used in basic prices.

Column 6 - Is obtained from the Goodman Report. The values are based on prevailing 1936 market prices and grade outturns by diameter classes.

Colurn 7 - Is the product of Column (6), times Column (4).

Colump 8-The value of by-products at $\$ 1.50$ per M is multiplied by the volume in Column (5). This by-product value is an assumption representing an average for all species. There is no doukt that this varies by species and other factors but not having a true measure of this variation by species it is believed that the average used will be close to correct for the entire stand. The increased returns from veneer and small dimension are considered as a separate item in another table.

Column 2 - Is the sum of Columns (7) and (8).
Column 10 - Is obtained by dividing Column (9) by Column (4).

Colums 11 and 12 are concerned with the cost of production and are referred to under the financial calculations.

The same procedure was followed to arrive at the dry lumber values in Schedule I, Part I.

FORM III

DERIVATION OF DRY LUMBER VALUE ARD COST OF PRODUCTION PER ACRE, USING SUGAR MAPLE AS AII EXARPIE

1	2. Net Vol. Log Scale	3. Overrun Factor	$\begin{gathered} 4_{\bullet} \\ \text { Net Vol. } \\ \text { Mill Scale } \end{gathered}$		$\begin{gathered} 6 \cdot \\ \text { Dry Ibr. } \\ \text { Price Por M } \end{gathered}$
16	96	1.2 \% 8	118	112	\$29.57
20	195	1.160	226	215	33.81
22	425	1.134	480	456	35.8\%
24	268	1.110	297	282	37.77
26	218	1.093	238	226	39.65
28	58	1.080	63	60	41.44
30	44	1.061	47	45	43.27
32	22	1.048	23	22	44.91
34	16	1.037	17	16	46.60
TOTAL	1340		1509	1434	

FORM III-Continued

7Dry Lumber Value	8. By-Products © $\$ 1.50$ Per 1 II	9. Total Dry Ibr. Value	$\begin{aligned} & 10 . \\ & \text { Mill Scele } \\ & \text { Value } \end{aligned}$	11. 18. Cost of production	
				$\begin{aligned} & \text { Per H } \\ & \text { by } \\ & \text { Diame } \end{aligned}$	For Each Diameter Per Aore
\$ 3.31	\$0.17	\$ 3.48	\$ 31.10	- 28.69	\$ 3.41
7.26	0.32	7.58	35.50	27.35	5.87
16.33	0.68	17.01	35.40	26.85	12.94
10.65	0.42	11.07	37:27	26.59	7.90
8.96	0.34	9.30	39.08	26.25	6.25
2.49	0.09	2.58	40.95	25.95	1.65
1.95	0.07	2.02	42.98	25.86	1.22
.99	0.03	1.02	44.35	25.78	. 59
. 75	0.08	.77	45.29	25.53	. 43
			351.67	238.96	
			9	9	
\$52.69	弗 ${ }^{\text {a }}$. 14	\$54.83	\#9.07	\$26.55	\$40.24

SChedule Ia

DRY LUMBER VALUES PER ACRE OF TREES BY SEACIES ATVD DIAMEIERS

DBH 2	$\begin{aligned} & \text { Suger } \\ & \text { Kepple } \end{aligned}$		Eastern Hemlock	:	$\begin{aligned} & \text { Yellow } \\ & \text { Biroh } \\ & \hline \end{aligned}$	8	Basawood	1	$\begin{aligned} & \text { Soft } \\ & \text { Elm } \\ & \hline \end{aligned}$	1	$\begin{gathered} \text { Red } \\ \text { Maple } \end{gathered}$
16 :	\$ 3.48	8	2.86	:	4.42	8	1.14	:	0.15	:	0.26
20 :	7.58	:	2.35	:	3.81	:	1.87	:	0.53	:	0.18
2 m	17.01	:	5.29	:	7.20	:	4.47	:	2.21	:	0.25
24 :	11.07	:	5.78	:	5.98	:	3.68	:	3.19	:	
26 :	9.30	:	4.41	:	3.77	:	2.78	:	2.46	:	
$28:$	2.55	:	5.54	:	2.07	:	1.86	:	1.31	:	
$30:$	2.02	:	2. 46	:	. 56	$:$	1.88	:	1.55	:	
32 :	1.02	:	. 71	:	. 65	:	. 87	:	1.11	:	
34.	. 77	.	-49	1		,		:	. 84	:	
Total 10"ap:	䧈54.83	:	29.89	:	28.46	:	17.95	:	13.35	:	. 69
Cost 10"up:	$\$ 40.24$:	25.97	0	18.47	:	10.41	:	9.80	:	. 61

