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Abstract 10 

While the importance of ecosystem functioning is undisputed in the context of climate change and 11 

earth system modeling, the role of short scale temporal variability of hydro-meteorological forcing 12 

(~1 hour) on the related ecosystem processes remains to be fully understood. Various impacts of 13 

meteorological forcing variability on water and carbon fluxes across a range of scales are explored 14 

here using numerical simulations. Synthetic meteorological drivers that highlight dynamic features 15 

of the short temporal scale in series of precipitation, temperature, and radiation are constructed. 16 

These drivers force a mechanistic ecohydrological model that propagates information content into 17 

the dynamics of water and carbon fluxes for an ensemble of representative ecosystems. The focus 18 

of the analysis is on a cross-scale effect of the short scale forcing variability on the modeled 19 

evapotranspiration and ecosystem carbon assimilation. Interannual variability of water and carbon 20 

fluxes is emphasized in the analysis. The main study inferences are summarized as follows: (a) 21 

short scale variability of meteorological input does affect water and carbon fluxes across a wide 22 

range of time scales, spanning from the hourly to the annual and longer scales; (b) different 23 

ecosystems respond to the various characteristics of the short scale variability of the climate 24 

forcing in various ways, depending on dominant factors limiting system productivity; (c) 25 

whenever short scale variability of meteorological forcing influences primarily fast processes such 26 

as photosynthesis, its impact on the slow scale variability of water and carbon fluxes is small; (d) 27 

whenever short scale variability of the meteorological forcing impacts slow processes such as 28 

movement and storage of water in the soil, the effects of the variability can propagate to annual 29 

and longer time scales.   30 
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variability, short scale temporal climate variability, spectral analysis.   33 

1 Introduction 34 

Climate varies across a wide range of temporal and spatial scales [McManus, 1999] and this 35 

variability affects and is affected by vegetation. In particular, the carbon cycle is sensitive to 36 

climate variability through multiple processes operating on different time scales such as 37 

vegetation growth, mortality and competition [Wilson and Baldocchi, 2000; Bonan, 2008; Sitch et 38 

al., 2008; Arora et al., 2013; Friedlingstein et al., 2014]. Considering the rapid change in climate 39 

and its variability as projected by the last generation climate models [IPCC, 2013], it is becoming 40 

necessary to quantify the associated responses of ecosystems in terms of water and carbon fluxes 41 

and their feedbacks to the climate [Medvigy et al., 2010; Reichstein et al., 2013]. The importance 42 

of these responses is potentially large, given the potential economic and societal effects resulting 43 

from loss of wood yield or food production, and accelerated desertification of semi-arid areas, to 44 

name a few.   45 

The statistical features of climatic forcing such as air temperature and precipitation evolve in 46 

terms of magnitude and variability [Karl et al., 1995; Boer, 2009; Medvigy and Beaulieu, 2012; 47 

Sun et al., 2012; Cattiaux et al., 2015]. Changes concerning climate variability include alternation 48 

of precipitation and temperature extremes [Allan and Soden, 2008; O’Gorman and Schneider, 49 

2009; Kharin et al., 2013], changes in precipitation frequency [Sun et al., 2007] and amounts, 50 

changes in the diurnal patterns of temperature and humidity [Vinnikov, 2002; Cattiaux et al., 51 

2015; Fatichi et al., 2015], and changes in the variability of the incoming solar radiation 52 

[Medvigy and Beaulieu, 2012], among others. In particular, variability at the short temporal scales 53 

(e.g. intra-annual to sub-daily) has been found to have a major significance for ecosystems 54 

[Medvigy et al., 2010; Fatichi and Ivanov, 2014; Vico et al., 2014]. Variability at such scales is 55 

also essential for the hydrological cycle, which in turn influences vegetation in different ways 56 

across biomes.  57 

The variability of the meteorological forcing can affect ecosystem functions in various ways. For 58 

example, precipitation structure determines the root zone soil water availability, which in turn 59 

affects plant productivity and thus carbon and water fluxes through photosynthesis and 60 

transpiration [Fay et al., 2000; Huxman et al., 2004b]. Temperature variability at small scales 61 

(e.g. hours-days), and the temperature correlation structure defining cold or heat wave persistence 62 

can affect vegetation productivity and water fluxes (e.g. evapotranspiration) through its impact on 63 
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the energy balance of the ecosystem, as well as biochemical processes related to carbon fluxes 64 

(e.g. photosynthesis and respiration) [Asseng et al., 2011]. Changes in temperature diurnal 65 

patterns have been also found to affect vegetation functioning and soil biogeochemistry [Collatz 66 

et al., 2000; Peng et al., 2013; Xia et al., 2014]. Radiation variability at the small temporal scales 67 

(e.g. hours-days), can also affect the energy balance of the ecosystems, because of the non-68 

linearity embedded in radiation dependent processes.  69 

The responses of ecosystems to environmental drivers are generally difficult to quantify due to 70 

the large number of nonlinear feedbacks among biological, ecological and hydrological processes 71 

occurring at multiple scales [Eagleson, 1978; Laio et al., 2001; Rodriguez-Iturbe et al., 2001; 72 

Katul et al., 2007b; Thornton et al., 2014]. Early studies attempted to relate the amount of water 73 

and carbon fluxes to mean annual environmental drivers with the goal of extrapolating them to 74 

future climates [Fang et al., 2001; Knapp and Smith, 2001; Huxman et al., 2004a]. Arguably the 75 

most common relation in hydrology is the Budyko‟s curve [Donohue et al., 2007; Li et al., 2013] 76 

that relates long-term evaporation to dryness indices. 77 

It is widely recognized that Budyko‟s curve or similar empirical relations have predictive skill at 78 

the global scale and are able to unfold connections between resource limitations (energy versus 79 

water) when discerning some ecosystem responses (e.g. water loss). However, their predictive 80 

skill degrades at local scales due to the influence of  heterogeneities in forcing and boundary 81 

conditions, which affect water and carbon fluxes and storage at smaller spatial and temporal 82 

scales [Knapp and Smith, 2001; Stoy et al., 2006; Brooks et al., 2011; Fatichi and Ivanov, 2014; 83 

Pappas et al., 2015]. The recognition that short scale climate variability impacts ecosystem 84 

functioning [Huxman et al., 2004b; Jentsch et al., 2007; Medvigy et al., 2010] has led to 85 

significant advances in eco-hydrology, and motivates this study.  86 

To assess the relevance of short scale variability of environmental drivers on carbon-water fluxes 87 

and storage, several experimental studies have been conducted. Results from these experiments 88 

highlight the significance of short scale temporal variability and statistical structure of 89 

precipitation on vegetation dynamics [Swemmer et al., 2007; Heisler-White et al., 2008; Fay et 90 

al., 2011], and the role of temperature distribution and structure (e.g. diurnal variations) [Wan et 91 

al., 2002; De Boeck et al., 2010; Wu et al., 2011; Peng et al., 2013; Xia et al., 2014]. Even though 92 

experiments provide necessary information about vegetation response to climatic fluctuations, 93 

technical and resource limitations typically constrain generality of such experiments. In 94 
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particular, the complexity of the soil-vegetation-atmosphere system precludes the experimental 95 

manipulation of many of the existing feedbacks between biological and hydrological processes.  96 

In the last decade, simultaneous advances in understanding ecosystem functioning and the 97 

increases in computational capabilities have led to the development of numerical models that 98 

resolve the essential hydrological and ecological processes at the relevant scales [Sitch et al., 99 

2003; Krinner et al., 2005a; Ivanov et al., 2008; Fatichi et al., 2012b]. These models offer 100 

practical tools to construct and test hypotheses about the role of short scale variability in 101 

hydrological, ecological and climate studies [Sitch et al., 2008; Gonzalez et al., 2010; Medvigy et 102 

al., 2010]. A major advantage of using such models is that known feedbacks between soil, 103 

vegetation and the atmosphere can be quantified, and thus a generalized assessment concerning 104 

the influence of the variability of the environmental drivers on water and carbon fluxes can be 105 

outlined.    106 

Using one of such mechanistic models, the overarching question we address here is how short 107 

scale and inter-annual variability of meteorological forcing affects water and carbon fluxes of 108 

various ecosystems spanning a range from boreal forests to semi-arid shrublands. The focus is on 109 

precipitation, temperature, and radiation because the responses of ecosystems to these 110 

environmental variables are reasonably well understood. Other variables that evolve slowly in 111 

time such as the atmospheric CO2 are not considered. Also, other features of the high frequency 112 

variability, such as spring frost damage, known to be impacted by rapid excursions in air 113 

temperature variability, are not explicitly considered [Rigby and Porporato, 2008].  114 

The elements of hydrometeorologic variability investigated here are: i) The interannual variability 115 

of the climate forcing; ii) The auto- and cross- correlation of hourly precipitation, temperature, 116 

and radiation; iii) The precipitation structure, and its intermittency patterns (i.e. organization in 117 

storm events); and iv) The probability distribution of precipitation, temperature, and radiation, 118 

with an emphasis on their extremes. The analysis is based on a comprehensive numerical 119 

experimentation with the state-of-the-science T&C ecohydrological model [Fatichi, 2010; Fatichi 120 

et al., 2012b], a tool that integrates essential hydrological and plant physiological processes. The 121 

effects of temporal variability of climatic forcing on evapotranspiration (  ), and its partition 122 

into subcomponents, and plant productivity are the main focus. Physical interpretations of the 123 

mechanisms that affect    and plant productivity for the analyzed ecosystems across temporal 124 

scales are provided. As a practical outcome for planning future field (and numerical) experiments, 125 
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we seek generalizations that can be used as guidelines for assessing ecosystem responses to a 126 

changing climate [Smith et al., 2014; Kayler et al., 2015]. 127 

2 Case studies and data  128 

Data from 6 biomes located in 5 different sites are used. The sites investigated are: i) a deciduous 129 

forest at the University of Michigan Biological Station (UMBS) in Michigan, USA, ii) a boreal 130 

pine forest in the Hyytiälä field station (SMEAR II) in southern Finland, iii) a semiarid shrubland 131 

in Lucky Hills, Arizona, USA, iv) a tropical rainforest near Manaus, Brazil, and v) an evergreen 132 

pine stand and a deciduous hardwood forest near Durham (Duke Forest), North Carolina, USA. In 133 

