USER'S GUIDE FOR
 THE UMTRI AIRBAG SKIN BURN MODEL TECHNICAL REPORT

Bruce M. Bowman Matthew P. Reed

Biosciences Division
University of Michigan
Transportation Research Institute
2901 Baxter Road
Ann Arbor, MI 48109-2150

Prepared for
Honda Research and Development North America
1990 Harper's Way
Torrance, CA 90501

February 1996

TABLE OF CONTENTS

LIST OF FIGURES vii
LIST OF TABLES vii
1.0 INTRODUCTION 1
2.0 PURPOSE AND USES OF THE MODEL 1
3.0 OVERVIEW OF THE COMPUTER MODEL 2
4.0 DESCRIPTION OF THE COMPUTER MODEL 5
4.1 Airbag inflation model 5
4.1.1 Inflator data 6
4.1.2 Airbag inflation 6
4.1.3 Method of solution 6
4.2 Occupant/airbag interaction model 6
4.2.1 Pendulum model 6
4.2.2 Method of solution 6
4.3 Impinging jet heat transfer model 7
4.3.1 Empirical impinging jet model 7
4.3.2 Method of solution 7
4.4 Heat transfer model 8
4.4.1 Temperature distribution in the skin 8
4.4.2 Method of solution 8
4.5 Burn injury model 9
4.5.1 Burn integral constants 10
4.5.2 Method of solution 11
4.6 Search feature 12
4.6.1 Search for critical conditions 12
4.6.2 Heat-gun simulations 12
4.6.3 Method of solution 12
5.0 HOW TO USE THE MODEL 13
5.1 Input data 13
5.1.1 Airbag simulations 14
5.1.1.1 AIRBAG data set 14
5.1.1.2 M1TDOT and PT data sets 25
5.1.2 Heat-gun simulations 28
5.1.2.1 Search simulations 28
5.1.2.2 HEATGUN data set 28
5.2 Running the model 31
5.2.1 Outputs to the screen 31
An airbag simulation
A standard heat-gun simulationA "search-for-duration" heat-gun simulation
5.2.2 Outputs to file 35
5.2.3 Batch runs on MS DOS systems 35
5.3 Output data 37
6.0 LIST OF REFERENCES 39
APPENDIX A: DISTRIBUTION FILES 41
APPENDIX B: EXAMPLE INPUT DATA SETS 45
EXAMPLE 1: Data set AIRBAG 47
EXAMPLE 2: Data set M1TDOT 49
EXAMPLE 3: Data set PT 51
EXAMPLE 4: Data set HEATGUN 53
APPENDIX C: EXAMPLE "BURNMODL.OUT" OUTPUT (airbag) 55
Summary / Time Histories
Airbag simulation with occupant/airbag interaction
APPENDIX D: EXAMPLE "TEMPDIST.OUT" OUTPUT (airbag) 73
Temperature Distribution
Airbag simulation with occupant/airbag interaction
APPENDIX E: EXAMPLE "BURNMODL.OUT" OUTPUT (heat gun) 79
Summary / Time Histories
Heat-gun simulation
APPENDIX F: EXAMPLE "TEMPDIST.OUT" OUTPUT (heat gun) 91
Temperature Distribution
Heat-gun simulation

LIST OF FIGURES

Figure No. Page

1. An Example AIRBAG Input Data Set 4
2. Illustration of Input Data in AIRBAG Data Set 15
3. Example Input Data in M1TDOT Data Set 26
4. Example Input Data in PT Data Set 27
5. Illustration of Input Data in HEATGUN Data Set 30
6. An Example Batch File BATCHRUN.BAT for Batch Runs in MS DOS 36
7. Parsed Summary of Results (PARSED.OUT) for an Airbag Simulation 38
LIST OF TABLES
Table No. Page
8. Input and Output Data Files 3
9. Computer Program Modules 5
10. Burn Integral Constants 11
11. Input and Output Data Files 13
12. Tables for Optional Output to BURNMODL.OUT or TABLDATA.OUT 24

USER'S GUIDE FOR

THE UMTRI AIRBAG SKIN BURN MODEL

1.0 INTRODUCTION

This manual describes the implementation of the UMTRI Airbag Skin Burn Model as a FORTRAN computer program. It also describes the use of the model. This model is an analytical formulation and solution of equations that simulate the exposure of bare skin to high-temperature airbag exhaust and the potential of that exposure to produce burn injury. The original form of the UMTRI Airbag Skin Burn Model was reported by Reed and Schneider (1994) and Reed, Schneider, and Burney (1994). In the 1994 study the solution equations were partly of closed form and partly a Fourier series approximation. The equations were processed with the Mathematica computer program.

In the present study a completely closed-form solution has been used for determination of skin temperature as a function of time at a critical depth, viz., at the basal layer of the epidermis. Other modifications, mostly of minor importance, have been made to the analytical model as well. The FORTRAN program developed in the current study is expected to be much more useful to airbag system designers and skin burn researchers than the Mathematica model because of (a) ease of use, (b) ease of porting to any computer system for which a FORTRAN compiler is available, and (c) the addition of many features and capabilities that did not exist in the earlier model.

The model can be used for studying the effects of exposure of the skin to both vented airbag exhaust and heat-gun gas jets.

2.0 PURPOSE AND USES OF THE MODEL

The overall purpose of the model is to aid airbag system designers in the development of inflator/airbag systems that have acceptably low potential for producing second-degree skin burn in the event of direct exposure of the bare skin to vented airbag exhaust. The model can be used to simulate airbag inflation and exhaust or skin exposures from a laboratory heat-gun apparatus used to study skin sensitivity to gas jet exposures. Either nitrogen or air can be used as the inflation gas in any simulation, although normally nitrogen is used for airbag simulations and air is used for heat-gun simulations that are intended to model laboratory heat-gun experiments. The various features of the model allow the user to determine the quantities and responses itemized below.

- the Henriques burn injury integral, Ω, a measure of the potential for first- and second-degree burn injuries
- time histories of all thermodynamic responses of the airbag system
- time histories of the thermal responses of the skin, including temperature of the skin as a function of depth
- effects of inflator design in terms of mass flow rate and pressure in tank tests as functions of time
- airbag exhaust temperature and velocity as functions of time
- effects of fabric stretch
- effects of the nominal airbag volume
- effects of vent diameter and number of vents
- effects of occupant interaction with the airbag
- time histories of the dynamic response of the single-mass occupant model
- exposure duration that will produce first-degree (or second-degree) burn for specified jet velocity and temperature (heat-gun simulation)
- gas jet velocity that will produce first-degree (or second-degree) burn for specified jet temperature and exposure duration (heat-gun simulation)
- gas jet temperature that will produce first-degree (or second-degree) burn for specified jet velocity and exposure duration (heat-gun simulation)
- cell depth for first-degree (or second-degree) burn for specified exposure duration and jet temperature and velocity (heat-gun simulation)

3.0 OVERVIEW OF THE COMPUTER MODEL

The computer model in its current form at UMTRI consists of a single executable program file, called BURN.EXE, for use on IBM-compatible PCs with the DOS operating system. However, executable code can be prepared for essentially any work station or desktop computer using any operating system. It is necessary only to compile the FORTRAN source code, provided in file BURN.FOR, with a FORTRAN 77 or FORTRAN 90 compiler for the system on which BURN is to be used. The Lahey FORTRAN 77, Version 3.00 (16 -bit) compiler was used in the current work, but the only compilerdependent subroutine used was the Lahey routine UNDER0, which sets underflows to zero if they occur. Any compiler likely to be used to compile the UMTRI code will have a library routine of the same function as Lahey's UNDER0.

The BURN program reads one or three input data files, depending on whether the simulation is for a heat-gun "experiment" or for an airbag. Either one, two, three, or four output files are produced for the simulation, whether it is for an airbag or a heat gun, depending on output options selected by the user. The program is interactive only to the extent that the user enters "1" from the keyboard to select an airbag simulation or "2" to select a heat-gun simulation.

The user-provided input data for airbag runs must be in three formatted ASCII (text) files with the specific names AIRBAG, M1TDOT, and PT. Data file AIRBAG contains all system constants and user controls for the simulation. M1TDOT and PT must contain tank test data for the inflator. M1TDOT contains the time history data for mass flow rate in the tank test, i.e., $\dot{\mathrm{m}}_{1 \mathrm{~T}}(\mathrm{t})$ (in kg / s). PT contains the time history data for pressure in the tank test, i.e., $\mathrm{P}_{\mathrm{T}}(\mathrm{t})$ (in kPa gauge). The only input data needed for a heat-gun simulation are provided by the user in a file with the specific name HEATGUN. Its content is very similar to that of the AIRBAG data file, differing primarily in its lack of airbag system constants.

The output data files that can be produced by airbag and heat-gun runs have the names BURNMODL.OUT, TEMPDIST.OUT, TABLDATA.OUT, and PARSED.OUT.

BURNMODL.OUT is the primary output file. It contains a tabular summary of primary run results, including Ω (the burn injury integral, Omega), gas jet temperature and velocity, exposure duration, average heat flux, etc. This file will always contain, additionally, an echo of the input data set (AIRBAG or HEATGUN) that was used for the simulation, and it can contain, at the user's option, a descriptive summary of the input data, a summary of model constants, and most of the tabular data (including time histories) generated by the simulation. The latter may optionally be written instead to the file TABLDATA.OUT or suppressed. Like BURNMODL.OUT, file TEMPDIST.OUT is produced for every run (except "search" runs). It contains the temperature distribution time history for the skin-i.e., temperature as a function of time and depth. Finally, the file PARSED.OUT may be generated at the user's option. This file contains a "parsed" version of the "Summary of Results" portion of the BURNMODL.OUT output--i.e., lines that include only the numbers and not the descriptive words and units that are present in the primary output in BURNMODL.OUT. The PARSED.OUT file is more easily processed than the BURNMODL.OUT file by postprocessing software that might be written by the user for analysis of the results of batch runs.

The input and output files discussed above are summarized in Table 1. An example of an AIRBAG input data set is shown as Figure 1. All of the input and output files are described more fully in Section 5.0, and listings of example files are included in Appendices B to F. Source code and executable program files, as well as data files, are on an MS DOS distribution diskette, which is described in Appendix A.

| | | Table 1 | |
| :--- | :--- | :--- | :--- | :--- |
| Input and Output Data Files | | | |

${ }^{1}$ Also always includes an echo of the input data set.
${ }^{2}$ May optionally include a descriptive summary of input constants.
${ }^{3}$ May optionally include a descriptive summary of model constants.
${ }^{4}$ May optionally include time history outputs and other tabular data.
$5^{\text {Tabular data may be written to either BURNMODL.OUT or TABLDATA.OUT. }}$
${ }^{6}$ The "Summary of Results" portion of BURNMODL.OUT can be written in parsed (numbers-only) form to PARSED.OUT.
${ }^{7}$ Fixed depth and time spacings and spans: 0 to 0.000200 m by 0.000001 m spacings and 0 to 500 ms by 10 ms spacings [TEMPDIST.OUT is not written for heat-gun "search" runs.]

Figure 1. An Example AIRBAG Input Data Set.

4.0 DESCRIPTION OF THE COMPUTER MODEL

There are six primary components of the analytical model and, accordingly, six corresponding primary modules in the computer model. These are described below in Table 2 and in Sections 4.1-4.6.

Table 2
Computer Program Modules
Module

Number

Module: function

1 the airbag inflation model: determines the duration, temperature, and velocity of the hot gas jet to which the skin is exposed [For heat-gun simulations the user directly specifies constant values for these three quantities.]

2 the occupant/airbag interaction model: may be employed optionally together with module 1 in the airbag simulations

3 the impinging jet heat transfer model: determines the average heat transfer coefficient during exposure of the gas jet to the skin surface for the values of duration and average temperature and velocity established by module 1 for airbag runs (with or without module 2) and from user specifications for heatgun runs

4 the heat transfer model: for the heat flux for the heat transfer coefficient determined by module 3, determines the subsurface skin temperature distribution for depths through 0.000200 m as a function of time

5 the burn injury model: for the temperature vs. time profile determined by module 4 for the critical skin depth (basal epidermal layer; user specified, usually 0.000072 m), calculates the Henriques burn injury integral, Ω, for assessment of the degree of burn injury

6 the search feature: determines the duration, temperature, or velocity for a heat-gun jet that will cause either first-degree or second-degree burn, or for specified duration, temperature, and velocity, determines the skin depth at which incipient burn injury occurs

4.1 Airbag inflation model

For simulation of airbag inflation, use was made of a gas dynamics model that was adapted from Wang and Nefske (1988), Wang (1989), and Wang (1991). The adapted model is described by Reed and Schneider (1994) and Reed, Schneider, and Burney (1994). It is a lumped-parameter, isentropic flow model. The Wang model was selected because it provides useful airbag performance predictions that can be verified with laboratory experiments. This model is readily used with the burn injury model.
4.1.1 Inflator data. The airbag inflation model requires specification of data from a tank test of the inflator. The quantities needed are (a) the tank volume, (b) the pressure P_{T} in the tank as a function of time, and (c) the mass flow rate, i.e., the time rate of change of mass in the tank, $\dot{\mathrm{m}}_{1 \mathrm{~T}}$. The tank volume is specified in the AIRBAG data set. The time histories $\mathrm{P}_{\mathrm{T}}(\mathrm{t})$ and $\dot{\mathrm{m}}_{1 \mathrm{~T}}(\mathrm{t})$ are specified in the PT and M1TDOT data sets. Mass flow rate cannot be measured directly in tank tests; it is normally calculated by inflator manufacturers by using an analytical technique such as that described by Wang (1991) and Reed and Schneider (1994).
4.1.2 Airbag inflation. The airbag inflation process consists of two phases. In the first phase, during which the airbag fills to its nominal volume, the pressure in the airbag is assumed to be atmospheric, and there is no mass flow through the vent ports or fabric. After the airbag fills to its nominal volume, the second phase of airbag dynamics begins, during which the pressure in the airbag is greater than one atmosphere and gas flow through vents and (optionally) fabric occurs. Gas dynamics during exhaust can be affected by optional occupant interaction, which is discussed in Section 4.2. Values for the quantities needed for simulation of airbag gas dynamics are specified in the AIRBAG data set. These quantities, except for ones related to occupant/airbag interaction, are (a) the number of vents and the vent diameter, (b) the orifice coefficient for vents and porous fabric, (c) the fabric stretch factor, and (d) the nominal airbag "full" volume. The inflation gas must be nitrogen (or air).
4.1.3 Method of solution. A fourth-order, fixed-step Runge-Kutta integration algorithm is used for solving the differential equations of airbag gas dynamics. The integration is terminated when the velocity of the exhaust jet reduces to zero. A Lagrange fourth-order numerical differentiation is used to determine the time rate of change of the tank pressure, $\dot{\mathrm{P}}_{\mathrm{T}}(\mathrm{t})$, which is needed in the thermodynamics equations.

4.2 Occupant/airbag interaction model

4.2.1 Pendulum model. The equations of airbag gas dynamics in the Wang model include a term for the rate of decrease of airbag volume due to occupant interactions (as a function of time). This term in the equations is set to zero in the UMTRI model if the user does not want to include occupant interaction with the airbag. In lieu of a model features that would fully simulate the interacting geometries of a 2-D or 3-D airbag and an articulated linkage for the occupant, a simpler system that models a pendulum impact with the inflated airbag is used in the UMTRI model. This model mimics pendulum tests used for evaluating steering column performance which use a torso block similar to that described in SAE Recommended Practice J944 (now obsolete). The model assumes that impact of the pendulum with the airbag occurs at just the instant that the airbag becomes full, i.e., at the beginning of exhaust from the airbag. The quantities required for the occupant/airbag interaction model are specified in the AIRBAG data set. They are (a) the moment of inertia of the pendulum about its pivot point, (b) the distance from the pivot point to the center of the area of contact with the airbag, (c) either the initial linear velocity at the contact point or the initial angular velocity of the pendulum, (d) the maximum contact area for the pendulum/airbag interaction, (e) the airbag deflection over which the maximum contact area is reached, and (f) the airbag depth (for bottoming out).
4.2.2 Method of solution. A second-order differential equation describes the motion of the pendulum. This equation is coupled to the gas dynamics equations through the term for rate of change of airbag volume. Therefore, the pendulum equation is integrated simulaneously with the gas thermodynamics equations by the Runge-Kutta algorithm. If the "bottoming-out" depth of the airbag is reached by the pendulum, then an impulse (momentum change) is applied to the equations by calculating and applying the
force necessary to stop the pendulum in one time step of the integration. During impact the airbag volume decreases as the pendulum pushes into the airbag (positive volume change rate, by definition). The model allows the airbag volume to increase during rebound of the pendulum provided that the gas volume is less than the "full" volume for the airbag and the pressure of the gas inside the airbag is greater than atmospheric pressure.

4.3 Impinging jet heat transfer model

In order to study the potential for burn injury resulting from exposure of the skin to. airbag exhaust from a vent, it is necessary to determine the heat transfer coefficient between the impinging hot gas jet and the skin. The heat transfer coefficient is a measure of the efficiency with which heat is transferred between two media that have different temperatures. For an airbag exhaust jet impinging against a skin surface, the heat transfer coefficient is dependent on many quantities, including the distance of the vent from the skin, the diameter of the vent, the effective radius of the area of skin that is thermally insulted by the impinging jet, the velocity of the jet, and the temperature of the jet. It is also dependent on various temperature-dependent properties of the gas, including its kinematic viscosity, thermal conductivity, and thermal diffusivity.

Relevant quantities specified by the user in the AIRBAG or HEATGUN input data set are (a) vent diameter, (b) H/D, where D is the jet diameter at the vent's distance, H , from the surface, (c) r / D, where r is the effective radius of the area of skin insulted by the jet, and (d) a multiplicative tuning factor for the heat transfer coefficient (empirically determined).
4.3.1 Empirical impinging jet model. Martin (1977) describes an empirical model for heat transfer from a hot gas jet impinging perpendicularly against a flat surface. That model was adopted for use in the UMTRI Airbag Skin Burn Model. Martin's model is described by Reed and Schneider (1994) and Reed, Schneider, and Burney (1994). The model determines the heat transfer coefficient from an empirical relationship between the Reynolds number for the gas jet, the Nusselt number, and the Prandtl number. These quantities, in turn, are calculated from the gas properties mentioned above, which are incorporated in the model from tables in Incropera and DeWitt (1985). Martin makes use of a correction factor for the Nusselt number reported by Schlünder and Gnielinski (1967) as an empirical relationship between H / D and r / D. The result of calculations made with this model is an average value for the heat transfer coefficient, h , over the duration of exposure.
4.3.2 Method of solution. The Martin equations are of closed form except that the gas characteristics are functions of the gas temperature near the jet/surface interface, which is not constant. Therefore, to determine an appropriate average heat transfer coefficient, it is necessary to solve the equations (nonlinear functions of temperature) by iteration. The temperature for which it is appropriate to evaluate the gas characteristics is the film temperature, which is defined to be the average of the surface and free-stream temperatures. While the free-stream temperature is assumed constant for the airbag exhaust (and is, in fact, nearly so), the skin surface temperature ($\mathrm{T}(\mathrm{x}, \mathrm{t}$) for depth $\mathrm{x}=0$) and, therefore, the film temperature, is not constant. In consequence, it is necessary to determine the skin surface temperature as a function of time for the duration of the exhaust. Thus, this module performs "preprocessor" calculations for $h(t)$ and $T(0, t)$ for module 4 in a time loop that is independent from the module 4 time loop, in which skin temperatures $T(x, t)$ are determined at different depths in the skin, not only at the surface (depth equal to zero). In summary, at each step in a time loop for the duration of the exhaust, the impinging jet model iteratively adjusts the film temperature until convergence is obtained for the solution of nonlinear equations involving the Reynolds number, the Nusselt number, the Prandtl number, and
$\mathrm{T}(0, \mathrm{t})$, the skin surface temperature. The quantity of primary interest that is determined in these calculations is $h(t)$, the heat transfer coefficient. The quantity h is found to be nearly constant for typical airbag exhaust exposures. Module 4, the heat transfer model, requires a constant value for h. Therefore, the average value, $h_{\text {avg }}$, determined in the impinging jet model time loop, is used for module 4.

4.4 Heat transfer model

Heat flux between two media at different temperatures is determined simply as the product of the heat transfer coefficient and the difference between the temperatures of the two media. In the case of airbag exhaust against the skin surface, the temperature difference is the free-stream temperature of the gas jet minus the surface temperature of the skin, which changes with time. Many different analytical solutions have been developed for so-called semi-infinite solid heat transfer problems. These solutions are of basically similar form, but they differ in nature and complexity for various initial conditions and boundary conditions. The semi-infinite solid problem is one which assumes infinite extent of a solid in the direction of an inward normal to its surface. As a practical matter, the only problems for which solutions can be obtained analytically are one-dimensional problems. These are ones in which it is assumed that, for the time range of interest, heat flow is unidirectional. The heat transfer model used in the UMTRI Airbag Skin Burn Model is of this sort-i.e., heat flow is assumed to be entirely perpendicular to the surface, and the model therefore determines skin temperature distribution in one dimension only, namely, the depth into the skin, x . This assumption is valid for the reason that the depth into the skin that is of interest, normally about 0.000072 m (i.e., at the basal layer of cells of the epidermis), is much smaller than the diameter of the impinging hot gas jet.

Constants provided by the user in data set AIRBAG or HEATGUN that are used directly in heat transfer model calculations are (a) the ambient temperature, (b) the initial skin temperature (assumed not to be a function of depth), (c) the effective heat flux for Phase 2, (d) the thermal conductivities of the epidermis and dermis, and (e) the thermal diffusivities of the dermis and epidermis.
4.4.1 Temperature distribution in the skin. Two phases of heat transfer in the skin must be considered in order to predict the degree of burn injury that might result from exposure to the hot gas jet. Phase 1 of heat transfer is the period of time during which the skin is exposed to the gas jet. At the end of exposure enough heat has flowed from the skin surface to the basal epidermal layer that first- or second-degree burn may already have occurred. Whether burn has occurred or not, however, after termination of exposure heat accumulated in the outer part of the skin continues to flow inward, increasing the temperature at the critical depth. This phase of heat transfer is called Phase 2.

In order to calculate the burn injury integral, module 5 requires the time history of the temperature at the critical depth. It is the purpose of module 4, the heat transfer model, to calculate that time history. The time history must be determined for Phase 1, during exposure, and for a Phase 2 that has a long enough duration that the value for the burn injury integral, Ω, does not change if longer time lengths are considered. For airbag exhaust exposures studied, a total Phase 1 plus Phase 2 duration of 400 ms is more than ample. Five hundred milliseconds is used in the model.
4.4.2 Method of solution. The solution adopted for Phase 1 is the same as used by Reed and Schneider (1994). It is a closed-form solution given by Incropera and DeWitt (1985). The Incropera-DeWitt solution allows direct evaluation of $T(x, t)$ in terms of the constant values for the initial skin temperature, the impinging gas temperature, the heat transfer coefficient, the thermal conductivity of the skin, and the thermal diffusivity of the
skin. The solution includes both an exponential factor and erfc(w) factors, where erfc is the complementary Gaussian error function and w is a function of x and t.

The Phase 2 solution used by Reed and Schneider assumed particular boundary conditions at $x=0$ and $x=L$, where L is a sufficiently large depth much greater than the critical depth. The resulting partial differential equation reduces to ordinary differential equations, but these, in turn, do not reduce to a closed-form solution, as is the case for the Incropera-DeWitt solution for Phase 1. The resulting equations were solved by Reed and Schneider by using a Fourier series approximation.

In the current model a closed-form solution for Phase 2 is used. This solution is, again, an approximation. It has been found to give results in good agreement to the Fourier series approximation. This solution was adopted from Carslaw and Jaeger (1959), who consider a problem in which a "phase 1 " is for a constant exposure temperature A and a "phase 2" is for a constant exposure temperature B. (The Carslaw-Jaeger phase 1 solution is identical to Incropera and DeWitt's.) Since the Carslaw-Jaeger solution requires use of the same heat transfer coefficient for Phase 1 and Phase 2, the same value was used as for Phase 1 even though a much smaller Phase 2 value is appropriate. A compensating change to B , the Phase 2 exposure temperature, was made from a calculation using the userspecified Phase 2 heat flux (a required input for both the original and current UMTRI models) and the average Phase 2 skin surface temperature.

Thermal conductivity and thermal diffusivity of the solid medium (the skin) are factors in the equations for the temperature distribution. Strictly, the closed-form solution is valid only for values of these quantities that are not dependent on x, i.e., depth. This means using a single value for skin--not different values for the epidermis and dermis. Nonetheless, while it is understood that the closed-form solution is not an exact solution of the boundary value problem if these quantities are not fixed, differences from the true solution should be second-order, and use of different values for the epidermis and dermis is expected to produce first-order improvements in comparison with use of fixed values. The model, therefore, allows use of different values, and transition from epidermis to dermis values is treated in the computer program by ramping from the epidermis value to the dermis value over a four-micrometer ramp centered on the basal layer of the epidermis.