SCHEDUSE EAMContinued

Ash:	N.White Cedar	8	Balsam Fir	:	N. White pine	8	Spruce	1	Aspan	1	$\begin{aligned} & \text { Grand } \\ & \text { Total } \end{aligned}$	8	DBH
0.35:	2.27	:	0.25	:	0.18	:	0.42	:	0.06	:	15.84	:	16
:	1.77	:		:	0.27	:	0.43	:		:	18.19	:	20
:	. 59	:		:	0.42	:		:		:	37.44	:	22
:	. 25	:		:	0.62	:		:		:	30.57	:	24
:	. 19	:		:		:		:		:	22.91		26
:		:		:		:		:		:	13.36	:	28
:		8		$:$	1.06	:		:		:	9.53	:	30
:		:		:		:		:		:	4.36	:	32
:		1		:	1.37	:		:		:	3.47	:	34
. 35 :	5.07	:	. 25	:	3.92	:	. 85	:	. 06	8	155.67	8	
.34:	4.18	:	. 20	8	2.13	8	. 71	8	. 04	:	113.10		
(Before Taxes and Depletion)													

SCHEDOLE IIA

Schedule IIA shows the net income per MBM before land and timber taxes and forestry expenses on deducted under the alternate plan as proposed. The "Source of Data" column shows how or where the figures in celumn two were derived. It is self explanatery.

SGHEDULE IIA

Derivation of Net Income per mbir Before Land and Tinber Taxes and Forestry Expenses are deducted.

SCHEDULE IIIA

Schedule IIIA shows the derivation of total revenue per M, mill scale and total operating costs per M, mill scale under the alternate plan of management. The difference between the revenue and cost gives gross realization per M.

The total revenue per acre was carried over from schedule IA.

The operating cost per M were derived from basic data in the Goodman Report, and are based on the annual cut and size elasses cut under the alternate plan.

To illustrate, the Felling and Bucking costs per M were derived as follows:

DBH Classes Cut

16
20
22
24
26
28
30
32
34
Total

Cost per M Hol.per A. Cost (class)

$\$ 3.12$	402	$\$ 1.25$
2.60	444	1.15
2.44	913	2.22
2.30	706	1.62
2.18	546	1.19
2.09	333	.70
2.02	223	.45
1.96	98	.19
1.95	77	-15
\ldots	3,773	$\$ 8.92$

$\frac{\text { Total Cost per acre }}{\text { Volume cut per acre }}=\frac{\$ 8.92}{3,773}=\$ 2.39$
The above proceedure was followed to derive the costa. that vary with the size of the tree both in logging and milling. The constant costs were quoted directly from the Goodman Report.

SCHEDULE IIIA

TOTAL REVENUE AND OPFRATING COSIS PRR M, MILL SCALE

Total revenue per acre - Lumber only Increase revenue due to veneer: (4.50 per M $\times 4,234$ ft., b.m. mill scale Total	W155.67 $\frac{19.05}{\$ 174.72}$	
Reverue per m, Mill Scale \$174.72 + 4,234		\$41. 30
Direct Cost, per M that vary with the size		
Of the tree.		
Felling and bucking	\$2.39	
Skidding and swamping	1.47	
Loading and mloading	. 64	
Hauling (Operation and Maintenance)	5.30	
Total	\$7.80	
Indirect logeing costs per M that viry		
with the volume cut per acre.		
Supervision - woods work	* 0.54	
Woods - ganeral expense	. 80	
Forester's salary and expense	. 67	
Totel	\$ 2.01	
Total logging cost, Log Scale	\$9.81	
Total logging cost, mill Scale	\$8.75	
Total direct milling costs per if that		
Frey with the size of trees out.	蘦 2.29	
Total gemaral indirect milling costs		
per M that very slightly with the size		
of trees cute	\$ 2.18	
Total indirect milling costs perM that		
are fairly constent por M	\$ 6.03	
Totel indirect milling costs per M that		
Vary most wh th the totil ennual cut.	\$ 5.28	
Operating costs per M, Mill Scale		24.51
Gross realisation per M		\$16.79