Figure 1, a brief summary of the sites and their climate is provided (Figure 1b) as well as the 134 

simulated annual water use and light use efficiency (Figure 1a). Data from these sites have been 135 

extensively analyzed before [Scott et al., 2000; Oren et al., 2001; Yuan et al., 2007; Ivanov et al., 136 

2010; Restrepo-Coupe et al., 2013] and only a brief description is provided here. 137 

Lucky Hills (110.30W, 31.44N; elevation 1372 m a.s.l.) is located in the Walnut Gulch 138 

experimental catchment in Arizona [Keefer et al., 2008; Renard et al., 2008; Paschalis et al., 139 

2014b]. Vegetation in this site is sparse and consists of various types of shrubs (deciduous 140 

whitethorn acacia and evergreen tarbush, and creosotebush). The soil type is sandy-loam with a 141 

relatively low water holding capacity and high permeability [Ritchie et al., 2005]. The assumed 142 

soil depth is 2 m and root-zone depth is 0.9 m. Vegetation productivity in Lucky Hills is limited 143 

by water availability due to low precipitation and its uneven distribution during the year 144 

controlled by the North American Monsoon and also due to a high evaporative demand. 145 

Meteorological data for the time period 1996-2009, collected by United States Department of 146 

Agriculture- Agricultural Research Service, Southwest Watershed Research Center are used. 147 

The deciduous forest in UMBS (84.71W, 45.55N; elevation 234 m a.s.l.) consists primarily of 148 

aspen trees, and a smaller fraction of northern red oak, paper birch, American beech, sugar maple, 149 

red maple and white pine [Curtis et al., 2005; Gough et al., 2008, 2013; Fatichi and Ivanov, 150 

2014]. The soil in the forest is sandy (98% sand), with a low percentage of organic matter and 151 

small water holding capacity [Pregitzer et al., 1993]. The assumed soil depth is 3 m and root-152 

zone depth is assumed to be 0.8 m [He et al., 2013]. Plant productivity in UMBS is mostly limited 153 

by low temperatures. For this site, 12 years of available data (1999-2010) were used. 154 

Meteorological and eddy covariance data were collected at the 33 m tall tower, part of 155 

AmeriFlux.  156 
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The tropical rainforest site (60.21W. 2.61S; elevation 67 m a.s.l.) is located in the Cuieiras 157 

reserve near Manaus in Northern Brazil and is part of the Large-Scale Biosphere Atmosphere 158 

Experiment in Amazonia (LBA). Vegetation consists primarily of broadleaf evergreen trees 159 

[Araújo et al., 2002]. The soil consists of a nutrient poor deep clayey soil. The root system of the 160 

trees in the Amazon rain forest is known to be extensive and have access to the deep water 161 

storage even during the dry season [Nepstad et al., 1994; Markewitz et al., 2010; Ivanov et al., 162 

2012a], potentially enhanced by processes such as hydraulic lift [Oliveira et al., 2005; Yan and 163 

Dickinson, 2014]. Meteorological and flux data are collected at a 50 m tall tower (Fluxnet site: 164 

Manaus - ZF2 K34) operating since 1999. Vegetation productivity at this site is assumed to be 165 

light limited, even though nutrients may play a very important role on this ecosystem [Körner, 166 

2009]. In particular, enhanced carbon gain typically occurs during the dry season when light 167 

availability is higher and photosynthesis is likely to be more efficient [Saleska et al., 2003, 2007; 168 

Hutyra et al., 2007; Myneni et al., 2007; Kim et al., 2012]. However, results that indicate that the 169 

rainforest in Manaus may not be particularly limited by radiation, as has been also reported by 170 

[Restrepo-Coupe et al., 2013]. In this study, the soil depth was assumed to extend to 14 m and the 171 

root depth to 10 m. Meteorological data for the time period 1999-2005 are used. 172 

The SMEAR II site (24.17E, 61.51N; elevation 181 m a.s.l.) is located in a Scots pine plantation 173 

in southern Finland established in 1962 [Pumpanen et al., 2003; Kolari et al., 2004]. The soil is a 174 

low fertility silty sand confined by an impermeable bedrock [Pumpanen et al., 2003; Suni et al., 175 

2003]. The soil depth is assumed to extend to 3 m and the root zone to 0.8 m. Hydro-176 

meteorological and flux data for this site were measured at a 73 m tower from 1996 to 2013, 177 

operated by the University of Helsinki. The main limitations to photosynthesis are light 178 

availability due to the high latitude, low temperature and, occasionally, by low water availability, 179 

due to the relatively small precipitation.  180 

Finally, two adjacent sites located within the Duke Forest (79.09W, 35.98N, 168 m a.s.l; pine 181 

forest –and hardwood forest) are also explored as these sites represent similar climate and soil 182 

type but different vegetation covers. The first is a loblolly pine plantation established in 1983 183 

from 3-year old seedlings [Pritchard et al., 2008]. The understory of this loblolly pine forest 184 

consists of several deciduous species (red maple, sweetgum, tulip poplar, redbud) that have 185 

established since then. The other site is a second-growth 120-year old southern oak-hickory 186 

hardwood forest that consists of several unevenly aged deciduous species such as tulip poplar, 187 

hickory, various types of oaks (white, chestnut, willow) and sweetgum [Palmroth et al., 2005; 188 

Stoy et al., 2007]. The soil type of all sites is a shallow, nutrient poor silt loam with an 189 
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impermeable clay pan at ~30cm depth [Oishi et al., 2010] that formed due to prior land-use 190 

history. Meteorological data were obtained at adjacent flux towers installed at each site as part of 191 

the global micrometeorological measurement network Fluxnet [Baldocchi et al., 2001] over the 192 

period 1998 – 2008 and operated by Duke University. Vegetation productivity at the Duke forest 193 

during the period when leaves are present is not clearly limited by any environmental factor due 194 

to above freezing temperatures for most of the year, and high light and water availability. Air 195 

temperature and radiation (day-length) are controlling factors of the phenological status of the 196 

hardwood forest. Phenology is explicitly resolved in the used model but it is only marginally 197 

impacted by high frequency variations, due to the assumed parameterizations.  198 

For all the sites used in this study, with the exception of Manaus, gaps in the meteorological data 199 

did not exceed 5%. Missing values for all meteorological variables except precipitation were 200 

filled with linear interpolation from their neighboring hourly observations, when the gaps were 201 

isolated, or given their mean climatological value, preserving the seasonality and the diurnal 202 

cycle, in the cases where continuous gaps of data were present. For precipitation, missing values 203 

were filled with zeros. Given the very small number of gaps, the influence of the gap filling 204 

process is considered negligible. For Manaus, the data gaps were larger, and the procedure of gap 205 

filling is identical to the LBA Data Model Intercomparison Project [de Gonçalves et al., 2013].    206 

3 Methods 207 

The sensitivity of ecosystem responses in terms of water and carbon fluxes to the short temporal 208 

scales (~1h) and the interannual variability of climate is assessed with a particular emphasis on 209 

precipitation, temperature, and incoming shortwave radiation. The sensitivity is studied using 210 

numerical simulations carried out with a state-of-the-science mechanistic ecohydrological model. 211 

The general principle guiding the simulations is that synthetic climate time series with prescribed 212 

statistical properties are used to drive the model, which yields responses that mimic ecosystem 213 

responses to the changed forcing conditions. The model has been previously calibrated and 214 

evaluated for several sites considered here and a summary of the evaluation for all of the sites is 215 

included in the Supplementary Material. The total rainfall amount, total radiation, and long-term 216 

temperature are preserved across runs for each site. The corresponding statistical distributions and 217 

correlation structure in time are the variables that were synthetically varied here. 218 

3.1 Ecohydrological Model and Vegetation Representation 219 

The mechanistic ecohydrological model Tethys-Chloris (T&C) [Fatichi, 2010; Fatichi et al., 220 

2012a, 2012b] is employed because this model has been shown to reproduce satisfactorily the 221 
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fluxes of energy, carbon, and water across a wide range of temporal scales in many sites 222 

worldwide [Fatichi and Leuzinger, 2013; Fatichi and Ivanov, 2014; Fatichi et al., 2014a; Pappas 223 

et al., 2015]. Here, only a brief description of the model is provided for reference; the details of 224 

its mathematical formulation can be found elsewhere [Fatichi, 2010; Fatichi et al., 2012a]. T&C 225 

simulates the essential hydrological and ecological processes regulating the water and carbon 226 

cycles. In particular, the model resolves the water and energy budgets at the soil and land surface 227 

and also accounts for vegetation dynamics. Meteorological variables required by the model are 228 

hourly time series of precipitation, temperature, incoming shortwave radiation, air temperature, 229 

wind speed, cloudiness, relative humidity, and atmospheric pressure above the canopy. 230 

The modeled hydrological processes include saturated and unsaturated soil water flow and 231 

overland flow, interception, throughfall, snow hydrology, and a full solution of energy fluxes at 232 

the land surface. The result of this solution is a detailed quantification of the water fluxes between 233 

the soil/canopy and the atmosphere. The modeled pathways include: water flow in the soil 234 

computed from Richards equation modified to include a distributed sink term representing root 235 

uptake, and soil evaporation but without accounting for hydraulic redistribution. Soil depth and 236 

root zone depth are model parameters assigned to best represent local pedology and vegetation 237 

characteristics. Overland flow is estimated by solving the kinematic wave approximation of the 238 