4.5 Burn injury model

Henriques (1947) demonstrated that skin burn injury can be treated as a rate process in which the progression of injury is related both to the temperature and the duration of exposure. This relationship is expressed by the following equation:

$$
\Omega=G \int_{0}^{t} e^{-\Phi / R T(t)} d t
$$

where
Ω is the injury parameter
R is the universal gas constant ($8.31441 \mathrm{~J} / \mathrm{gm}-\mathrm{mol} / \mathrm{K}$)
$\mathrm{T}(\mathrm{t})$ is the temperature at the basal epidermal layer of the skin as a function of time (K)
G is the preexponential factor, an empirical constant $\left(\mathrm{s}^{-1}\right)$
Φ / R is the activation energy factor, an empirical constant (K)
t is time (s)

Henriques (1947), Henriques and Moritz (1947), Moritz (1947), and Moritz and Henriques (1947) describe experiments with pigs and human volunteers to determine the skin temperatures and exposure durations necessary to produce burns. From this work they determined empirical values for the constants G and Φ / R that yield Ω values that are 1.0 or greater for cases of full epidermal necrosis and less than 1.0 if necrosis of the basal epidermal layer does not occur. Thus, a value of $\Omega=1.0$ indicates incipient second-degree burn. Henriques (1947) also suggests that a value of $\Omega=0.53$ can be taken to be the threshold of first-degree burn (erythema with no cell necrosis). The Henriques burn integral is not predictive of any other types of burn injury, although it may be possible to extend its applicability if supportive experimental data are obtained. Without guidance from additional burn injury studies, it is necessary to interpret any value of Ω greater than 1.0 as indicating, simply, a second-degree burn.

Henriques and Moritz' experimental work determined the best-fit values of the constants for the burn integral to be

$$
\begin{aligned}
\mathrm{G} & =3.1 \times 10^{98} \mathrm{~s}^{-1} \\
\Phi / \mathrm{R} & =75000 \mathrm{~K} \quad 44 \leq \mathrm{T}<50^{\circ} \mathrm{C} \quad \text { (Henriques-Moritz) }
\end{aligned}
$$

for exposure temperatures in the range 44 to $50^{\circ} \mathrm{C}$. These constants are called the preexponential factor and the energy activation factor, respectively. Since there are other values of these two constants that are suitable for use in burn prediction, they are not defined as model constants in the BURN program but, rather, must be specified by the user in the input data set AIRBAG or HEATGUN. A critical depth value, i.e., the depth of the basal layer of epidermal cells, is also required in the AIRBAG or HEATGUN data set. A value of 0.000072 m , or sometimes 0.000080 m , is normally used.

There is a thorough discussion of the derivation and use of the burn injury integral in Torvi (1992), Weaver and Stoll (1969), Reed and Schneider (1994), and Reed, Schneider, and Burney (1994).

4.5.1 Injury integral constants.

Torvi (1992) describes three different sets of values for burn integral constants that may be suitable for use in predicting burn in short-duration exposures. These are (a) the original values of Henriques and Moritz and the values determined in later studies by (b) Weaver and Stoll (1969) and (c) Mehta and Wong (1972,1973). The values of the constants for the preexponential factors and the activation energy factors are shown in Table 3.

The work of Henriques and Moritz was for long-duration exposures, mostly in the range of one to ten minutes. Heat was transferred by conduction from a medium of temperature 44 to $50^{\circ} \mathrm{C}$ and zero velocity relative to the skin surface. Because the exposure durations were long, the skin surface and basal epidermal layer maintained approximately the same temperature as the exposure medium. Since typical airbag exhaust exposure durations are small fractions of a second and produce critical depth temperatures that often exceed $50^{\circ} \mathrm{C}$, it is uncertain that the Henriques-Moritz values for the two burn integral constants are the best ones to use in airbag exhaust simulation studies. Torvi (1992), however, has reported using all of the sets of values from Table 3 and calculating similar required exposure times for incipient second-degree burn for heat fluxes that produce burn in 0.22 to 2.78 s .)

Shorter-duration, higher-intensity exposures were considered by Stoll and Greene (1959), Stoll and Chianta (1968), and Weaver and Stoll (1969). From this work Weaver
and Stoll determined values for preexponential and activation energy factors that may be more appropriate than the Henriques-Moritz values for use in burn studies related to exposure to airbag exhaust. Even so, exposure durations in this work were in seconds and so would still exceed airbag exhaust exposure times, although heat fluxes were lower. The values of Weaver and Stoll, below, are recommended by both Morse, et al. (1975) and Torvi (1992) for use in prediction of first- and incipient second-degree burns resulting from short exposure durations. The values for $\mathrm{T} \geq 50^{\circ} \mathrm{C}$, in particular, are probably the most appropriate ones to use for airbag simulations.

$$
\begin{array}{rlrl}
\mathrm{G} & =2.185 \times 10^{124} \mathrm{~s}^{-1} & & \\
\Phi / \mathrm{R} & =93534.9 \mathrm{~K} & 44 \leq \mathrm{T}<50^{\circ} \mathrm{C} & \text { (Weaver-Stoll) } \\
\mathrm{G} & =1.823 \times 10^{51} \mathrm{~s}^{-1} & & \\
\Phi / \mathrm{R} & =39109.8 \mathrm{~K} & \mathrm{~T} \geq 50^{\circ} \mathrm{C} & \text { (Weaver-Stoll) }
\end{array}
$$

Table 3
Bum Integral Constants

Investigators	Preexponential Factor ${ }^{1,2}$ coeff power		Activation ${ }^{3}$ Energy Factor	Conditions ${ }^{4}$
Henriques-Moritz	3.1	98	75000.	$44 \leq \mathrm{T}<50^{\circ} \mathrm{C}$
Weaver-Stoll	2.185	124	93534.9	$44 \leq \mathrm{T}$ < $50^{\circ} \mathrm{C}$
Weaver-Stoll	1.823	51	39109.8	$\mathrm{T} \geq 50^{\circ} \mathrm{C}$
Mehta-Wong	1.43	72	55000.	

```
\({ }^{1}\) The burn integral preexponential factor is coefficient \(* 10\) power .
\(2_{\mathrm{G}}\), the preexponential factor \(\left(\mathrm{s}^{-1}\right)\)
\(3_{\Phi / R}\), the activation energy factor (K)
\({ }^{4} \mathrm{~T}\) is the average skin surface temperature, which may be assumed the same as the average temperature of the basal epidermal layer for long exposure times.
```

4.5.2 Method of solution. The time history of the temperature at the critical depth is determined by the heat transfer model, module 4. The burn injury integral is calculated in a postprocessing operation by integrating the stored values for the temperature. The contributions from Phase 1 (during exposure) and Phase 2 (after exposure) are both calculated, with Ω then being the sum of the two. Typically, the Phase 2 contribution is several times larger than the Phase 1 contribution.

The same Runge-Kutta integration algorithm used for solving the equations of gas thermodynamics is used for calculating the burn injury integral. The procedure is not straightforward, however, because of the numerical size of the factors in the calculation. Power-of-ten exponent sizes are greater and smaller than allowed in FORTRAN. It may be seen from Table 3, for example, that depending on which set of burn integral constants are used, the preexponential factor, G, may be as large as approximately 2×10^{124}. Correspondingly, if a value of, say, 1.0 is to be calculated for Ω, the integral itself will be approximately 0.5×10^{-124} and integrand values will be even smaller. This computation problem is solved by reformulating the equation with exponent biases for both the preexponential factor and the exponential in the integrand. The bias used is $\pm \Phi / \mathrm{RT}_{\text {avg }}$,
where $T_{\text {avg }}$ is the average value of $T(t)$ over the range $[0, t]$. Logarithm function evaluations are used to obtain coefficient and power values for the two factors (G and the integral) in the equation.

4.6 Search feature

4.6.1 Search for critical conditions. It is useful to be able to determine the exposure duration that will produce first-degree (or second-degree) burn for specified jet velocity and temperature and other conditions, including epidermis thickness. The UMTRI Airbag Skin Burn Model includes a "search" feature that will find that particular exposure duration for a heat-gun simulation. Additionally, it can find the gas jet velocity that will produce first-degree (or second-degree) burn for specified jet temperature and exposure duration, and it will similarly find the critical temperature for given duration and velocity values. Also, for given values for duration, temperature, and velocity, the model can find the depth at which basal epidermal cells would have to be for incipient first- or seconddegree burn injury to occur.
4.6.2 Heat-gun simulations. The search feature cannot be used in airbag simulations--only heat-gun simulations. In the case of airbag simulations all three gas jet quantities for which a critical value might be sought are completely determined by the gas thermodynamics. In normal (non-search) heat-gun simulations, however, the three quantities are specified by the user, and the burn injury integral, Ω, is determined. The search feature allows the user to specify, instead, any two of the three quantities--duration, temperature, and velocity--plus a value for Ω (0.53 or 1.0). It then determines the specific value for the unspecified jet parameter that will satisfy the conditions for the other two and Ω. When values are specified for all three gas jet parameters, the cell depth for the requested burn condition, Ω, can be sought. Even though the three jet parameters are known for airbag runs, the search for critical skin depth is allowed only in heat-gun runs.

Although the search feature is not directly usable in airbag simulations, its use in heat-gun burn studies provides helpful guidance in relation to airbag system design. Additionally, indirect use can be made for airbag simulations by specifying values obtained from an airbag simulation for two of the three jet parameters, duration, temperature, and velocity, plus a value for Ω. The model will determine the value for the unspecified exhaust parameter that would produce the specified Ω.
4.6.3 Method of solution. In a normal heat-gun simulation the duration, temperature, and velocity are inputs to the impinging jet model. After the heat transfer coefficient is calculated, the heat transfer and burn injury models determine, in turn, the temperature distribution in the skin as a function of time and the burn injury parameter (Ω). In a "search-for-critical-condition" simulation, these three submodels are run repeatedly in a loop for different values of the unspecified jet parameter or epidermis thickness until satisfactory convergence to the desired Ω value has been accomplished. An interval-halving method is used, which guarantees fast convergence to the solution.

5.0 HOW TO USE THE MODEL

In Section 3.0, "Overview of the Computer Model," it was explained that the user provides input data in formatted ASCII files of specific names and that simulation results are written to two, three, or four output files, depending on user requests. This section discusses the input data requirements and the model outputs.

The BURN model input and output files are summarized in Table 1, which is repeated below for convenience as Table 4.

| | | Table 4 | |
| :--- | :--- | :--- | :--- | :--- |
| | | Input and Output Data Files | |

${ }^{1}$ Also always includes an echo of the input data set.
${ }^{2}$ May optionally include a descriptive summary of input constants.
${ }^{3}$ May optionally include a descriptive summary of model constants.
${ }_{5}^{4}$ May optionally include time history outputs and other tabular data.
5 Tabular data may be written to either BURNMODL.OUT or TABLDATA.OUT.
${ }^{6}$ The "Summary of Results" portion of BURNMODL.OUT can be written in parsed (numbers-only) form to PARSED.OUT.
${ }^{7}$ Fixed depth and time spacings and spans: 0 to 0.000200 m by 0.000001 m spacings and 0 to 500 ms by 10 ms spacings [TEMPDIST.OUT is not written for heat-gun "search" runs.]

5.1 Input data

Different input data files are required depending on whether an airbag simulation or a heat-gun simulation is to be run. The data files must be "flat ASCII" files-that is, text files that do not have embedded control characters, such as would be produced by some word processors. To prepare such data files use any simple text editor or use any word processor that has a flat-ASCII option. Lines in all of the data files can be of any length, but in the files "AIRBAG" and "HEATGUN" the BURN program will ignore line content after the 80th character.

Example input data files and associated run output files are included on the BURN
model distribution diskette, which is described in Appendix A.
5.1.1 Airbag simulations. Input data for airbag runs must be in three files with the specific names AIRBAG, M1TDOT, and PT. Data file AIRBAG contains all system constants and user controls for the simulation. Tank test data for the inflator are provided by the user in files M1TDOT and PT. M1TDOT contains the time history data for mass flow rate in the tank test, i.e., $\dot{\mathrm{m}}_{1 \mathrm{~T}}(\mathrm{t})$ (in kg / s). PT contains the time history data for pressure in the tank test, i.e., $\mathrm{P}_{\mathrm{T}}(\mathrm{t})$ (in kPa gauge).
5.1.1.1 AIRBAG data set. Data for an AIRBAG data set are illustrated in Figure 2. Two things should be noted before a discussion is given of the quantities in the data file. First, each numeric input quantity is assigned a general-format numeric field of eight-character width. That is, the first numeric value on a line should be in columns 1-8, the second should be in columns $9-16$, etc. Comma-delimited fields are not allowed. Second, every valid AIRBAG data set has only 20 lines of data used by the program in the simulation. In Figure 2 these 20 lines are:

```
1. . }000
...
3.i 98. 75000. Henriques-Moritz [44,50] C
```

All other lines in the Figure 2 data set are comment lines; they are unnecessary but can often be helpful. The user can remove such lines or include any of his own choosing. Comment lines must begin with one of the following specific characters:
; : * \# \$ @

Comments may also be added after the used data fields on any line (with or without a preceding special character). Completely blank lines are allowed anywhere in the AIRBAG data set.

```
* Airbag [8-character data fields] [ Comment lines begin with ;:*#$@ ]
*line 1: Integration method (1.=R-K) and stepsize (s)
*line 2: Output specifications -- SW1, SW2, KTAB(1-25) FORMAT(2g8.0, 25I1)
; Field 1: summary outputs (results and input data summary)
; Field 1: summary outputs (results and input data summary)
        =1.,
        =3., summary of results only
        <0., as above but also print parsed results summary (to separate file)
    Field 2: tabular output data, including time histories
        =0., print no tabular data to file
        =1., print all tabular data to file [KTAB() specifications optional]
                        KTAB(i) for table i: 0 = do not write to file, 1 = write to file,
                2 = write every 2nd point to file (time histories 7-14,18-25)
        =2., default (selected) tables to file
                Table No. 1 2 3 4 5 6 7 8 910111213141516171819202122232425
; <0., as above but write tabular data to different file from summaries
*line 3: Reduced duration (s) for exposure to airbag exhaust if abs() is nonzero
; =0., use exhaust duration calculated from the airbag thermodynamics 
; <0., reduced duration; ignore the last portion of calc'd exhaust data
*line 4: Gas identification: a) nitrogen or 1. or b) air or 2.
*line 5: Ambient temperature ( }\mp@subsup{}{}{\circ}\textrm{C})\quad[include K in field if Kelvin]
*line 6: Initial skin surface temperature ( }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ ) [include K in field if Kelvin]
*line 7: Tank test volume (m**3)
*line 8: Vent diameter (m) and number of vents
*line 9: Orifice coefficient for vent and fabric area
*line 10: Fabric stretch factor (any value .ge. 0, or -1. for lin. regr. on v20)
; (e.g., 3.81e-6 m}\mp@subsup{\textrm{m}}{}{2}/(\textrm{N}/\mp@subsup{\textrm{m}}{}{2})/\mp@subsup{\textrm{m}}{}{2}
*line 11: Occupant interaction specifications: 0.=no interaction, 1.=interaction
; If field 1 is 1., fields 2 through 7 must contain the following data
for simulation of a pendulum impact against the airbag.
f.2: moment of inertia about pivot point (kg m**2)
f.3: distance from pivot point to center of airbag contact (m)
f.4: pendulum angular velocity at contact if positive (rad/s);
                        linear velocity if negative (m/s)
f.5: maximum contact area for pendulum/airbag interaction (m**2)
f.6: airbag deflection over which max contact area is reached (m)
f.7: airbag depth, i.e., deflection for bottoming out (m)
*line 12: Nominal airbag volume (m**3)
*line 13: H/D ratio: H, distance from vent to skin surface; D, jet diameter
*line 14: r/D ratio: r, effective radius of target area; D, jet diameter
*line 15: Multiplicative tuning factor for Phase 1 heat transfer coefficient
*line 16: Effective Qdot for Phase 2 heat transfer (.ge. 0; e.g., 1400 W/m**2)
*line 17: Thermal conductivities of epidermis and dermis (W/m/K)' (nonzero)
*line 18: Thermal diffusivities of epidermis and dermis (m**2/s); if a negative
; value is specified in field 1 (epidermis), fields 3 and 4 must contain
; nonzero values for density ( kg/m**3) and specific heat (J/kg/K);
; fields 5 and 6 are used similarly for the dermis if field 2 is neg.
*line 19: Critical cell depth (micrometers)
*line 20: Burn integral constants: preexponential factor coefficient and power,
; and delE/R (activation energy divided by gas constant)
1. . }000
2. -1. 11111111111111111112111111
0.
nitrogen
20.85
    Blank lines and comment lines beginning with ; : * # $ @ are allowed.
35.85 Comments can also be added after the data fields on any line.
.028317
0.035 2.
0.6
0. 
0.06
3.0
1.
.55
1400.
0.20949 0.3791
7.267E-8 1.43E-7
72.
3.1 98. 75000. Henriques-Moritz [44,50] C
```

Figure 2. Illustration of Input Data in AIRBAG Data Set.

The comment lines included in Figure 2 describe the input quantities that comprise the data set, line by line and field by field. Some of these quantities need little explanation beyond the short one given in the comment lines. Additional clarification of most quantities is given below. For dimensional quantities, units are given in parentheses after the name of the quantity.

Line 1

Field 1: Integration method (1. $=\mathrm{R}-\mathrm{K}$)
Currently only one numerical integration method is supported--viz., a fourth-order, fixed-stepsize Runge-Kutta algorithm. The user should enter "1." here, but the program will in fact ignore the value entered.

Field 2: Stepsize (s)
The integration stepsize entered should be " 0.0005 " s, i.e., half a millisecond. Certain arrays in the source code currently are not dimensioned large enough to allow smaller stepsizes. Simulations conducted to date, including a small number with stepsizes of 0.001 s and 0.00025 s , suggest that 0.0005 s should be sufficiently small for both airbag and heat-gun simulations. Although Mathematica simulations with the first version of the UMTRI airbag skin burn model were conducted with a one-millisecond step size, the smaller half-millisecond step is recommended.

Line 2

On Line 2 the user specifies the types of outputs desired from the program. There are two basic types of outputs--summary results and tabular data, including time histories. The user has options with regard to each type.

Field 1: Summary outputs (results and input data summary)
Three types of summary output are available in all airbag runs. The first is a summary of simulation results, which is written to the BURNMODL.OUT file following an echo of the input data set. The user does not have an option to suppress the "Summary of Results" output. The second type of summary output is a descriptive version of the input data set, which may be particularly helpful if the AIRBAG data set used does not contain sufficiently descriptive comment lines. The third type of summary output is a description of the "model constants," i.e., constants that are included in the code and over which the user has no control. The universal gas constant is one such constant, for example.

To obtain all three types of summary output the user should enter "1." in field 1 . To obtain only the first two (i.e., suppressing the least important of the three, the summary of model constants) enter "2." To obtain only the "Summary of Results" output (the values that summarize the results of the simulation, such as exposure duration, average temperature of the exhaust, the value of the calculated burn injury integral, Ω, etc.) enter "3." A parsed version of the "Summary of Results" output (i.e., with numbers only) can also be obtained if desired by making the entry in this
field negative, either "-1.", "-2.", or "-3." If the parsed output is requested, it will be written separately to the file PARSED.OUT. All other summary outputs are written to the file BURNMODL.OUT.

Field 2: Tabular output data, including time histories
Tabular output data can be obtained for any of 25 different quantities. These are listed in Table 5. The value in this field has no bearing on the tabular output for skin temperature as a function of time and depth, which is always written to file TEMPDIST.OUT.

If no tabular outputs are desired, enter " 0.0 in this field. To obtain any or all tables, enter "1." If a default selection of tables (see below) is desired, enter "2." instead. To obtain selected tables (that is, for "1." in this field) the user may specify which tables are desired by entering values 0,1 , or 2 in columns 17-41, the 25 columns immediately after the first two eightcharacter data fields. An example is illustrated below.

Selecting output tables
1................................ 25

0000110011110000012111100

> (and "1." in field 2)

In this example no output for tables 1-4, 7, 8, 13-17, 24, or 25 is desired. This is specified by a " 0 " in the respective positions. A " 1 " indicates that the table is desired. The "2" for table 19 (for time histories only) indicates that the values for that table should be written but only for every second integration time step (i.e., the 1st, 3rd, 5th, etc.) A "1" requests that the values be written for all time steps.

Default selection of output tables

The specific selection of output tables indicated below may be obtained by simply entering a " 2. " in field 2 . Tables 5, 6, 9-12, and 19 are written. Only every second time step (viz., one millisecond intervals for the half millisecond stepsize) is written for table 19, the skin temperature at critical depth. That particular time history is always 500 ms in duration.

```
1............................. }2
0000110011110000002000000
\(<\) ——default selection if " \(2 . "\)
is in field 2
```


Directing tabular output to BURNMODL.OUT or TABLDATA.OUT

Tabular outputs will be written to BURNMODL.OUT, following the summary outputs, unless the value specified for field 2 is negative. To have selected tables written to the file TABLDATA.OUT instead, enter "-1." To write the default selection to file TABLDATA.OUT, enter "-2."

Line 3

Field 1: normally " 0. "
This field should normally be " 0.1 Zero indicates that the exhaust
duration determined from integration of the gas thermodynamics equations should be used for the gas jet exposure to the skin. If a positive number is entered, however, it will be treated as the number of seconds of the first portion of the exhaust data that should be ignored. If a negative number is entered, then the exhaust duration will similarly be reduced except that the last portion of the exhaust time histories will be ignored. The only possibly reasonable use of a nonzero value in this field would be to trim off the "rise-time" portion of the beginning of exhaust, during which. exhaust temperature has not yet reached its plateau.

Line 4

Field 1: Gas identification
Enter "1." or "nitrogen" to select nitrogen as the gas to use in the simulation. Enter "2." or "air" for air. Nitrogen should probably always be selected for airbag simulations.

Line 5

Field 1: Ambient temperature (${ }^{\circ} \mathrm{C}$) [include K in field if Kelvin]
The ambient temperature is entered here. "Room temperature" is usually used. The value entered will be treated as a Celsius temperature unless a " K " is included in the field, in which case it will be treated as a Kelvin temperature. A "C" may be included, although unnecessary, to indicate a Celsius temperature.

Line 6

Field 1: Initial skin surface temperature $\left({ }^{\circ} \mathrm{C}\right)$ [include K in field if Kelvin]
The initial skin surface temperature, entered here, is used for all skin depths in the current model. As for the value in Line 5 , a " K " can be included in the field if it is desired to enter a Kelvin value. Otherwise, the value will be treated as a Celsius temperature.

Line 7

Field 1: Tank test volume $\left(\mathrm{m}^{3}\right)$
The tank volume entered here must be for the specific tank used in the test to obtain the data in files M1TDOT and PT for tank test mass flow rate and pressure.

Line 8

Field 1: Vent diameter (m) (Vents are assumed to be circular.)
Field 2: Number of vents

Line 9

Field 1: Orifice coefficient for vent and fabric area

The effect of gas jet contraction from a vent area A to a vena contracta area B is modeled by using the (effective) exhaust jet diameter $D_{23}=$ $2\left(\pi \mathrm{~A}_{\text {eff }}\right)^{1 / 2}$ for the effective area $\mathrm{A}_{\text {eff }}=\mathrm{B}=\mathrm{C}_{23} \mathrm{~A}$, where $\mathrm{C}_{23}=\mathrm{B} / \mathrm{A}$ is called the orifice coefficient. Experimentally determined values are normally in the $0.6-0.7$ range. Values should probably never be less than 0.6 .

The effect of gas loss through porous airbag fabric can perhaps be modeled crudely by assigning an "orifice coefficient" that accounts for porosity effects as well as the vena contracta for exhaust from a vent, but analytical enhancements to the model should be made if serious study of fabric porosity effects is to be done with this model.

Line 10
Field 1: Fabric stretch factor $\left(\mathrm{m}^{2} /\left(\mathrm{N} / \mathrm{m}^{2}\right) / \mathrm{m}^{2}\right)$
The airbag thermodynamics equations include a term for the effect of fabric stretch. An empirical relationship to the nominal airbag volume V_{20} is $\mathrm{Cs}=2.45 \times 10^{-6}+2.27 \times 10^{-5} \mathrm{~V}_{20}$. A typical experimental value is $3.81 \times 10^{-6} \mathrm{~m}^{2} /\left(\mathrm{N} / \mathrm{m}^{2}\right) / \mathrm{m}^{2}$.

Enter " 0.0 to ignore the effects of fabric stretch or enter an appropriate value. To request use of the above linear regression to V_{20}, enter "-1."