SCHEDULS IVA

Schedule IVA shows the results of the financial calculations in determining the present worth values of the first cycie and all subsequent cycles. The figures used to develop item K are developed from Schedule IIf. Total revenue per \mathbf{M} and total current operating costs per M were derived in Schedule IIIA.

The present worth values were derived by using the same factors as used by the Forest Service in determining their values with the exception of the rate of interest indicated by a discount for hazard of 30% in perpetuity. The correct rate of 43% as developed and shown in the explanatory data of Schedule IV was used.

SCHEDULE IVA

Selective Cutting and Sustained Operation of Timber and Mill With the Amual Cut Equgiling the Amual Growth 10 Yosprs Hence.

Basic Data

In this plan it is recommended that 2,911 MBMK of the amual cut be purchased annually.
B. Period of conversion to sus tained yield - 10 years.

Average Not Returna During Period of Conversion

C. Total Revenue per M, all products $\$ 41.30$ mill scale
D. Total current operating costs per M 24.51 " n
E. Gross realisation per $\mathbb{H}(0-D)$ (\$16.79 n

G. Federal and state income and capital stock taxes. 14,150
H. Social Security tax. 10,228
I. Estimated losses frop obsolescence, etc. 4,000
J. Total reductions of annual gross realizations (G, H, I) 28,378
K. Total net realization amually.
\$78,762
Present Worth Value of All Puture Net Realizations

Using 3% as a Uaing rate of interest riak-free rate indicated by discount of interest of 30% for hazerd.
L. Present worth of 10 annual incomes of \$1 each.
\$. 530
\$5.889

M Preaent worth of net realizations of the next 10 yeare ($K \times$ L)
H. Average annual cut log scale, after next 10 years. 4.474 MBM $\times 2409$
0. Estimated average net retuen per M, log acale. (First 10 years it is 178,762 * 12,000 MBM or $\$ 14.90$. It is believed that this net realization can be maintained for all subsequent cycles).
P. Average net return after next

10 years.
$14.90 \times 10,778$
Q. Capitalized value of average not return of ${ }^{3} 160,000$ on a continuous besis at 3% and 4 aw respectively.
R. Value of ${ }^{\text {\$ }}$ at compound interest in 10 years
S. Present value of realizations after the next 30 years.
T. Present worth value of all future net realizations ($L+S$)

Using 3\% as a Using rate of interest risk-free rate indicated by discount of interest
\$1,524,876 \$1,052,729

10,778 МВМ
10,778 MBXI
$\$ 14.90$
$\$ 160,000$
160,000
\$5,333,330
\$,720,000
\$1.544
2.967

邪3,968,000
\$1,892,000
$\$ 5,492,876$

SUMMARI AND CONCLUSION

sUMMARY AND CONCLUSION

In Part I are presented those Tables and Schedules necessary to show the Forest Service's best sustained plan of management.

In the first cycle, the proposed cut is $4,513 \mathrm{ft} ., \mathrm{b} . \mathrm{m}$. per acre. (Tables I and II) This volume is realized by the Individual Tree Selection method of marking for cut where some trees are taken in every diameter class. In their plan the Forest Service cut clear to 24 inches and took some trees in all the lower classes. This cut leaves a residual stand of such a structure that at the time of the next cutting cycle it is estimated that $4,221 \mathrm{ft} ., \mathrm{b} . \mathrm{m}$. per acre (50 percent of the total of $8,136 \mathrm{ft} ., \mathrm{b} . \mathrm{m}$. per acre) will be available for cut. The stocking of the stand at this time is 83.3 square feet of Basal Area, a reduction of 15 square feet over the original stand.(Table IV)

It appears that the failure of the stand to recever te it's original stocking is a result of overcutting in the first cycle, which cutting occurred in the lower diameter elasses. Such cutting means not only taking trees that cost more to produce per M in relation to their value produced per M than in the larger diameter classes but that the fastest growing and most thrifty trees in the stand, the growing stock, is being destroyed.