Saint Venant equation. Interception and throughfall are modeled as a function of precipitation 239 

intensity and leaf area index. The solution of the energy balance, which also affects snow 240 

accumulation and melt, is performed using a resistance scheme analogue [Sellers et al., 1996]. In 241 

the present version of T&C, five resistances (atmospheric, under-canopy, soil, stomatal, and leaf 242 

boundary) are used and only one radiative temperature is estimated per time step. Even though 243 

T&C was developed to operate at the catchment scale and account for the influence of complex 244 

topography on radiation distribution (e.g. shading) and lateral water flow, flat terrain is assumed 245 

as a close approximation for all flux tower sites considered here. 246 

T&C can use the concept of plant functional types (   s) or species specific parameters and 247 

conceptualizes vegetation structure as a series of inter-connected carbon pools, a methodology 248 

commonly used in dynamic global vegetation models [Haxeltine and Prentice, 1996; Sitch et al., 249 

2003; Krinner et al., 2005a; Oleson et al., 2013]. Biomass in various plant carbon pools (leaves, 250 

fine roots, living sapwood, non-structural carbohydrates, etc.) is estimated in a prognostic manner 251 

based on a system of differential equations that regulate carbon inputs (photosynthesis), losses 252 

(respiration, tissue turnover), and translocation among them, which follow a set of allometric, 253 

resource availability, and phenology status, rules. Photosynthesis is modeled using the widely 254 
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accepted biochemical model at the leaf scale presented by Farquhar et al., [1980], including 255 

some modifications [Collatz et al., 1991; Dai et al., 2004; Kattge and Knorr, 2007; Bonan et al., 256 

2011]. Photosynthesis can be reduced during drought stress periods, which are defined as periods 257 

when the soil water potential drops below a plant specific threshold. This photosynthetic 258 

reduction is based on a reduction factor that varies linearly with the soil moisture available to the 259 

roots, which is a function of root and soil moisture vertical distributions. Intercepted water 260 

inhibits transpiration [Deardorff, 1978] but does not inhibit CO2 uptake except for the case when 261 

the canopy is at least 50% covered with snow. Carbon maintenance and growth respiration fluxes 262 

are modeled as a function of temperature, living biomass for every carbon pool and their carbon 263 

to nitrogen ratio [Krinner et al., 2005b; Fatichi, 2010]. Biomass allocation in leaves is translated 264 

into a dynamic behavior of the leaf area index (LAI) based on the specific leaf area index, while 265 

other plant characteristics, such as plant height and root distribution are maintained „static‟. 266 

Vegetation dynamics are affected by environmental forcing and are coupled with the main 267 

hydrological processes. Soil biogeochemistry and nutrient cycles are not explicitly simulated, 268 

thus the model assumes vegetation to be in equilibrium with its nutritional environment. A 269 

detailed description of the model can be found elsewhere [Fatichi, 2010; Fatichi et al., 2012a, 270 

2012b]. 271 

Initial conditions (carbon pools and soil water) for all the model runs were selected such that they 272 

represent realistic mature ecosystems in balance with their observed meteorological forcing, i.e. 273 

they are in a quasi-steady-state equilibrium.  274 

3.2 Climate Forcing 275 

The main focus is on the effect of inter-annual and short scale (~1 hr) climate variability on water 276 

and carbon fluxes. To conduct such an assessment, a series of synthetic climate inputs that 277 

manipulate the statistical structure of precipitation, temperature, and radiation are used to drive 278 

T&C. In particular, 12 different input cases are evaluated (Table 1), where the spectral and 279 

probabilistic structure of the climatic variables and their coherence with other climatic drivers are 280 

modified. The first case corresponds to the observed climate input and represents the benchmark, 281 

referred to as the control scenario throughout the manuscript. In the next 2 of the 12 cases, we 282 

simultaneously alter all climate forcing types, while in the remaining 9 cases, the effect of each of 283 

the variables of interest is separately modified, preserving the consistency of the other climatic 284 

variables with the measurements. Seasonality is a deterministic mode of temporal variability that 285 

influences ecosystem functioning. In the present study, we eliminated this degree of freedom 286 

from simulations and in all of the scenarios seasonal patterns of all climate variables are 287 
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guaranteed to be identical to the observed series. The simulation length for all the cases is set to 288 

that of the observed series, and for the cases where random sampling was used, five ensembles 289 

were simulated to mimic stochastic variability. 290 

3.2.1 Combined cases 291 

For the two cases where all climatic variables are simultaneously perturbed, the focus is on the 292 

combined effect of small-scale variability and the correlation structure (i.e., autocorrelation and 293 

cross-correlations among all climatic variables) of the input.  294 

In the second case (Table 1), the interannual variability along with the short scale variability of 295 

precipitation, temperature, and radiation are suppressed. This is achieved by forcing the model 296 

with periodic input of the 3 variables of interest in which only the 2 dominant modes of 297 

variability, the seasonal and the diurnal are retained so that:  298 

   
 ( )   

 

 
∑   

 ( )

 

   

  Eq 1 

where   
 ( ) is the climate variable of the   th time step corresponding to the   th month and 299 

  th hour, and     
 ( ) is the observed variable at the   th time step corresponding to hour   300 

and month  , and   is the total number of time steps for a specific month and hour. This input 301 

scenario serves as an indication as to whether carbon dynamics and water fluxes can be predicted 302 

from the mean values of the climatic forcing. Moreover, it can illustrate the importance of the 303 

overall climate variability for water and carbon fluxes. 304 

In the third case, the correlation structure of the model input is altered by randomizing the 3 305 

variables of interest (i.e., precipitation, temperature, and radiation) in time, specifically, using 306 

sampling without replacement. Sampling without replacement is used since we seek to preserve 307 

exactly the observed meteorological values without repetitions that would arise from sampling 308 

with replacement. For this case, two subcases are taken into account. In the first subcase, we 309 

randomize simultaneously in time all the 3 variables of interest. If     *          + are the time 310 

indices of data to be randomized, the randomized series of precipitation, temperature, and 311 

radiation are       {  
 }       {  

 }       {  
 }, where   

  is a random sample from  , 312 

         are the randomized series, and          are the observed series of precipitation, 313 

temperature and radiation respectively. In the second subcase the randomized series are    314 

   {  
  }       {  

  }       {  
  }, where   

     
     

   are 3 different samples from  . In the first 315 

case, the autocorrelation of the 3 climate variables are destroyed, but their conditional probability 316 
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distributions are preserved. In the second subcase, the autocorrelation in time and the cross-317 

correlations among precipitation, radiation and temperature are destroyed. However, note that to 318 

maintain some realism in the input, the seasonal and diurnal cycles of the climatic input variables 319 

are retained. To achieve that the sampling pool is restricted for every variable based on the month 320 

and hour of the day is was observed. 321 

3.2.2 Precipitation 322 

The precipitation statistical structure is probably the most complex among the environmental 323 

drivers. The main features of the small scale statistical structure of precipitation are its 324 

intermittent nature, highly skewed distribution, and autocorrelation [Molini et al., 2009; 325 

Paschalis, 2013; Paschalis et al., 2013, 2014a]. Event-scale precipitation structure affects the 326 

amount and timing of available water in the rooting zone. Moreover, due to lagged effects of the 327 

water flow within soil, the small scale variability of precipitation can influence plant water 328 

availability over a much wider range of scales and potentially introduce long term effects on 329 

ecosystem functioning [Katul et al., 2007a]. Evidence of such long term effects has been 330 

provided by experimental studies for semiarid regions [Swemmer et al., 2007] and has been 331 

hypothesized to play a role in the Amazon rainforest [Ivanov et al., 2012b].   332 

In this study, 4 precipitation scenarios that encompass many plausible conditions are considered. 333 

In the first precipitation scenario (case 4 in Table 1), the correlation structure of precipitation is 334 

perturbed by randomizing the observed hourly precipitation, while preserving seasonal and 335 

diurnal patterns. The randomization of precipitation has two significant impacts on the 336 

precipitation statistical structure. First, precipitation autocorrelation in time is destroyed, and 337 

second, the distribution of coherent dry and wet spells is modified since precipitation clustering 338 

into storm events does not occur anymore. The altered precipitation has statistically shorter inter- 339 

and intra- storm durations. To isolate the effect of the correlation structure of precipitation from 340 

amounts, the total precipitation annual amounts are set equal to the control scenario (i.e. the inter-341 

annual variability of precipitation is preserved).  342 

In the second precipitation scenario (case 5), interannual variability of precipitation is removed 343 

and precipitation series within year are standardized as: 344 

   
 ( )    ( )

   ̅̅̅̅

  
 
   Eq 2 

where   
 ( ) is the standardized precipitation depth for  time   of the year  ,   ( ) is the recorded 345 

precipitation depth,   
  is the annual depth of the   th year and   ̅̅̅̅  is the long term annual depth. 346 
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This scenario allows the estimation of the sole impact of the small-scale structure of precipitation, 347 

which essentially remains intact, while the effects of the longer-term fluctuations are removed. 348 

The third precipitation scenario (case 6) enhances precipitation peaks by employing the following 349 

probability transform:       350 

   
  ( )    

  ( ,  ( )-      )  Eq 3 

where   
  ( ) is the positive part of the synthetic precipitation,  , - is the cumulative distribution 351 

function of the positive part of the observed precipitation   ( ), and   
  , - is the inverse of the 352 

cumulative distribution function of the Gamma distribution with parameters    and   . The 353 

choice of such a cumulative distribution is based on prior studies demonstrating that precipitation 354 

depths are reasonably approximated by a Gamma distribution [Papalexiou et al., 2013; Paschalis 355 

et al., 2014a]. The parameters    and    parameters are estimated using the method of moments 356 