Line 11

Field 1: Occupant/airbag interaction option
Occupant/airbag interaction can be modeled, if desired, by specifying data for a pendulum impact against the airbag. (See Section 4.2.) For no occupant/airbag interaction, enter " 0. " in field 1 . To simulate occupant interaction enter "1." and enter appropriate values in fields 2 through 7.

Field 2: Moment of inertia about pivot point ($\mathrm{kg} \cdot \mathrm{m}^{2}$)
The moment of inertia of one particular pendulum and torso form that have been used in both steering assembly and airbag impact testing, is $143.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. The distance from the pivot point to the center of contact on the torso form is 1.332 m .

Field 3: Distance from pivot point to center of airbag contact (m)
(See field 2.)
Field 4: Pendulum impact velocity ($\mathrm{rad} / \mathrm{s}$ or m / s)
If a positive value is entered, it is treated as the initial angular velocity ($\mathrm{rad} / \mathrm{s}$) at contact. A negative value indicates a linear velocity (m / s). A typical occupant impact velocity of about $6.6 \mathrm{~m} / \mathrm{s}$ is obtained by entering $4.95 \mathrm{rad} / \mathrm{s}$ as the initial angular velocity if the pendulum length is 1.332 m .

Field 5: Maximum contact area for pendulum/airbag interaction (m^{2})

Enter an estimate of the area of contact between the airbag and the occupant (pendulum) at full contact. A value of approximately $0.15 \mathrm{~m}^{2}$ is normally reasonable.

Field 6: Length of deflection ramp for full contact area (m)
Enter an estimate of the deflection at which full contact, i.e., maximum area, between the occupant and the airbag is reached. A value of approximately 0.1 m is reasonable for many airbag designs.

Field 7: Airbag depth (m)
Specify the deflection of the full airbag at which occupant interaction would "bottom out." A value of approximately 0.25 m is reasonable for many airbag designs.

Line 12

Field 1: Nominal airbag volume (m^{3})
The value entered here should be the volume of the fully inflated airbag.

Line 13

Field 1: H/D ratio
The H/D ratio is used for calculating a correction factor for the Nusselt number. Its value should be in the range 1.0 to 12.0 . The correction factor does not vary more than about 20 percent over the entire range of allowed H / D and r / D values, so the exact value of H / D is not critical. H is the distance from the vent to the skin surface, and D is the jet diameter at the vena contracta, D_{23}, which is the vent diameter multiplied by the square root of the orifice coefficient, C_{23}. The dependence of the correction factor on H / D and r / D is shown in the table below. (Also see Section 4.3.1 and output table 17.)

```
Nusselt number correction factor, k(H/D, r/D)
\begin{tabular}{ccc} 
H/D & \(r / D\) & \(k(H / D, r / D)\) \\
\hdashline \(1.0-6.65\) & all & 1.03 \\
7.5 & all & 1.0 \\
12.0 & 0.0 & 0.775 \\
12.0 & 1.0 & 0.775 \\
12.0 & 2.0 & 0.80 \\
12.0 & 3.0 & 0.81 \\
12.0 & 5.0 & 0.86 \\
12.0 & 7.0 & 0.90
\end{tabular}
(linear interpolation for other values of H/D and r/D)
```

Line 14
Field 1: r/D ratio
The r/D ratio is used with H/D for calculating a correction factor for the Nusselt number, which is directly proportional to the heat transfer coefficient for the jet/skin interface. See the discussion above for line 13. The value of r / D should be in the range 0 . to 3 . The quantity. r is the radius of the area over which the Nusselt number is averaged, which can normally be considered the skin surface area that may be burned. A value of $\mathrm{r}=1.0$ is probably most appropriate for a wide range of H values. D $\left(=D_{23}\right)$ is the same diameter described for line 13.

Line 15
Field 1: Multiplicative tuning factor for the heat transfer coefficient
While the skin burn model produces results that are in good qualitative agreement with heat-gun experiment results, direct use of the heat transfer coefficient calculated by the impinging jet heat transfer model causes burns to be predicted for exposure durations that are smaller than found experimentally. For a wide range of experimental conditions, the best corrected simulation results are obtained with the current model by using a multiplicative tuning factor of 0.55 to 0.6 .

Line 16
Field 1: Effective heat flux for post-exposure heat transfer ($\mathrm{W} / \mathrm{m}^{2}$)
The heat flux at the skin surface following exposure to the hot gas jet is very small in comparison to the heat flux during exposure because the temperature differential is smaller and also because the heat transfer coefficient is much smaller for quiescent air. Simulation results are not sensitive to the value specified here as long as it is small in comparison with the average heat flux during exposure. A value of zero is reasonable for this field. UMTRI has used a value of $1400 \mathrm{~W} / \mathrm{m}^{2}$ in some simulations.

Line 17

Field 1 : Thermal conductivity of the epidermis ($\mathrm{W} / \mathrm{m} / \mathrm{K}$) (nonzero)
Torvi (1992; pp. 55, 70-77, 93) reports that the range of published values for thermal conductivity of the epidermis is 0.21 to $0.26 \mathrm{~W} / \mathrm{m} / \mathrm{K}$. In simulations for values within this range he found that results are not sensitive to thermal conductivity for high intensity exposures.

Field 2: Thermal conductivity of the dermis (W/m/K) (nonzero)
Torvi has found published values for the dermis to be in the range 0.37 to $0.52 \mathrm{~W} / \mathrm{m} / \mathrm{K}$ and that simulation results are not sensitive to the value used.

Field 1: Thermal diffusivity of the epidermis ($\mathrm{m}^{2} / \mathrm{s}$) (nonzero)
If positive, the value is the thermal diffusivity. If any negative value is entered (e.g., "-1."), then the thermal diffusivity will be calculated from the thermal conductivity and the values in fields 3 and 4. (The thermal diffusivity is equal to the thermal conductivity divided by the product of the density and the specific heat.)

Calculations from published values reported by Torvi (1992; pp. 55, 7077, 93) show thermal diffusivities of the skin to vary by about 20 percent from their mean. Torvi uses values near the low end of the range. His value for the epidermis is $5.906 \times 10^{-8} \mathrm{~m}^{2} / \mathrm{s}$. UMTRI has used a value $7.267 \times 10^{-8} \mathrm{~m}^{2} / \mathrm{s}$, which is near the high end of the range.

Torvi (pg. 93) finds that the values used for volumetric heat capacities -or, equivalently, thermal diffusivity -- are important in high-intensity exposures.

Field 2: Thermal diffusivity of the dermis ($\mathrm{m}^{2} / \mathrm{s}$) (nonzero)
If positive, the value is the thermal diffusivity. If any negative value is entered (e.g., "-1."), then the thermal diffusivity will be calculated from the thermal conductivity and the values in fields 5 and 6.

Calculations from published values for the dermis that are reported by Torvi ($\mathrm{pp} .55,76$) yield a range of 1.411×10^{-7} to $2.152 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$. Torvi uses $1.353 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$. UMTRI has used $1.43 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$.

Field 3: Density of the epidermis $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
A nonzero value must be entered here for the density of the epidermis only if some negative number was entered in field 1 instead of a value for the thermal diffusivity.

Field 4: Specific heat of the epidermis $(\mathrm{J} / \mathrm{kg} / \mathrm{K})$
A nonzero value must be entered here for the specific heat of the epidermis only if some negative number was entered in field 1 instead of a value for the thermal diffusivity.

Field 5: Density of the dermis $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
A nonzero value must be entered here for the density of the dermis only if some negative number was entered in field 2 instead of a value for the thermal diffusivity.

Field 6: Specific heat of the dermis $(\mathrm{J} / \mathrm{kg} / \mathrm{K})$
A nonzero value must be entered here for the specific heat of the dermis only if some negative number was entered in field 2 instead of a value for the thermal diffusivity.

Field 1: Critical cell depth (micrometers)
Second-degree burn is indicated by full necrosis of the epidermis. Thus, the critical cell depth for incipient second-degree burn is the depth of the basal epidermal layer. Values of 72 to 80 micrometers are reasonable.

Line 20

Field 1: Coefficient for preexponential factor in calculation of burn injury parameter (s^{-1})

The Weaver-Stoll or Henriques-Moritz values are recommended for fields 1, 2, and 3. See Section 4.5 and Table 3.

Field 2: Power (of 10) for preexponential factor in calculation of burn injury parameter

Field 3: Activation energy factor in calculation of burn injury parameter (\mathbf{K})

Table 5

Tables for Optional Output to BURNMODL.OUT or TABLDATA.OUT
Table
Number

Description

All tables may be obtained for airbag simulations.
Only tables 1-4 and 15-19 are relevant to heat-gun simulations.

6 time rate of change of pressure in tank in tank test, P_{T}; function of time $[\mathrm{Pa} / \mathrm{s}]$
kinematic viscosity of gas as a function of temperature (nitrogen or air) [$\mathrm{m}^{2} / \mathrm{s}$]
thermal conductivity of gas as a function of temperature (nitrogen or air) [W/m/K]
Prandtl number of gas as a function of temperature (nitrogen or air) [•]
ratio of specific heats of gas, C_{p}, as a function of temperature (N_{2} or air) [•]
inflator mass flow rate, $\dot{\mathrm{m}}_{1 \mathrm{~T}}$, as a function of time $[\mathrm{kg} / \mathrm{s}]$
volume of gas in airbag as a function of time $\left[\mathrm{m}^{3}\right]$
gas mass in airbag, m_{2}, as a function of time [kg]
gas pressure in airbag, P_{2}, as a function of time [Pa , absolute]
gas temperature in airbag, T_{2}, as a function of time [K]
exhaust velocity as a function of time [m / s]
exhaust temperature as a function of time [K] time integral of u^{n}, where n is dependent on r / D; function of time $\left[\mathrm{m}^{n} / \mathrm{s}^{\mathrm{n}-1}\right]$ time integral of exhaust temperature as a function of time [$\mathrm{K} \cdot \mathrm{s}$] Martin's coefficient \mathbf{C} for circular impinging gas jet as a function of r/D [•] Martin's exponent \mathbf{n} for circular impinging gas jet as a function of r/D $[\cdot]$ Martin/Schlünder-Gnielinski correction factor for Nusselt number at H/D=12 as function of r / D; approximation from Martin graph [•]
gas-to-skin heat transfer coefficient as a function of time [W/m² K]
skin temperature at critical depth as a function of time [K]
airbag deflection from pendulum contact as a function of time [m] airbag deflection velocity from pendulum contact as a function of time [m / s] airbag deflection acceleration from pendulum contact; function of time $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ pendulum/airbag force as a function of time [N]
airbag volume decrease from pendulum contact as a function of time [m^{3}]
rate of decrease of airbag volume from pendulum contact; function of time [$\mathrm{m}^{3} / \mathrm{s}$]
5.1.1.2 M1TDOT and PT data sets. Example data for the M1TDOT and PT data sets are shown in Figures 3 and 4. These data sets contain the tank test data for the inflator to be simulated. M1TDOT and PT are for the mass flow rate and tank pressure, respectively. The first line of each data file is treated as a 32 -charactor description of the inflator data. The pair of data sets, M1TDOT and PT, should contain the same 32 -character description. A blank card must be included as a header line if a description is not provided. All other lines in each data set contain numeric data. The first value on each line is the time in seconds. The second value is either $\dot{\mathrm{m}}_{1 T}$ or P_{T} with units of kg / s or kPa (gauge), respectively. (One Pascal is one $\mathrm{N} / \mathrm{m}^{2}$.) The data points need not be equally spaced in time. The values are read from two general-format numeric fields of eight-character width--that is, the data must be in columns 1-8 and 9-16. Comma-delimited fields are not allowed. Since mass flow rate cannot be measured directly in tank tests, it is normally calculated by inflator manufacturers by using an analytical technique. Wang (1991) and Reed and Schneider (1994) describe the method usually used.

Figure 3. Example Input Data in M1TDOT Data Set

```
Inflator Capacity: 487 kPa
0.001
0.002
0.003 6.23
0.004 10.7
0.005 17.9
0.006 26.9
0.007 37.2
0.008 49.9
0.009 64.7
0.01 81.4
0.011 99.3
0.012 118.1
0.013 137.8
0.014 157.99
0.015 177.9
0.016 197
0.017 216
0.018 - 234
0.019 251
0.02 266
0.021 280
0.022 294
0.023 308
0.024 322
0.025 336
0.026 348
0.027 371
0.028 381
0.029 391
0.03 400
0.031 408
0.032 415
0.033 422
0.034 429
..........
0.047 479
0.048 481
0.049 483
0.05 484
0.051 486
0.052 487
0.053 487
..........
0.203 487
0.208 487
```

Figure 4. Example Input Data in PT Data Set
5.1.2 Heat-gun simulations. Only one input data file is used in heat-gun simulations. This file must have the name HEATGUN. Its layout is nearly identical to that of the AIRBAG data file. It differs importantly only in (a) not having airbag system constants and (b) requiring specification of exposure duration, temperature, and velocity-quantities that are determined for airbag simulations by the airbag gas thermodynamics. An example HEATGUN data set is illustrated in Figure 5.
5.1.2.1 Search simulations. An option for heat-gun simulations is a search for critical conditions, which is described in Section 4.6. Instead of specifying the (four) values for epidermis thickness and gas jet duration, temperature, and velocity, the user can specify only three and request the model to find the value of the fourth quantity such that either 0.53 or 1.0 will result for Ω, i.e., either first- or second-degree burn. User specifications for the search are entered on data lines $6,7,8$, and 17 of the HEATGUN data set, as described below in Section 5.1.2.2.
5.1.2.2 HEATGUN data set. Only the differences between the layouts of the HEATGUN and AIRBAG data sets are discussed below. The user is referred to the descriptions in Section 5.1.1.1 for all quantities in the HEATGUN data set that are the same as ones in the AIRBAG data set.

There are 18 data lines in a valid HEATGUN data set.
Line 1 Integration controls -- See Section 5.1.1.1, Line 1.
Line 2 Output controls -- See Section 5.1.1.1, Line 1 (and below).
The only difference from the information for the same data line in an AIRBAG data set is that the default tabular outputs are different. Further, as may be seen from Table 5, only output tables 1-4 and 15-19 are relevant for heat-gun simulations.
$\begin{array}{rrr}1 \quad 4 & 15 \quad 19 \\ 0000 & 00002\end{array}$
$<$ _- default selection if " 2. ."

Line 3 Gas identification -- See Section 5.1.1.1, Line 4.
Line 4 Ambient temperature -- See Section 5.1.1.1, Line 5.
Line 5 Initial skin surface temperature -- See Section 5.1.1.1, Line 6.
Line 6 Duration of exposure to heat-gun jet
Field 1: Duration (s)
A positive value entered here is the duration of exposure to the heat-gun jet. Alternatively, provided that positive values are specified for temperature and velocity on lines 7 and 8 and critical cell depth on line 17 , a negative value can be entered in this field to request a search for the particular duration that will yield either a first-degree burn or a seconddegree burn. To search for the exposure duration for incipient firstdegree burn ($\Omega=0.53$), enter "-1." To find the exposure duration for incipient second-degree burn ($\Omega=1.0$), enter "-2."

Line 7 Temperature of heat-gun jet

Field 1: Temperature $\left({ }^{\circ} \mathrm{C}\right)$ [include K in field if Kelvin]
A positive value entered here is the temperature of the heat-gun jet. (As for other temperature values in AIRBAG and HEATGUN, a " K " can be included in the field to indicate a Kelvin value.) Alternatively, provided that values are specified for duration and velocity on lines 6 and 8. and critical cell depth on line 17, a negative value can be entered in this field to request a search for the particular gas temperature that will yield either a first-degree burn or a second-degree burn. To search for the exposure temperature for incipient first-degree burn ($\Omega=0.53$), enter " -1 ." To find the exposure temperature for incipient second-degree burn ($\Omega=1.0$), enter "-2."

Line 8 Velocity of heat-gun jet
Field 1: Velocity (m/s)
A positive value entered here is the velocity of the heat-gun jet. If a negative value not equal to -1 . or -2 . is entered, the value will be treated as a pitot tube pressure differential in inches of water, from which the velocity will be calculated by the program.

Alternatively, provided that positive values are specified for duration and temperature on lines 6 and 7 and critical cell depth on line 17, a negative entry can be made in this field to request a search for the particular jet velocity that will yield either a first-degree burn or a second-degree burn. To search for the velocity for incipient first-degree burn $(\Omega=0.53)$, enter "-1." To find the velocity for incipient second-degree burn ($\Omega=1.0$), enter "-2."

Line 9 Port diameter (m) -- See Section 5.1.1.1, Line 8.
Line 10 Orifice coefficient for port -- See Section 5.1.1.1, Line 9.
Line 11 H/D ratio -- See Section 5.1.1.1, Line 13.
Line 12 r/D ratio -- See Section 5.1.1.1, Line 14.
Line 13 Multiplicative tuning factor for the heat transfer coefficient -- See Section 5.1.1.1, Line 15.

Line 14 Effective heat flux for post-exposure heat transfer (W/m²)
-- See Section 5.1.1.1, Line 16.
Line 15 Thermal conductivities of the epidermis and dermis (W/m/K)
-- See Section 5.1.1.1, Line 17.
Line 16 Thermal diffusivities of the epidermis and dermis ($\mathrm{m}^{2} / \mathrm{s}$)
-- See Section 5.1.1.1, Line 18.
Line 17 Critical cell depth (micrometers) -- See Section 5.1.1.1, Line 19.
Line 18 Burn integral constants -- See Section 5.1.1.1, Line 20.

```
* Heat gun [8-character data fields] [ Comment lines begin with ;:*#$@ ]
*line 1: Integration method (1.=R-K) and stepsize (s)
*line 2: Output specifications -- SW1, SW2, KTAB(1-25) FORMAT(2g8.0, 25I1)
; Field 1: summary outputs (results and input data summary)
; =1., summary of results, summary of input data, summary of model consts
=2., summary of results, summary of input data
    =3., summary of results only
    <0., as above but also print parsed results summary (to separate file)
    Field 2: tabular output data, including time histories
        =0., print no tabular data to file
        =1., print all tabular data to file [KTAB() specifications optional]
                KTAB(i) for table i: 0 = do not write to file, 1 = write to file,
                2 = write every 2nd point to file (time histories 7-14,18-25)
            =2., default (selected) tables to file
                Table No. 1 2 3 4 5 6 7 8 910111213141516171819202122232425
                Default 0 0 0 0 0 0 0 0 2
            <0., as above but write tabular data to different file from summaries
*line 3: Gas'identification: a) nitrogen or 1. or b) air or 2
*line 4: Ambient temperature ( }\mp@subsup{}{}{\circ}\textrm{C})\quad[include K in field if Kelvin]
*line 5: Initial skin surface temperature ( }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ ) [include K in field if Kelvin]
*line 6: Duration of exposure to heat gun jet (s)
        or -1. to search for the exposure duration that results in \Omega=0.53
; or -1. to search for the exposure duration that results in }\Omega=
*line 7: Temperature of gas flow from heat gun (}\mp@subsup{}{}{\circ}\textrm{C}) [incl. K in field if Kelvin]
; or -1. to search for the gas jet temperature that results in \Omega=0.53
; or -2. to search for the gas jet temperature that results in \Omega=1
*line 8: Velocity of heat gun jet (m/s) or, if negative (and not -1. or -2.),
; the pitot tube pressure differential in inches of water,
; or -1. to search for the gas jet velocity that results in \Omega=0.53
; *line 9: Heat-2. to search for the gas jet velocity that results in \Omega=1
*line 9: Heat-gun port diameter (m)
*line 10: Orifice coefficient for heat-gun port
*line 11: H/D ratio: H, distance from vent to skin surface; D, gas jet diameter
*line 12: r/D ratio: r, effective radius of target area; D, gas jet diameter
*line 13: Multiplicative tuning factor for Phase 1 heat transfer coefficient
*line 14: Effective Qdot for Phase 2 heat transfer (.ge. 0; e.g., 1400 W/m**2)
*line 15: Thermal conductivities of epidermis and dermis (W/m/K) (nonzero)
*line 16: Thermal diffusivities of epidermis and dermis (m**2/s); if a negative
; value is specified in field 1 (epidermis), fields 3 and 4 must contain
; nonzero values for density ( }\textrm{kg}/\textrm{m}**3\mathrm{ ) and specific heat (J/kg/K);
; fields 5 and 6 are used similarly for the dermis if field 2 is neg.
*line 17: Critical cell depth (micrometers)
; or -1. to search for the cell depth for which \Omega=0.53
; Or -2. to search for the cell depth for which \Omega=1
*line 18: Burn integral constants: preexponential factor coefficient and power,
; and delE/R (activation energy divided by gas constant)
1. . 0005
-i. -1. 11111111111111111112111111
air
20.85 Blank lines and comment lines beginning with ; : * # $ @ are allowed.
35.85 Comments can also be added after the data fields on any line.
.150
4 5 0 .
66.
0.010
1.
3.0
1.0
. }5
1400.
0.20949 0.3791
7.267E-8 1.43E-7
7 2
3.1 98. 75000.
*2.185 124. 
    Weaver-Stoll [44,50] C
    Weaver-Stoll >50 C
*1.43 72. 55000.
Mehta-Wong
* Comment lines must begin with one of these: ; ; * # $ @
* Comments can be added after data fields on any line (w. or w/o ;:*#$@).
* Completely blank lines are also allowed.
```

Figure 5. Illustration of Input Data in HEATGUN Data Set.

5.2 Running the model

Execution of the BURN program in DOS is very simple. The BURN.EXE file (the executable program) and the required input data sets should be in the same directory. For an airbag simulation the required data sets are AIRBAG, M1TDOT, and PT. For a heatgun simulation only the HEATGUN data set is needed. In example outputs to the screen shown below, the name of the directory is $\mathrm{C}: \backslash \mathrm{BAG}$, but the name of the directory used is not of consequence. To run the program from DOS type in "BURN" or "burn" at the DOS prompt (which is "C:\BAG $>$ " in this instance). The BURN program will respond with the following output to the screen. You are asked to indicate whether you wish to make an airbag simulation or a heat-gun simulation. After you enter "1" or "2", respectively, the simulation will begin.

BURN INJURY MODEL
1 = airbag
2 = heat gun
Enter 1 or 2:

No other keyboard inputs will be required. As the simulation proceeds, the program prints several lines to the screen that inform you of the stage of the calculations. When the calculations have been completed, the program writes a "Summary of Results" to the screen and tells you the names of the input files and output files that were used. The summary of results will always be written to BURNMODL.OUT as well as to the screen.

For a heat-gun run in which the search option was selected for the exposure duration, temperature, or velocity to produce $\Omega=1.0$ or $\Omega=0.53$, the results of the search are written to the screen and to BURNMODL.OUT. A summary of results is not written. The user may wish to make a second run in which the " -2. " or "-1." entry for duration, temperature, or velocity is replaced by the value determined by the search. (In the case of duration use the value nearest to an integer multiple of the integration time step.)

It is noted here that since run outputs are always written to file BURNMODL.OUT, it should be renamed or copied to a file of a different name before a rerun of the BURN program. This is true, also, of file TEMPDIST.OUT and, if they are requested, files TABLDATA.OUT and PARSED.OUT. This will be discussed further in Section 5.2.3, "Batch runs on MS DOS systems."
5.2.1 Outputs to the screen. Outputs to the screen from three kinds of runs are shown below without further comment. These are for (1) an airbag simulation with occupant/airbag interaction, (2) a standard heat-gun simulation, and (3) a "search-forduration" heat-gun simulation which determines the duration for $\Omega=1.0$.

