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Development of Enantioselective Palladium-Catalyzed Alkene
Carboalkoxylation Reactions for the Synthesis of Tetrahydrofurans
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Abstract: The Pd-catalyzed coupling of g-hydroxyalkenes
with aryl bromides affords enantiomerically enriched
2-(arylmethyl)tetrahydrofuran derivatives in good yield and
up to 96:4 e.r. This transformation was achieved through the
development of a new TADDOL/2-arylcyclohexanol-derived
chiral phosphite ligand. The transformations are effective with
an array of different aryl bromides, and can be used for the
preparation of products bearing quaternary stereocenters.

Tetrahydrofurans bearing substituents at the C2 position are
prominent moieties displayed in many biologically active
compounds.[1] As such, the asymmetric construction of
tetrahydrofurans is an important challenge in organic syn-
thesis that has attracted considerable attention over the
years.[2]

Our group has previously reported the development of
Pd-catalyzed alkene carboalkoxylation reactions between g-
hydroxyalkenes and aryl or alkenyl halides for the construc-
tion of substituted tetrahydrofurans with high diastereoselec-
tivity.[3–5] These reactions effect formation of the heterocyclic
ring along with a C¢O bond, a C¢C bond, and one or two
stereocenters with high diastereoselectivity. However, the
successful development of an enantioselective variant of these
reactions has remained elusive.[6–9] For example, although we
have illustrated the chiral phosphoramidite ligands (R)- or
(S)-Siphos-PE provided satisfactory results in related asym-
metric alkene carboamination reactions of alkenes bearing
pendant nitrogen nucleophiles,[10] use of these ligands for the
coupling of alcohol 1a with 2-bromonaphthalene led to very
low levels of asymmetric induction [Eq. (1)]. Similarly poor
results were also obtained with a variety of other chiral
phosphine and phosphoramidite ligands.

During the course of a rather extensive screen of chiral
ligands, we encountered a promising lead result. As shown in
Table 1, a chiral phosphite ligand L1 derived from (S,S)-
TADDOL and (¢)-menthol, afforded the desired product 2a
in 72% yield with 81:19 e.r. We sought to further optimize this
result through modification of this ligand, which can easily be
prepared from a TADDOL and a chiral alcohol.[11] We
initially investigated changes to the TADDOL backbone, but
replacement of the phenyl group or the gem-dimethyl groups
with other substituents failed to provide improved results. As
such, we turned our attention to the chiral alcohol compo-
nent. Ligands L2–L6 were synthesized from PCl3 and either
(S,S)- or (R,R)-TADDOL along with (¢)-menthol, (++)-iso-
pinocampheol, or (++)-2-phenylcyclohexanol. As shown in
Table 1, similar enantiomeric ratios were obtained with each
pair of ligand diastereomers (e.g., L1 vs L2), although the
absolute stereochemistry of the product was reversed. How-
ever, improved results were obtained with the 2-phenyl-
cyclohexanol derivatives L5 and L6. All transformations
provided small amounts (ca. 5–10%) of side product 3a,
which likely derives from competing b-hydride elimination of
an intermediate [LnPd(Ar)(alkyl)] complex in the catalytic
cycle.[4b]

Since L5 afforded the best enantioselectivity for this
reaction, we decided to synthesize a variety of chiral 2-aryl-
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Table 1: Initial TADDOL ligand screen.[a]

[a] Conditions: 1.0 equiv 1a, 1.8 equiv 2-bromonaphthalene, 1.8 equiv
NaOtBu, 2 mol% [Pd2(dba)3] , 6 mol% chiral ligand, toluene (0.2m),
90 88C, 12–14 h. Reactions were conducted on a 0.10 mmol scale. In all
cases regioisomer 3 was formed in ca. 10% yield.
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substituted cyclohexanols to test the effect of the aryl group
on asymmetric induction.[12] After some experimentation we
discovered that ligand L7 provided slightly improved results
(88:12 e.r.), and that use of 1,4-dioxane as solvent in place of
toluene resulted in a further increase to 89:11 e.r. (Table 2,
entry 2). Further modification of reaction conditions by
changing solvent, base, or temperature did not lead to further
improvement of selectivity. Similar results were obtained with
the use of 2-iodonaphthalene in place of 2-bromonaphtha-
lene.[13]

Having developed a suitable catalyst system and adequate
reaction conditions we proceeded to explore the scope of this
transformation. As shown in table 2, use of 4-penten-1-ol 1b
as a substrate resulted in poor yield and low selectivity
(entry 5). However, the transformation of substrate 1c, which
contains a gem-diphenyl group at C1, proceeded with higher
selectivity (entry 6, 95:5 e.r.) than that of 1a. The reactions of
1c were effective with several different aryl bromides,
including electron-rich, electron-poor, and heteroaryl electro-
philes. However, use of alkenyl bromide 4g led to low yield
and poor enantioselectivity.