(the first two moments are used). The mean value is set to be the same as the observed 357 

precipitation, thereby preserving the amounts over long periods. The standard deviation is set to 4 358 

times the observed value to amplify the peak magnitude. The synthetic precipitation time series 359 

has the same intermittency pattern as the observed, the same mean value but, as expected, larger 360 

peaks. This scenario is intended to reveal the potential of extreme high precipitation influencing 361 

the water and carbon fluxes, which has been previously found to be important especially in water 362 

limited ecosystems [Knapp et al., 2008]. Similar to the first case, the annual totals of precipitation 363 

are standardized to preserve interannual variability.  364 

The fourth precipitation scenario (case 7) unfolds the significance of the storm event precipitation 365 

depth. To separate the effect of the precipitation distribution within the event, and the potential 366 

influence of its peaks, synthetic precipitation series are constructed using the following integral  367 

   
 ( )   

 

 
∫  ( )  
      

     

  Eq 4 

where,  ( ) and   
 ( ) are the observed and simulated precipitation depths respectively. Choosing 368 

  comparable to a typical storm size, and smaller than the inter-storm period, the resulting 369 

precipitation is structured in distinct precipitation events, with comparable cumulative 370 

precipitation depths and durations to the observed ones (per storm), but reduced peaks. For all 371 

sites,      h is selected. This scenario reveals to what extent the precipitation amount of events 372 

rather than the sub-event structure influence the functioning of the ecosystems [Heisler-White et 373 

al., 2008]. In this case, the inter-annual variability of precipitation is also preserved. 374 
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3.2.3 Temperature 375 

In contrast to precipitation, air temperature fluctuations are dominated by the 2 dominant modes, 376 

the seasonal and the diurnal, which explain much of the total air temperature variance. The rest of 377 

the variability consists of high frequency fluctuations (hours-days) associated with weather 378 

patterns and low frequency fluctuations (interannual and beyond) linked to phenomena such as 379 

the El-Niño Southern oscillation [Gu and Adler, 2011].  380 

Temperature variability is investigated at the hourly and the interannual scales. For this reason, 3 381 

different scenarios are constructed. In the first scenario (case 8), the correlation pattern of 382 

temperature at the hourly scale is altered: the series is randomized in the same fashion as for the 383 

precipitation case 4, preserving the diurnal and seasonal patterns as well as the marginal 384 

distribution of temperature. With this case, we explore whether persistence of temperature can 385 

alter ecosystem functioning. Moreover, the effect of the cross-correlations of temperature with the 386 

rest of the climatic forcing is also investigated, since cross-correlation is altered as well. To 387 

isolate the effect of the short scale correlations, the mean annual temperatures are set equal to 388 

those of the observed series to preserve interannual variability consistent with the measurements.  389 

In the second temperature scenario (case 9), interannual variability of temperature is removed 390 

using a procedure similar to Eq 2. In this case, the effect of the intra-annual variability of 391 

temperature is isolated by removing the effects of long-term variations found to be significant in 392 

temperature limited ecosystems [Tian et al., 1998; Babst et al., 2013]. 393 

Finally, a moving average filtering to the temperature series identical to Eq 4 is implemented for 394 

the third temperature scenario (case 10). In this case, the distribution of the temperature is 395 

modified by smoothing warm and cold fluctuations occurring over short periods, while keeping 396 

the seasonal patterns of temperature unchanged. This case can reveal whether or not the 397 

probability density function of temperature significantly impacts water and carbon fluxes. Since 398 

the response of ecosystems to climatic forcing is in general non-linear, any reduction in 399 

temperature extremes may have an impact, difficult to predict a priori, and is explored here. As 400 

before, interannual variability of temperature is also preserved. 401 

3.2.4 Radiation 402 

The last climatic variable to be investigated is incoming shortwave radiation at the land-surface. 403 

The statistics of the radiation time series are similar to that of temperature, with the two major 404 

modes of variability being the seasonal and diurnal. Small-scale variability is linked to weather, 405 

with cloud formation reducing the amount of direct radiation from its expected clear-sky value. 406 
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Large-scale interannual variability is relatively low, and can be associated with anthropogenic 407 

aerosol emissions and volcanic eruptions [Wild et al., 2005; Norris and Wild, 2007].  408 

In the case of radiation, two different scenarios similar to the temperature cases are constructed. 409 

In the first one (case 11), the correlation structure is removed but the observed radiation 410 

interannual, seasonal, and daily variability are preserved; in the second radiation scenario (case 411 

12), the interannual variability is removed. 412 

3.3 Statistical evaluation of the simulations 413 

The objective here is a systematic exploration of cross-scale information flow from small scale 414 

climatic fluctuations to long-term carbon/water fluxes in various ecosystems. In particular, how 415 

short-term variability in precipitation, air temperature, and incident radiation translates to 416 

variability in water and carbon fluxes across temporal scales is explored.  417 

3.3.1 Interannual variability of water and carbon fluxes 418 

The effects of interannual and short scale temporal variability of hydrometeorologic forcing on 419 

the “climatology” of    and carbon assimilation are considered focusing on three aspects: (a) the 420 

mean values at the annual scale, (b) their variance, and (c) the “shape” of interannual fluxes, i.e., 421 

the temporal pattern of the multi-year fluctuations. A scheme of the analysis approach for water 422 

and carbon fluxes at the annual scale is presented in Figure 2. The three aspects are referenced to 423 

the control scenario, which uses the measured meteorological inputs.  The evaluation of potential 424 

differences in the mean values and standard deviation for each scenario is presented (Figure 2). 425 

The correlation coefficient between annual time series of the control simulation and the time 426 

series obtained using the input scenarios is also investigated. This analysis provides a direct 427 

metric of the relative impact of the perturbed meteorological forcing statistics in modifying inter-428 

annual variability of a given variable. In other words, given that each of the synthetic input 429 

scenarios alters only one property of the interannual or short scale variability of the 430 

meteorological input, the impact of that specific property on the inter-annual variability of the 431 

water and carbon fluxes can be assessed as a reduced cross-correlation. The fluxes explored here 432 

are:   , the partition of    into evaporation and transpiration, and gross primary production 433 

   . We chose to analyze    , representing the gross carbon assimilation, rather than Net 434 

Ecosystem exchange (   ), which could be possibly a better descriptor of the total carbon 435 

balance of each ecosystem due to the large uncertainties involved in the simulation (and 436 

measurements) of ecosystem respiration components, especially those describing below ground 437 

heterotrophic respiration [Vargas et al., 2010]. 438 
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3.3.2 Spectral analysis 439 

To quantify the influence of each of the investigated characteristics of climate variability on the 440 

modeled water and carbon fluxes across scales, the coherence spectrum between two time series 441 

is employed. The squared coherence spectrum between two series  ( ) and  ( ) is defined as: 442 

    ( )  
|   ( )|

 

   ( )   ( )
 , Eq 5 

where   is the frequency,    ( ) is the cross spectral density between the two series, and 443 

   ( )    ( ) are the spectral densities of   ( ) and  ( ), respectively. The    ( ) is bounded 444 

(i.e., ,   -). The coherence spectrum shows the similarity between  (t) and  ( ) in the frequency 445 

domain. It is therefore a suitable technique to analyze signals across a wide range of temporal 446 

scales. The coherence spectra are estimated using the Fast Fourier Transform (   ) [Press et al., 447 

1992; Baldocchi et al., 2000].  Post processing includes the use of a modified Welch's overlapped 448 

averaged periodogram method. All the calculations were performed in Matlab. Alternative 449 

estimations, which are based on the wavelet decomposition also exist, and are gaining popularity 450 

in data analysis and model comparisons in ecological and climate studies but are not used here 451 

[Torrence and Compo, 1998; Katul et al., 2001; Dietze et al., 2011; Stoy et al., 2013].  452 

Coherence spectra of simulated variables are computed using the control simulation ( ( )) and 453 

each of the 12 input scenarios ( ( )). The frequencies at which coherence exhibits low values 454 

can be interpreted as the temporal scales in which the influence of the modified characteristic of 455 

forcing variability is significant. Due to the system nonlinearities and feedbacks between the 456 

processes controlling the water and carbon cycles, it is not expected that the impact of 457 

perturbations of meteorological inputs that are imposed at the highest frequency (1 hour) will 458 

monotonically decrease with increasing temporal scales. The coherence spectra can be used as a 459 

tool to identify in which cases short scale temporal variability of the meteorological forcing has 460 

the potential to affect water and carbon at larger scales, e.g., at the inter-annual level (section 461 

3.3.1), and provide clues to a mechanistic explanation as to why such dependencies occur. A 462 

caveat related to the coherence spectra analysis is that an assessment of the “signal similarity” at 463 

low frequencies is highly impacted by the length of the analyzed series. For this reason the linear 464 

correlation analysis described before can serve as a complementary analysis to the coherence 465 

spectra.   466 

The scales in the coherence spectral analyses considered span from 1 hour (i.e., the frequency of 467 

the simulations) up to few months. Coherence estimates for coarser scales are unreliable due to 468 
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the limited simulation length, which is restricted by the meteorological data availability for each 469 

site.   470 

4 Results and Discussion 471 

4.1 Presentation of the results  472 

The results of the two types of analyses are presented – the correlation analysis that is 473 

conceptually presented in Figure 2 and the squared-coherence analysis that emphasizes 474 

information propagation across temporal scales from „forcing‟ (3 climatic variables with various 475 

statistical structure) to „response‟ (mainly    and    ).  Figures 3-4 present the outcome of the 476 

correlation analysis for each ecosystem, emphasizing the interannual variability of the fluxes, 477 

while Figures 5 to 8 suggest connections or interpretations between forcing and response 478 

variables specific to a given ecosystem and across seasons expanding on the results shown in 479 

Figures 3-4. Figure 9 summarizes the outcome of the squared coherence analysis across sites and 480 

by response variable. Additional information that yield outcomes similar to the ones in the 481 

aforementioned figures are only included in the Supplementary Material.  For clarity, we report 482 

only the first subcase of the perturbation 3 (Table 1) in all figures. In this subcase, precipitation, 483 

temperature and radiation were randomized using the same time index, i.e., preserving the 484 

covariance (section 3.2.1). For all fluxes and stations considered, there was not substantial 485 

difference between the 2 subcases indicating that destroying the conditional probability 486 

distributions between precipitation, temperature and radiation does not add much to the alteration 487 

of their auto-correlations. For completeness, results from the second subcase are reported in the 488 