SCREEN OUTPUT FROM AN AIRBAG SIMULATION

C: \BAG>burn

BURN INJURY MODEL
1 = airbag
2 = heat gun
Enter 1 or 2: 1
Inflator Capacity: 487 kPa
Simulation with occupant interaction
Integrating equations of airbag gas thermodynamics..
Determining skin surface temp $T(0, t)$ and heat transfer coefficient $h(t)$...
Finding distribution of skin temperatures $T(x, t)$ during exposure to gas jet
Calculating Phase 1 burn injury criterion function...
Finding distribution of skin temperatures $T(x, t)$ after exposure to gas jet...
Calculating Phase 2 burn injury criterion function...
SUMMARY OF RESULTS
Burn Injury Integral Ω for Critical Depth $72 \mu \mathrm{~m}$

Inflator Capacity: 487 Occupant Contact: yes		Gas: nitrogen Vent diameter	$\mathrm{r}: 35.00 \mathrm{~mm}$
	During Exposure	After Exposure	Total
Time range (ms)	0.0-81.0	81.0-500.0	0.0-500.0
Omega (Ω)	1.1432	15.7483	16.8915
Gas jet temperature (average)	$\begin{aligned} & 810.130{ }^{\circ} \mathrm{K} \\ & 536.980^{\circ} \mathrm{C} \end{aligned}$		
Gas jet velocity (avg)	$432.880 \mathrm{~m} / \mathrm{s}$	---	
Average skin surface temperature	$\begin{array}{r} 358.692{ }^{\circ} \mathrm{K} \\ 85.542{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 333.474 \circ^{\circ} \mathrm{K} \\ 60.324{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 337.5600^{\circ} \mathrm{K} \\ 64.410{ }^{\circ} \mathrm{C} \end{array}$
Avg heat trans coeff	$395.094 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}$	$30.888 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}$	
Average heat flux	$178.372 \mathrm{~kW} / \mathrm{m}^{2}$	-1.400 kW/m²	---
Average temperature	$323.569{ }^{\circ} \mathrm{K}$	$328.511{ }^{\circ} \mathrm{K}$	$327.710{ }^{\circ} \mathrm{K}$
at 72 mm depth	$50.419{ }^{\circ} \mathrm{C}$	$55.361{ }^{\circ} \mathrm{C}$	$54.560{ }^{\circ} \mathrm{C}$
Maximum temperature	$338.975{ }^{\circ} \mathrm{K}$	$340.665{ }^{\circ} \mathrm{K}$	$340.665{ }^{\circ} \mathrm{K}$
at 72 mm depth	$65.825{ }^{\circ} \mathrm{C}$	$67.515{ }^{\circ} \mathrm{C}$	$67.515{ }^{\circ} \mathrm{C}$
Time at maximum temp	81.0 ms	90.0 ms	90.0 ms

Other
The heat transfer coefficient value for Phase 2 ($30.888 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}$)
is the *effective* value, which results from the user-specified
Phase 2 heat flux ($-1.400 \mathrm{~kW} / \mathrm{m}^{2}$), an estimated (not actual) average
Phase 2 skin surface temperature of $339.326^{\circ} \mathrm{K}$, and an adjusted
(ambient) exposure temperature of $335.782{ }^{\circ} \mathrm{K}$. (The actual ambient
temperature is $294.000^{\circ} \mathrm{K}$.)
Airbag inflation time (full bag, beginning of exhaust): 22.5 ms
Time at end of exhaust: 103.5 ms
Input: M1TDOT PT AIRBAG
Output: BURNMODL.OUT TEMPDIST.OUT
End of simulation.
C: \BAG>

SCREEN OUTPUT FROM A STANDARD HEAT-GUN SIMULATION

C: \BAG>burn
BURN INJURY MODEL
$1=$ airbag
2 = heat gun
Enter 1 or 2: 2
Heat gun: $450{ }^{\circ} \mathrm{C}, 66 \mathrm{~m} / \mathrm{s}, 150 \mathrm{~ms}$
Determining skin surface temp $T(0, t)$ and heat transfer coefficient $h(t)$...
Finding distribution of skin temperatures $T(x, t)$ during exposure to gas jet...
Calculating Phase 1 burn injury criterion function...
Finding distribution of skin temperatures $T(x, t)$ after exposure to gas jet...
Calculating Phase 2 burn injury criterion function...
SUMMARY OF RESULTS
Burn Injury Integral Ω for Critical Depth $72 \mu \mathrm{~m}$
Heat gun: $450{ }^{\circ} \mathrm{C}, 66 \mathrm{~m} / \mathrm{s}, 150 \mathrm{~ms}$ Gas: air Port dia: 10.00 mm

	During Exposure	After Exposure	Total
Time range (ms)	0.0-150.0	150.0-500.0	0.0-500.0
Omega (Ω)	0.1327	0.4401	0.5728
Gas jet temperature	$\begin{aligned} & 723.150 \circ^{\circ} \mathrm{K} \\ & 450.000{ }^{\circ} \mathrm{C} \end{aligned}$		
Gas jet velocity	$66.000 \mathrm{~m} / \mathrm{s}$	---	
Average skin surface temperature	$\begin{array}{r} 342.800{ }^{\circ} \mathrm{K} \\ 69.650{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 329.747 \circ^{\circ} \mathrm{K} \\ 56.598{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 333.663 \circ^{\circ} \mathrm{K} \\ 60.513{ }^{\circ} \mathrm{C} \end{array}$
Avg heat trans coeff	$234.830 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}$	K $39.250 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}$	
Average heat flux	$89.320 \mathrm{~kW} / \mathrm{m}^{2}$	-1.400 kW/m²	
Average temperature at 72 mm depth	$\begin{array}{r} 322.428 \circ^{\circ} \mathrm{K} \\ 49.278{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 326.009 \circ^{\circ} \mathrm{K} \\ 52.859{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 324.935 \circ^{\circ} \mathrm{K} \\ 51.785{ }^{\circ} \mathrm{C} \end{array}$
Maximum temperature	$334.368{ }^{\circ} \mathrm{K}$	$334.948{ }^{\circ} \mathrm{K}$	$334.948^{\circ} \mathrm{K}$
at 72 mm depth	$61.218{ }^{\circ} \mathrm{C}$	$61.798^{\circ} \mathrm{C}$	$61.798{ }^{\circ} \mathrm{C}$
Time at maximum temp	150.0 ms	157.0 ms	157.0 ms

Other
The heat transfer coefficient value for Phase 2 ($39.250 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}$)
is the *effective* value, which results from the user-specified
Phase 2 heat flux ($-1.400 \mathrm{~kW} / \mathrm{m}^{2}$), an estimated (not actual) average
Phase 2 skin surface temperature of $329.669{ }^{\circ} \mathrm{K}$, and an adjusted
(ambient) exposure temperature of $323.707^{\circ} \mathrm{K}$. (The actual ambient
temperature is $294.000^{\circ} \mathrm{K}$.)

Input: HEATGUN
Output: BURNMODL.OUT TEMPDIST.OUT
End of simulation.
$C: \ B A G>$

```
C:\BAG>burn
BURN INJURY MODEL
```

1 = airbag
2 = heat gun
Enter 1 or 2: 2
Heat gun: $450{ }^{\circ} \mathrm{C}, 66 \mathrm{~m} / \mathrm{s}$, ??? ms
Critical cell depth: $72 \mu \mathrm{~m}$
Search for exposure duration for $\Omega=1.00$

Duration (s)	Omega	Omega	Omega (1)	2)
$0.200000 \mathrm{E}+00$	$0.261650 \mathrm{E}+02$	$0.251650 \mathrm{E}+02$	$0.785459 \mathrm{E}+01$	$0.183104 \mathrm{E}+02$
$0.100000 \mathrm{E}+00$	0.574553E-02	-0.994254E+00	0.850791E-03	$0.489474 \mathrm{E}-02$
$0.150000 \mathrm{E}+00$	$0.572794 \mathrm{E}+00$	-0.427206E+00	$0.132714 \mathrm{E}+00$	$0.440080 \mathrm{E}+00$
$0.175000 \mathrm{E}+00$	$0.417873 \mathrm{E}+01$	$0.317873 \mathrm{E}+01$	$0.111856 \mathrm{E}+01$	$0.306018 \mathrm{E}+01$
$0.162500 \mathrm{E}+00$	$0.157951 \mathrm{E}+01$	$0.579515 \mathrm{E}+00$	$0.395108 \mathrm{E}+00$	$0.118441 \mathrm{E}+01$
$0.156500 \mathrm{E}+00$	$0.975909 \mathrm{E}+00$	-0.240914E-01	$0.235596 \mathrm{E}+00$	$0.740313 \mathrm{E}+00$
$0.159500 \mathrm{E}+00$	$0.124307 \mathrm{E}+01$	$0.243072 \mathrm{E}+00$	$0.305555 \mathrm{E}+00$	$0.937518 \mathrm{E}+00$
$0.158000 \mathrm{E}+00$	$0.110177 \mathrm{E}+01$	$0.101766 \mathrm{E}+00$	$0.268409 \mathrm{E}+00$	$0.833356 \mathrm{E}+00$
$0.157500 \mathrm{E}+00$	$0.105818 \mathrm{E}+01$	0.581814E-01	$0.257016 \mathrm{E}+00$	$0.801166 \mathrm{E}+00$
$0.157000 \mathrm{E}+00$	$101626 \mathrm{E}+01$	0.162573E-01	$0.246080 \mathrm{E}+00$	$0.770177 \mathrm{E}+00$
Duration (s)	Omega	Omega - 1.00	Omega (1)	Omega (2)
$\begin{aligned} & \text { Results for } \Omega \\ & 0.157000 \mathrm{E}+00 \end{aligned}$	$\begin{gathered} \text { nearest to } 1.0 \\ 0.101626 \mathrm{E}+01 \end{gathered}$	0.162573E-01	$0.246080 \mathrm{E}+00$	0.770177 E
$\begin{aligned} & \text { Results for } \Omega \\ & 0.157000 \mathrm{E}+00 \end{aligned}$	$\begin{gathered} \geq 1.00 \text { nearest } \\ 0.101626 \mathrm{E}+01 \end{gathered}$	$\begin{aligned} & \text { to } 1.00 \\ & 0.162573 \mathrm{E}-01 \end{aligned}$	$0.246080 \mathrm{E}+00$	$0.770177 \mathrm{E}+00$
$\begin{gathered} \text { Interpolated r } \\ 0.156799 \mathrm{E}+00 \end{gathered}$	sults for Ω $0.100000 \mathrm{E}+01$	$\begin{aligned} & 1.00 \\ & 0.000000 \mathrm{E}+00 \end{aligned}$	0.242144E+00	.757856E+

$C:$ \BAG>

Note: Omega(1) and Omega(2) are the contributions to Omega from Phase 1 and Phase 2 exposures, respectively.
5.2.2 Outputs to file. All outputs to the screen illustrated above in Section 5.2.1 are written also to file BURNMODL.OUT for both airbag and heat-gun simulations and without respect to the output control specifications made by the user in the AIRBAG or HEATGUN data set. Through those output control specifications, however, as described in Section 5.1.1.1 (data line 2), the user can obtain many additional outputs to file. These have been previously described in Section 3.0, Table 1 (Table 4), and Table 5. They are discussed further in Section 5.3 and illustrated there and in Appendices C through F .
5.2.3 Batch runs on MS DOS systems. Runs of the BURN model can be made interactively as described in Section 5.2 by preparing the required input data set(s), typing in "burn", and entering "1" for an airbag run or " 2 " for a heat-gun run. If a large number of runs are to be made, however, it may be desirable to run them all in a "batch" rather than one at a time. There are means for doing this with all operating systems. Figure 6 illustrates a batch file (BATCHRUN.BAT) that could be used with the MS DOS operating system for making a set of nine heat-gun simulations.

In this example the nine "HEATGUN" data sets have names such as T450V60.140, where the naming scheme is selected to indicate gas jet temperature ($\mathrm{T}=450^{\circ} \mathrm{C}$), jet velocity ($\mathrm{V}=60 \mathrm{~m} / \mathrm{s}$), and exposure duration (140 ms). Since the BURN model requires that the input data set for a heat-gun run have the specific name "HEATGUN", the first step necessary for each simulation in a batch run is to copy the prepared input data set (T450V60.140 for this example) to the file named HEATGUN. If the BURN runs are to be airbag simulations, then the prepared airbag data files would be copied to the file named AIRBAG, and, further, if different inflator data are to be used for the various simulations in the batch, the appropriate files containing mass flow rate and pressure data would have to be copied to the files named M1TDOT and PT.

The second step is to run the BURN program. Note that in a batch run the DOS command for executing the program must be either "BURN < ONE" or "BURN < TWO" rather than simply "BURN". The reason for this is that the program must be told where to look for the "1" or "2" input that would be entered by the user if the run were being made interactively. The symbol " <" here is the DOS redirection symbol, and it tells the program to obtain interactive input data from the file ONE or TWO instead of from the keyboard. Files ONE and TWO are simple text files with single lines that begin with the values "1" and "2", respectively. An input "2" is required for a heat-gun run, as in the Figure 6 example, and " 1 " is required for an airbag run.

The third step required for each of the simulations is to save the output files since they will be overwritten by successive runs of the BURN program. This can be done with the COPY command, or, if old versions of the output files do not already exist, it can be done with the RENAME command. Any desired file-naming scheme may be used, of course, for the saved output files. There is no need to COPY (or RENAME) files that are not written by the BURN model runs. For example, do not include the COPY for PARSED.OUT unless the output control specifications request that that file be written.

The example file BATCHRUN.BAT listed in Figure 6, as well as files ONE and TWO, are included, together with the source and executable codes and example input and output data files, on the distribution diskette for the UMTRI Airbag Skin Burn Model. (The distribution diskette is described in Appendix A.)

Decho Begin batch run for heat-gun simulations for temperature $=450 \mathrm{deg} \mathbf{C}$, Decho veloc $=60,70$, and $80 \mathrm{~m} / \mathrm{s}$, and exposure durations 140,150 , and 160 ms
arem This example batch file assumes that nine "HEATGUN" data sets
arem T450V60.140 ... T450V80.160 have been prepared and that the file TWO
Drem is a text file consisting of one line beginning with the value 2 .
arem For airbag simulations similarly use DOS redirection for a one-line arem file ONE that contains the value 1.
arem There is no need to COPY (or RENAME) files that are not written by the arem BURN model runs. For example, do not include the COPY for PARSED.OUT arem unless the output control specifications request that file to be written

COPY T450V60. 140 HEATGUN
BURN < TWO
COPY BURNMODL.OUT B450V60.140
COPY TEMPDIST.OUT T450V60.140
COPY TABLDATA.OUT L450V60.140
COPY PARSED.OUT P450V60.140
COPY T450V60.150 HEATGUN
BURN < TWO
COPY BURNMODL.OUT B450V60. 150
COPY TEMPDIST.OUT T450V60. 150
COPY TABLDATA.OUT L450V60.150
COPY PARSED.OUT P450V60.150
COPY T450V60. 160 HEATGUN
BURN < TWO
COPY BURNMODL.OUT B450V60. 160
COPY TEMPDIST.OUT T450V60. 160
COPY TABLDATA.OUT L450V60.160
COPY PARSED.OUT P450V60.160
COPY T450V70. 140 HEATGUN
BURN < TWO
COPY BURNMODL.OUT B450V70.140
COPY TEMPDIST.OUT T450V70. 140
COPY TABLDATA.OUT L450V70. 140
COPY PARSED.OUT P450V70.140
COPY T45OV70. 150 HEATGUN
BURN < TWO
COPY BURNMODL.OUT B450V70. 150
COPY TEMPDIST.OUT T450V70. 150
COPY TABLDATA.OUT L450V70. 150
COPY PARSED.OUT P450V70. 150
COPY T450V70. 160 HEATGUN
BURN < TWO
COPY BURNMODL.OUT B450V70. 160
COPY TEMPDIST.OUT T450V70. 160
COPY TABLDATA.OUT L450V70.160
COPY PARSED.OUT P450V70.160
COPY T450V80. 140 HEATGUN
BURN < TWO
COPY BURNMODL.OUT B450V80. 140
COPY TEMPDIST.OUT T450V80. 140
COPY TABLDATA.OUT L450V80. 140
COPY PARSED.OUT P450V80.140
COPY T45OVBO. 150 HEATGUN
BURN < TWO
COPY BURNMODL.OUT B450V80. 150 COPY TEMPDIST.OUT T450V80. 150
COPY TABLDATA.OUT L450V80. 150
COPY PARSED.OUT P450V80. 150
COPY T450V80. 160 HEATGUN
BURN < TWO
COPY BURNMODL.OUT B450V80. 160
COPY TEMPDIST.OUT T450V80. 160
COPY TABLDATA.OUT L450V80. 160
COPY PARSED.OUT P450V80. 160
Decho End of batch run.
Figure 6. An Example Batch File BATCHRUN.BAT for Batch Runs in MS DOS.

5.3 Output data

The output data produced by the BURN model are self-explanatory in the context of the analytical model, which this manual does not discuss in any significant amount of detail (but see Section 4). Except for the output file PARSED.OUT, all output files produced by the BURN model contain sufficient description of the data that, given an understanding of the analytical model, there should be no question about the meaning of the numerical outputs. Their proper interpretation with respect to skin burn potential and the implications for airbag system design requires study, of course.

The user is directed to the previously mentioned references by Reed and Schneider (1994) and Reed, Schneider, and Burney (1994) for a full description of the analytical model.

Full descriptions of the output files available from BURN simulations may be found in Sections 3.0 and 5.1.1.1 and Tables 1 and 5. These files are BURNMODL.OUT, TEMPDIST.OUT, TABLDATA.OUT, and PARSED.OUT. Examples of files BURNMODL.OUT and TEMPDIST.OUT are included in Appendices C through F. The example there for BURNMODL.OUT includes all of the tabular time-history data, which can, at the user's option, be written instead to TABLDATA.OUT. Only the file PARSED.OUT has not yet been illustrated.

Section 5.1.1.1 explains how to obtain (optionally) a parsed version of the "Summary of Results" output, which is written to both the screen and the BURNMODL.OUT file for all runs except for heat-gun search runs. The full summary output is illustrated above in Section 5.2.1 for an airbag simulation (see SCREEN OUTPUT FOR AN AIRBAG SIMULATION) and also in Appendix C. The numerical content of the full summary output is written to PARSED.OUT, which is illustrated in Figure 7 for the airbag simulation of Section 5.2.1 and Appendix C. The only nonnumeric data in PARSED.OUT are the title line, the inflator description, the gas identification, and the word "yes" (or "no"), which indicates that the simulation included occupant/airbag interaction (or did not). All numbers may be seen to be identical to the numbers in the same data lines of the full "Summary of Results" output. The purpose of writing a parsed summary of results to file is that such a file is easy to use in postprocessing of the results of batch runs. A postprocessing program written by the user for analysis of simulation results might be run, for example, immediately after each "BURN < TWO" command in the BATCHRUN.BAT file illustrated in Figure 6 or after the last BURN run in the batch file.

PARSED SUMMARY OF RESULTS					
Inflator Capacity: 487 kPa yes $\quad 35.00$ Gas: nitrogen					
0.0	81.0	81.0	500.0	0.0	500.0
1.1432	15.7483	16.8915			
810.130					
536.980					
432.880					
358.692	333.474	337.560			
85.542	60.324	64.410			
395.094	30.888				
178.372	-1.400				
323.569	328.511	327.710			
50.419	55.361	54.560			
338.975	340.665	340.665			
65.825	67.515	67.515			
81.0	90.0	90.0			
30.888					
-1.400					
339.326					
335.782					
294.000					
22.5					
103.5					

Figure 7. Parsed Summary of Results (PARSED.OUT) for an Airbag Simulation

6.0 LIST OF REFERENCES

Henriques, F.C. (1947). Studies of Thermal Injury. V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Archives of Pathology, 43:489-502.

Henriques, F.C., and Moritz, A.R. (1947). Studies of Thermal Injury. I. The conduction of heat to and through the skin and the temperatures attained therein. A theoretical and an experimental investigation. American Journal of Pathology, 23:531-549.

Incropera, F.P., and DeWitt, D.P. (1985). Introduction to Heat Transfer. New York: Wiley.

Martin, H. (1977). Heat and mass transfer between impinging gas jets and solid surfaces. Advances in Heat Transfer, 13:1-60.

Mehta, A.K., and Wong, F. (1972). Measurement of Flammability and Burn Potential of Fabrics. Summary Report. Fuels Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA.

Mehta, A.K., and Wong, F. (1973). Measurement of Flammability and Burn Potential of Fabrics. Final Report. Fuels Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA.

Moritz, A.R. (1947). Studies of Thermal Injury. III. The pathology and pathogenesis of cutaneous burns. An experimental study. American Journal of Pathology, 23:915941.

Moritz, A.R., and Henriques, F.C. (1947). Studies of Thermal Injury. II. The relative importance of time and surface temperature in the causation of cutaneous burns. American Journal of Pathology, 23:695-720.

Morse, H.L., Tickner, G., and Brown, R. (1975). Burn Damage and Burn Depth Criteria. Acurex Corporation, Aerotherm Division Report TN-75-26.

Reed, M.P., and Schneider, L.W. (1994). Skin Burns from Airbag Exhaust Gas: Laboratory Experiments and Mathematical Modeling. Final Report. University of Michigan Transportation Research Institute, Ann Arbor. 68 pp. Sponsor: Honda Research and Development North America, Torrance, CA. Report No. UMTRI-9424.

Reed, M.P., Schneider, L.W., and Burney, R.E. (1994). Laboratory investigations and mathematical modeling of airbag-induced skin Burns. SAE Technical Paper No. 942217. Proc. 38th Stapp Car Crash Conference, pp. 177-190. Society of Automotive Engineers, Warrendale, PA.

Schlünder, E.U., and Gnielinski, V. (1967). Wärme- und Stoffübertragung zwischen Gut und aufprallendem Düsenstrahl. Chemie-Ing.-Techn. 39, Jahrg. 1967 / Heft 9/10.

Stoll, A.M., and Greene, L.C. (1959). Relationship between pain and tissue damage due to thermal radiation. Journal of Applied Physiology, 14:373-382.

Stoll, A.M., and Chianta, M.A. (1968). Burn production and prevention in convective
and radiant heat transfer. Aerospace Medicine, 39:1097-1100.
Torvi, D.A. (1992). A Finite Element Model of Heat Transfer in Skin Subjected to a Flash Fire. Master of Science degree thesis, Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta.

Wang, J.T., and Nefske, D.J. (1988). A new CAL3D airbag inflation model. SAE Technical Paper No. 880654. Society of Automotive Engineers. Warrendale, PA.

Wang, J.T. (1989). Recent advances in modeling of pyrotechnic inflators for inflatable restraint systems. ASME Publication AMD Vol. 106 and BED Vol. 13:89-93.

Wang, J.T. (1991). Are tank pressure curves sufficient to discriminate airbag inflators? SAE Technical Paper No. 910808. Society of Automotive Engineers. Warrendale, PA.

Weaver, J.A., and Stoll, A.M. (1969). Mathematical model of skin exposed to thermal radiation. Aerospace Medicine, 40(1):24-30.

Wolfram, S. (1993). Mathematica: A System for Doing Mathematics by Computer. New York: Addison Wesley.

APPENDIX A

DISTRIBUTION FILES

This file describes the content of the March 6, 1996, release diskette of the UMTRI Airbag Skin Burn Model. For information on how to use the model, refer to the document USER'S GUIDE FOR THE UMTRI AIRBAG SKIN BURN MODEL, report number UMTRI-96-5 from the University of Michigan Transportation Research Institute.

N		Size	Date	Time	
READ	ME		03-06-96		this file
BURN	EXE	436262	03-01-96	8:49a	the MS DOS executable program
BURN	FOR	190220	03-01-96	8:49a	the FORTRAN source code
TABLES	DOC	2717	03-06-96	11:20a	description of time history output tables
BATCHRUN	BAT	2228	02-27-96	2:57p	example MS DOS file for making batch runs
ONE		3	12-19-95	5:32p) needed for making batch runs; input via
TWO		3	12-19-95	5:33p	/ DOS redirection: ONE=airbag, TWO=heat gun
M1TDOT	313	926	05-30-95	1:30p	313 kPa ; nominal 320 kPa \ example
M1TDOT	349	1189	05-30-95	1:30p	349 kPa ; nominal 350 kPa \ mass flow
M1TDOT	407	1625	05-30-95	1:30p	407 kPa ; nominal 420 kPa , rate data for
M1TDOT	487	1587	05-30-95	1:30p	487 kPa ; nominal $475 \mathrm{kPa} /$ different
M1TDOT	499	1491	05-30-95	1:30p	499 kPa ; nominal $560 \mathrm{kPa} / \mathrm{inflators}$
PT	313	1093	05-30-95	1:29p	313 kPa ; nominal 320 kPa
PT	349	1364	05-30-95	1:28p	349 kPa ; nominal 350 kPa \ example tank
PT	407	1364	05-30-95	1:28p	407 kPa ; nominal 420 kPa) pressure data
PT	487	1145	05-30-95	1:28p	487 kPa ; nominal $475 \mathrm{kPa} / \mathrm{for}$ different
PT	499	1051	05-30-95	1:29p	499 kPa ; nominal $560 \mathrm{kPa} / \mathrm{inflators}$
M1TDOT		1587	05-30-95	1:30p	mass flow rate data used in sims; 487 kPa
PT		1145	05-30-95	1:28p	tank pressure data used in sims; 487 kPa
AIRBAG	B_2	4283	02-05-96	3:57p	AIRBAG input data set for simulation for a 487 kPa inflator and no occupant
AIRBAG	B02	4283	02-05-96	3:55p	AIRBAG input data set for simulation for a 487 kPa inflator and with occupant/airbag interaction (pendulum)
AIRBAG	BO4	4283	02-01-96	9:53p	same as AIRBAG.BO2 except tabular output is written to TABLDATA.OUT instead of to BURNMODL.OUT and PARSED.OUT is requested
HEATGUN	G_2	3809	02-23-96	9:48a	HEATGUN input data set for simulation for 150 ms exposure duration, 450 deg C , and $66 \mathrm{~m} / \mathrm{s}$ gas jet velocity
HEATGUN	G_4	3809	03-01-96	10:08a	same as HEATGUN.G 2 except tabular output is written to TABBLDATA.OUT instead of to BURNMODL.OUT and PARSED.OUT is requested
HEATGUN	DUR	3807	03-01-96	10:24p	search-for-duration data set; otherwise, same as HEATGUN.G 4
BURNMODL	B 2	116319	03-02-96	12:00a	BURNMODL. OUT from rūn for AIRBAG.B_2
TEMPDIST	$\mathrm{B}^{-}{ }^{-2}$	84928	03-02-96	12:00a	TEMPDIST.OUT from run for AIRBAG. ${ }^{-2}$
BURNMODL	Bō2	137945	03-01-96	11:57p	BURNMODL. OUT from run for AIRBAG. BŌ2
TEMPDIST	B02	84928	03-01-96	11:57p	TEMPDIST.OUT from run for AIRBAG. BO2
TABLDATA	B04	121787	03-02-96	12:09a	TABLDATA.OUT from run for AIRBAG.BO4
PARSED	B04	619	03-02-96	12:09a	PARSED.OUT from run for AIRBAG.BO4
BURNMODL	G_2	42399	03-01-96	11:31p	BURNMODL.OUT from run for HEATGUN.G_2
TEMPDIST	$\mathrm{G}^{-}{ }^{-}$	84930	03-01-96	11:31p	TEMPDIST. OUT from run for HEATGUN.G-2
TABLDATA	$\mathrm{G}^{-} 4$	28145	03-01-96	11:22p	TABLDATA. OUT from run for HEATGUN.G_4
PARSED	G^{-4}	590	03-01-96	11:22p	PARSED.OUT from run for HEATGUN.G 4
BURNMODL	DÜR	7312	03-01-96	10:25p	search-for-duration output (HEATGUN.DUR)

Output file descriptions

```
BURNMODL.OUT -- echo of input data set, summary of results; also time-history
                and other tabular data if not written to TABLDATA.OUT
TEMPDIST.OUT -- skin temperature distribution, \(T(x, t), x=0\) to 0.000200 m and
                \(\mathrm{t}=0\) to 500 ms
TABLDATA.OUT -- time histories and other tabular data (if not in BURNMODL.OUT)
PARSED.OUT -- parsed (numbers-only) summary of results (optional output)
```

Bruce M. Bowman	Phone:	313-936-1106	Email:
Matthew P. Reed	Phone:	313-936-1111	Email:
Biosciences Division	FAX:	313-747-3330	
University of Michigan			
Transportation Research Institute			
2901 Baxter Road			
Ann Arbor, MI 48109-2150 USA			

APPENDIX B

EXAMPLE INPUT DATA SETS

EXAMPLE 1: Data set AIRBAG for a 0.06 cubic meter airbag with two 35 mm vents and occupant/airbag interaction. Inflator data are read from data sets M1TDOT and PT.

