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PM2.5-induced cardiovascular dysregulation in
rats is associated with elemental carbon and
temperature-resolved carbon subfractions
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Abstract

Background: We tested the hypothesis that cardiovascular responses to PM2.5 exposure will be enhanced in
hypertensive rats and linked to specific carbonaceous pollutants in an urban industrial setting.

Methods: Spontaneously hypertensive rats were exposed by inhalation to concentrated PM2.5 in an industrial area
of Dearborn, Michigan, for four consecutive summer days. Blood pressure (BP), heart rate (HR) and HR variability
(HRV) metrics (SDNN, RMSSD) were assessed by radiotelemetry and compared to 1 h- and 8 h-averaged fluctuations in
PM2.5 composition, with a focus on elemental and organic carbon (EC and OC, respectively), and temperature-resolved
subfractions (EC1-EC5, PC (pyrolized carbon), and OC1-OC4), as well as other major and minor PM components.

Results: Mean HR and BP were increased, while HRV was decreased over 4 days of exposure. Using 1 h averages, EC
(1 μg/m3 increase) was associated with increased HR of 11-32 bpm (4-11% increase), 1.2-1.5 ms (22-27%) decreases in
SDNN, 3-14 mmHg (1.5-8%) increases in systolic BP, and 5-12 mmHg (4-9%) increases in diastolic BP. By comparison,
associations with OC were negligible. Using 8 h averages, EC subfractions were linked with increased heart rate (EC1:
13 bpm; EC2, EC3, PC: <5 bpm) and SDNN (EC1> > EC2 > EC3, EC4, PC), but with decreased RMSSD (EC2, EC5 > EC3, EC4).
Minimal effects were associated with OC and OC1. Associations between carbon subfractions and BP were negligible.
Associations with non-carbonaceous components and trace elements were generally non-significant or of negligible
effect size.

Conclusions: These findings are the first to describe associations between acute cardiovascular responses and thermally
resolved carbon subfractions. We report that cardiovascular responses to PM2.5 carbonaceous materials appear to be
driven by EC and its EC1 fraction.
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Background
Associations of ambient fine particulate matter (PM2.5)
with acute myocardial events, including ischemia, stroke,
arrhythmia, and heart failure exacerbation, are well doc-
umented [1]. An increased risk for ischemic cardiac
events of 4-20% have been associated with an increase of
10 μg/m3 in ambient PM2.5 [2,3]. Biological mechanisms
for these associations are unknown, but altered vascular
reactivity and cardiac function that have been observed

during PM2.5 exposure may be critical, initial responses that
lead to more serious myocardial events. Community-based
studies in diverse airsheds such as Boston, MA, Detroit, MI
and Beijing, China demonstrate significant associations be-
tween daily variations in PM2.5 and increases in systolic
blood pressure (BP) [4-6]. In addition, exposure-related
changes in heart rate variability (HRV) have been observed
in diabetics and cardiac patients in relation to ambient
PM2.5 [7,8], and in healthy elderly volunteers with concen-
trated PM2.5 [9]. While such acute responses may be harm-
less in otherwise healthy subjects, people with preexisting
cardiovascular, respiratory or metabolic conditions may suf-
fer more significant and deleterious consequences [10].
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In addition to associations with PM2.5 mass, two recent
meta-analyses using Medicare records and particle compos-
ition data from the Environmental Protection Agency
Chemical Speciation Network found significant associations
between elemental carbon (EC), a combustion product
most often linked to diesel engine exhaust, and hospital ad-
missions for cardiovascular causes [11,12]. Ambient EC
concentrations have been associated with increased systolic
pressure [13-15] and HRV [13,16]. Another major carbon-
aceous fraction of PM2.5 is organic carbon (OC), which is
derived from mobile sources, biomass burning and indus-
trial processes and has also been linked to decreased HRV
and elevated BP [6,16]. Extensive analyses of PM2.5 EC and
OC using thermal/optical analytical approaches yields up to
five OC subfractions (OC1-OC4 and pyrolized carbon
[OP]) and four EC subfractions (EC1-EC4). This method
applies step-wise increases in temperature in a controlled
atmosphere to oxidize first organic and then elemental car-
bon samples to yield eight fractions with decreasing volatil-
ity and increasing structural complexity. Thus OC1 and
EC1 are more volatile and simpler in structure than OC4
and EC4, respectively. These carbon subfractions have been
used to refine source apportionment analysis in the U.S.
[17] and more recently in China [18,19]; however, the rela-
tive health effects of these temperature-resolved subfrac-
tions of EC and OC have not been evaluated.
We have previously reported altered HRV in hyperten-