Supplementary Material.  489 

4.2 Water-limited ecosystem (Lucky Hills) 490 

Lucky Hills site represents a water-limited ecosystem. The mean values of    at the annual time 491 

scales are almost equal for all input scenarios (Figure 3a). These findings are consistent with 492 

expectations as the site is located in the water-limited regime where potential evapotranspiration 493 

         [Fatichi and Ivanov, 2014] according to the Budyko‟s curve. Water losses due to 494 

surface runoff and leakage to the deep soil layers are small for this location (≈ 2-20 mm year
-1

). 495 

This fact explains the reason why the basic determinant of the shape of inter-annual fluctuations 496 

of    is the total annual precipitation depth. This finding is further illustrated by the low value of 497 

the correlation coefficient between the annual fluxes of    estimated for the control scenario, and 498 

the case 5 with no inter-annual variability (IAV) of annual precipitation (Figure 3a). 499 
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Although precipitation variability does not influence the total annual    flux, it affects the 500 

partitioning between evaporation and transpiration (Figure 3c-d). Both the total amount of annual 501 

precipitation and precipitation structure at short temporal scales impact the partition between 502 

ground evaporation and transpiration because precipitation intensity affects interception and soil 503 

moisture vertical distribution. This has a net effect on the composition of the    flux.  504 

Scenarios that impose a loss in the internal correlation and intermittency structure of precipitation 505 

(Figure 3c; cases 3-4) or a periodic input (Figure 3c; case 2) lead to increased evaporation from 506 

interception and bare soil evaporation losses. The reason for larger evaporation from interception 507 

is that when precipitation events are not sufficiently large (cases 2, 3, and 4), higher amounts of 508 

water are intercepted by the canopy. The reason for enhanced bare soil evaporation is deemed to 509 

be related to how precipitation wets the soil column. For water to penetrate deeper into the soil 510 

and become available for root uptake, large precipitation pulses are required. In the absence of 511 

well-structured precipitation events (i.e. precipitation events that last long to accumulate a 512 

significant amount of water), infiltrated water is mostly in the top soil layer and dissipated mostly 513 

as evaporation from the soil surface.  514 

The way precipitation structure determines water availability in the root zone subsequently affects 515 

root access to water, and thus transpiration. As shown in Figure 3d (cases 2-4), when evaporation 516 

becomes the dominant flux, less water is available for plant uptake and transpiration. Total 517 

precipitation and precipitation structure are significant for determining transpiration at the annual 518 

scale, as shown by the low values of the correlation coefficient between precipitation and 519 

transpiration in Figure 3d (cases 2-4).  520 

The way precipitation structure at the short temporal scales affects the partition of    into its 521 

components has been found to be similar in terms of patterns across all ecosystems analyzed. For 522 

this reason, the partition discussed in detail for the case of Lucky Hills is not further repeated in 523 

later sections. A detailed quantification of this effect is given in the Supplementary Material. 524 

Annual total and precipitation structure at the finest temporal scales have also a major influence 525 

on carbon assimilation. Due to the linkage between photosynthesis and transpiration through 526 

stomatal conductance, the behavior of inter-annual variability of     is similar to that of 527 

transpiration (Figure 3b). Short scale variability of precipitation affects root zone water content 528 

and, specifically, the time fraction that vegetation is under water-stress (Figure 5) defined here as 529 

the percentage of time during which the integrated soil water content in the root zone is below the 530 

water content threshold at which stomata begin to close. Similar to transpiration, carbon 531 
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assimilation is lower whenever the soil water conditions are not favorable for vegetation over 532 

longer periods. For the semi-arid location of Lucky Hills, this occurs when either the intermittent 533 

nature of precipitation is not taken into account (i.e., input scenario with periodic precipitation), 534 

or whenever discrete precipitation events (i.e., input scenario with no correlation structure) cannot 535 

wet the root zone sufficiently deep (Figure 3b; cases 2-4). This result is also consistent with 536 

previous modeling studies, which showed a significant dependence between the storm arrival 537 

rates, the event precipitation depths, and vegetation productivity [Ridolfi et al., 2000; Daly et al., 538 

2004; Porporato et al., 2004]. 539 

An interesting feedback is the increase in leaf area index LAI due to enhanced GPP, which can 540 

then lead to potential reductions in soil moisture. Enhanced GPP can lead to increased LAI, 541 

which in turn increases water loss from interception (due to larger interception capacity) and 542 

transpiration, thus creating less favorable soil water conditions for the plant. This feedback is 543 

generally captured by the model but when it operates at longer multi-year scales, longer term 544 

simulations and an explicit accounting of nutrient dynamics should be carried out, which is not 545 

the case of this study.   546 

How the short temporal scale perturbations in the precipitation time series affect the behavior of 547 

water and carbon fluxes across a range of temporal scales, and how they impact ecosystem 548 

performance at the annual scale is considered for the Lucky Hills site by analyzing the coherence 549 

spectra. The first feature concerning the spectral analysis is the substantial difference of the shape 550 

of the coherence spectra corresponding to the randomization of precipitation, temperature, or 551 

radiation. The effect of the distortion of the short scale variability of radiation and temperature in 552 

general seems to decrease with increasing scale, as illustrated by the increasing value of the 553 

squared coherence with decreasing frequencies (Figure 9c-f). In contrast, the distortion of 554 

precipitation structure at the highest frequency affects the behavior of the water and carbon fluxes 555 

also at lower frequencies. The explanation for this behavior is that radiation and temperature 556 

affect immediately (i.e., at the same time scale) the biochemical processes related to 557 

photosynthesis and the biophysical process of evapotranspiration. Conversely, precipitation 558 

structure at the finest scale can alter the availability of water in the root zone, which impacts 559 

transpiration and    . The movement of water in the soil profile has a much longer characteristic 560 

time scale (~days) in comparison to the imposed distortions at the short time scale by the 561 

precipitation structure (hours) [Katul et al., 2007a; Nakai et al., 2014]. For this reason, lower 562 

squared coherences occur at lower frequencies despite the distortion is only introduced at the 563 

highest frequencies. This remarks the potential of the short scale variability of precipitation to 564 
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impact the behavior of carbon and water fluxes at much longer time scales.  Temperature and 565 

radiation, both in terms of annual means and short scale temporal structure, play only a minor role 566 

on the ecosystem functioning since they rarely represent limiting factors.   567 

The findings presented here provide mechanistic explanations of the importance of precipitation 568 

pulse structure (amounts, organization, and recurrence) for ecosystem functioning, which has 569 

been empirically observed in many semi-arid and desert ecosystems [Noy-Meir, 1973; Huxman et 570 

al., 2004b; Loik et al., 2004; Nagler et al., 2007; Williams et al., 2009].  571 

4.3 Temperature-limited Ecosystem (UMBS) 572 

The second ecosystem investigated here is the deciduous forest located near the University of 573 

Michigan Biological Station. The ecosystem is hypothesized to be primarily limited by low air 574 

temperature and, to a smaller degree, by water and radiation.  575 

   at the annual time scale is primarily influenced by the short scale variability in precipitation, 576 

and, to a less extent, by the temperature variability (Figure 4 a1, all cases). The shape of the IAV 577 

of   , expressed as the loss of correlation between the output of the control simulation and the 578 

simulations with the considered scenarios, is influenced both by precipitation and temperature 579 

variability. Specifically, the differences in the magnitude of    at the annual time scale, which 580 

are as high as 20% (Figure 4 a1, cases 3-12), are primarily driven by the abiotic process of 581 

evaporation of water intercepted by the canopy and bare soil evaporation (See Supplementary 582 

Material). Since UMBS is not in a water-limiting regime (based on the Budyko curve),    is not 583 

strictly limited by the total amount of annual precipitation (e.g., no loss of correlation for case 5).  584 

However, ET can be sensitive to precipitation variability. The mechanisms that impact    at the 585 

annual time scale are due to precipitation interception by canopy, and bare soil evaporation from 586 

the upper soil layer. The input scenarios leading to enhanced evaporation from soil and canopy 587 

are the ones where precipitation is not structured in distinct events (Figure 4 a1, cases 2, 3, and 4). 588 

Since soil water availability is limiting vegetation at the UMBS only rarely, changes in 589 

transpiration flux have a minor influence on    (Supplementary Material). 590 

The mean annual gross primary production is essentially identical for all the forcing scenarios 591 

with the exception of one where variability in all of the input types of forcing is neglected (Figure 592 

4 b1, case 2). In particular, the loss of temperature variability at the shortest scale enhances 593 

annual     (Figure 4 b1, case 2). The reason for this     enhancement is the nonlinear response 594 

of photosynthesis to leaf temperature, where photosynthesis is defined here as the gross 595 

assimilation of carbon per unit leaf area [Wohlfahrt and Gu, 2015], (Figure 6). Photosynthesis has 596 
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a steep increase with increasing temperature at low leaf temperatures and reaches a plateau 597 

around the optimal temperature for carbon assimilation. Furthermore, the temperature distribution 598 

at UMBS lies between the steep response regime and the plateau. This implies that time 599 

averaging (indicated by the overline) results in    (  )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅       (  ̅)  At the UMBS, this 600 

inequality is often satisfied during summer when productivity is maximum, and removing cold 601 

spells (as done in case 2) results in a considerable enhancement of    . The contributions of 602 

precipitation and radiation variability are negligible. 603 

The shape of the IAV of     is almost uniquely determined by the mean annual temperature 604 