* Airbag [8-character data fields]
*line 1: Integration method (1.=R-K) and stepsize (s)
*line 2: Output specifications -- SW1, SW2, $\operatorname{KTAB}(1-25)$ FORMAT(2g8.0, 25I1)
; Field 1: summary outputs (results and input data summary) $=1$., summary of results, summary of input data, summary of model consts $=2$. , summary of results, summary of input data
=3., summary of results only
$<0 .$, as above but also print parsed results summary (to separate file)
Field 2: tabular output data, including time histories
=0., print no tabular data to file
=1., print all tabular data to file [KTAB() specifications optional] KTAB (i) for table i : $0=$ do not write to file, $1=$ write to file, $2=$ write every 2nd point to file (time histories 7-14,18-25)
=2., default (selected) tables to file
Table No. 12345678910111213141516171819202122232425 Default 0000011100111110000000010000000 <0., as above but write tabular data to different file from summaries
*line 3: Reduced duration (s) for exposure to airbag exhaust if abs () is nonzero $=0$., use exhaust duration calculated from the airbag thermodynamics
$\begin{array}{ll}\text {; } & =0 ., \text { use exhaust duration calculated from the airbag thermodynamics } \\ \text {; } & >0 ., \text { reduced duration; ignore the first portion of calc'd exhaust data } \\ \text {; } & \text { <0., reduced duration; ignore the last portion of calc'd exhaust data } \\ \text { *line 4: Gas identification: a) nitrogen or } 1 \text { or b) air or } 2 \text { or } \\ \text { *line 5: Ambient temperature } & \left({ }^{\circ} \mathrm{C}\right) \text { [include } K \text { in field if Kelvin] }\end{array}$
$\begin{array}{ll}\text {; } & =0 ., \text { use exhaust duration calculated from the airbag thermodynamics } \\ \text {; } & >0 . \text { reduced duration; ignore the first portion of calc'd exhaust data } \\ \text { i } & \text { <0., reduced duration; ignore the last portion of calc'd exhaust data } \\ \text { *line 4: Gasidentification: a) nitrogen or } 1 \text { or b) air or } 2 \text {. } \\ \text { *line 5: Ambient temperature }\left({ }^{\circ} \mathrm{C}\right) \text { [include } K \text { in field if Kelvin] }\end{array}$
*line 5: Ambient temperature (${ }^{\circ} \mathrm{C}$) [include K in field if Kelvin]
*line 6: Initial skin surface temperature (${ }^{\circ} \mathrm{C}$) [include K in field if: Kelvin]
*line 7: Tank test volume ($\mathrm{m} * * 3$)
*line 8: Vent diameter (m) and number of vents
*line 9: Orifice coefficient for vent and fabric area
*line 10: Fabric stretch factor (any value.ge. 0, or -1. for lin. regr. on v20)
; (e.g., $\left.3.81 \mathrm{e}-6 \mathrm{~m}^{2} /\left(\mathrm{N} / \mathrm{m}^{2}\right) / \mathrm{m}^{2}\right)$
*line 11: Occupant interaction specifications: 0.=no interaction, 1.=interaction
; If field 1 is 1., fields 2 through 7 must contain the following data
; for simulation of a pendulum impact against the airbag.
; f.2: moment of inertia about pivot point (kg m**2)
; f.3: distance from pivot point to center of airbag contact (m)
f.4: pendulum angular velocity at contact if positive (rad/s);
linear velocity if negative (m / s)
f.5: maximum contact area for pendulum/airbag interaction ($\mathrm{m} * * 2$)
f.6: airbag deflection over which max contact area is reached (m)
f.7: airbag depth, i.e., deflection for bottoming out (m)
*line 12: Nominal airbag volume ($m * * 3$)
*line 13: H/D ratio: H, distance from vent to skin surface; D, jet diameter
*line 14: r/D ratio: r, effective radius of target area; D, jet diameter
*line 15: Multiplicative tuning factor for Phase 1 heat transfer coefficient
line 16: Effective Qdot for Phase 2 heat transfer (.ge. $0 ; \mathrm{e} . \mathrm{g} ., 1400 \mathrm{~W} / \mathrm{m}^{ *} 2$)
*line 17: Thermal conductivities of epidermis and dermis ($\mathrm{W} / \mathrm{m} / \mathrm{K}$) (nonzero)
*line 18: Thermal diffusivities of epidermis and dermis ($\mathrm{m} * * 2 / \mathrm{s}$) ; if a negative ; value is specified in field 1 (epidermis), fields 3 and 4 must contain
; nonzero values for density ($\mathrm{kg} / \mathrm{m}^{* *}$) and specific heat ($\mathrm{J} / \mathrm{kg} / \mathrm{K}$) ;
; ${ }^{\prime}$ fields 5 and 6 are used similarly for the dermis if field 2 is neg.
*line 19: Critical cell depth (micrometers)
*line 20: Burn integral constants: preexponential factor coefficient and power, ; and dele/R (activation energy divided by gas constant)
$1 . \quad .0005$
-1. -1 . 1111111111111111112111111

0.

nitrogen
20.85
35.85
. 028317
0.0352 .
0.6
$\begin{array}{lllllll}0 . & & & & & & \\ 1 . & 143.1 & 1.332 & 4.95 & 0.15 & 0.100 & 0.254\end{array}$
0.06
3.0
1.
.55
1400.
0.209490 .3791
7.267E-8 1.43E-7
72.
$3.1 \quad 98 . \quad 75000$.
*2.185 $124 . \quad 93534.9$
$\begin{array}{ll}* 1.823 & 51 . \\ * 1.43 & 72109.8\end{array}$
Henriques-Moritz $[44,50]$ C
Weaver-Stoll [44,50] C
*1.43 72 .
Weaver-Stoll >50 C
Mehta-Wong

* Comment lines must begin with one of these: ; $:$ * $\#$ \$ ${ }^{\circ}$
* Comments can be added after data fields on any line (w. or w/o ;:*\#\$@)
* Completely blank lines are also allowed.

EXAMPLE 2: Data set M1TDOT for the mass flow rate for a 487 kPa inflator from a tank test (1 cubic foot tank)
two data fields of width 8 characters
f.1: time (s)
f.2: mass flow rate (kg / s)

Inflator Capacity: 487 kPa	
0	0
0.001	0
0.002	0
0.003	2.079
0.004	1.29
0.005	1.386
0.006	1.462
0.007	1.521
0.008	1.562
0.009	1.58
0.01	1.588
0.011	1.575
0.012	1.539
0.013	1.484
0.014	1.425
0.015	1.361
0.016	1.301
0.017	1.24
0.018	1.19
0.019	1.139
0.02	1.089
0.021	1.04
0.022	0.993
0.023	0.945
0.024	0.9
0.025	0.853
0.026	0.809
0.027	0.787
0.028	0.726
0.029	0.686
0.03	0.648
0.031	0.612
0.032	0.576
0.033	0.543
0.034	0.511
0.035	0.481
0.036	0.451
0.037	0.422
0.038	0.394
0.039	0.359
0.04	0.343
0.041	0.318
0.042	0.293
0.043	0.288
0.044	0.242
0.045	0.219
0.046	0.185
0.047	0.171
0.048	0.16
0.049	0.13
0.05	0.111
0.051	0.092
0.052	0.075
0.053	0.059
0.054	0.044
0.055	0.03
0.056	0.017
0.057	0
0.058	0
0.059	0
0	

EXAMPLE 3: Data set PT for the tank pressure from a 487 kPa inflator in a tank test (1 cubic foot tank)
two data fields of width 8 characters
f.1: time (s)
f.2: pressure (kPa, gauge)

Inflator Capacity: 487 kPa
0
0.001
0.002
0.002
$0.003 \quad 6.23$
$0.004 \quad 10.7$
$0.005 \quad 17.9$
$0.006 \quad 26.9$
0.007 . 37.2
$0.008 \quad 49.9$
$0.009 \quad 64.7$
$0.01 \quad 81.4$
$0.011 \quad 99.3$
$0.012 \quad 118.1$
$0.013 \quad 137.8$
$0.014 \quad 157.99$
$0.015 \quad 177.9$
0.016197
0.017216
0.018234
0.019251
0.02266
0.021280
0.022294
0.023308
0.024322
0.025336
0.026348
0.027371
0.028381
0.029391
0.03400
0.031408
0.032415
0.033422
0.034429
0.035434
0.036440
0.037446
0.038450
0.039454
$0.04 \quad 458$
0.041463
0.042466
0.043470
0.044472
0.045475
0.046478
0.047479
0.048481
0.049483
0.05484
0.051486
0.052487
0.053487
0.058487
0.063487
0.068487
0.073487
0.078487

0.083	487
0.088	487
0.093	487
0.098	487
0.103	487
0.108	487
0.113	487
0.118	487
0.123	487
0.128	487
0.133	487
0.138	487
0.143	487
0.148	487
0.153	487
0.158	487
0.163	487
0.168	487
0.173	487
0.178	487
0.183	487
0.188	487
0.193	487
0.198	487
0.203	487
0.208	487

EXAMPLE 4: Data set HEATGUN for a simulated heat-gun experiment with a $450^{\circ} \mathrm{C}$, $66 \mathrm{~m} / \mathrm{s}$ hot-air jet, and skin exposure duration of 150 ms

```
* Heat gun [8-character data fields]
*line 1: Integration method (1.=R-K) and stepsize (s)
*line 2: Output specifications -- SW1, SW2, KTAB(1-25) FORMAT(2g8.0, 25I1)
    Field 1: summary outputs (results and input data summary)
        =1., summary of results, summary of input data, summary of model consts
        =2., summary of results, summary of input data
        =3., summary of results only
        <0., as above but also print parsed results summary (to separate file)
        Field 2: tabular output data, including time histories
        =0., print no tabular data to file
        =1., print all tabular data to file [KTAB() specifications optional]
                        KTAB(i) for table i: 0 = do not write to file, 1 = write to file,
                2 = write every 2nd point to file (time histories 7-14,18-25)
        =2., default (selected) tables to file
            Table No. 12 34567 8 910111213141516171819202122232425
                Default 0 0 0 0 0 0 0 0 2
            <0., as above but write tabular data to different file from summaries
*line 3: Gas identification: a) nitrogen or 1. or b) air or 2.
*line 4: Ambient temperature ( }\mp@subsup{}{}{\circ}\textrm{C})\quad\mathrm{ [include K in field if Kelvin]
*line 5: Initial skin surface temperature (}\mp@subsup{}{}{\circ}\textrm{C}) [include K in field if Kelvin]
*line 6: Duration of exposure to heat gun jet (s)
; or -1. to search for the exposure duration that results in \Omega=0.53
; or -2. to search for the exposure duration that results in \Omega=1
*line 7: Temperature of gas flow from heat gun ( }\mp@subsup{}{}{\circ}\textrm{C}) [incl. K in field if Kelvin]
; or -1. to search for the gas jet temperature that results in \Omega=0.53
; or -2. to search for the gas jet temperature that results in }\Omega=
*line 8: Velocity of heat gun jet (m/s) or, if negative (and not -1. or -2.),
; the pitot tube pressure differential in inches of water,
                or -1. to search for the gas jet velocity that results in \Omega\Omega=0.53
                or -2. to search for the gas jet velocity that results in }\Omega=
*line 9: Heat-gun port diameter (m)
*line 10: Orifice coefficient for heat-gun port
*line 11: H/D ratio: H, distance from vent to skin surface; D, gas jet diameter
*line 12: r/D ratio: r, effective radius of target area; D, gas jet diameter
*line 13: Multiplicative tuning factor for Phase 1 heat transfer coefficient
*line 14: Effective Qdot for Phase 2 heat transfer (.ge. 0; e.g., 1400 W/m**2)
*line 15: Thermal conductivities of epidermis and dermis (W/m/K) (nonzero)
*line 16: Thermal diffusivities of epidermis and dermis (m**2/s); if a negative
; value is specified in field 1 (epidermis), fields 3 and 4 must contain
; nonzero values for density (kg/m**3) and specific heat (J/kg/K);
fields 5 and 6 are used similarly for the dermis if field 2 is neg
*line 17: Critical cell depth (micrometers)
; or -1. to search for the cell depth for which \Omega=0.53
* *line 18: Burn integral constants: preexponential factor coefficient and power,
; and delE/R (activation energy divided by gas constant)
1. . }000
-1. -1. 11111111111111111112111111
air
20.85
35.85
0.150
450.
66.
0.010
3.0
1.0
. }5
1400.
0.20949 0.3791
7.267E-8 1.43E-7
72.
3.1 98. 75000.
*2.185 124. 93534.9
Henriques-Moritz [44,50] C
*1.823 51. 39109.8
```

Henriques-Moritz
Weaver-Stoll
$[44,50]$
C
Weaver-Stoll

* Comments can be added after data fields on any line (w. or w/o ;:*\#\$@).
* Completely blank lines are also allowed.

APPENDIX C

EXAMPLE "BURNMODL.OUT" OUTPUT (airbag)

Airbag simulation with occupant/airbag interaction: all summary output and all tables

AIRBAG SIMULATION: input data echo and simulation results

```
(Also see file TEMPDIST.OUT.)
* Airbag [8-character data fields]
*line 1: Integration method (1.=R-K) and stepsize (s)
*line 2: Output specifications -- SW1, SW2, KTAB(1-25) FORMAT(2g8.0, 25I1)
; Field 1: summary outputs (results and input data summary)
=1.,}\mathrm{ summary of results, summary of input data, summary of model consts
        =2., summary of results, summary of input data
        =3., summary of results only
        <0., as above but also print parsed results summary (to separate file)
        Field 2: tabular output data, including time histories
        =0., print no tabular data to file
        =1., print all tabular data to file [KTAB() specifications optional]
                KTAB(i) for table i: 0 = do not write to file, 1 = write to file,
                2 = write every 2nd point to file (time histories 7-14,18-25)
        =2., default (selected) tables to file
                Table No. 1 2 3 4 5 6 7 8 910111213141516171819202122232425
                Default 0 0 0 0 1 1100011111110000000012 0 0 0 0 0 0
            <0., as above but write tabular data to different file from summaries
*line 3: Reduced duration (s) for exposure to airbag exhaust if abs() is nonzero
; =0., use exhaust duration calculated from the airbag thermodynamics
; <0., reduced duration; ignore the last portion of calc'd exhaust data
*line 4: Gas identification: a) nitrogen or 1. or b) air or 2.
*line 5: Ambient temperature ( }\mp@subsup{}{}{\circ}\textrm{C}) [include K in field if Kelvin]
*line 6: Initial skin surface temperature ( }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ ) [include K in field if Kelvin]
*line 7: Tank test volume (m**3)
*line 8: Vent diameter (m) and number of vents
*line 9: Orifice coefficient for vent and fabric area
*line 10: Fabric stretch factor (any value .ge. 0, or -1. for lin. regr. on v20)
; (e.g., 3.81e-6 m}\mp@subsup{\textrm{m}}{}{2}/(\textrm{N}/\mp@subsup{\textrm{m}}{}{2})/\mp@subsup{\textrm{m}}{}{2}
*line 11: Occupant interaction specifications: 0.=no interaction, 1.=interaction
; If field 1 is 1., fields 2 through 7 must contain the following data
; for simulation of a pendulum impact against the airbag.
; f.2: moment of inertia about pivot point (kg m**2)
            f.3: distance from pivot point to center of airbag contact (m)
            f.4: pendulum angular velocity at contact if positive (rad/s);
                                    linear velocity if negative (m/s)
                    f.5: maximum contact area for pendulum/airbag interaction (m**2)
                            f.6: airbag deflection over which max contact area is reached (m)
                    f.7: airbag depth, i.e., deflection for bottoming out (m)
    * fine 12: Nominal airbag vopth, i.e.,'
*line 13: H/D ratio: H, distance from vent to skin surface; D, jet diameter
*line 14: r/D ratio: r, effective radius of target area; D, jet diameter
*line 15: Multiplicative tuning factor for Phase 1 heat transfer coefficient
*line 16: Effective Qdot for Phase 2 heat transfer (.ge. 0; e.g., 1400 W/m**2)
*line 17: Thermal conductivities of epidermis and dermis (W/m/K) (nonzero)
*line 18: Thermal diffusivities of epidermis and dermis (m**2/s); if a negative
        value is specified in field 1 (epidermis), fields 3 and 4 must contain
; nonzero values for density (kg/m**3) and specific heat (J/kg/ K);
;
*line 19: Critical cell depth (micrometers)
*line 20: Burn integral constants: preexponential factor coefficient and power,
;
        and delE/R (activation energy divided by gas constant)
1. . }000
1. 1. 1111111111111111112111111
nitrogen
20.85
35.85
.028317
0.035 2.
0.6
0.
1. 143.1 1.332 4.95 4. 0.15 0.100
0.06
3.0
1.
```

* Comment lines must begin with one of these: ; $:$ * \# \$ @
* Comments can be added after data fields on any line (w. or w/o ;:*\#\$@).
* Completely blank lines are also allowed.

Inflator Capacity: 487 kPa
Simulation with occupant interaction
Critical cell depth: $72 \mu \mathrm{~m}$

SUMMARY OF RESULTS
Burn Injury Integral Ω for Critical Depth $72 \mu \mathrm{~m}$

Inflator Capacity: 487 Occupant Contact: yes		Gas: nitrogen Vent diameter	35.00 mm
	During Exposure	After Exposure	Total
Time range (ms)	0.0-81.0	81.0-500.0	0.0-500.0
Omega (Ω)	1.1432	15.7483	16.8915
Gas jet temperature (average)	$\begin{aligned} & 810.1300^{\circ} \mathrm{K} \\ & 536.980{ }^{\circ} \mathrm{C} \end{aligned}$	---	=-,
Gas jet velocity (avg)	$432.880 \mathrm{~m} / \mathrm{s}$	---	---
Average skin surface temperature	358.692 ${ }^{\circ} \mathrm{K}$	333.474 60.324 ${ }^{\circ} \mathrm{K}$	$\begin{array}{r} 337.560{ }^{\circ} \mathrm{K} \\ 64.410{ }^{\circ} \mathrm{C} \end{array}$
Avg heat trans coeff	$395.094 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}$	$30.888 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}$	
Average heat flux	$178.372 \mathrm{~kW} / \mathrm{m}^{2}$	$-1.400 \mathrm{~kW} / \mathrm{m}^{2}$	
Average temperature	$323.569{ }^{\circ} \mathrm{K}$	$328.511^{\circ} \mathrm{K}$	$327.710^{\circ} \mathrm{K}$
at 72 mm depth	$50.419^{\circ} \mathrm{C}$	$55.361{ }^{\circ} \mathrm{C}$	54.560
Maximum temperature	$338.975{ }^{\circ} \mathrm{K}$	$340.665{ }^{\circ} \mathrm{K}$	340.665
at 72 mm depth	$65.825{ }^{\circ} \mathrm{C}$	$67.515{ }^{\circ} \mathrm{C}$	$67.515{ }^{\circ} \mathrm{C}$
m	81.0 ms	90.0	90.0 m

Other
The heat transfer coefficient value for Phase 2 ($30.888 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}$) is the *effective* value, which results from the user-specified Phase 2 heat flux $\left(-1.400 \mathrm{~kW} / \mathrm{m}^{2}\right)$, an estimated (not actual) average Phase 2 skin surface temperature of $339.326^{\circ} \mathrm{K}$, and an adjusted (ambient) exposure temperature of $335.782{ }^{\circ} \mathrm{K}$. (The actual ambient temperature is $294.000^{\circ} \mathrm{K}$.)