sive rats exposed to concentrated PM2.5 in Detroit, MI and
Steubenville, OH that was linked to specific PM compo-
nents and related industrial and mobile sources [20,21]. In
these studies we found EC to consistently have the stron-
gest association of any PM2.5 component with changes in
heart rate and HRV. Our goal in the present study was to
extend these observations to include blood pressure re-
sponses in hypertensive rats, as well as provide a detailed
characterization of both EC and OC and their subfractions
in an industrial urban center in Dearborn, MI. Our results
describe clear differences between EC and OC in PM2.5-
induced responses, as well as provide initial insights into
the relative potencies of carbon subfractions in relation to
acute cardiovascular responses.

Results
Exposure characterization
The average (±SD) chamber PM2.5 mass concentrations
during the four 4-day exposure studies were as follows:
Study 1, 415 ± 99; Study 2, 642 ± 294; Study 3, 767 ± 256;
Study 4, 364 ± 58 μg/m3. Figure 1 depicts the distribution
of major chemical components of PM2.5 collected during
each 4-day inhalation exposure period. Table 1 shows the
combined numeric average for all exposures. As previously
observed in this Dearborn study area [22,23], sulfate and
OC dominated during the summer months. Figure 2 shows
the average carbon fraction distribution of concentrated

PM2.5 during the exposures. EC3 & EC4 were the most
prevalent EC subfractions, while OC1 & OC4 subfractions
were the most prevalent species within OC.

Effect of PM2.5 exposure on cardiovascular responses
Comparisons of responses in rats exposed to AIR vs. PM2.5

using 1 h averaged data resulted in several-exposure-related
differences (Table 2). Changes in blood pressure responses
were the most sensitive indicator of PM2.5 exposure, with
significant associations with MAP, systolic and diastolic
pressures during 3 of the 4 exposure studies. Other signifi-
cant associations were found for heart rate during studies 1
& 3, and SDNN during Study 3.

Associations with major components and trace elements
Assessment of major non-carbonaceous PM components
(nitrates, sulfates and ammonia) and 29 elements revealed a
number of minor, but statistically significant associations
with HR, HRV and BP (Table 3, Additional file 1: Tables S1
and S2). For example, significant responses of less than
0.1 bpm for HR and less than 0.01 ms for lnSDNN were as-
sociated with the change in IQR for a few specific compo-
nents or elements. The only PM2.5 constituent with a larger
effect estimate was uranium, which was associated with a
15 mm Hg increase in diastolic pressure (Table 3), although
the associations between this element and both systolic BP
and MAP were not significant (Additional file 1: Table S2).
The size of the uranium effect estimate compared to other
components may be due to its low ambient concentration
(0.19 ng/m3), and relative IQR (0.2 ng/m3).

Associations with carbon fractions
During all four exposure studies, PM2.5 EC concentra-
tion was consistently associated with increased HR with
estimated changes of 11-32 bpm (4-11% increase) for a
1 μg/m3 increase in EC (Table 4). EC was also associated
with 22-27% decreases in HRV during Studies 1 & 4. By
comparison, OC and PM2.5 mass had little to no associa-
tions with cardiac automaticity.
Changes in blood pressure also appeared to be more in-

fluenced by variations in EC than by OC or PM mass
(Table 5). Increases in systolic BP ranged from 3-14 mmHg
(1.5-8% increases) for a 1 μg/m3 increase in EC for Studies
1-4. MAP was elevated by 4-9% in Studies 1 & 2 while dia-
stolic BP increased significantly with EC by 4-10% in three
of the four exposure studies.

Associations with carbon subfractions
Overall the daily concentrations of EC subfractions had
greater associations with heart rate and HRV changes than
OC subfractions (Figure 3A-C). Subfractions EC1, EC2,
and EC3 were all significantly associated with increased
heart rate and SDNN, with EC1 having the largest effect
estimate (HR increase of 13 bpm; SDNN increase of
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approximately 7.5%). Interestingly, no effects were found
for EC itself using the 8 h averages. EC2, EC3, EC4, and
EC5 were all significantly negatively associated with reduc-
tions in RMSSD. EC1 showed extremely wide confidence
intervals. Small effect estimates were seen for OC and
OC1, the only organic carbon fractions with significant
associations. Carbon subfractions had weak associations
with vascular responses (Figure 3D-F). Except for total EC
which had small effect estimates (>1 mmHg) for both
MAP and DBP, no EC or OC subfractions were signifi-
cantly associated with any change in blood pressure.

