Angewandte Chemie

Supporting Information

Development of Enantioselective Palladium-Catalyzed Alkene Carboalkoxylation Reactions for the Synthesis of Tetrahydrofurans Brett A. Hopkins, Zachary J. Garlets, and John P. Wolfe*

ange_201506884_sm_miscellaneous_information.pdf

Supporting Information

Experimental procedures and characterization data for new compounds.

Table of Contents

General Considerations S1
Synthesis of Substrates S2
Synthesis of L7 S5
Asymmetric Pd-Catalyzed Carboalkoxylation Reactions S8
Assignment of Absolute Stereochemistry S20
Screen of Chiral TADDOL-derived Phosphite Ligands S21
References S22
Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, and HPLC traces S23

General: Reactions were carried out under nitrogen in flame-dried glassware. Tris(dibenzylideneacetone)dipalladium was purchased from Strem Chemical Co. and used without further purification. Dichloromethane and toluene were purified using a GlassContour solvent system. Anhydrous dioxane was purchased from Acros Organics
in a sure seal bottle and used as received. All other solvents and aryl halides were purchased from commercial sources and used as received. 1-(But-3-en-1-yl)cyclopentan-1-ol (1a), ${ }^{[1]} \quad$ 2,5-dimethylhex-5-en-2-ol (1d) ${ }^{[1]}$ and (+)-(1S,2R)-2-phenylcyclohexan-1-ol, ${ }^{[2]}$ 4-methyl-2,2-diphenylpent-4-en-1-ol (5), ${ }^{[3]}$ and ligands L1-L6 ${ }^{[4]}$ were synthesized according to literature procedures. 4-Penten-1-ol (1b) was purchased from commercial sources and was used without further purification. Yields refer to isolated compounds that are estimated to be $\geq 95 \%$ pure as judged by ${ }^{1} \mathrm{H}$ NMR or GC analysis unless stated otherwise. The yields reported in the supporting information describe the result of a single experiment, whereas yields reported in Tables 2 and 3 are average yields of two or more experiments. Thus, the yields reported in the supporting information may differ from those in the manuscript.

Synthesis of Substrates:

1,1-Diphenylpent-4-en-1-ol (1c). ${ }^{[5]}$ A flame dried round bottom flask equipped with a stir bar was cooled under a stream of nitrogen and charged with 4-pentenoyl chloride (5 $\mathrm{mmol}, 0.55 \mathrm{~mL}$) and diethyl ether (50 mL). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath for five min and then $\mathrm{PhMgBr}(20 \mathrm{~mL}, 20 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added dropwise to the flask. The resulting mixture was warmed to rt and stirred for 12 h , then the flask was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and slowly quenched with saturated aqueous ammonium chloride (10 mL). The mixture was transferred to a separatory funnel, the layers were separated, and the aqueous layer was extracted with ethyl acetate (3 x 25 mL . The organic layers were combined, dried over anhydrous sodium sulfate, filtered,
and concentrated in vacuo. The crude product was then purified by flash chromatography on silica gel to afford the title compound ($864 \mathrm{mg}, 72 \%$) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.24$ (t, J = 6.6 Hz, 2 H), 6.85-6.78 (m, 2 H), 5.06-4.96 (m, 2 H), 2.44-2.38 (m, 2 H), 2.18 (s, 1 H), 2.12-2.04 (m, 2 H). Spectroscopic data was consistent with that previously reported in the literature. ${ }^{[5]}$

4-Methyl-1,1-diphenylpent-4-en-1-ol (1e). A flame dried round bottom flask equipped with a stir bar was cooled under a stream of nitrogen and charged with $\mathrm{PhMgBr}(25 \mathrm{~mL}$, $25 \mathrm{mmol}, 1 \mathrm{M}$ in THF). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath for five min. In a separate flask ethyl 4-methylpent-4-enoate ${ }^{[6]}(1.0 \mathrm{~g}, 7 \mathrm{mmol})$ was dissolved in 20 mL anhydrous THF, and the resulting solution was added dropwise to the flask containing the cooled PhMgBr solution. The reaction mixture was then warmed to rt , stirred for 12 h , then was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and slowly quenched with saturated aqueous ammonium chloride (20 mL). The resulting mixture was transferred to a separatory funnel, the layers were separated, and the aqueous layer was extracted with diethyl ether $(3 \times 25 \mathrm{~mL})$. The organic layers were combined, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was then purified by flash chromatography on silica gel to afford the title compound ($1.54 \mathrm{~g}, 88 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ (dd, $J=8.31,0.98 \mathrm{~Hz}, 4 \mathrm{H}$), $7.34-7.31$ (m, 4H), 7.25-7.20 (m, 2 H), 4.73 (s, 1 H), 4.70 (s, 1 H), 2.48-2.42 (m, 2 H), 2.25 (s, br,

1 H), 2.06-1.99 (m, 2 H), $1.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.1, 146.4, 128.4, 127.0, 126.2, 110.1, 78.5, 40.0, 32.2, 23.0; IR (film) 3469, 2932, $1446 \mathrm{~cm}^{-1}$; MS (EI) 252.1515 (252.1514 calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}, \mathrm{M}+$).