Airbag inflation time (full bag, beginning of exhaust) : 22.5 ms
Time at end of exhaust: 103.5 ms

Control specifications

Integration method: Runge-Kutta fixed-step
Integration stepsize: 0.00050 s
End time for integration: 0.2000 s
Output specifications

```
Summary output plus specified tabular time histories to file
    Tables (1-28): 11111 11111 11111 11121 11111 000
Simulation data
```

Initial conditions
Ambient temperature: $20.85{ }^{\circ} \mathrm{C} \quad(=294.00 \mathrm{~K})$
Initial skin surface temperature: $35.85{ }^{\circ} \mathrm{C}$ (= 309.00 K)
Inflator description: Inflator Capacity: 487 kPa
Gas: nitrogen
Tank test volume: $0.028317 \mathrm{m**} 3=1.0000 \mathrm{ft**}$
Tank test data files (input)
M1TDOT for mass flow rate vs. time (duration $=0.0570 \mathrm{~s}$)
Mass flow rate: peak value $=2.079 \mathrm{~kg} / \mathrm{s}$ at 0.0030 s
PT for pressure vs. time (duration $=0.0520$ s)
Pressure: maximum value $=487.00 \mathrm{kPa}$ (gauge)
Airbag specifications
Vents: number $=2$ diameter $=0.03500 \mathrm{~m}$
total area $=0.001924 \mathrm{~m}^{2}$ orifice coefficient $=0.600$
Nominal airbag volume: $0.0600 \mathrm{m**3}$
Fabric stretch factor: $0.0 \mathrm{~m}^{2} /\left(\mathrm{N} / \mathrm{m}^{2}\right) / \mathrm{m}^{2}$ (user-specified)
Occupant interaction: pendulum model
Moment of inertia about pivot: $143.10 \mathrm{~kg} \mathrm{~m}^{2}$
Distance, pivot to center of airbag contact: 1.332 m
Angular velocity of pendulum: $4.9500 \mathrm{rad} / \mathrm{s}$ ($6.5934 \mathrm{~m} / \mathrm{s}$)
Maximum pendulum/airbag contact area: $0.150 \mathrm{~m}^{2}$
Deflection ramp to reach maximum contact area: 0.100 m
Airbag depth for bottoming out: 0.254 m
Specifications for impinging exhaust jet and heat transfer models
The full duration of exhaust from the airbag simulation is used
for determining the average exhaust temperature and velocity
for exposure.
H/D, nondimensional distance to skin surface: 3.0
(H, vent-to-skin distance; D, diameter of contracted jet)
r / D, nondimensional radius of target area: 1.0
(r, effective radius; D, diameter of contracted jet)
Multiplicative tuning factor for heat transfer coeff: 0.550
Heat transfer rate (flux) from surface after exposure: $-1400 \mathrm{~W} / \mathrm{m}^{2}$
Skin properties
Thermal conductivity
Epidermis: $0.20949 \mathrm{~W} / \mathrm{m} / \mathrm{K}$
Dermis: $\quad 0.37910 \mathrm{~W} / \mathrm{m} / \mathrm{K}$
Thermal diffusivity
Epidermis: $0.7267 \mathrm{E}-07 \mathrm{~m}^{2} / \mathrm{s}$
Dermis: $\quad 0.1430 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s}$
Critical cell depth (base of the epidermal layer) : $72 \mu \mathrm{~m}$

Burn integral constants
$\mathrm{G}=3.100 \times 10 * *(98) 1 / \mathrm{s}$
$\operatorname{deltaE} / \mathrm{R}=75000.0 \mathrm{~K} \quad(\operatorname{delE}=623.581 \mathrm{~kJ} / \mathrm{gm}-\mathrm{mol})$

Threshold for first-degree burn (epidermal injury) $\Omega=0.53$ (model constant)
Threshold for burn with partial skin loss and injury fully through the epidermis (full epidermal necrosis) $\Omega=1.0 \quad$ (model constant)

Universal constants

```
Absolute zero kelvin \(=273.15{ }^{\circ} \mathrm{C}\)
Universal gas constant \(=8.31441 \mathrm{~J} / \mathrm{gram}-\mathrm{mol} / \mathrm{K}(\mathrm{kJ} / \mathrm{kg}-\mathrm{mol} / \mathrm{K})\)
                    \(=8314.41 \mathrm{~J} / \mathrm{kg}-\mathrm{mol} / \mathrm{K}\)
Molecular weights
    Nitrogen: \(\quad 28.0134 \mathrm{~kg} / \mathrm{kg}-\mathrm{mol}\)
    Air (average) : \(28.9660 \mathrm{~kg} / \mathrm{kg}-\mathrm{mol}\)
Gas constants (Runiv/m.w.)
    Nitrogen: \(296.80 \mathrm{~J} / \mathrm{kg}-\mathrm{mol} / \mathrm{K}\)
    Air: \(\quad 287.04 \mathrm{~J} / \mathrm{kg}-\mathrm{mol} / \mathrm{K}\)
Density of water \(=1000 \mathrm{~kg} / \mathrm{m} * * 3\) (assumed incompressible)
```


Earth constants

```
    One atmosphere pressure = 101325 Pascal [N/m}\mp@subsup{}{2}{2}]=14.696 lb/in'
    Density of air at 1 atm and 700 K = 0.4975 kg/m**3
        (used with perfect gas law in calculation of gas density
        for pitot-tube determination of velocity of jet)
    Earth standard gravity = 9.80665 m/\mp@subsup{s}{}{2}=32.174 ft/\mp@subsup{s}{}{2}
```

Gas properties
For nitrogen and air, tabular values as functions of temperature,
200 to 1000 K (from Incropera and DeWitt, Table A.4)
Kinematic viscosity [m²/s]
Thermal conductivity [$\mathrm{W} / \mathrm{m} / \mathrm{K}$]
Prandtl number
Specific heat at constant pressure $[\mathrm{KJ} / \mathrm{kg} / \mathrm{K}]$

Empirical constants
Fabric stretch factor, regression to airbag volume

```
Cs = 2.45e-6 + 2.27e-5 * Vol [m
```

For a single round jet and $H / D=3.0$ and $r / D=1.0$, the relationship between the Nusselt number (Nu), the Prandtl number (Pr), and the Reynolds number (Re) :
$\mathrm{Nu} / \mathrm{Pr} * * 0.42=\mathrm{k}(\mathrm{H} / \mathrm{D}, \mathrm{r} / \mathrm{D}) \mathrm{C} \mathrm{Re}^{2} \mathrm{n}$,
where $C=0.62330, \quad n=0.5409$
and $k(H / D, r / D)$ is a correction function that has the value 1.0300 for the specified values of H / D and r / D. In general, for $H / D=7.5$, the values of C and n for various r / D values are as follows (from Martin, Fig. 9):

r/D	C	n
0.0	1.0918	0.5049
1.0	0.6233	0.5409
2.0	0.3314	0.5815
3.0	0.2254	0.6001

The correction function is as follows (from Martin, Fig. 10):

H / D	r / D	$k(H / D, r / D)$
$1.0-6.65$	all	1.03
7.5	all	1.0
12.0	0.0	0.775
12.0	1.0	0.775
12.0	2.0	0.80
12.0	3.0	0.81

```
12.0 5.0 0.86
12.0 7.0 0.90
```

with linear interpolation for other values of H / D and r / D.

Model assumptions

The basic model is for a two-phased heat flow in a semi-infinite solid. In phase 1 the surface is exposed to a medium (exhaust) with temperature A, and the heat transfer coefficient is hA. In phase 2 (post-exhaust) the external medium has temperature B, and the heat transfer coefficient is $h B$. $A, B, h A$, and $h B$ are constants. The temperature distribution in the solid (skin epidermis and dermis) is determined as a function of time from a generalization of equations due to Carslaw and Jaeger (pg. 74, eqs. 2 and 3)

Burn severity is predicted by calculating the integral injury function described by Henriques. Burn injury is treated as a rate process in which the progression of the injury is related to both the temperature and the duration of the temperature. The burn injury integral, omega (Ω), is defined such that $\Omega=1.0$ is the threshold for burn with partial skin loss and injury fully through the epidermis (full epidermal necrosis). The threshold for first-degree burn (epidermal injury) is $\Omega=0.53$.

Other assumptions
Heat transfer coefficient after exposure
= Qdot $/$ (ambient temperature - Tskinsurf,avg)
where Qdot<0 is an input constant, the effective heat transfer rate (flux) from the skin surface after exposure, and Tskinsurf,avg is the average skin surface temperature during exposure.

The average temperature of the external medium after exposure is assumed to be the ambient (room) temperature. (Reasonable alternative estimates that would model the effect of a boundary layer are Tskinsurf,avg, as above, and the average of Tskinsurf,avg and the ambient temperature.)

The pendulum model for occupant interaction assumes that occupant/ airbag contact begins at the instant the airbag becomes full (i.e., the beginning of exhaust)

Model constraints

The estimation of time rate of change of airbag volume from occupant interaction assumes that the restraining effect of airbag membrane forces is small compared with the pressure forces.

The heat transfer coefficient value for Phase 2 is the *effective* value, which results from the user-specified Phase 2 heat flux, an estimated (not actual) average Phase 2 skin surface temperature, and an adjusted (ambient) exposure temperature.

```
Table 1 = VISCOSTY ( 12 points)
viscosity (nitrogen or air) [m/s]
0.200000E+03 0.765000E-05
0.250000E+03 0.114800E-04
0.\dot{800}0000}0\dot{\textrm{E}}+\dot{0}3\quad\dot{0}.\dot{8}2\dot{9}0\dot{0}0\dot{\textrm{E}}-\dot{0}
0.900000E+03 0.100300E-03
Table 2 = CONDUCTV ( }12\mathrm{ points)
conductivity (N2 or air) [W/m/K]
\begin{tabular}{|c|c|}
\hline \(0.200000 \mathrm{E}+03\) & 0.183000E-01 \\
\hline \(0.250000 \mathrm{E}+03\) & 0.222000E-01 \\
\hline - - . . & - - . . \\
\hline \(0.800000 \mathrm{E}+03\) & 0.548000E-01 \\
\hline \(0.900000 \mathrm{E}+03\) & 0.597000E-01 \\
\hline
\end{tabular}
Table 3 = PRANDTL ( 12 points) Prandtl number (N2 or air) [-]
\begin{tabular}{cc}
\(0.200000 \mathrm{E}+03\) & \(0.736000 \mathrm{E}+00\) \\
\(0.250000 \mathrm{E}+03\) & \(0.727000 \mathrm{E}+00\) \\
\(\cdot \cdot \cdot\) & \(\cdot \cdot\) \\
\(\dot{0} . \dot{8} 0000 \dot{0} 0 \dot{\mathrm{E}}+\dot{0} 3\) & \(\dot{0} . \dot{7} 15000 \dot{\mathrm{E}}+\dot{0} 0\) \\
\(0.900000 \mathrm{E}+03\) & \(0.721000 \mathrm{E}+00\)
\end{tabular}
Table \(4=\mathrm{K}\)-RATIO ( 13 points) ratio of specific heats (N2 or air) [-]
\(0.200000 \mathrm{E}+03 \quad 0.139775 \mathrm{E}+01\)
\(0.250000 \mathrm{E}+03 \quad 0.139828 \mathrm{E}+01\)
- - \(\cdot\).
\(0.900000 \mathrm{E}+03 \quad 0.134951 \mathrm{E}+01\)
\(0.200000 \mathrm{E}+04 \quad 0.134951 \mathrm{E}+01\)
Table \(5=\) M1TDOT ( 124 points)
inflator mass flow rate (1 cu ft tank test) [m1Tdot] [kg/s]
\begin{tabular}{|c|c|}
\hline 0.000000 E & . \\
\hline 0.100000E-02 & \(0.000000 \mathrm{E}+00\) \\
\hline 0.200000E-02 & \(0.000000 \mathrm{E}+00\) \\
\hline 0.300000E-02 & \(0.207900 \mathrm{E}+01\) \\
\hline 0.400000E-02 & \(0.129000 \mathrm{E}+01\) \\
\hline 0.500000E-02 & \(0.138600 \mathrm{E}+01\) \\
\hline 0.600000E-02 & \(0.146200 \mathrm{E}+01\) \\
\hline 0.700000E-02 & \(0.152100 \mathrm{E}+01\) \\
\hline 0.800000E-02 & \(0.156200 \mathrm{E}+01\) \\
\hline 0.900000E-02 & \(0.158000 \mathrm{E}+01\) \\
\hline 0.100000E-01 & \(0.158800 \mathrm{E}+01\) \\
\hline 0.110000E-01 & \(0.157500 \mathrm{E}+01\) \\
\hline 0.120000E-01 & \(0.153900 \mathrm{E}+01\) \\
\hline 0.130000E-01 & \(0.148400 \mathrm{E}+01\) \\
\hline 0.140000E-01 & \(0.142500 \mathrm{E}+01\) \\
\hline 0.150000E-01 & \(0.136100 \mathrm{E}+01\) \\
\hline - . & \\
\hline 0.460000E-01 & \(0.185000 \mathrm{E}+00\) \\
\hline 0.470000E-01 & \(0.171000 \mathrm{E}+00\) \\
\hline 0.480000E-01 & \(0.160000 \mathrm{E}+00\) \\
\hline 0000E-01 & 0.1300 \\
\hline
\end{tabular}
```

01	$0.111000 \mathrm{E}+00$
0.510000E-01	0.920000E-01
0.520000E-01	0.750000E-01
0.530000E-01	0.590000E-01
0.540000E-01	0.440000E-01
0.550000E-01	0.300000E-01
0.560000E-01	0.170000E-01
0.570000E-01	$0.000000 \mathrm{E}+00$
580000E-01	$0.000000 \mathrm{E}+00$
0.590000E-01	$0.000000 \mathrm{E}+00$
0.21000	0000E
. $100000 \mathrm{E}+0$. $000000 \mathrm{E}+$

Table $7=$ AIRBGVOL (208 points) airbag volume (V2) [m**3]

00	$0.000000 \mathrm{E}+00$
0.500000E-03	0.366422E-03
0.100000E-02	0.340490E-03
0.210000E-01	0.568911E-01
0.215000E-01	0.583326E-01
0.220000E-01	0.597807E-01
0.225000E-01	0.612334E-01
0.230000E-01	0.612253E-01
0.235000E-01	0.612008E-01
0E-01	0.611601E-01
. 245000 E	0.611030 E

01	1
0.255000E-01	0.609401E-01
0.260000E-01	0.608343E-01
0.265000E-01	0.607124E-01
0.270000E-01	0.605743E-01
0.660000E-01	$\dot{0} . \dot{4} 1 \dot{2} 3 \dot{1} 4 \dot{\mathrm{E}}-\dot{0} 1$
0.665000E-01	0.412291E-01
0.670000E-01	0.412338E-01
0.675000E-01	0.412454E-01
0.680000E-01	0.412638E-01
0.685000E-01	0.412889E-01
0.690001E-01	0.413207E-01
-	
$\dot{0} \mathbf{i} 102000 \mathrm{E}+00$	$0.524224 \mathrm{E}-01$
$0.102500 \mathrm{E}+00$	0.526504E-01
$0.103000 \mathrm{E}+00$	0.528784E-01
$0.103500 \mathrm{E}+00$	0.531064E-01

Table 8 = GASN gas mass in air	$\begin{aligned} & \text { ASS (} 208 \text { points) } \\ & \text { bag (m2) } \\ & {[\mathrm{kg}]} \end{aligned}$
$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.500000E-03	$0.000000 \mathrm{E}+00$
0.100000E-02	$0.000000 \mathrm{E}+00$
0.150000E-02	$0.000000 \mathrm{E}+00$
0.200000E-02	$0.000000 \mathrm{E}+00$
0.250000E-02	0.259875E-03
0.300000E-02	0.103950E-02
	- • .
0.410000E-01	$0.352062 \mathrm{E}-01$
0.415000E-01	0.352202E-01
0.420000E-01	0.352266E-01
0.425000E-01	0.352280E-01
0.430000E-01	0.352269E-01
0.435000E-01	0.352182E-01
0.440000E-01	0.351970E-01
.	-
$\dot{0} .102000 \dot{E}+00$	$\dot{0} . \dot{2} 2 \dot{6} 7 \dot{4} 9 \dot{\mathrm{E}}-\dot{0} 1$
$0.102500 \mathrm{E}+00$	0.226596E-01
$0.103000 \mathrm{E}+00$	0.226528E-01
$0.103500 \mathrm{E}+00$	0.226528E-01

Table $9=$ PRESSURE $\quad(208$ points)
gas pressure in airbag $\left.(\mathrm{P} 2) \mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}\right]$
$0.000000 \mathrm{E}+00 \quad 0.101325 \mathrm{E}+06$
0.500000E-03 0.101325E+06
$\dot{0} . \dot{2} 2 \dot{0} 0 \dot{0} 0 \dot{E}-\dot{0} 1 \quad \dot{0} . \dot{10} 132 \dot{2}+\dot{\mathrm{E}}+\dot{0}$
0.225000E-01 0.101325E+06
0.230000E-01 0.104484E+06
$0.235000 \mathrm{E}-01 \quad 0.107603 \mathrm{E}+06$
0.240000E-01 0.110730E+06
$\dot{0} . \dot{5} 1 \dot{5} 0 \dot{0} 0 \dot{E}-\dot{0} 1 \quad \dot{0} . \dot{2} 2 \dot{1} 2 \dot{7} 2 \dot{\mathrm{E}}+\dot{0} 6$
$0.520000 \mathrm{E}-01 \quad 0.221683 \mathrm{E}+06$
$0.525000 \mathrm{E}-01 \quad 0.221884 \mathrm{E}+06$
0.530000E-01 0.221903E+06
0.535000E-01 0.221809E+06
$0.540000 \mathrm{E}-01 \quad 0.221667 \mathrm{E}+06$
0.545000E-01 0.221478E+06
............

$0.102000 \mathrm{E}+00$	$0.102505 \mathrm{E}+06$
$0.102500 \mathrm{E}+00$	$0.101827 \mathrm{E}+06$
$0.103000 \mathrm{E}+00$	$0.101206 \mathrm{E}+06$
$0.103500 \mathrm{E}+00$	$0.100631 \mathrm{E}+06$

Table $10=$ GASTEMP (208 points)
gas temperature in airbag (T2) [K]

$0.000000 \mathrm{E}+00$	$0.294000 \mathrm{E}+03$
0.500000E-03	$0.294000 \mathrm{E}+03$
0.100000E-02	$0.294000 \mathrm{E}+03$
0.150000E-02	$0.294000 \mathrm{E}+03$
0.200000E-02	$0.294000 \mathrm{E}+03$
0.250000E-02	$0.109939 \mathrm{E}+04$
0.300000E-02	. $443159 \mathrm{E}+03$
0.500000E-01	$0.974817 \mathrm{E}+03$
0.505000E-01	$0.975824 \mathrm{E}+03$
0.510000E-01	$0.977022 \mathrm{E}+03$
0.515000E-01	$0.977932 \mathrm{E}+03$
0.520000E-01	$0.978072 \mathrm{E}+03$
0.525000E-01	$0.977576 \mathrm{E}+03$
0.530000E-01	$0.976579 \mathrm{E}+03$
35000E-01	$0.975372 \mathrm{E}+03$
0.540000E-01	$0.974248 \mathrm{E}+$
-	
. $103500 \mathrm{E}+00$	$0.794784 \mathrm{E}+03$

Table 11 = EXHVELOC (208 points)
u(exhaust) [m/s]

$\begin{aligned} & 0.000000 \mathrm{E}+00 \\ & 0.500000 \mathrm{E}-03 \end{aligned}$	$\begin{aligned} & 0.000000 \mathrm{E}+00 \\ & 0.000000 \mathrm{E}+00 \end{aligned}$
0.225000E-01	$0.000000 \mathrm{E}+00$
0.230000E-01	$0.117580 \mathrm{E}+03$
0.235000E-01	$0.165392 \mathrm{E}+03$
0.240000E-01	$0.202002 \mathrm{E}+03$
0.245000E-01	$0.231649 \mathrm{E}+03$
0.250000E-01	$0.255702 \mathrm{E}+03$
0.505000E-01	$\dot{0} . \dot{5} 7 \dot{5} 1 \dot{89} \dot{\mathrm{E}}+\dot{0} 3$
0.510000E-01	$0.575566 \mathrm{E}+03$
0.515000E-01	$0.575853 \mathrm{E}+03$
0.520000E-01	$0.575897 \mathrm{E}+03$
0.525000E-01	$0.575740 \mathrm{E}+03$
.530000E-01	$0.575427 \mathrm{E}+03$
535000E-01	$0.575047 \mathrm{E}+03$
0.540000E-01	$0.574693 \mathrm{E}+03$
$100500 \mathrm{E}+00$	$\dot{0} . \dot{12572} \dot{2} \dot{E}+\dot{0} 3$
$0.101000 \mathrm{E}+00$	0.110608E+03
$0.101500 \mathrm{E}+00$	$0.937385 \mathrm{E}+02$
102000E+00	$0.740203 \mathrm{E}+02$
2500E+00	$0.483475 \mathrm{E}+02$
0E+00	$0.000000 \mathrm{E}+00$
$0.103500 \mathrm{E}+$	0.000000

Table $12=$ EXHTEMP (208 points) Texhaust [K]
$0.000000 \mathrm{E}+00 \quad 0.294000 \mathrm{E}+03$

3	$0.294000 \mathrm{E}+03$
00000E-02	$0.294000 \mathrm{E}+03$
0.150000E-02	$0.294000 \mathrm{E}+03$
0.200000E-02	$0.294000 \mathrm{E}+03$
0.250000E-02	$0.109939 \mathrm{E}+04$
0.300000E-02	$0.443159 \mathrm{E}+03$
.350000E-02	$0.329420 \mathrm{E}+03$
400000E-02	$0.309160 \mathrm{E}+03$
0.450000E-02	$0.311711 \mathrm{E}+0$
0.515000E-01	$0.838597 \mathrm{E}+03$
0.520000E-01	$0.838706 \mathrm{E}+03$
0.525000E-01	$0.838319 \mathrm{E}+03$
0.530000E-01	$0.837542 \mathrm{E}+03$
0.545000E-01	$0.834913 \mathrm{E}+03$
- .	
$0.102500 \mathrm{E}+00$	
$0.103000 \mathrm{E}+00$	$0.796202 \mathrm{E}+03$
.103500E+00	$0.796202 \mathrm{E}+$

Table 13 = INTGRUn (208 points)
integral of $u * * n[(m / s) * * n s]$

$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.500000E-03	$0.000000 \mathrm{E}+00$
0.100000E-02	$0.000000 \mathrm{E}+00$
$\dot{0} . \dot{2} 60000 \dot{E}-\dot{0} 1$	$\dot{0} . \dot{6} 0 \dot{5} 0 \dot{0} 8 \dot{E}-01$
0.265000E-01	$0.718474 \mathrm{E}-01$
0.270000E-01	0.836832E-01
0.275000E-01	0.959309E-01
- . - • -	- . . . -
$0.102500 \mathrm{E}+00$	$0.215747 \mathrm{E}+01$
$0.103000 \mathrm{E}+00$	$0.216021 \mathrm{E}+01$
$0.103500 \mathrm{E}+00$	$0.216021 \mathrm{E}+01$

Table $14=$ INTGRTe (208 points) integral of Texhaust [K s]

00	00
0.500000E-03	$0.147000 \mathrm{E}+00$
0.100000E-02	$0.294000 \mathrm{E}+00$
0.150000E-02	$0.441000 \mathrm{E}+00$
0.685000E-01	$\dot{0} . \dot{498442 \dot{E}}$
0.690001E-01	$0.502487 \mathrm{E}+02$
0.695001E-01	$0.506525 \mathrm{E}+02$
0.700001E-01	$0.510555 \mathrm{E}+02$
- • • • -	
$0.102500 \mathrm{E}+00$	$0.769829 \mathrm{E}+02$
$0.103000 \mathrm{E}+00$	$0.773810 \mathrm{E}+02$
$0.103500 \mathrm{E}+00$	$0.777791 E+02$

Table 15 = JET C (4 points) Martin's coefficient C for circular impinging gas jet [-]

$0.000000 \mathrm{E}+00$	$0.109180 \mathrm{E}+01$
$0.100000 \mathrm{E}+01$	$0.623300 \mathrm{E}+00$
$0.200000 \mathrm{E}+01$	$0.331400 \mathrm{E}+00$
$0.300000 \mathrm{E}+01$	$0.225400 \mathrm{E}+00$

Table $16=$ JET Martin's expon	n for circu
$0.000000 \mathrm{E}+00$	$0.504900 \mathrm{E}+00$
$0.100000 \mathrm{E}+01$	$0.540900 \mathrm{E}+00$
$0.200000 \mathrm{E}+01$	$0.581500 \mathrm{E}+00$
$0.300000 \mathrm{E}+01$	$0.600100 \mathrm{E}+00$

```
Table \(17=\) KORR12HD ( 6 points)
correction factor at \(H / D=12\) as function of \(r / D\) [-]
```

$0.000000 \mathrm{E}+00$	$0.775000 \mathrm{E}+00$
$0.100000 \mathrm{E}+01$	$0.775000 \mathrm{E}+00$
$0.200000 \mathrm{E}+01$	$0.800000 \mathrm{E}+00$
$0.300000 \mathrm{E}+01$	$0.810000 \mathrm{E}+00$
$0.500000 \mathrm{E}+01$	$0.860000 \mathrm{E}+00$
$0.700000 \mathrm{E}+01$	$0.900000 \mathrm{E}+00$

Table 18 = Hgas (163 p gas-to-skin heat transfer coe	
$0.000000 \mathrm{E}+00$	$0.396895 \mathrm{E}+03$
0.500000E-03	$0.396915 \mathrm{E}+03$
0.100000E-02	$0.396759 \mathrm{E}+03$
- • • • .	- . . .
0.385000E-01	$0.395017 \mathrm{E}+03$
0.390000E-01	$0.395100 \mathrm{E}+03$
0.395000E-01	$0.395182 \mathrm{E}+03$
0.400000E-01	$0.395264 \mathrm{E}+0$
- . . - .	- • -
0.795000E-01	0. $393911 \mathrm{E}+03$
0.800000E-01	$0.393964 \mathrm{E}+03$
0.805000E-01	$0.394017 \mathrm{E}+03$
0.810000E-01	$0.394070 \mathrm{E}+03$

Table 19 = Tcritdep (501 points)
skin temperature at critical depth [K]
$0.000000 \mathrm{E}+00 \quad 0.309000 \mathrm{E}+03$
$0.100000 \mathrm{E}-02 \quad 0.309000 \mathrm{E}+03$
$0.200000 \mathrm{E}-02 \quad 0.309002 \mathrm{E}+03$
$0.300000 \mathrm{E}-02 \quad 0.309023 \mathrm{E}+03$
$0.400000 \mathrm{E}-02 \quad 0.309091 \mathrm{E}+03$
$0.870000 \mathrm{E}-01 \quad 0.340520 \mathrm{E}+03$
$0.880000 \mathrm{E}-01 \quad 0.340610 \mathrm{E}+03$
$0.890000 \mathrm{E}-01 \quad 0.340656 \mathrm{E}+03$
$0.900000 \mathrm{E}-01 \quad 0.340665 \mathrm{E}+03$
$0.910000 \mathrm{E}-01 \quad 0.340644 \mathrm{E}+03$
$0.920000 \mathrm{E}-01 \quad 0.340598 \mathrm{E}+03$
$0.930000 \mathrm{E}-01 \quad 0.340531 \mathrm{E}+03$
$0.940000 \mathrm{E}-01 \quad 0.340448 \mathrm{E}+03$
0.950000E-01 0.340352E+03
$\dot{0} . \dot{2} 0 \dot{2} 0 \dot{0} 0 \dot{E}+\dot{0} 0 \quad \dot{0} . \dot{3} 2 \dot{9} 9 \dot{9} 7 \dot{\mathrm{E}}+\dot{0} 3$
$0.203000 \mathrm{E}+00 \quad 0.329945 \mathrm{E}+03$
$0.204000 \mathrm{E}+00 \quad 0.329893 \mathrm{E}+03$