Discussion
Results of this study clearly demonstrate that the EC and
EC subfractions drive the acute changes in HR, HRV and
BP in hypertensive rats exposed to an urban-industrial
aerosol. These findings are consistent with our previous
report of EC’s relation with HR in the same rat model
[21], but we now extend these observations to identify
EC-associated effects on BP as well, suggesting a more
profound overall impact on cardiovascular health. Further-
more, we detected associations between EC subfractions
and cardiac function, especially between EC1 and EC2
with HR and HRV. By comparison to EC, OC was associ-
ated with only modest and sometimes opposing cardiovas-
cular effects in PM2.5-exposed rats. To our knowledge, our
current findings are the first to describe associations of
cardiovascular health effects with inhaled PM2.5 carbon
subfractions using thermal/optical analytical methods.
Although not all source apportionment studies include

EC and OC in their factor resolution, those that do typic-
ally find that these PM components load onto mobile
source emissions factors [24,25]. Furthermore, the separ-
ation of carbonaceous fractions derived from progressive
oxidation temperatures suggest that the subfraction EC1 is
generally linked to diesel engine sources, whereas OC frac-
tions (OC1-4) are normally associated with gasoline emis-
sions [17,26]. It is notable, therefore, that the adverse
cardiovascular responses we describe for EC and its

Figure 1 Distribution of major components in concentrated PM2.5 during exposures. Concentrations of organic matter (OM: OC × 1.8),
elemental carbon (EC), sulfate, nitrate, ammonia, crustal elements and other components were determined from 8 h samples from the four
separate field studies as described in Materials and Methods. Crustal = 2.14Al + 2.43Fe + 1.54Si, where Si was estimated as potassium (K)/0.15.

Table 1 Average mass of PM2.5 constituents in chambers
during inhalation exposures

Constituent Mass (SEM) (mg/m3)

PM2.5 547 ± 62.3

OM 208 ± 15.3

EC 10 ± 1.3

Sulfate 154 ± 28.8

Nitrate 24 ± 5.5

Ammonium 52 ± 11.9

Urban dust 56 ± 8.1

Other 58 ± 14.7

Data represent the daily mean of 16 days of exposures (four studies of 4 days
each). OM-organic matter; EC – elemental carbon.
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subfractions are consistent with HR, HRV and BP re-
sponses reported during controlled exposures to whole
diesel engine exhaust in the same SH strain of rats we
used in the current study [27,28]. While major compo-
nents of laboratory-generated diesel exhaust are gaseous

inorganic compounds (nitrogen oxides, sulfur dioxide, and
carbon monoxide), the minor components of particulate
EC and of volatile and semivolatile organic compounds
(OC) have been linked to stimulation of both sympathetic
and parasympathetic cardiovascular effects in SH rats
where exposures compared whole versus filtered exhaust
[29,30]. A major difference in our field studies compared
to laboratory-generated diesel engine exhaust is the at-
mospheric transformation of EC core particulates that
might result in surface adherence of volatile organic hy-
drocarbons such as carbonyls, or in oxidative modifica-
tions that alter the particle’s toxicity [31,32]. OC was a
major component of PM2.5 mass at our urban site, and
though not strongly associated with health effects in our
study, it may contribute to cardiovascular effects as a sur-
face component of diesel soot particles.
Our study location in Dearborn, MI is located near

automotive production industries with heavy vehicle and
diesel traffic in the surrounding community. Of note are
several active trucking facilities within a mile of the site,
with several hundred trucks loading and unloading cargo
daily, as well as a railyard within 250 m of the site. We
recently compared cardiometabolic responses in twenty-
five volunteers before, during and after ambient exposures
at this same industrial site, relative to their residences in
rural upwind areas of Dexter, MI [33]. After five daily ex-
posures, decreases in HRV and insulin resistance were as-
sociated with increased PM2.5. Further analyses of source:
health effect relationships found that changes in HR, BP
and trends for impaired endothelial function were associ-
ated with the diesel source factor that impacted this site
[34]. Fewer health effects were associated with other PM
source factors, with motor vehicle sources being linked to
changes in BP, and iron/steel and secondary aerosol source
factors being associated with changes in HR. We recently
reported dramatic drops in BP and HR in fructose-fed rats
with cardiometabolic syndrome exposed to PM2.5 at this
same site in Dearborn; however, analyses to attribute spe-
cific sources with CV responses have not been completed