The velume per acre available for cut is less in the second cutting cycle. In the Goodman Report the Forest Service states that the cut will have to be reduced somewhat further for two more cycles to allow stocking to begin to build up again.

In Schedule IV, the Forest Service states that the estimated average net return per MBM, log scale, for the first cycle is $\$ 13.26$. Though the annual cut is reduced for several cycles thereafter, they believe that this return per MBM will be maintained in the future. As further shown in Schedule IV, the present worth value of the property is $\$ 2,665,661$ under this plan.

The plan for clear cutting and liquidation in 10 years has a present worth value of $\$ 2,771,128$ or $\$ 105,567$ more than the sustained yield plan. Notwithstanding, the Forest Service recommends the sustained yield plan on the basis that besides giving a fair rate of return on the investment, the intangible values attaching to the plan would more than offset the difference in present worth values of the two plans. Any plan of management recommended to an owner to be put into effect on his property should show a greater present worth value on a dollar for dollar basis than any other similar plan possible. Even though intangible values do attach to a sustained yield plan of management, from a strict business and financial point of view the dollar value of the plan must be the convincing factor as far as an owner is concerned.

In Part II, the alternative plan is presented. The Basal Area Method of Control is used as a basis for the determination of the cut. The allowable cut was found to be $3,773 \mathrm{ft} ., \mathrm{b} . \mathrm{m}$. per acre for the first eycle. (Tables IA and IIA). Though the volume cut per acre is less, the net realization per acre and per year is higher than the Forest Service Plan (Schedule IN and IVA).

Table IVA shows that at the time of the next cutting cycle the allowable cut is 4,770 ft., b. m. per acre and that the Basal Area in square feet has increased from 98.3 square feet to 103.13 square feet. On this increased cut per acre, and with the cut falling in the diameter classes as shown in Table IVA, it is believed that $\$ 14.90$ per MBM, log scale, as an annual return in the second and subsequent cycles is reasonable. $\$ 14.90$ per MBM is derived as shown in Schedule IVA. As further shown in schedule IVA, the present worth value of the property under this plan is $\$ 2,994,729$. This is a greater value than the Forest serfice's best sustained yield plan and also the liquidation plan. It, further, need not rest its case on the intangible values resulting from a plan of sustained yield. The values, however, can be used as a basis for additional argument forens the plan.

It must be remembered that the Basal Area Mothod of Control is but another guide or tool useful in setting up a plan of management. As such, the results obtained in T_{a} ble IIA need not or undoubtediy would not be rigidly adhered
to. From those results it would be reasonable to say that on the average 12 to 13 trees 16 inches DBH and up with a volume of 3,500 to $4,000 \mathrm{ft} ., \mathrm{b} . \mathrm{m}$. per acre could be cut. Basal Area Control shows on the average, for any given area, what the allowable cut should be in order te maintain an adequate growing stock for future yields and in what diameter classes the cut might fall.

With such data at hand as a guide the intelligent operator can proceed to mark his stand for cutting in such a manner that his volume and trees cut per acre will closely approximate that which he actually should take to assure him a forest business in perpetuity.
-

0
a

THE UNIVERSITY OF MICHIGAN

TO RENEW PHONE 764-1494
dATE DUE

[^0]: ${ }^{1}$ Matthows, Professor D.M., Management of American Forests, (MeGraw Hill, 1935)

[^1]: ${ }^{1}$ Compiled from Table II, Harvard Forest Bull. 2, Growth Study and Normal Yield Tables for Second-growth Hardwood Stands in Central New England by Spaeth.
 ${ }^{2}$ Compiled from Table in Appendix II, p. 244, of "The Economics of Forestry" by W. E. Hiley.

[^2]: $1_{\text {Published }}$ in Journal of Forestry, (June, 1937)