-
$0.32 \dot{6} 4 \dot{1} 4 \dot{E}+03$
$0.304000 \mathrm{E}+00$
$0.305000 \mathrm{E}+00$ $0.326390 \mathrm{E}+03$
$0.306000 \mathrm{E}+00 \quad 0.326367 \mathrm{E}+03$
$\dot{0} . \dot{4} 1 \dot{0} 0 \dot{0} 0 \dot{E}+\dot{0} 0 \quad \dot{0} . \dot{3} 2 \dot{4} 5 \dot{9} 5 \dot{\mathrm{E}}+\dot{0} 3$

$0.411000 \mathrm{E}+00$	$0.324582 \mathrm{E}+03$
$0.412000 \mathrm{E}+00$	$0.324570 \mathrm{E}+03$
- . . - .	- . .
$0.497000 \dot{E}+00$	0. $\dot{3} 2 \dot{3} 7 \dot{2} 1 \dot{\mathrm{E}}+\dot{0} 3$
$0.498000 \mathrm{E}+00$	$0.323713 \mathrm{E}+03$
$0.499000 \mathrm{E}+00$	$0.323705 \mathrm{E}+03$
$0.500000 \mathrm{E}+00$	$0.323697 E+03$

Table 20 = BAG DEFL (207 points)
airbag deflection from pendulum contact [m]

00000E+00	$0.000000 \mathrm{E}+00$
0.500000E-03	$0.000000 \mathrm{E}+00$
0.100000E-02	$0.000000 \mathrm{E}+00$
0.225000E-01	$0.000000 \mathrm{E}+00$
0.230000E-01	0.329669E-02
0.235000E-01	0.659333E-02
0.240000E-01	0.988977E-02
0.245000E-01	0.131858E-01
-	
$\dot{0} . \dot{6} 5 \dot{5} 0 \dot{0} 0 \dot{\mathrm{E}}-\dot{0} 1$	$\dot{0} . \dot{1} 8 \dot{3} 2 \dot{8} 2 \dot{\mathrm{E}}+\dot{0} 0$
0.660000E-01	$0.183345 \mathrm{E}+00$
0.665000E-01	$0.183361 \mathrm{E}+00$
0.670000E-01	$0.183330 \mathrm{E}+00$
$0.675000 \mathrm{E}-01$	$0.183252 \mathrm{E}+00$
0.680000E-01	$0.183129 \mathrm{E}+00$
$0.101500 \mathrm{E}+00$	$0.110258 \mathrm{E}+00$
$0.102000 \mathrm{E}+00$	$0.108738 \mathrm{E}+00$
$0.102500 \mathrm{E}+00$	$0.107219 \mathrm{E}+00$
$0.103000 \mathrm{E}+00$	$0.105699 \mathrm{E}+00$

Table $21=$ DEFL VEL (207 points)
airbag deflection velocity from pendulum contact [m/s]

00	0
0.500000E-03	$0.000000 \mathrm{E}+00$
0.215000E-01	$0.000000 \mathrm{E}+00$
0.220000E-01	$0.000000 \mathrm{E}+00$
0.225000E-01	$0.659340 \mathrm{E}+01$
$0.230000 \mathrm{E}-01$	$0.659337 \mathrm{E}+01$
0.235000E-01	$0.659314 \mathrm{E}+01$
	$\dot{0} \dot{2} 7 \dot{0} \mathbf{6} 2 \dot{\mathrm{E}}+\dot{0} 0$
0.655000E-01	$0.173942 \mathrm{E}+00$
0.660000E-01	0.784639E-01
0.665000E-01	-0.157758E-01
0.670000E-01	-0.108743E+00
0.675000E-01	-0.200406E+00
$\dot{0} .101500 \mathrm{E}+00$	-0.303774E+01
$0.102000 \mathrm{E}+00$	-0.303916E+01
$0.102500 \mathrm{E}+00$	-0.303994E+01
$0.103000 \mathrm{E}+00$	-0.304013E+01

Table $22=$ DEFLACCL (207 points)
airbag deflection acceleration from pendulum contact [m/s ${ }^{2}$]

```
0.000000E+00 0.000000E+00
    0.500000E-03 0.000000E+00
```

```
    0.225000E-01 0.000000\dot{E}+00
    0.230000E-01 -0.193659E+00
    0.235000E-01 -0.769862E+00
    \dot{0}.5150000E-01 -\dot{0}.2230;74\dot{E}+0;0
    0.520000E-01 -0.223839E+03
    0.525000E-01 -0.224212E+03
    0.530000E-01 -0.224249E+03
    0.535000E-01 -0.224073E+03
    0.540000E-01 -0.223809E+03
    0.545000E-01 -0.223457E+03
    0.i02000E+00 -0.219414E+01
    0.102500E+00 -0.933723E+00
0.103000E +00 0.000000E+00
```

Table 23 = OCCFORCE (207 points) pendulum/airbag force [N]

00	$0.000000 \mathrm{E}+00$
0.500000E-03	$0.000000 \mathrm{E}+00$
0.225000E-01	$0.000000 \mathrm{E}+00$
0.230000E-01	$0.156195 \mathrm{E}+02$
0.235000E-01	$0.620932 \mathrm{E}+02$
0.240000E-01	$0.139518 \mathrm{E}+03$
0.510000E-01	$0.178942 \mathrm{E}+05$
0.515000E-01	$0.179920 \mathrm{E}+05$
0.520000E-01	$0.180537 \mathrm{E}+05$
0.525000E-01	$0.180838 \mathrm{E}+05$
0.530000E-01	$0.180868 \mathrm{E}+05$
0.535000E-01	$0.180726 \mathrm{E}+05$
0.540000E-01	$0.180513 \mathrm{E}+05$
0.545000E-01	$0.180229 \mathrm{E}+05$
0.550000E-01	$0.179873 \mathrm{E}+05$
0.555000E-01	$0.179444 \mathrm{E}+05$
0.560000E-01	$0.178944 \mathrm{E}+05$
$0.102000 \mathrm{E}+00$	$0.176968 \mathrm{E}+03$
$0.102500 \mathrm{E}+00$	$0.753094 \mathrm{E}+02$
$0.103000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$

Table $24=$ DV (207 points) airbag volume change from pendulum contact [m**3]

000000E+00	$0.000000 \mathrm{E}+00$
0.500000E-03	$0.000000 \mathrm{E}+00$
-	
0.220000E-01	$0.000000 \mathrm{E}+00$
0.225000E-01	$0.000000 \mathrm{E}+00$
0.230000E-01	0.815112E-05
0.235000E-01	0.326040E-04
0.240000E-01	0.733557E-04
- - . - .	- . -
0.650000E-01	0.199757E-01
0.655000E-01	0.199923E-01
0.660000E-01	0.200018E-01
0.665000E-01	0.200041E-01
0.670000E-01	0.199995E-01

```
    0.675000E-01 0.199878E-01
    0.i020000E+00 \dot{0.88i077F-j}-02
    0.102500E+00 0.858280E-02
    0.103000E+00 0.835479E-02
Table 25 = DVdot ( }207\mathrm{ points)
airbag volume change rate (DVdot) [m**3/s]
    0.000000E E+00 0.000000E+00
    0.500000E-03 0.000000E+00
    0.\dot{225000EE-01 0.0000000E+00}
    0.230000E-01 0.326044E-01
    0.235000E-01 0.652061E-01
    0.\dot{3}\dot{0}00\dot{O}0\dot{E}-\dot{O}1\quad\dot{0}.\dot{8}2\dot{4}4\dot{2}2\dot{E}+\dot{0}0
    0.375000E-01 0.840824E+00
    0.380000E-01 0.855745E+00
    0.385000E-01 0.854682E+00
    0.390000E-01 0.843163E+00
    0.395000E-01 0.831354E+00
    0.\dot{65500}0\dot{E}-\dot{0}1\quad\dot{0}.\dot{2}60912\dot{E}-\dot{0}1
    0.660000E-01 0.117696E-01
    0.665000E-01 -0.236637E-02
    0.670000E-01 -0.163115E-01
    0.102000E+00-0.455875E+00
    0.102500E+00 -0.455991E+00
    0.103000E+00 -0.456020E+00
Input: M1TDOT PT AIRBAG
Output: BURNMODL.OUT TEMPDIST.OUT
End of simulation.
```


APPENDIX D

EXAMPLE "TEMPDIST.OUT" OUTPUT (airbag)

Airbag simulation with occupant/airbag interaction: all summary output and all tables

AIRBAG SIMULATION: skin temperature distribution results

(Also see file BURNMODL.OUT.)
Inflator Capacity: 487 kPa
gas: nitrogen

```
Test specifications:
    Duration of exposure \(=0.0810 \mathrm{~s}\)
    Velocity \(=432.880 \mathrm{~m} / \mathrm{s}\)
    \(\begin{aligned} \text { Free-stream temperature } & =536.98{ }^{\circ} \mathrm{C} \\ & =810.13{ }^{\circ} \mathrm{K}\end{aligned}\)
    Orifice diameter \(=0.03500 \mathrm{~m}\)
    Estimated effective Phase 2 heat transfer rate \(=-1400 \mathrm{~W} / \mathrm{m}^{2}\)
```


$\left.\begin{array}{llllllllll} \\ 0.000057 & 309.000 & 311.077 & 316.275 & & & 343.784 & 345.864 & 344.483 & \cdots\end{array}\right) 325.210$

0	309.000	29			,	7	65		34
0.000132	309.000	309.121	310.256		324.519	326.835	328.194		321.715
0.000133	309.000	309.115	310.216		324.336	326.644	328.023		321.697
0.000134	309.000	309.108	310.177		324.155	326.455	327.853		321.678
0.000135	309.000	309.102	310.139		323.975	326.267	327.683		321.659
0.000136	309.000	309.096	310.102		323.797	326.081	327.514		321.639
0.000137	309.000	309.091	310.066		323.621	325.896	327.346		321.620
0.000138	309.000	309.086	310.031		323.446	325.712	327.179		321.601
0.000139	309.000	309.081	309.997		323.274	325.530	327.012		321.582
0.000140	309.000	309.076	309.964		323.102	325.349	326.845		321.563
. 000141	309.000	309.072	309.932		322.932	325.170	326.680		321.543
0.000142	309.000	309.067	309.901		322.764	324.992	326.515		321.524
0.000143	309.000	309.063	309.870		322.598	324.815	326.351		321.505
0.000144	309.000	309.060	309.841		322.433	324.640	326.187		321.485
0.000145	309.000	309.056	309.813		322.270	324.466	326.025		321.466
0.000146	309.000	309.053	309.785		322.108	324.294	325.863		321.446
0.000147	309.000	309.050	309.758		321.948	324.123	325.702		321.427
0.000148	309.000	309.047	309.732		321.789	323.954	325.541		321.407
0.000149	309.000	309.044	309.707		321.632	323.786	325.382		321.387
0.000150	309.000	309.041	309.683		321.476	323.619	325.223		321.368
0.000151	309.000	309.039	309.659		321.322	323.454	325.065		321.348
0.000152	309.000	309.036	309.636		321.169	323.290	324.908		321.328
0.000153	309.000	309.034	309.614		321.018	323.128	324.752		321.309
0.000154	309.000	309.032	309.593		320.869	322.967	324.597		321.289
0.000155	309.000	309.030	309.572		320.721	322.807	324.442		321.269
0.000156	309.000	309.028	309.552		320.574	322.649	324.289		321.249
0.000157	309.000	309.026	309.532		320.429	322.492	324.136		321.229
0.000158	309.000	309.025	309.513		320.285	322.336	323.984		321.209
0.000159	309.000	309.023	309.495		320.143	322.182	323.833		321.189
0.000160	309.000	309.022	309.477		320.002	322.030	323.683		321.169
0.000161	309.000	309.020	309.460		319.863	321.878	323.534		321.149
0.000162	309.000	309.019	309.443		319.725	321.728	323.386		321.129
0.000163	309.000	309.018	309.427		319.589	321.580	323.238		321.109
0.000164	309.000	309.017	309.412		319.453	321.432	323.092		321.089
0.000165	309.000	309.016	309.397		319.320	321.286	322.947		321.068
0.000166	309.000	309.014	309.382		319.187	321.142	322.802		321.048
0.000167	309.000	309.014	309.368		319.056	320.999	322.659		321.028
0.000168	309.000	309.013	309.354		318.927	320.857	322.516		321.007
0.000169	309.000	309.012	309.341		318.798	320.716	322.374		20.987
0.000170	309.000	309.011	309.328		318.671	320.577	322.234		320.967
0.000171	309.000	309.010	309.316		318.546	320.439	322.094		320.946
0.000172	309.000	309.010	309.304		318.421	320.302	321.955		320.926
0.000173	309.000	309.009	309.293		318.298	320.167	321.817		320.905
0.000174	309.000	309.008	309.282		318.177	320.033	321.681		320.885
0.000175	309.000	309.008	309.271		318.056	319.900	321.545		320.864
0.000176	309.000	309.007	309.261		317.938	319.768	321.410		320.843
0.000177	309.000	309.007	309.251		317.820	319.638	321.276		320.823
0.000178	309.000	309.006	309.241		317.703	319.509	321.143		320.802
0.000179	309.000	309.006	309.232		317.588	319.381	321.012		320.782
0.000180	309.000	309.005	309.223		317.474	319.255	320.881		320.761
0.000181	309.000	309.005	309.214		317.361	319.129	320.751		320.740
0.000182	309.000	309.005	309.206		317.249	319.005	320.622		320.719
0.000183	309.000	309.004	309.198		317.139	318.882	320.494		320.698
0.000184	309.000	309.004	309.190		317.030	318.761	320.367		320.677
0.000185	309.000	309.004	309.182		316.922	318.640	320.241		320.657
0.000186	309.000	309.004	309.175		316.815	318.521	320.116		320.636
0.000187	309.000	309.003	309.168		316.710	318.403	319.992		320.615
0.000188	309.000	309.003	309.162		316.605	318.286	319.870		320.594
0.000189	309.000	309.003	309.155		316.502	318.171	319.748		320.573
0.000190	309.000	309.003	309.149		316.400	318.056	319.627		320.551
0.000191	309.000	309.002	309.143		316.299	317.943	319.507		320.530
0.000192	309.000	309.002	309.137		316.199	317.831	319.388		320.509
0.000193	309.000	309.002	309.132		316.101	317.720	319.270		320.488
0.000194	309.000	309.002	309.126		316.003	317.610	319.153		320.467
0.000195	309.000	309.002	309.121		315.907	317.501	319.037		320.446
0.000196	309.000	309.002	309.116		315.811	317.394	318.922		320.424
0.000197	309.000	309.002	309.111		315.717	317.287	318.808		320.403
0.000198	309.000	309.001	309.107		315.624	317.182	318.695		320.382
00199	309.000	309.001	309.102		315.532	317.077	318.583		320.361
0.000200	309.000	309.001	309.098		315.441	316.974	318.472		320.339

APPENDIX E

EXAMPLE "BURNMODL.OUT" OUTPUT (heat gun)

Heat-gun simulation

HEAT GUN SIMULATION: input data echo and simulation results
(Also see file TEMPDIST.OUT.)

```
* Heat gun [8-character data fields]
*line 1: Integration method (1.=R-K) and stepsize (s)
*line 2: Output specifications -- SW1, SW2, KTAB(1-25) FORMAT(2g8.0, 25I1)
; Field 1: summary outputs (results and input data summary)
; =1., summary of results, summary of input data, summary of model consts
            =2., summary of results, summary of input data
        =3., summary of results only
        <0., as above but also print parsed results summary (to separate file)
    Field 2: tabular output data, including time histories
        =0., print no tabular data to file
        =1., print all tabular data to file [KTAB() specifications optional]
                KTAB(i) for table i: 0 = do not write to file, 1 = write to file,
                2 = write every 2nd point to file (time histories 7-14,18-25)
        =2., default (selected) tables to file
                Table No. 1 2 3 4 5 6 7 8 910111213141516171819202122232425
                Default 0 0 0 0 0 0 0 0 2
        <0., as above but write tabular data to different file from summaries
    *line 3: Gas identification: a) nitrogen or 1. or b) air or 2.
*line 4: Ambient temperature ( }\mp@subsup{}{}{\circ}\textrm{C})\quad[include K in field if Kelvin]
*line 5: Initial skin surface temperature ( }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ ) [include K in field if Kelvin]
*line 6: Duration of exposure to heat gun jet (s)
; or -1. to search for the exposure duration that results in \Omega=0.53
i or -2, to search for the exposure duration that results in }\Omega=
*line 7: Temperature of gas flow from heat gun (}\mp@subsup{}{}{\circ}\textrm{C})\mathrm{ [incl. K in field if Kelvin]
; or -1. to search for the gas jet temperature that results in }\Omega=0.5
; or -2. to search for the gas jet temperature that results in \Omega=1
*line 8: Velocity of heat gun jet (m/s) or, if negative (and not -1. or -2.),
    the pitot tube pressure differential in inches of water,
    or -1. to search for the gas jet velocity that results in \Omega=0.53
    or -2. to search for the gas jet velocity that results in \Omega=1
*line 9: Heat-gun port diameter (m)
*line 10: Orifice coefficient for heat-gun port
*line 11: H/D ratio: H, distance from vent to skin surface; D, gas jet diameter
*line 12: r/D ratio: r, effective radius of target area; D, gas jet diameter
*line 13: Multiplicative tuning factor for Phase 1 heat transfer coefficient
*line 14: Effective Qdot for Phase 2 heat transfer (.ge. 0; e.g., 1400 W/m**2)
*line 15: Thermal conductivities of epidermis and dermis (W/m/K) (nonzero)
*line 16: Thermal diffusivities of epidermis and dermis (m**2/s); if a negative
; value is specified in field 1 (epidermis), fields 3 and 4 must contain
; nonzero values for density ( }\textrm{kg}/\textrm{m}**3\mathrm{ ) and specific heat (J/kg/K);
; fields 5 and 6 are used similarly for the dermis if field 2 is neg.
*line 17: Critical cell depth (micrometers)
; or -1. to search for the cell depth for which \Omega=0.53
; or -2. to search for the cell depth for which \Omega=1
*line 18: Burn integral constants: preexponential factor coefficient and power,
; and delE/R (activation energy divided by gas constant)
1. .0005
1. 1. 1111111111111111112111111
air
20.85
35.85
0.150
450.
66.
0.010
1.
3.0
1.0
. }5
1400.
0.20949 0.3791
7.267E-8 1.43E-7
72.
3.1 98. 75000.
*2.185 124. 93534.9
Henriques-Moritz [44,50] C
    Weaver-Stoll >50 C
```

*1.43 72. 55000. Mehta-Wong

* Comment lines must begin with one of these: ; : * \# @
* Comments can be added after data fields on any line (w. or w/o ;:*\#\$@).
* Completely blank lines are also allowed.

Heat gun: $450{ }^{\circ} \mathrm{C}, 66 \mathrm{~m} / \mathrm{s}, 150 \mathrm{~ms}$

SUMMARY OF RESULTS
Burn Injury Integral Ω for Critical Depth $72 \mu \mathrm{~m}$

Other
The heat transfer coefficient value for Phase 2 ($39.250 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}$) is the *effective* value, which results from the user-specified Phase 2 heat flux ($-1.400 \mathrm{~kW} / \mathrm{m}^{2}$), an estimated (not actual) average Phase 2 skin surface temperature of $329.669{ }^{\circ} \mathrm{K}$, and an adjusted (ambient) exposure temperature of $323.707{ }^{\circ} \mathrm{K}$. (The actual ambient temperature is $294.000^{\circ} \mathrm{K}$.)

Control specifications

Integration method: Runge-Kutta fixed-step
Integration stepsize: 0.00050 s
End time for integration: 0.1500 s (the user-specified value or, if specified, the duration of exposure)

Output specifications

Summary output plus specified tabular time histories to file Tables (1-1): 11111111111111111200000000

Heat gun test specifications

Gas: air
Duration of exposure to heat gun gas jet: 0.1500 s
Temperature of gas jet: $450.00^{\circ} \mathrm{C} \quad\left(=723.15{ }^{\circ} \mathrm{K}\right)$
Velocity of gas jet: $66.0 \mathrm{~m} / \mathrm{s}$
Heat-gun port: diameter $=0.01000 \mathrm{~m}$ orifice coefficient $=1.000$
H / D, nondimensional distance to skin surface: 3.0
(H, vent-to-skin distance; D, diameter of [uncontracted] jet)
r / D, nondimensional radius of target area: 1.0
(r, effective radius; D, diameter of [uncontracted] jet)
Multiplicative tuning factor for heat transfer coeff: 0.550
Heat transfer rate (flux) from surface after exposure: - $1400 \mathrm{~W} / \mathrm{m}^{2}$

Skin properties

```
Thermal conductivity
    Epidermis: 0.20949 W/m/K
    Dermis: }0.37910\textrm{W}/\textrm{m}/\textrm{K
Thermal diffusivity
    Epidermis: 0.7267E-07 m2/s
    Dermis: }\quad0.1430\textrm{E}-06\mp@subsup{\textrm{m}}{}{2}/\textrm{s
Critical cell depth (base of the epidermal layer): 72 \mum
```

Burn integral constants

```
\(\mathrm{G}=3.100 \times 10 * *(98) 1 / \mathrm{s}\)
\(\operatorname{deltaE} / \mathrm{R}=75000.0 \mathrm{~K} \quad(\operatorname{delE}=623.581 \mathrm{~kJ} / \mathrm{gm}-\mathrm{mol})\)
Threshold for first-degree burn (epidermal injury)
    \(\Omega=0.53\) (model constant)
Threshold for burn with partial skin loss and injury
fully through the epidermis (full epidermal necrosis)
    \(\Omega=1.0\) (model constant)
```


Universal constants

```
Absolute zero kelvin = 273.15 '}\mp@subsup{}{}{\circ}\textrm{C
Universal gas constant = 8.31441 J/gram-mol/K (kJ/kg-mol/K)
                        = 8314.41 J/kg-mol/K
Molecular weights
    Nitrogen: 28.0134 kg/kg-mol
    Air (average): 28.9660 kg/kg-mol
Gas constants (Runiv/m.w.)
    Nitrogen: 296.80 J/kg-mol/K
    Air: }\quad287.04\textrm{J}/\textrm{kg}-\textrm{mol}/\textrm{K
Density of water = 1000 kg/m**3 (assumed incompressible)
```

Earth constants
One atmosphere pressure $=101325$ Pascal $\left[\mathrm{N} / \mathrm{m}^{2}\right]=14.696 \mathrm{lb} / \mathrm{in}^{2}$
Density of air at 1 atm and $700 \mathrm{~K}=0.4975 \mathrm{~kg} / \mathrm{m} * * 3$ (used with perfect gas law in calculation of gas density for pitot-tube determination of velocity of jet)
Earth standard gravity $=9.80665 \mathrm{~m} / \mathrm{s}^{2}=32.174 \mathrm{ft} / \mathrm{s}^{2}$

Gas properties

For nitrogen and air, tabular values as functions of temperature,
200 to 1000 K (from Incropera and DeWitt, Table A.4)
Kinematic viscosity [m²/s]
Thermal conductivity [$\mathrm{W} / \mathrm{m} / \mathrm{K}$]
Prandtl number
Specific heat at constant pressure $[\mathrm{KJ} / \mathrm{kg} / \mathrm{K}]$

Empirical constants

Fabric stretch factor, regression to airbag volume

```
Cs = 2.45e-6 + 2.27e-5 * Vol [m
```

For a single round jet and $H / D=3.0$ and $r / D=1.0$, the relationship between the Nusselt number (Nu), the Prandtl number (Pr), and the Reynolds number (Re) :

$$
\mathrm{Nu} / \mathrm{Pr} * * 0.42=k(H / D, r / D) C R e * * n,
$$

where $C=0.62330, \mathrm{n}=0.5409$
and $k(H / D, r / D)$ is a correction function that has the value 1.0300 for the specified values of H / D and r / D. In general, for $H / D=7.5$, the values of C and n for various r / D values are as follows (from Martin, Fig. 9):

r/D	C	n
0.0	1.0918	0.5049
1.0	0.6233	0.5409
2.0	0.3314	0.5815
3.0	0.2254	0.6001

The correction function is as follows (from Martin, Fig. 10):

H / D	r / D	$k(H / D, r / D)$
$1.0-6.65$	all	1.03
7.5	all	1.0
12.0	0.0	0.775
12.0	1.0	0.775
12.0	2.0	0.80
12.0	3.0	0.81

12.0	5.0	0.86
12.0	7.0	0.90

with linear interpolation for other values of H / D and r / D.
Model assumptions
The basic model is for a two-phased heat flow in a semi-infinite solid. In phase 1 the surface is exposed to a medium (exhaust) with temperature A, and the heat transfer coefficient is hA. In phase 2 (post-exhaust) the external medium has temperature B, and the heat transfer coefficient is $h B$. $A, B, h A$, and $h B$ are constants. The temperature distribution in the solid (skin epidermis and dermis) is determined as a function of time from a generalization of equations due to Carslaw and Jaeger (pg. 74, eqs. 2 and 3).