(Figure 4b1, case 9). Standardization of the annual fluxes in terms of temperature leads to a 605 

complete loss of correlation between the annual fluxes of     of the control and synthetic input 606 

scenarios (case 9). Using the mean growing season temperature, rather than the mean annual 607 

temperature, a more appropriate choice since the UMBS forest is deciduous does not affect the 608 

finding, since the mean annual and the mean growing season temperature are highly correlated 609 

(not shown here). Short temporal scale variability of temperature at the UMBS is unlikely to 610 

influence the annual behavior of carbon fluxes since it does not result in long lasting effects (i.e. 611 

no information transfer from small to large scales). Temperature variability at the shortest 612 

temporal scale mostly affects the biochemical processes of photosynthesis that operate at the 613 

same scale. This does not influence processes with long-memory (i.e., temperature effects are not 614 

“stored” in the system), thus the impact of hourly temperature variability to the variability of     615 

across scales decreases rapidly with increasing temporal scale. An illustrated signature of this 616 

finding is the increased squared coherence between     of the control input (case 1) and the 617 

random input (case 8) at lower frequencies (Figure 9d). Temperature effects could potentially be 618 

“stored” in the ecosystem, if plant reproduction would be considered (e.g. Carbon assimilation 619 

affected by temperature in one year may influence the survival of the following offspring etc.). 620 

However, since reproduction is neglected in present paper, further discussion is not provided. 621 

4.4 Radiation-limited Ecosystem (Manaus) 622 

The tropical rainforest located close to Manaus is an ecosystem expected to be primarily limited 623 

by radiation availability, given the high temperatures throughout the year, the high precipitation, 624 

and the longer root system that gives access to deep soil water (with the assumed root depth equal 625 

to 10 m). The mean annual    losses in Manaus are affected by the short scale temporal 626 

variability of precipitation and temperature, but not by radiation (no change in annual magnitude 627 

for cases 11 and 12). Similar to the UMBS site, the loss of short scale correlation in the forcing 628 

series leading to unstructured rainfall without distinct storms (Figure 4a2; cases 2, 3, and 4) 629 
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results in higher   , primarily due to abiotic contributions (see the Supplementary Material).  630 

The reduction of precipitation peaks lead to higher    due to the higher amount of water 631 

intercepted by the canopy that can evaporate before reaching the ground. This effect is more 632 

pronounced at this site due to the relatively high leaf area index (i.e. higher interception capacity) 633 

and the year-long growing season, which both imply higher evaporation from interception 634 

storage, when compared to the other sites. Even though precipitation and temperature variability 635 

can influence the mean annual   , they have no impact on the shape of the IAV of   . In other 636 

words, differences in the short scale precipitation or temperature structure can shift the time series 637 

of the annual fluxes of    without changing its shape.  638 

Short scale temporal variability of radiation has no appreciable effect on the IAV of   . 639 

However, the mean annual incoming radiation affects the shape of the IAV of   . This is 640 

illustrated by the loss of correlation between annual fluxes of    as modeled for the control 641 

scenario, and input scenarios in which the IAV of incoming radiation is suppressed (Figure 4a2, 642 

case 12). 643 

The mean values of     are similar for all the input scenarios, except the scenario in which 644 

variability of all of the meteorological parameters is neglected. In this case,     is enhanced 645 

(~14%). The reason for this enhancement of     is similar to the one for the UMBS case related 646 

to temperature, but in this case with radiation being the more limiting hydrometeorological 647 

variable. Photosynthesis is affected in a nonlinear manner by incoming shortwave radiation and in 648 

particular by     (photosynthetically active radiation over 400-700 nm wavelength range). In 649 

tropical rainforests, overcast conditions occurring during wet seasons can substantially limit 650 

photosynthesis. The dynamic effects of cloudiness cannot be captured when radiation variability 651 

at the hourly scale is neglected (Figure 4b2, case 2). Furthermore, due to the concave nonlinearity 652 

of the response of photosynthesis to incident    , it follows that    (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     (   ̅̅ ̅̅ ̅̅ ) (see 653 

also Medvigy et al., [2010]). 654 

Similar to   , the shape of the IAV of     is solely influenced by the mean annual magnitude of 655 

incoming radiation.  This influence is best illustrated by a low correlation coefficient between the 656 

annual fluxes of     of the control scenario and the input scenario in which interannual 657 

variability of incoming radiation is neglected (Figure 4b2, case 12). Short temporal scale 658 

variability has no appreciable influence on the large temporal scale fluctuations in carbon 659 

assimilation. The reason is that radiation influences photosynthesis almost immediately at short 660 

scales and no residual contribution of such short scale radiation variability is retained at long time 661 
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scales. In other words, there is no considerable long-term “storage” of the radiation effects in this 662 

ecosystem, for instance through changes in leaf area index (that is close to maximum here), forest 663 

structure and composition (which are assumed static), or transpiration that would affect soil 664 

moisture. The short scale discrepancies of     introduced through the short scale distortions in 665 

the radiation series cannot propagate to larger temporal scales such as the IAV. An indication of 666 

the reduction of influence of the short scale radiation variability on carbon and water fluxes is the 667 

nearly monotonic increase of coherence with scale between the time series of     of the control 668 

case and of the synthetic case 11 (Figure 9e-f). Due to the short range of frequencies for which 669 

the coherence can be estimated (due to the limited amount of input data, Figure 9), we cannot 670 

compute the behavior of coherence up to the annual scale.  671 

4.5 Co-limited Ecosystem (SMEAR II) 672 

The boreal forest in Finland is limited by two main environmental factors: low temperatures and 673 

relatively low precipitation. Boreal forests are also known to be nitrogen limited but this 674 

limitation is outside the scope of this study. The nitrogen limitation effects are partially accounted 675 

for in the sensitivity of the maximum carboxylation capacity to temperature. However, the IAV of 676 

the nitrogen cycle is not considered.  677 

   fluxes at the annual scale are influenced by the short scale variability of precipitation and 678 

temperature, but are almost insensitive to radiation variability (no change in annual magnitude for 679 

cases 11 and 12), even though the site is located at a high latitude and thus radiation is 680 

theoretically a limiting resource for ecosystem functioning. Similarly to the sites considered 681 

previously, input scenarios that disrupt precipitation structure, and especially its organization into 682 

distinct storm events, generally lead to the enhanced    fluxes, primarily due to abiotic 683 

contributions (Figure 4a3). Further, a loss of correlation of the temperature at the hourly time 684 

scale leads to a small decrease in   . Notably, in terms of variability of    fluxes at the annual 685 

scale, most of the features of variability of precipitation and temperature contribute to the shape 686 

of IAV of   , as illustrated by the low correlation coefficients between the control simulation 687 

and scenarios 3-10 (Figure 4a3). The most important features of precipitation forcing are its 688 

correlation structure, its distribution - with emphasis on peaks, and the magnitude of annual 689 

precipitation. In terms of temperature, the annual temperature and, to a smaller degree, the 690 

temperature correlation structure at the fine temporal scales play a role in ecosystem ET. This 691 

result illustrates that the predictive power of relations linking annual temperatures or annual 692 

precipitation to the IAV of    will perform very poorly for this site. 693 
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Carbon assimilation is also affected by both precipitation and temperature variability. In terms of 694 

mean values, the loss of correlation structure of precipitation or temperature leads to a small 695 

increase in     (up to 10%, case 3). Conversely, a decrease or an increase in precipitation peaks 696 

leads to a small reduction in    . The reason for these responses is that the short scale temporal 697 

variability of precipitation and temperature can influence soil water balance, and since water 698 

availability may be limiting at this site, it can affect the duration during which vegetation is under 699 

water stress (particularly during summer, Figure 7). The results from this site support the notion 700 

that the effects of short scale variability in precipitation and temperature can propagate across 701 

scales and influence the IAV of water and carbon fluxes, but only if mediated through a storage 702 

term (e.g., through the water availability in the root zone).  703 

4.6 Non-limited Ecosystem (Duke Forest sites) 704 

A deciduous hardwood and an evergreen pine forests co-located within the Duke forest are 705 

studied in the last analysis. For clarity, only the results for pine stand are presented due to their 706 

similarities with the hardwood forest. Detailed results for the hardwood forest can be found in the 707 

Supplementary Material. Temperatures in the Duke forest are reasonably high, such that they do 708 

not hamper photosynthesis substantially during periods of leaf presence, and frost occurrence is 709 

rare. Precipitation is sufficient to satisfy plant demand, with the exception of few intense but rare 710 

drought events [Palmroth et al., 2005]. Because of this, we characterize the system as „non-711 

limited‟. In Duke forest, vegetation has been found to be mostly nitrogen limited [Oren et al., 712 

2001; Palmroth et al., 2013] but since T&C does not simulate soil biogeochemistry and nitrogen 713 

cycles, we cannot currently investigate the effect of this limitation. 714 

The mean annual    of the Duke forest is sensitive to both precipitation and air temperature 715 

variability. In general, as was the case with the ecosystems considered previously, whenever 716 

precipitation is not well structured into distinct events, bare soil evaporation and evaporation of 717 

intercepted water from the canopy can substantially increase the total    (Figure 4a4; cases 2-4). 718 

The most important feature is that the loss of correlation of    fluxes at the annual scale between 719 

the control simulation and the rest of the scenarios is generally small. This finding suggests that 720 

meteorological variability at the hourly or annual scale only marginally influences the shape of 721 

the IAV of annual    losses. In other word, the large-scale characteristics that are preserved 722 

throughout all the simulations, such as the vegetation phenology, are the major determinants of 723 

the shape of the IAV. The only cases in which there is some loss of correlation is when the IAV 724 

of precipitation is neglected, or when the short scale precipitation structure is destroyed. In those 725 

cases, the correlation coefficient can drop to ~0.7.  726 
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Similar to the annual    fluxes, the mean     fluxes at the annual time scale are affected by 727 

both the variability of precipitation and air temperature, even though the shape of IAV of these 728 

fluxes is substantially unaffected (note the high correlation coefficient in Figure 4b4).  In general, 729 

differences in the magnitude of the mean value of     are below 10%. A common behavior in 730 

both the pine and the hardwood stands is that disabling correlation, both in terms of precipitation 731 