(E)-1,1-Diphenylhex-4-en-1-ol (1f). The title compound was prepared from PhMgBr (50 $\mathrm{mL}, 50 \mathrm{mmol}, 1 \mathrm{M}$ in THF) and (E)-ethyl hex-4-enoate ${ }^{[7]}(2.28 \mathrm{~g}, 16.0 \mathrm{mmol})$ using a procedure analogous to that described above for the synthesis of $\mathbf{1 e}$. This procedure afforded the title compound ($1.23 \mathrm{~g}, 30 \%$) as a colorless solid, $\mathrm{mp} 53-54^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 2 \mathrm{H}), 5.37-$ 5.51 (m, 2 H), 2.33-2.38(m, 2 H), 2.23 (s, 1 H), 1.96-2.03 (m, 2 H), 1.63 (dd, J = 5.9, $1.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.2, 131.3, 128.3, 127.0, 126.2, 125.7, 78.6, 41.7, 27.3, 18.1; IR (film) 3556, 2958, $1446 \mathrm{~cm}^{-1}$; MS (EI) 252.1510 (252.1514 calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}, \mathrm{M}+$).

3-(Cyclohex-1-en-1-yl)-1,1-diphenylpropan-1-ol (1g). The title compound was prepared from PhMgBr ($11 \mathrm{~mL}, 11 \mathrm{mmol}, 1 \mathrm{M}$ in THF) and 3-(cyclohex-1-en-1-yl)-1-phenylpropan-1-one ${ }^{[8]}(1.2 \mathrm{~g}, 5.5 \mathrm{mmol})$ using a procedure analogous to that described above for the synthesis of $\mathbf{1 e}$. This procedure afforded the title compound (600 mg ,
37%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.34(\mathrm{~m}$, 4 H), 7.18-7.24 (m, 2 H), 5.41 (s, 1 H), 2.38-2.45 (m, 2 H), 2.37 (s, 1 H), 1.88-2.03 (m, 6 H), 1.48-1.67 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.2,138.2$, 128.3, 126.9, 126.2, 121.6, 78.7, $39.8,32.5,28.7,25.4,23.1,22.7$; IR (film) $3467,2923,1446 \mathrm{~cm}^{-1}$; MS (EI) 292.1823 (292.1827 calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}, \mathrm{M}+$).

Synthesis of ligand L7.

(-)-(1S,2R)-2-[(1,1'-Biphenyl)-4-yl]cyclohexan-1-ol (S1). A flame-dried 2-neck round bottom flask equipped with a stirbar and a reflux condenser was cooled under a stream of nitrogen and charged with magnesium turnings ($1.76 \mathrm{~g}, 72 \mathrm{mmol}$) and THF (50 mL). A solution of 4-bromobiphenyl ($11.65 \mathrm{~g}, 50 \mathrm{mmol}$) in THF (15 mL) was slowly added. The reaction mixture began to rapidly reflux, and the reaction temperature was controlled by placing the flask in an ice bath until reflux subsided. Once the magnesium turnings had disappeared, the reaction mixture was cooled to $-20^{\circ} \mathrm{C}$ for 10 min then $\mathrm{CuCl}(8 \mathrm{~mol} \%)$ was added to the reaction mixture immediately followed by the addition of cyclohexene oxide ($3.36 \mathrm{~mL}, 33.3 \mathrm{mmol}$) as a solution in THF (7 mL). The resulting mixture was allowed to slowly warm to rt and stirred for 4 h . The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with saturated ammonium chloride $(1 \mathrm{~mL} / \mathrm{mmol}$ cyclohexene oxide). The mixture was filtered through a pad of celite, and transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with ethyl acetate (3x). The combined organic layers were then dried over sodium
sulfate, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to afford $4.00 \mathrm{~g}(48 \%)$ of (\pm)-S1 as a white solid.