Figure 2 Distribution of EC and OC subfractions during exposures. Concentrations in 8 h samples of subfractions of elemental carbon (EC)
and organic carbon (OC) were determined by thermal/optical approaches as described in Materials and Methods.

Table 2 Effect of PM2.5 exposure on cardiovascular
responses in SH rats

Response Study dfN dfD p-value

Heart rate 1 35 421 *0.0246

2 35 455 0.365

3 35 493 *0.0008

4 35 504 0.661

lnSDNN 1 35 421 0.591

2 35 455 0.061

3 35 493 *0.0372

4 35 504 0.356

lnRMSSD 1 35 421 0.076

2 35 455 0.546

3 35 493 0.289

4 35 504 0.266

MAP 1 35 391 *0.0124

2 35 456 *0.0107

3 35 495 *0.0106

4 35 504 0.459

Systolic 1 35 391 *0.0239

2 35 456 *0.0127

3 35 495 *0.0193

4 35 504 0.476

Diastolic 1 35 391 *0.0085

2 35 456 *0.0097

3 35 495 *0.0059

4 35 504 0.415

Data are expressed as p-values for the interaction of Exposure (Air vs. PM2.5)
and time (1 h intervals). dfN-degrees freedom for subjects, dfD degrees
freedom for observations. *p < 0.05.
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[35]. Our findings with EC and subfractions in the current
study adds to our previous work with PM2.5-exposed SH
rats where EC and traffic sources had robust associations
with changes in HR and HRV in urban Detroit, MI and
Steubenville, OH [20,21].
To date, carbon subfraction analysis has been employed

in air pollution studies primarily to incorporate fractions
into source apportionment analyses and, ideally, to im-
prove source factor resolution [36,37]. For the most part,
such studies have also been able to differentiate gasoline
from diesel emissions, as discussed above. In addition,
some work has investigated indoor and non-indoor sources
of carbon fractions in residential homes [38]. We were able
to identify one in vitro study including carbon subfractio-
nation in which human lung epithelial cells were exposed
to dust from soil and road surfaces in the western United
States [39]. Release of inflammatory mediators was most
highly correlated with the EC1 fraction, while lesser correl-
ation coefficients were observed for OC fractions and pyro-
lized carbon. Compared to other EC fractions, compounds
that comprise EC1 and EC2 would be more volatile, of
smaller molecular weight, and a less complex structure.
Less clear are the molecular targets, receptors or proteins
with which different subfractions may preferentially inter-
act to elicit biological responses. In addition to the greater
responses induced in airway cells, smaller sized EC1
compounds would theoretically be better able to translo-
cate and influence extarpulmonary responses. However,
epidemiological or clinical evidence for EC subfraction-
associated health effects is lacking, and we speculate that
EC and EC1may be markers for other pollutants or pollu-
tant mixtures that underlie the health effects we describe
in exposed rats.
In similar PM2.5 field exposures in urban areas we have

previously identified associations of health effects with a
number of trace elements that are linked to industrial ac-
tivities in the Midwest [21,40]. In the current analyses,
several elements had statistically significant associations
with HR, HRV and BP, but we interpret the effect sizes as
having questionable biological relevance (e.g., < 0.1 bpm
HR). Interestingly the greatest and most consistent effects

were found with uranium, which had a considerable ef-
fect estimate for its association with increases in dia-
stolic BP (13 mmHg). Using x-ray diffraction analysis to
assess Detroit PM constituents, our colleagues showed
that uranium is colocalized with EC in graphene struc-
tures [41]. Its source in the urban industrial airshed in
southwest Michigan is unknown although it has been
associated with coal combustion [42]. In our study, des-
pite health effects associated with this element, other
elements and components typically associated with coal-
fired power plant emissions such as sulfate, selenium, and
arsenic, yielded no adverse health effects findings.
Compared to most of our community-based animal stud-