Our prior studies on asymmetric Pd-catalyzed alkene
carboamination reactions of N-allylureas revealed a surprising
positive influence of the addition of water on selectivity.[10b]

Thus, we examined the addition of 2 equiv of water to
reactions of 1c with different electrophiles (Table 2, entries 7,
9, and 12). In all cases this led to a slight improvement in
asymmetric induction. However, these improvements were
less significant than those observed in the urea carboamina-
tion reactions.

To further explore the scope and potential utility of this
method, we elected to examine reactions of substituted
alkenes (Table 3). The coupling of substrate 1d with 4-
bromobenzophenone proceeded in good yield, but with poor
enantioselectivity (entry 1). However, we were gratified to
find that related substrate 1e, which contains a gem-diphenyl
group rather than a gem-dimethyl group at C1, was trans-
formed in good yield and 95:5 e.r. (Table 3, entry 2). The

Table 2: Enantioselective carboalkoxylation reactions.[a]

Entry R R1-X Product Yield [%][b] e.r.

1[c] (CH2)4 (1a) 2a 62 88:12

2 1a 4a 2a 58 89:11

3[c] 1a 2a 59 87:13

4 1a 2b 54 82:18

5 H (1b) 4c 2c 23 58:42

6[e] Ph (1c) 2d 67 95:5

7[c,d,e] 1c 4a 2d 60 96:4

8 1c 2e 64 92:8

9c,d 1c 4c 2e 61 95:5

10 1c 2 f 66 95:5

11 1c 2g 63 94:6

12[c,d] 1c 4e 2g 54 95:5

13 1c 2h 71 93:7

14 1c 2 i 18 79:21

[a] Conditions: 1.0 equiv substrate, 1.8 equiv R1-X, 1.8 equiv NaOtBu,
2 mol% [Pd2(dba)3] , 5 mol% L7, dioxane (0.2m), 90 88C, 12–14 h.
Reactions were conducted on a 0.20 mmol scale. Small amounts (ca. 10–
15%) of regioisomeric products analogous to 3a were also obtained in
reactions of substrates 1a and 1b. Product 2a could be easily separated
from the regioisomer, whereas the regioisomer could not be separated
from 2b and the yield is for the mixture of products. [b] Isolated yield
(average of two or more runs). [c] The reaction was conducted in toluene
solvent. [d] 2 equiv of H2O were added to the reaction mixture. [e] The
reaction was conducted using 1.4 equiv Ar-X.

Table 3: Enantioselective formation of quaternary centers.[a]

Entry Substrate Ar-X Product Yield [%][b] e.r.

1 1d 2 j 85 68:32

2 1e 4c 2k 85 95:5

3 1e 2 l 94 96:4

4 1e 2m 85 93:7

5[c] 1e 2n 39 87:13

6 1 f 4c – no rxn N/A
7 1g 4c – no rxn N/A

[a] Conditions: 1.0 equiv substrate, 1.8 equiv Ar-X, 1.8 equiv NaOtBu,
2 mol% [Pd2(dba)3] , 5 mol% L7, dioxane (0.2m), 90 88C, 12–14 h.
Reactions were conducted on a 0.20 mmol scale. [b] Isolated yield
(average of two or more runs). [c] The reaction proceeded to ca. 75%
conversion.
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reactions were effective with the 5-bromoindole derivative 4 f
and 4-bromophenyl morpholine 4h. However, use of 4-
bromobenzonitrile as the electrophile led to the formation of
product 2m in a modest 39 % yield and 87:13 e.r. Further-
more, substrates bearing internal alkenes such as 1 f and 1g
were unreactive under these conditions.

Finally, we briefly explored the reactivity of substrate 5,
which contains disubstitution at C2 rather than C1. As shown
in [Eq. (2)], the coupling of 5 with 4-bromobenzophenone
proceeded in good yield, but afforded product 6 in essentially
racemic form. This further illustrates the importance of gem-
disubstitution at the C1 position of the substrate.

In conclusion, we have developed a new enantioselective
synthesis of tetrahydrofurans via asymmetric Pd-catalyzed
carboalkoxylation reactions of g-hydroxyalkenes with aryl
bromides. The development and optimization of ligand L7
was key to obtaining high levels of asymmetric induction. Our
preliminary studies on the influence of TADDOL-based
phosphite ligand structure on enantioselectivity indicate the
structure of the phosphite alkoxy group (derived from a chiral
alcohol) has the greatest influence on relative levels of
asymmetric induction obtained with a structurally related
series of ligands. Moreover (and perhaps not surprisingly),
large changes in the alkoxy group have a larger impact on
selectivity than fine-tuning of closely related structures. These
results should help to guide future development of other
chiral catalysts for heterocycle-forming alkene difunctional-
ization reactions.
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