(Figure 4b; case 3) and temperature (Figure 4b; case 8), leads to higher    . When a loss of 732 

correlation at the fine temporal scale for both variables is imposed, the results provide the highest 733 

carbon assimilation. The reason for this small enhancement of     is that the loss of correlation 734 

structure of precipitation and/or temperature at the highest frequencies tends to reduce the period 735 

during which the ecosystem is water-stressed (Figure 8). Even though this time difference is 736 

small, it occurs during the most productive period of the year, and thus translates to a non-737 

negligible difference in carbon assimilation. 738 

4.7 Synthesis 739 

The common mechanisms and their related physical processes linking the hydrometeorological 740 

temporal variability to the variability in water and carbon fluxes and how short-term information 741 

propagates to longer scales are summarized in the following. A schematic representation of the 742 

relevant mechanisms is presented in Figure 10. Variability in precipitation, temperature, and 743 

radiation can have either a direct or an indirect effect on (a) the rate of water infiltration in the 744 

soil, (b) the biochemistry of carbon assimilation and (c) the partition of net radiation into sensible 745 

and latent heat components.  746 

Precipitation variability, and in particular its structure in well-organized events, affects directly 747 

the partition of water into interception, near-surface soil water storage, deep-soil water storage, 748 

and runoff. In general, precipitation organized in concentrated events leads to low interception by 749 

the canopy and a strong percolation of water to deeper soil layers. Further, a large precipitation 750 

depth or intense precipitation in a single event may lead to surface runoff. These differences in 751 

water partition among the various water storage compartments subsequently (and indirectly) 752 

affect the partition of net radiation into sensible and latent heat fluxes. Whenever a larger amount 753 

of water is available at either the canopy surface or in the upper soil layer, the abiotic components 754 

of evaporation (e.g. soil evaporation and evaporation from interception) are enhanced. This can 755 

lead to a lower water availability in deeper soil and thus in the root zone. Water limitations in the 756 

root zone may inhibit vegetation productivity and transpiration due to stomatal closure. The direct 757 

effect of the water flux partitioning and the indirect effect on the energy balance occur at all of 758 
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the sites, while the indirect effect leading to vegetation productivity inhibition occurs only at the 759 

water limited sites, where the soil water potential can drop below the stress threshold level.  760 

Temperature and radiation variability can affect directly the biochemistry and the energy balance 761 

of the ecosystem, and have the potential to indirectly affect the soil water availability. 762 

Leaf/canopy photosynthesis depends non-linearly on both leaf temperature and absorbed 763 

photosynthetic active radiation. Due to this reason, the distribution, rather than the correlation 764 

properties of temperature and radiation, affect carbon assimilation. The lack of importance of the 765 

correlation structure is due to the fact that photosynthesis is a fast process (i.e. responding in the 766 

order of few minutes to temperature and radiation forcing) and thus it does not carry memory 767 

effects. In our study, modifying temperature or radiation distributions had an influence only for 768 

the sites where either temperature or radiation were limiting vegetation productivity (temperature 769 

for UMBS, and SMEAR II; radiation for Manaus). The statistical distribution of temperature and 770 

radiation (e.g. concentration in heat/cold waves, diurnal variability) modifies the relative 771 

contributions of latent and sensible heat fluxes, and thus evaporation, transpiration, and the 772 

distribution of leaf temperature. Such an impact has the potential to modify the soil water 773 

availability and its vertical distribution in the soil profile, potentially affecting root water uptake 774 

and vegetation productivity. This indirect influence of temperature and radiation on soil water 775 

affects subsequently carbon assimilation only if it translates into periods of low soil water 776 

moisture, and thus plant water stress. This was featured when water and temperature were 777 

simultaneously a limiting factor (SMEAR II).     778 

Given the relatively short time span of the simulation period, we did not investigate the dynamics 779 

of nutrient limitations, species composition, forest demography (time scale ~years). However, 780 

these are additional low frequency processes, which could potentially propagate information at 781 

even longer time scales.  782 

4.8 Study limitations and perspectives 783 

The numerical analysis provided here has limitations that need to be discussed and form open 784 

questions for future research.  785 

First of all, the results are based on model simulations only, which have inherent assumptions and 786 

depend on the model structure. Perhaps the most important limitation of the current generation of 787 

ecohydrological and global dynamic vegetation models is the lack of a commonly accepted 788 

mechanistic representation of vegetation growth and stress, mineral nutrition, and long-term 789 

forest demography (mortality, recruitment, seedling survival) [Moorcroft, 2006; Fisher et al., 790 
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2010; Pappas et al., 2013; Xu et al., 2013; Fatichi et al., 2014b; Körner, 2015]. As a result, large 791 

discrepancies have been identified in a number of model inter-comparison projects [Dietze et al., 792 

2011; McDowell et al., 2013; Stoy et al., 2013]. T&C has been found to reproduce well carbon 793 

and water fluxes across temporal scales for many ecosystems (including those considered in this 794 

study). However, interpretations should be considered with necessary caution. The most 795 

important components of ecosystem functioning that are not handled in T&C are (1) detailed soil 796 

biochemistry/plant mineral nutrition, (2) root adaptations to water and mineral resource 797 

limitations, (3) internal plant hydraulics,  (4) forest demography, and (5) hydraulic redistribution. 798 

The first component can potentially provide additional limitations to plant growth and carbon 799 

assimilation. One should note that it also represents a poorly constrained component in carbon 800 

cycle modeling [Todd-Brown et al., 2014]. The second component could add a further restriction 801 

in the interpretation of the results, given that the time scales of root adjustments are comparable 802 

with the simulation length [Joslin et al., 2000; Yuan and Chen, 2010].  The third component may 803 

be important for regulating sub-daily stomatal conductance and water stress but its importance 804 

decreases for longer temporal scales [Bohrer et al., 2005]. The forth component is typically 805 

relevant for time scales larger than ~20 years, but could possibly reflect on our results since 806 

during a “good year”, plants can invest excess carbon to enhanced reproduction, affecting the 807 

survival rates of the next offspring, and thus add an additional influence to the ecosystem 808 

functioning [Peters, 2000; Reichmann et al., 2013]. Additionally, during a “bad” year, increased 809 

mortality can also affect the ecosystem dynamics with long-lasting effects. The last component is 810 

receiving significant attention across a wide range of ecosystems (grasses to plantation forestry) 811 

and climates (temperate, mesic and arid), as reviewed elsewhere [Caldwell and Richards, 1986; 812 

Mendel et al., 2002; Amenu and Kumar, 2008; Siqueira et al., 2009; Neumann and Cardon, 2012; 813 

Volpe et al., 2013; Manoli et al., 2014], but its significance at the ecosystem scale is hard to 814 

establish because of limited observations.   815 

Second, the input scenarios for this analysis correspond to synthetic cases in which input 816 

variables have been constructed to preserve specific statistical characteristics. The choices were 817 

dictated by the goal of investigating individual aspects such as short-term or IAV of precipitation, 818 

temperature, and radiation without confounding effects. In this sense, the constructed scenarios 819 

cannot strictly correspond to realistic observable cases, but are rather intended to provide results 820 

concerning ecosystem functioning that can be unfolded from natural variability in 821 

hydrometeorological forcing. Frameworks for generating more realistic hydrometeorological 822 

forcing exist and rely on stochastic weather generators [Fatichi et al., 2011; Paschalis et al., 823 
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2013] that can be also tuned to reproduce the findings of the latest climate research, integrating 824 

also the effect of anthropogenic CO2 emissions.  825 

Finally, while diverse in vegetation type and climatic conditions, the number of ecosystems 826 

considered here is limited and falls short of providing a general picture of all ecosystem 827 

functions. To assess the global effect of short-term climatic variability on water and carbon fluxes 828 

worldwide, a similar framework can be replicated in a global model or calibrating the model in 829 

the entire dataset of observation networks such as FluxNet [Wilson et al., 2002; Bonan et al., 830 

2012].       831 

5 Conclusions 832 

The effect of short temporal scale (hourly-scale) and inter-annual variability of precipitation, 833 

temperature, and radiation on the water and carbon fluxes for six ecosystems representing a range 834 

of hydrometeorologic conditions has been explored. Numerical experiments were constructed in 835 

which one key feature of the variability of the three major meteorological variables was perturbed 836 

or statistically distorted from its observational (or reference) record. Subsequently a state-of-the-837 

science mechanistic ecohydrological model was used as a process-based “filter” to link each of 838 

the perturbed climatic variables to ecosystem performance in terms of water and carbon fluxes. 839 

Based on results of these simulations, the effects of each distinct feature of the meteorological 840 

variability were analyzed. In particular, we focused on the interannual variability of    and    . 841 

With aid of spectral analysis, we highlighted the manner in which small-scale temporal variability 842 

of hydro-meteorological input propagates across scales to alter the ecosystem response in terms 843 

of water and carbon cycles. 844 

The most significant result is that short-scale variability of hydrometeorological forcing can 845 

impact carbon and water fluxes across a range of temporal scales, being primarily linked to the 846 

main resource limiting a given ecosystem. In particular: 847 

(a) Precipitation structure at the fine temporal scales and, specifically, its intermittency impact the 848 

interannual variability of    across all sites. Whenever water is not a strong limiting factor, 849 

significant effects on annual    magnitude occur due to changes in various statistical components 850 

of the precipitation structure. Further, these changes cause significant impact on    partition 851 

between evaporation and transpiration across all the sites, with the influence of abiotic processes 852 

playing the major role. This result demonstrates the fundamental role of the so called „pulse 853 
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structure‟ of precipitation, and illustrates its importance across all ecosystems, not necessarily 854 

constrained to water-limited regimes.  855 

(b) Temperature variability can affect water and carbon fluxes only in ecosystems where 856 

temperature is a major limiting factor for the leaf-level biochemical processes, thus affecting 857 

carbon assimilation. Since photosynthesis responds at the same time scale as fine-scale 858 

fluctuations of temperature, short-scale variability in temperature can affect the total annual 859 

carbon assimilation, but the long-scale fluctuations of carbon fluxes (expressed in this study as 860 

the shape of interannual fluxes of    ) are primarily affected by the long-scale fluctuations of 861 

temperature (e.g., its interannual variability). Short scale temporal variability of air temperature 862 

can affect the shape of inter-annual fluxes of     only if it can affect the root zone soil water 863 

availability and increase or decrease the duration of water-stress periods. This occurs when co-864 

limitation of water and temperature takes place. 865 

(c) Radiation variability can affect water and carbon fluxes in a similar manner to temperature. 866 