ies, the current investigation is limited by the use of 8 h-inte-
grated PM2.5 samples to estimate effects on daily changes in
cardiovascular responses. Our group is unique in that we
have used 30-minute sampling periods for both particle col-
lection and cardiotelemetry recording; however, the necessary
instrumentation was not available for all studies in this pro-
ject. A second limitation is the lack of normotensive control
subjects with which to compare our responses in the SH rats.
We have previously used Wistar Kyoto rats as our healthy
controls, but because of space limitations in the exposure
chamber they were omitted to allow for a larger group num-
ber of hypertensive rats. As such any translation of our find-
ings to understand potential susceptibility is limited.
In summary, this is the first report of cardiovascular

health effects linked to inhalation exposure to ambient
PM2.5 carbon subfractions. Increased BP and HR and de-
creases in HRV showed robust associations with EC, and
our initial findings using thermal optical approaches yielded
strong relationships of EC1 and EC2 with changes in HR
and HRV. Interestingly, we found relatively fewer and
weaker responses with OC fractions or trace elements.
Black carbon has been proposed as an important indicator
of PM-induced health effects [43], and our results with EC
add to this evidence, specifically for adverse cardiovascular
responses. Future research efforts that include the analyses
of carbon subfractions are needed to confirm our observa-
tions, and will help to further characterize the contribution
of EC to the health risk of PM2.5 exposures.

Table 3 Associations between major non-carbonaceous PM components and trace elements and diastolic blood pressure

Component Effect (mmHg) SEM p-value Change per 1 ng/m3 CI (lower, upper) IQR (ng)

Uranium 15.22 7.44770 0.0434 2.29, 149.9 0.20

Rubium 0.146 0.05426 0.0081 0.0045, 0.0294 8.65

Crustal 0.076 0.03098 0.0153 5E-04, 0.0042 32.50

Manganese 0.006 0.00294 0.0465 3E-07, 4E-05 291.50

Aluminum 0.002 0.00098 0.0407 5E-08, 2E-06 1636.00

Potassium 0.0017 0.00072 0.0157 2E-07, 2E-06 1566.00

Magnesium 0.0014 0.00073 0.0487 5E-09, 2E-06 1590.00

Iron 0.0005 0.00023 0.0264 1E-08, 2E-07 4903.00

Data are expressed as change in response (effect) per IQR of pollutant, and per 1 ng/m3.
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Methods
Animals
Sixty-four male spontaneously hypertensive (SH) rats
12-13 weeks of age (Charles River Laboratories, Portage,
MI) were initially housed in animal facilities at Michigan
State University (MSU) until moved to the mobile lab,
where they were placed individually in polycarbonate
cages on corn cob bedding with ad libitum access to

food and water. Study protocols were approved by the
Institutional Animal Care and Use Committee of MSU,
an AAALAC accredited institution.

Exposure to PM2.5

Inhalation exposures were conducted in AirCARE 1, a mo-
bile air research laboratory parked at Salinas Elementary
School in Dearborn, MI during the summers of 2009 and

Table 4 Associations between PM2.5 mass, EC and OC and cardiac responses

Response Study Component Change per IQR SEM p-value Change per 1 μg/m3 CI (lower, upper)