Burn severity is predicted by calculating the integral injury function described by Henriques. Burn injury is treated as a rate process in which the progression of the injury is related to both the temperature and the duration of the temperature. The burn injury integral, omega (Ω), is defined such that $\Omega=1.0$ is the threshold for burn with partial skin loss and injury fully through the epidermis (full epidermal necrosis). The threshold for first-degree burn (epidermal injury) is $\Omega=0.53$.

Other assumptions
Heat transfer coefficient after exposure
= Qdot / (ambient temperature - Tskinsurf,avg)
where Qdot<0 is an input constant, the effective heat transfer rate (flux) from the skin surface after exposure, and Tskinsurf,avg is the average skin surface temperature during exposure.

The average temperature of the external medium after exposure is assumed to be the ambient (room) temperature. (Reasonable alternative estimates that would model the effect of a boundary layer are Tskinsurf, avg, as above, and the average of Tskinsurf,avg and the ambient temperature.)

The pendulum model for occupant interaction assumes that occupant/ airbag contact begins at the instant the airbag becomes full (i.e., the beginning of exhaust).

Model constraints
The estimation of time rate of change of airbag volume from occupant interaction assumes that the restraining effect of airbag membrane forces is small compared with the pressure forces.

The heat transfer coefficient value for Phase 2 is the *effective* value, which results from the user-specified Phase 2 heat flux, an estimated (not actual) average Phase 2 skin surface temperature, and an adjusted (ambient) exposure temperature.

```
Table 1 = VISCOSTY ( }15\mathrm{ points)
viscosity (nitrogen or air) [m/s]
    0.200000E+03 0.759000E-05
    0.250000E+03 0.114400E-04
    0.\dot{85000}0\dot{E}+\dot{0}3\quad\dot{0}.\dot{9}3\dot{8}0\dot{O}0\dot{E}-\dot{0}4
    0.900000E+03 0.102900E-03
Table 2 = CONDUCTV ( }15\mathrm{ points)
conductivity (N2 or air) [W/m/K]
\begin{tabular}{|c|c|}
\hline \(0.200000 \mathrm{E}+03\) & \(0.181000 \mathrm{E}-\) \\
\hline \(0.250000 \mathrm{E}+03\) & 0.223000E-01 \\
\hline - . . . . & - . . . \\
\hline \(\dot{0} .850000 \mathrm{E}+03\) & \(\dot{0} . \dot{59} 9000{ }^{\text {e }}\) \\
\hline \(0.900000 \mathrm{E}+03\) & 0.620000 E - \\
\hline
\end{tabular}
Table 3 = PRANDTL ( 15 points) Prandtl number (N2 or air) [-]
\begin{tabular}{|c|c|}
\hline \(0.200000 \mathrm{E}+03\) & \(0.737000 \mathrm{E}+00\) \\
\hline \(0.250000 \mathrm{E}+03\) & \(0.720000 \mathrm{E}+00\) \\
\hline & \\
\hline \(0.850000 \mathrm{E}+03\) & \(0.716000 \mathrm{E}+00\) \\
\hline \(0.900000 \mathrm{E}+03\) & \(0.720000 \mathrm{E}+00\) \\
\hline
\end{tabular}
Table 4 = K-RATIO ( 16 points) ratio of specific heats (N2 or air) [-]
\begin{tabular}{cc}
\(0.200000 \mathrm{E}+03\) & \(0.139869 \mathrm{E}+01\) \\
\(0.250000 \mathrm{E}+03\) & \(0.139924 \mathrm{E}+01\) \\
\(\cdot \cdot \cdot \cdot \cdot\) & \(\cdot \cdot \cdot \cdot\) \\
\(\cdot \cdot \cdot \cdot\) \\
\(0.850000 \mathrm{E}+\dot{0} 3\) & \(\dot{0} .134879 \mathrm{E}+\dot{0} 1\) \\
\(0.900000 \mathrm{E}+03\) & \(0.134419 \mathrm{E}+01\) \\
\(0.200000 \mathrm{E}+04\) & \(0.134419 \mathrm{E}+01\)
\end{tabular}
Table \(15=\) JET C ( 4 points)
Martin's coefficient \(C\) for circular impinging gas jet [-]
```

$0.000000 \mathrm{E}+00$
$0.100000 \mathrm{E}+01$
$0.109180 \mathrm{E}+01$
$0.623300 \mathrm{E}+00$
$0.200000 \mathrm{E}+01 \quad 0.331400 \mathrm{E}+00$
$0.300000 \mathrm{E}+01 \quad 0.225400 \mathrm{E}+00$

```
Table \(16=\) JET n ( 4 points)
Martin's exponent \(n\) for circular impinging gas jet [-]
```

```
0.000000E+00
```

0.000000E+00
0.100000E+01 0.540900E+00
0.100000E+01 0.540900E+00
0.504900E+00
0.504900E+00
0.200000E+01 0.581500E+00
0.200000E+01 0.581500E+00
0.300000E+01 0.600100E+00
0.300000E+01 0.600100E+00
Table $17=$ KORR12HD (6 points)
correction factor at $H / D=12$ as function of r / D [-]

```
\(0.000000 \mathrm{E}+00\)
\(0.100000 \mathrm{E}+01\)
\(0.775000 \mathrm{E}+00\)
. \(81000 \mathrm{E}+0\)

\begin{tabular}{cc}
\(0.413000 \mathrm{E}+00\) & \(0.322760 \mathrm{E}+03\) \\
\(\cdot \cdot\) \\
\(\dot{0} . \dot{497000} \cdot\) \\
\(0.498000 \mathrm{E}+00\) & \(\dot{0}+00\) \\
\(0.321455 \mathrm{E}+\dot{0} 3\) \\
\(0.499000 \mathrm{E}+00\) & \(0.321442 \mathrm{E}+03\) \\
\(0.500000 \mathrm{E}+00\) & \(0.321416 \mathrm{E}+03\)
\end{tabular}

Input: HEATGUN
Output: BURNMODL.OUT TEMPDIST.OUT
End of simulation.

\section*{APPENDIX F}

\section*{EXAMPLE "TEMPDIST.OUT" OUTPUT (heat gun)}

Heat-gun simulation

\section*{HEAT GUN SIMULATION: skin temperature distribution results}
(Also see file BURNMODL.OUT.)
```

Heat gun: 450 }\mp@subsup{}{}{\circ}\textrm{C},66\textrm{m}/\textrm{s},150\textrm{ms
gas: air
Test specifications:
Duration of exposure = 0.1500 s
Velocity = 66.000 m/s
Free-stream temperature = 450.00 }\mp@subsup{}{}{\circ}\textrm{C
= 723.15 }\mp@subsup{}{}{\circ}\textrm{K
Orifice diameter = 0.01000 m
Estimated effective Phase 2 heat transfer rate = -1400. W/m

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & \(\therefore 500 \mathrm{~ms}\) \\
\hline Depth (m) & & & 20 & & & 160 & 17 & & 00 \\
\hline 0.000000 & 309.000 & 322.752 & 328.238 & & 358.483 & 346.681 & 342.797 & & 323.259 \\
\hline 0.000001 & 309.000 & 322.307 & 327.799 & & 358.075 & 346.703 & 342.816 & & 323.258 \\
\hline 0.000002 & 309.000 & 321.872 & 327.365 & & 357.669 & 346.718 & 342.831 & & 323.257 \\
\hline 0.000003 & 309.000 & 321.447 & 326.939 & & 357.266 & 346.727 & 342.842 & & 323.256 \\
\hline 0.000004 & 309.000 & 321.030 & 326.518 & & 356.864 & 346.728 & 342.848 & & 323.255 \\
\hline 0.000005 & 309.000 & 320.623 & 326.104 & & 356.465 & 346.723 & 342.850 & & 323.254 \\
\hline 0.000006 & 309.000 & 320.225 & 325.697 & & 356.067 & 346.711 & 342.849 & & 323.252 \\
\hline 0.000007 & 309.000 & 319.836 & 325.296 & & 355.672 & 346.692 & 342.842 & & 323.250 \\
\hline 0.000008 & 309.000 & 319.456 & 324.901 & & 355.278 & 346.666 & 342.832 & & 323.248 \\
\hline 0.000009 & 309.000 & 319.085 & 324.512 & & 354.887 & 346.633 & 342.817 & & 323.246 \\
\hline 0.000010 & 309.000 & 318.723 & 324.130 & & 354.498 & 346.594 & 342.798 & & 323.243 \\
\hline 0.000011 & 309.000 & 318.370 & 323.754 & & 354.111 & 346.548 & 342.775 & & 323.240 \\
\hline 0.000012 & 309.000 & 318.026 & 323.385 & & 353.726 & 346.495 & 342.748 & & 323.237 \\
\hline 0.000013 & 309.000 & 317.691 & 323.022 & & 353.343 & 346.436 & 342.717 & & 323.234 \\
\hline . 000014 & 309.000 & 317.365 & 322.665 & & 352.962 & 346.370 & 342.681 & & 323.231 \\
\hline 0.000015 & 309.000 & 317.048 & 322.314 & & 352.583 & 346.298 & 342.642 & & 323.227 \\
\hline . 000016 & 309.000 & 316.739 & 321.970 & & 352.206 & 346.220 & 342.598 & & 323.224 \\
\hline 0.000017 & 309.000 & 316.439 & 321.631 & & 351.831 & 346.135 & 342.550 & & 323.220 \\
\hline 0.000018 & 309.000 & 316.147 & 321.299 & & 351.459 & 346.044 & 342.499 & & 323.215 \\
\hline 0.000019 & 309.000 & 315.863 & 320.973 & & 351.088 & 345.947 & 342.443 & & 323.211 \\
\hline 0.000020 & 309.000 & 315.588 & 320.653 & & 350.720 & 345.844 & 342.383 & & 323.206 \\
\hline 0.000021 & 309.000 & 315.321 & 320.339 & & 350.353 & 345.735 & 342.320 & & 323.202 \\
\hline 0.000022 & 309.000 & 315.062 & 320.032 & & 349.989 & 345.621 & 342.252 & & 323.196 \\
\hline 0.000023 & 309.000 & 314.811 & 319.730 & & 349.627 & 345.500 & 342.181 & & 323.191 \\
\hline 0.000024 & 309.000 & 314.568 & 319.434 & & 349.266 & 345.375 & 342.106 & & 323.186 \\
\hline 0.000025 & 309.000 & 314.332 & 319.144 & & 348.908 & 345.243 & 342.027 & & 323.180 \\
\hline 0.000026 & 309.000 & 314.104 & 318.860 & & 348.552 & 345.107 & 341.945 & & 323.174 \\
\hline 0.000027 & 309.000 & 313.884 & 318.581 & & 348.198 & 344.965 & 341.858 & & 323.168 \\
\hline 0.000028 & 309.000 & 313.671 & 318.309 & & 347.846 & 344.818 & 341.769 & & 323.162 \\
\hline 0.000029 & 309.000 & 313.465 & 318.042 & & 347.496 & 344.666 & 341.675 & & 323.155 \\
\hline 0.000030 & 309.000 & 313.266 & 317.781 & & 347.149 & 344.510 & 341.578 & & 323.148 \\
\hline 0.000031 & 309.000 & 313.074 & 317.525 & & 346.803 & 344.349 & 341.478 & & 323.141 \\
\hline 0.000032 & 309.000 & 312.888 & 317.275 & & 346.459 & 344.183 & 341.374 & & 323.134 \\
\hline 0.000033 & 309.000 & 312.710 & 317.030 & & 346.118 & 344.013 & 341.267 & & 323.127 \\
\hline 0.000034 & 309.000 & 312.538 & 316.791 & & 345.778 & 343.838 & 341.156 & & 323.119 \\
\hline 0.000035 & 309.000 & 312.372 & 316.557 & & 345.441 & 343.660 & 341.042 & & 323.111 \\
\hline 0.000036 & 309.000 & 312.212 & 316.329 & & 345.105 & 343.477 & 340.926 & & 323.103 \\
\hline 0.000037 & 309.000 & 312.059 & 316.105 & & 344.772 & 343.291 & 340.805 & & 323.095 \\
\hline 0.000038 & 309.000 & 311.911 & 315.887 & & 344.441 & 343.101 & 340.682 & & 323.087 \\
\hline 0.000039 & 309.000 & 311.769 & 315.674 & & 344.112 & 342.907 & 340.556 & & 323.078 \\
\hline 0.000040 & 309.000 & 311.633 & 315.466 & & 343.785 & 342.710 & 340.427 & & 323.069 \\
\hline 0.000041 & 309.000 & 311.502 & 315.263 & & 343.459 & 342.510 & 340.295 & & 323.060 \\
\hline 0.000042 & 309.000 & 311.376 & 315.065 & & 343.136 & 342.306 & 340.160 & & 323.051 \\
\hline 0.000043 & 309.000 & 311.256 & 314.872 & & 342.815 & 342.100 & 340.022 & & 323.041 \\
\hline 0.000044 & 309.000 & 311.140 & 314.684 & & 342.496 & 341.891 & 339.882 & & 323.031 \\
\hline 0.000045 & 309.000 & 311.030 & 314.500 & & 342.180 & 341.678 & 339.739 & & 323.021 \\
\hline 0.000046 & 309.000 & 310.924 & 314.321 & & 341.865 & 341.464 & 339.593 & & 323.011 \\
\hline 0.000047 & 309.000 & 310.823 & 314.146 & & 341.552 & 341.247 & 339.445 & & 323.001 \\
\hline 0.000048 & 309.000 & 310.726 & 313.976 & & 341.241 & 341.027 & 339.295 & & 322.990 \\
\hline 0.000049 & 309.000 & 310.634 & 313.811 & & 340.932 & 340.806 & 339.142 & & 322.980 \\
\hline 0.000050 & 309.000 & 310.545 & 313.650 & & 340.626 & 340.582 & 338.986 & & 322.969 \\
\hline 0.000051 & 309.000 & 310.461 & 313.493 & & 340.321 & 340.357 & 338.829 & & 322.958 \\
\hline 0.000052 & 309.000 & 310.380 & 313.340 & & 340.018 & 340.129 & 338.669 & & 322.946 \\
\hline 0.000053 & 309.000 & 310.304 & 313.192 & & 339.718 & 339.900 & 338.507 & & 322.935 \\
\hline 0.000054 & 309.000 & 310.231 & 313.047 & & 339.419 & 339.670 & 338.344 & & 322.923 \\
\hline 0.000055 & 309.000 & 310.161 & 312.907 & & 339.122 & 339.438 & 338.178 & & 322.911 \\
\hline 0.000056 & 309.000 & 310.095 & 312.770 & & 338.828 & 339.205 & 338.010 & & 322.899 \\
\hline
\end{tabular}

\begin{tabular}{llll}
0.000131 & 309.000 & 309.064 & 309.645 \\
0.000132 & 309.000 & 309.060 & 309.624 \\
0.000133 & 309.000 & 309.057 & 309.604 \\
0.000134 & 309.000 & 309.053 & 309.585 \\
0.000135 & 309.000 & 309.050 & 309.566 \\
0.000136 & 309.000 & 309.048 & 309.547 \\
0.000137 & 309.000 & 309.045 & 309.529 \\
0.000138 & 309.000 & 309.042 & 309.512 \\
0.000139 & 309.000 & 309.040 & 309.495 \\
0.000140 & 309.000 & 309.038 & 309.479 \\
0.000141 & 309.000 & 309.035 & 309.463 \\
0.000142 & 309.000 & 309.033 & 309.447 \\
0.000143 & 309.000 & 309.031 & 309.432 \\
0.000144 & 309.000 & 309.030 & 309.418 \\
0.000145 & 309.000 & 309.028 & 309.404 \\
0.000146 & 309.000 & 309.026 & 309.390 \\
0.000147 & 309.000 & 309.025 & 309.377 \\
0.000148 & 309.000 & 309.023 & 309.364 \\
0.000149 & 309.000 & 309.022 & 309.351 \\
0.000150 & 309.000 & 309.020 & 309.339 \\
0.000151 & 309.000 & 309.019 & 309.327 \\
0.000152 & 309.000 & 309.018 & 309.316 \\
0.000153 & 309.000 & 309.017 & 309.305 \\
0.000154 & 309.000 & 309.016 & 309.294 \\
0.000155 & 309.000 & 309.015 & 309.284 \\
0.000156 & 309.000 & 309.014 & 309.274 \\
0.000157 & 309.000 & 309.013 & 309.264 \\
0.000158 & 309.000 & 309.012 & 309.255 \\
0.000159 & 309.000 & 309.011 & 309.246 \\
0.000160 & 309.000 & 309.011 & 309.237 \\
0.000161 & 309.000 & 309.010 & 309.228 \\
0.000162 & 309.000 & 309.009 & 309.220 \\
0.000163 & 309.000 & 309.009 & 309.212 \\
0.000164 & 309.000 & 309.008 & 309.204 \\
0.000165 & 309.000 & 309.008 & 309.197 \\
0.000166 & 309.000 & 309.007 & 309.190 \\
0.000167 & 309.000 & 309.007 & 309.183 \\
0.000168 & 309.000 & 309.006 & 309.176 \\
0.000169 & 309.000 & 309.006 & 309.169 \\
0.000170 & 309.000 & 309.005 & 309.163 \\
0.000171 & 309.000 & 309.005 & 309.157 \\
0.000172 & 309.000 & 309.005 & 309.151 \\
0.000173 & 309.000 & 309.004 & 309.145 \\
0.000174 & 309.000 & 309.004 & 309.140 \\
0.000175 & 309.000 & 309.004 & 309.134 \\
0.000176 & 309.000 & 309.004 & 309.129 \\
0.000177 & 309.000 & 309.003 & 309.124 \\
0.000178 & 309.000 & 309.003 & 309.120 \\
0.000179 & 309.000 & 309.003 & 309.115 \\
0.000180 & 309.000 & 309.003 & 309.111 \\
0.000181 & 309.000 & 309.003 & 309.106 \\
0.000182 & 309.000 & 309.002 & 309.102 \\
0.000183 & 309.000 & 309.002 & 309.098 \\
0.000184 & 309.000 & 309.002 & 309.094 \\
0.000185 & 309.000 & 309.002 & 309.091 \\
0.000186 & 309.000 & 309.002 & 309.087 \\
0.000187 & 309.000 & 309.002 & 309.083 \\
0.000188 & 309.000 & 309.001 & 309.080 \\
0.000189 & 309.000 & 309.001 & 309.077 \\
0.000190 & 309.000 & 309.001 & 309.074 \\
0.000191 & 309.000 & 309.001 & 309.071 \\
0.000192 & 309.000 & 309.001 & 309.068 \\
0.000193 & 309.000 & 309.001 & 309.065 \\
0.000194 & 309.000 & 309.001 & 309.063 \\
0.000195 & 309.000 & 309.001 & 309.060 \\
0.000196 & 309.000 & 309.001 & 309.058 \\
0.000197 & 309.000 & 309.001 & 309.055 \\
0.000198 & 309.000 & 309.001 & 309.053 \\
0.000200 & 309.000 & 309.001 & 309.051 \\
0 & 3000 & 309.001 & 309.049
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& 324.950 \\
& 324.825
\end{aligned}
\] & \[
\begin{aligned}
& 325.922 \\
& 325.798
\end{aligned}
\] & \[
\begin{aligned}
& 326.371 \\
& 326.260
\end{aligned}
\] & \[
\begin{aligned}
& 319.849 \\
& 319.836
\end{aligned}
\] \\
\hline & 324.701 & 325.674 & 326.150 & 319.824 \\
\hline & 324.578 & 325.551 & 326.040 & 319.811 \\
\hline & 324.455 & 325.428 & 325.930 & 319.799 \\
\hline & 324.333 & 325.306 & 325.821 & 319.786 \\
\hline & 324.211 & 325.185 & 325.711 & 319.773 \\
\hline & 324.091 & 325.064 & 325.602 & 319.761 \\
\hline & 323.971 & 324.943 & 325.493 & 319.748 \\
\hline & 323.852 & 324.823 & 325.384 & 319.735 \\
\hline & 323.733 & 324.704 & 325.275 & 319.722 \\
\hline & 323.615 & 324.585 & 325.167 & 319.709 \\
\hline & 323.498 & 324.467 & 325.058 & 319.695 \\
\hline & 323.382 & 324.350 & 324.951 & 319.682 \\
\hline & 323.266 & 324.233 & 324.843 & 319.669 \\
\hline & 323.151 & 324.116 & 324.735 & 319.656 \\
\hline & 323.037 & 324.001 & 324.628 & 319.642 \\
\hline & 322.924 & 323.886 & 324.521 & 319.629 \\
\hline & 322.811 & 323.771 & 324.415 & 319.615 \\
\hline & 322.699 & 323.657 & 324.308 & 319.602 \\
\hline & 322.587 & 323.544 & 324.202 & 319.588 \\
\hline & 322.476 & 323.431 & 324.097 & 319.574 \\
\hline & 322.366 & 323.319 & 323.991 & 319.560 \\
\hline & 322.257 & 323.207 & 323.886 & 319.547 \\
\hline & 322.148 & 323.097 & 323.782 & 319:533 \\
\hline & 322.040 & 322.986 & 323.677 & 319.519 \\
\hline & 321.933 & 322.877 & 323.573 & 319.505 \\
\hline & 321.826 & 322.768 & 323.470 & 319.490 \\
\hline & 321.720 & 322.659 & 323.366 & 319.476 \\
\hline & 321.615 & 322.551 & 323.264 & 319.462 \\
\hline & 321.510 & 322.444 & 323.161 & 319.448 \\
\hline & 321.406 & 322.338 & 323.059 & 319.433 \\
\hline & 321.303 & 322.232 & 322.957 & 319.419 \\
\hline & 321.200 & 322.126 & 322.856 & 319.404 \\
\hline & 321.098 & 322.022 & 322.755 & 319.390 \\
\hline & 320.996 & 321.917 & 322.654 & 319.375 \\
\hline & 320.896 & 321.814 & 322.554 & 319.361 \\
\hline & 320.796 & 321.711 & 322.454 & 319.346 \\
\hline & 320.696 & 321.609 & 322.355 & 319.331 \\
\hline & 320.597 & 321.507 & 322.256 & 319.316 \\
\hline & 320.499 & 321.406 & 322.157 & 319.301 \\
\hline & 320.402 & 321.305 & 322.059 & 319.286 \\
\hline & 320.305 & 321.206 & 321.961 & 319.271 \\
\hline & 320.209 & 321.106 & 321.864 & 319.256 \\
\hline & 320.113 & 321.008 & 321.767 & 319.241 \\
\hline & 320.018 & 320.910 & 321.671 & 319.226 \\
\hline & 319.924 & 320.812 & 321.575 & 319.210 \\
\hline & 319.830 & 320.715 & 321.479 & 319.195 \\
\hline & 319.737 & 320.619 & 321.384 & 319.180 \\
\hline & 319.645 & 320.524 & 321.290 & 319.164 \\
\hline & 319.553 & 320.429 & 321.195 & 319.149 \\
\hline & 319.462 & 320.334 & 321.102 & 319.133 \\
\hline & 319.371 & 320.240 & 321.008 & 319.118 \\
\hline & 319.281 & 320.147 & 320.916 & 319.102 \\
\hline & 319.192 & 320.055 & 320.823 & 319.086 \\
\hline & 319.103 & 319.962 & 320.731 & 319.070 \\
\hline & 319.015 & 319.871 & 320.640 & 319.054 \\
\hline & 318.927 & 319.780 & 320.549 & 319.039 \\
\hline & 318.840 & 319.690 & 320.459 & 319.023 \\
\hline & 318.754 & 319.600 & 320.369 & 319.007 \\
\hline & 318.668 & 319.511 & 320.279 & 318.991 \\
\hline & 318.583 & 319.423 & 320.190 & 318.974 \\
\hline & 318.499 & 319.335 & 320.102 & 318.958 \\
\hline & 318.415 & 319.247 & 320.013 & 318.942 \\
\hline & 318.331 & 319.160 & 319.926 & 318.926 \\
\hline & 318.248 & 319.074 & 319.839 & 318.909 \\
\hline & 318.166 & 318.989 & 319.752 & 318.893 \\
\hline & 318.085 & 318.904 & 319.666 & 318.877 \\
\hline & 318.003 & 318.819 & 319.580 & 318.860 \\
\hline & 317.923 & 318.735 & 319.495 & 318.844 \\
\hline
\end{tabular}```