Radiation affects evaporation, transpiration, and photosynthesis at the highest frequency regime, 867 

and for this reason, radiation variability at the shortest scale does not influence the low frequency 868 

responses of water and carbon fluxes (e.g., inter-annual variability), which may be instead 869 

affected by the low frequency fluctuations of the radiative forcing, in radiation limited sites.   870 

Supplementary Material 871 

In the supplementary material accompanying this article, we provide the results for inter-annual 872 

variability for   , Evaporation, Transpiration, Gross and Aboveground Net Primary Production 873 

across all the sites in tabulated form, and a series of figures presenting model validation for each 874 

location.  875 
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List of Tables 

 

Table 1: Summary of the meteorological input scenarios 

 

 Input Scenarios   

 

Combined cases   

1 Control Scenario:  Observed Data 

2 Periodic Input:  All inputs preserve only the diurnal and seasonal variability of precipitation, 

temperature, and radiation 

3 Randomized Input:  Precipitation, temperature, and incoming radiation are simultaneously 

randomized by sampling without replacement, while preserving the seasonal 

and diurnal cycle and their conditional distributions 

 Precipitation   

4 Randomized precip.: Precipitation is randomized with sampling without replacement, while 

preserving the interannual, seasonal and diurnal cycles 

5 No IAV of precip.: Interannual variability of precipitation is removed from the observed time 

series 

6 More peaky precip.: Precipitation peaks are enhanced by employing a probability transform, while 

preserving the interannual variability of precipitation 

7 Less peaky precip.: Peaks of precipitation are reduced by applying a moving average filter of 12 

hours. The interannual variability, and approximately the distribution of depth 

per event is preserved 

 Temperature   

8 Randomized temperature: Temperature series are randomized with sampling without replacement, while 

preserving the interannual, seasonal, and diurnal cycles 

9 No IAV of temperature: Interannual variability of temperature is removed from the observed time 

series 

10 Less extreme temperature: 
 A moving average filter of 12 hours is applied to the temperature time series 

 Radiation   

11 Randomized radiation: Radiation series are randomized with sampling without replacement, while 

preserving the interannual, seasonal, and diurnal cycles 

12 No IAV of radiation: Interannual variability of radiation is removed from the observed time series 
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List of Figures 

 

Figure 1: (a) Water use efficiency (   ) and light use efficiency (   ) defined as the ratios of annual 

    to annual transpiration and annual incoming photosynthetic active radiation, respectively, and (b) 

Mean annual precipitation and mean annual air temperature (MAT) for the analyzed stations. Errorbars 

correspond to the annual standard deviations. 
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Figure 2: A schematic representation of the statistical evaluation presented in Figures 3-4: μ stands for 

mean value, σ is the standard deviation, and ρ is the correlation coefficient between series (a) and (b). 
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Figure 3: Interannual statistics for the Lucky Hills station for (a) Evapotranspiration, (b) Gross Primary 

Production of the evergreen shrubs (creosote bush), (c) Evaporation, and (d) Transpiration of the 

evergreen shrubs. The lower part of each panel shows the mean value (bars) and the standard deviation 

(errorbars) for the 12 different meteorological input scenarios. Input scenarios related to perturbing 

precipitation only are marked as blue, input scenarios related to perturbing temperature only are shown in 

yellow, and input scenarios related to perturbing radiation only are shown in green. The upper part of 

each panel shows the correlation coefficient between the output of each scenario for a given variable at 

the annual scale, and the output of the simulation of the control scenario (1). Correlation values  [-] are 

shown for the cases (3-12). For case the 1, it is trivial that  =1. 
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Figure 4: Same as Figure 3 but for the other sites. In this Figure only the panels of (a) Evapotranspiration, 

and (b) Gross Primary Production are shown. Subscripts 1-4 refer to the (1) UMBS, (2) Manaus, (3) 

SMEAR II, and (4) Duke Forest sites respectively. 
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Figure 5: Analysis of the plant water stress for the Lucky Hills site (see section 4.2). The four panels 

represent the four seasons. The upper panels (a1, b1, c1, d1) show the percentage of time vegetation is 

under water stress for the four different precipitation input scenarios (cases 1-2-4-6 in Figure 3). The 

lower panels (a2, b2, c2, d2) show a boxplot of the soil moisture integrated in the root zone. Boxes 

represent the 25%-75% percentiles, bars the 10%-90% percentiles, circles show the mean value, and stars 

show the median value. 
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Figure 6: Response gross photosynthesis (  ) to absorbed photosynthetic active radiation (    ) and 

leaf temperature ( ) as estimated by the model. The contours show    according to the colorbar. The 

photosynthesis biochemical parameters are the same as the parametrization of the     representing the 

deciduous forest in UMBS, and for this plot a relative humidity         and an atmospheric CO2 

concentration of 380 ppm were considered. The thick black line shows a normal fit of the probability 

density function of hourly air temperatures during July in UMBS (see section 4.3).  
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Figure 7: Same as Figure 5 but for the SMEAR II site (see section 4.5). The scenarios shown are the 

control scenario (blue, case 1), the scenario with periodic input (red, case 2), the scenario with 

randomized precipitation at the highest frequency (black, case 4), the scenario where precipitation peaks 

are enhanced (green, case 6), and the scenario where temperature is randomized at the higher frequency 

(yellow, case 8).  
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Figure 8: Same as Figure 5 but for the pine plantation in Duke forest (see section 4.6). The scenarios 

shown are the control scenario (blue, case 1), the scenario with randomized precipitation, temperature and 

radiation at the highest frequency (red, case 2), the scenario with randomized precipitation (black, case 4) 

and temperature (green, case 8) at the highest frequency. 
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Figure 9: Squared coherence spectra between the simulated time series of    (a, c, d) and     (b, d, f) 

between the control scenario and the synthetic input scenarios that randomize precipitation (a, b), 

temperature (c, d), and incoming radiation (e, f) at the highest frequency (1 h
-1

). For each panel, the 

atmospheric variable of interest, which is the most important limiting factor for the ecosystem functioning 

is marked as a bold line. 
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Figure 10: A schematic representation of the physical mechanisms explaining the effect of high frequency 

hydrometeorological variability on water/carbon fluxes, and transfer of variability across temporal scales. 

This article is protected by copyright. All rights reserved.



0 0.1 0.2 0.3 0.4 0.5
1

2

3

4

5

6
x 10

−3

Light use efficiency [mol C / mol PPFD]

W
at

er
 u

se
 e

ffi
ci

en
cy

 [g
 C

/g
H

2O
]

 

 UMBS
Lucky Hills
Duke Hardwood
Duke Pine
SMEAR II
Manaus

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

Annual Precip [mmy−1]

M
A

T
 [o C

]

 

 
(a) (b)

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



0

0.05

0.1

0.15

0.2

0.25

S
oi

l M
oi

st
ur

e 
[m

3 m
−

3 ]

 

 

Control Periodic Random precip. Peak Precip

0

50

100
DJF

%
 w

at
er

 s
tr

es
s

MAM JJA SON

(d1)

(d2)

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

This article is protected by copyright. All rights reserved.



T [oC]

A
P

A
R

 [W
m

−
2 ]

Gross Photosynthesis [µmolCO
2
m−2s−1]

 

 

−20 −10 0 10 20 30 40
0

100

200

300

400

500

600

700

800

900

1000

0

5

10

15

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
em

pe
ra

tu
re

 P
df

 (
Ju

ly
)

This article is protected by copyright. All rights reserved.



0.1

0.15

0.2

0.25

0.3

 

S
oi

l M
oi

st
ur

e 
[m

3 m
−

3 ]

 

 

Control Periodic Random precip. Peak Precip Random T

0

50

100
DJF

%
 w

at
er

 s
tr

es
s

MAM JJA SON

(a1) (b1) (c1) (d1)

(d2)(c2)(b2)(a2)

This article is protected by copyright. All rights reserved.



0.1

0.2

0.3

0.4

0.5

0.6

θ 
[m

3 m
−

3 ]

 

 

Original Random all Random Precip. Random T

0

10

20

DJF

%
 w

at
er

 s
tr

es
s

MAM JJA SON

(a1) (b1) (c1) (d1)

(d2)(c2)(b2)(a2)

This article is protected by copyright. All rights reserved.



0

0.2

0.4

0.6

0.8

 

C
oh

er
en

ce
 [−

]

 

 

GPP

 

 

0

0.2

0.4

0.6

0.8

1

ET

C
oh

er
en

ce
 [−

]

 

 

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

 

Frequency [h−1]

C
oh

er
en

ce
 [−

]

 

 

10
−3

10
−2

10
−1

Frequency [h−1]

0

0.2

0.4

0.6

0.8

1

ET

C
oh

er
en

ce
 [−

]

 

 

R
an

do
m

 P
re

ci
p.

R
an

do
m

 T
em

pe
ra

tu
re

R
an

do
m

 R
ad

ia
tio

n

SMEARII
UMBS
Lucky Hills
Duke Pine
Manaus

(d)

(f)

(c)

(e)

(a) (b)

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.