Heart rate 1 PM2.5 2.757 1.502 0.068 - -

EC 7.059 0.885 <.0001 28.1, 36.1

OC -1.845 1.431 0.199 - -

2 PM2.5 1.343 1.635 0.412 - -

EC 8.354 1.454 <.0001 19.7, 28.1

OC 0.879 1.107 0.428 - -

3 PM2.5 0.719 1.344 0.593 - -

EC 3.649 0.974 0.000 8.1, 14.1

OC -5.489 1.543 0.000 -2.4

4 PM2.5 1.086 1.375 0.431 - -

EC 5.985 1.350 <.0001 20.1, 31.9

OC 1.916 1.266 0.131 - -

lnSDNN 1 PM2.5 0.094 0.026 0.000 0.0615, 0.0619

EC -0.031 0.018 0.086 - -

OC 0.001 0.026 0.955 - -

2 PM2.5 0.016 0.034 0.639 - -

EC -0.061 0.031 0.053 - -

OC -0.009 0.023 0.693 - -

3 PM2.5 0.024 0.029 0.415 - -

EC 0.006 0.020 0.774 - -

OC -0.038 0.032 0.240 - -

4 PM2.5 0.022 0.027 0.406 - -

EC -0.051 0.024 0.039 -0.2202, -0.2198

OC 0.016 0.022 0.474 - -

lnRMSSD 1 PM2.5 0.001 0.017 0.942 - -

EC -0.048 0.011 <.0001 -0.267, -0.167

OC -0.011 0.016 0.494 - -

2 PM2.5 0.019 0.016 0.236 - -

EC -0.023 0.015 0.127 - -

OC 0.007 0.011 0.541 - -

3 PM2.5 -0.009 0.016 0.603 - -

EC -0.002 0.011 0.834 - -

OC 0.008 0.017 0.646 - -

4 PM2.5 -0.008 0.018 0.659 - -

EC -0.039 0.017 0.022 -0.244, -0.096

OC 0.020 0.015 0.193 - -

Data are expressed as change in heart rate (bpm), lnSDNN (msec) and lnRMSSD (msec), per IQR of pollutant, and per change in 1 μg/m3 of pollutant.
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2010. The site is located within 5 km of iron/steel produc-
tion facilities, a coke oven, oil refinery, sewage sludge waste
incinerator, a coal-fired power plant and major highways.
Concentrated PM2.5 was generated from ambient PM2.5

using a Harvard-type fine particle concentrator and whole
body animal exposure chambers as previously described in
detail [44]. Exposures were carried out in two stainless
steel Hinners-type whole body inhalation chambers; one

received PM2.5 while the other received HEPA-filtered
clean air at the same flow rate as the experimental group.
Eight SH rats were exposed in each chamber from
7:30 am – 3:30 pm for four consecutive days (Monday-
Thursday). This exposure protocol was repeated on four
separate occasions, with four separate cohorts of animals
in different weeks: Study 1 (August 10-13, 2009), Study 2
(August 17-20, 2009) Study 3 (July 12 – 15, 2010) and

Table 5 Associations between PM2.5, EC and OC and vascular responses

Response Study Component Change per IQR SEM p-value Change per 1 μg/m3 CI (lower, upper)

MAP 1 PM2.5 0.576 0.897 0.521 - -

EC 2.894 0.536 <.0001 10.76, 15.64

OC -1.555 0.824 0.061 - -

2 PM2.5 3.183 0.827 0.000 0.775, 0.779

EC 2.000 0.795 0.013 3.4, 7.8

OC 1.099 0.573 0.056 - -

3 PM2.5 -0.661 0.604 0.276 - -

EC 0.369 0.411 0.370 - -

OC -0.517 0.648 0.426 - -

4 PM2.5 -0.377 0.555 0.498 - -

EC 0.893 0.521 0.088 - -

OC 0.876 0.473 0.065 - -

Systolic 1 PM2.5 0.454 0.992 0.647 - -

EC 3.219 0.594 <.0001 11.9, 17.3

OC -1.864 0.912 0.042 -2.5, -0.88

2 PM2.5 3.392 0.903 0.000 0.825, 0.830

EC 2.448 0.856 0.005 4.55, 9.45

OC 1.208 0.620 0.053 - -

3 PM2.5 -0.268 0.673 0.690 - -

EC 0.986 0.453 0.031 1.6, 4.4

OC -1.462 0.715 0.042 -1.64, -0.55

4 PM2.5 0.027 0.586 0.963 - -

EC 1.156 0.548 0.036 2.61, 7.38

OC 0.532 0.502 0.290 - -

Diastolic 1 PM2.5 0.767 0.826 0.354 - -

EC 2.720 0.492 <.0001 10.16, 14.64

OC -1.324 0.760 0.083 - -

2 PM2.5 3.071 0.788 0.000 0.747, 0.751

EC 1.979 0.766 0.010 3.51, 7.89

OC 1.181 0.552 0.033 0.727, 2.07

3 PM2.5 -0.772 0.584 0.187 - -

EC 0.258 0.398 0.517 - -

OC -0.097 0.628 0.878 - -

4 PM2.5 -0.404 0.569 0.479 - -

EC 1.195 0.523 0.023 2.93, 7.47

OC 1.320 0.473 0.006 1.16, 2.44

Data are expressed as change in mean (MAP), systolic and diastolic pressures (mmHg) per IQR of pollutant, and per change in 1 μg/m3 of pollutant.
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Study 4 (July 19 -22, 2010). After each 8 h exposure, animals
were removed from chambers and returned to their cages.

Exposure characterization
Chamber PM2.5 samples were collected on Teflon and
Quartz filters (Gelman Sciences, Ann Arbor MI) by attach-
ing Teflon filter packs to the back of the animal exposure
chamber with a flow rate of 3 LPM for the duration of each
8-h exposure period. Both ambient and concentrated PM2.5

mass concentrations were measured continuously using a
Tapered Element Oscillating Microbalance (TEOM). Annu-
lar denuder/filter packs were employed to collect major in-
organic fine particulate ions. Gravimetric determinations
were made using a microbalance (MT-5 Mettler Toledo,
Columbus OH) in a temperature/humidity-controlled Class
100 clean laboratory and followed Federal Reference
Method (USEPA 1997). PM samples collected on quartz fil-
ters were analyzed for carbonaceous aerosols by a thermal-
optical analyzer using the NIOSH method (Sunset Labs,
Forest Grove, OR). Annular denuder/filter pack samples
were analyzed for major ions by ion chromatography
(Model ICS-90, DIONEX, Sunnyvale, CA). PM samples col-
lected on Teflon filters were analyzed for a suite of trace ele-
ments using inductively coupled plasma-mass spectrometry
(ICP-MS) (ELEMENT2, Thermo Finnigan, San Jose, CA).

Cardiovascular telemetry
Two weeks before exposures, animals were surgically im-
planted with PhysioTel Multiplus transmitters (# C50-PXT;
Data Sciences International; DSI, St. Paul, MN) that emit radio
signals of electrocardiograms (ECG) and blood pressure (BP).
Transmitters were placed with ECG leads terminating in a

Lead II configuration to sample cardiac parameters and the
pressure catheter placed in the aorta via the femoral artery.
Telemetry receivers (RLA3000, DSI) were modified and
affixed inside individual cages in exposure chambers that were
customized for telemetry studies. Datastreams of 30 second
duration were collected and analyzed every 5 minutes during
exposures. Automated ECG analysis (DSI, ART3.2) allowed
for R-wave detection on a beat-to-beat basis. The R-R intervals
for all normal beats (N-N intervals) were used to calculate HR
and time-domain measures of HRV: standard deviation of the
normal-to-normal intervals (SDNN), an indicator of overall
autonomic tone, and the square root of the mean squared dif-
ferences of successive normal-to-normal intervals (RMSSD),
an estimate of parasympathetic tone.

Statistical analyses
To determine exposure –related differences in cardiac and
vascular indices we used mixed model analyses using SAS
(Version 9.2, Cary, NC); this approach accounts for the lon-
gitudinal nature of the measurements on each animal. To
reduce the skewness of the HRV measures, we natural log–
transformed the SDNN and RMSSD after adding 1. Analyses
comparing Air- vs PM2.5 -exposed rats (Table 2), and the as-
sociations between PM2.5, EC and OC and cardiovascular re-
sponses (Tables 4 and 5) were derived from 1-hour samples
of both PM and health effect responses during each of the
four field exposure studies. Data for trace elements and car-
bon subfractions and their associations with health responses
(Table 3, Figure 3, Additional file 1: Tables S1 and S2) were
derived from 8-hour samples and integrated across the four
field exposures (n= 32 samples). The criterion for signifi-
cance was set at p ≤ 0.05 for all parameters.

Figure 3 Effect estimates for cardiovascular responses and PM2.5 carbon fractions and subfractions. Data are expressed as change in heart
rate (A), HRV (B,C), mean arterial BP (D), systolic BP (E), and diastolic BP (F) per IQR of carbon subfractions and were derived from combining all 8 h
(daily) averages for each parameter from Studies 1-4. Estimates with confidence intervals that do not intersect the 0-axis are significant, p < 0.05.
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Additional file

Additional file 1: Table S1. Effect of Major Component and Trace
Elements on Cardiac Responses. Data are expressed as change in
response per IQR of pollutant. PM2.5 components with significant effects
are indicated in bold. Table S2. Effect of Major Component and Trace
Elements on Vascular Responses. Data are expressed as change in
response per IQR of pollutant. PM2.5 components with significant effects
are indicated in bold.
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pressure; OC: Organic carbon; PM2.5: Fine particulate matter; RMSSD: Root
mean square of successive differences of adjacent interbeat intervals;
SDNN: Standard deviation between normal-to-normal heart beats.
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