A flame dried round bottom flask equipped with a stirbar was cooled under a stream of nitrogen and charged with PS 30 Amano Lipase (14.8 mg), (土)-S1 (3.74 g, 14.8 mmol) and tert-butyl methyl ether (45 mL). Neat vinyl acetate ($13.6 \mathrm{~mL}, 148 \mathrm{mmol}$) was then added and the resulting mixture was stirred at rt until one enantiomer of the alcohol had been consumed as judged by chiral HPLC analysis (3 days). The mixture was then filtered through a fritted funnel and the enzyme was washed with diethyl ether and then recycled for future use (if desired). The resulting solution was concentrated in vacuo and the crude product was purified by flash chromatography on silica gel to afford 1.72 g (46\%) of the title compound as a white solid, mp $122-125{ }^{\circ} \mathrm{C}$. This material was judged to be >99:1 er by chiral HPLC analysis (Chiracel OJH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 4 \%$ IPA/Hexanes, $1.00 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{RT}=21.8$ and 25.0 min). $[\alpha]^{23}{ }_{\mathrm{D}}-13.99$ (c 3.38, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.37-7.34 (m, $3 H$), 3.72 (td, $J=10.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{td}, J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.1-$ $2.15(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.81$ (app. d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.35(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}(175 \mathrm{MHz} \mathrm{CDCl} 3) ~ \delta 142.6,141.1,140.0,128.9,128.5,127.7,127.3,127.2$, 74.6, 53.1, 34.5, 33.5, 26.2, 25.3; IR (film) 3548, 2919, $1490 \mathrm{~cm}^{-1}$; MS (ESI+) 270.1850 (270.1852 calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}, \mathrm{M}+\mathrm{NH}_{4}{ }^{+}$).

(+)-(1S,2R,3aS,8aS)-6-\{[-2-([1,1'-Biphenyl]-4-yl)cyclohexyl]oxy\}-2',2'-dimethyl-4,4,8,8-Tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepine

The ligand was prepared according to a previously reported procedure for the synthesis of chiral phosphites. ${ }^{[4]}$ A flame dried round bottom flask equipped with a stirbar was cooled under a stream of nitrogen and charged with (1S,2R)-2-([1,1'-biphenyl]-4-yl)cyclohexan-1-ol ($255 \mathrm{mg}, 1.01 \mathrm{mmol}$), and dry dichloromethane (2 mL). Neat PCl_{3} (86 $\mu \mathrm{L}, 1.01 \mathrm{mmol}$, was added and the resulting mixture was allowed to stir for 1 h at rt . After this time, anhydrous $\mathrm{NEt}_{3}(0.56 \mathrm{~mL}, 4.04 \mathrm{mmol})$ was added dropwise and the mixture was stirred at rt for 30 min . A solution of (S, S)-TADDOL ($450 \mathrm{mg}, 0.963 \mathrm{mmol}$) in dichloromethane (2 mL) was added, and the reaction mixture was stirred at rt for 12 h. The mixture was then diluted with diethyl ether (20 mL) and then filtered through celite. The solvent was evaporated in vacuo and the crude product was purified by flash chromatography on silica gel to afford 520 mg (72\%) of the title compound as a white foamy solid, $\mathrm{mp} 115-118{ }^{\circ} \mathrm{C} .[\alpha]^{23} \mathrm{D}+130.0\left(c 5.81, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.02(\mathrm{~m}, 27 \mathrm{H}), 4.94-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, \mathrm{~J}=$ 8.4 Hz, 1 H), 4.56 (app. qd, $J=9.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.28$ (app. d, $J=$ 13.8 Hz, 1 H), 1.95 (app. d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.50(\mathrm{~m}, 2 \mathrm{H})$, 1.41-1.31 (m, 2 H), 1.19 (s, 3 H), 0.30 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR (175 MHz CDCl ${ }_{3}$) $\delta 146.6$, $146.1,143.0,141.8,141.25,141.23,139.4,129.4,129.0,128.92,128.89,128.6,128.0$, $127.8,127.54,127.48,127.45,127.38,127.34,127.30,127.18,127.15,127.12,127.06$, $126.9,112.0,82.9,82.7,82.6,82.12,82.10,81.92,81.88,78.10,78.09,51.39,51.37$, $35.7,33.8,27.6,26.0,25.5,25.3$ (due to the complexity of the spectra all the peaks are listed without assigning C-P couplings); ${ }^{31} \mathrm{P}$ NMR (202 MHz CDCl ${ }_{3}$) $\delta 140.6$; IR (film)

2932, 1486, $1447 \mathrm{~cm}^{-1}$; MS (ESI+) 747.3224 (747.3234 calcd for $\mathrm{C}_{49} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{H}^{+}$).

General procedure for asymmetric Pd-catalyzed carboalkoxylation reactions. A

 flame-dried Schlenk tube equipped with a stirbar was cooled under a stream of nitrogen and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2 \mathrm{~mol} \%), \mathrm{L} 7(5 \mathrm{~mol} \%)$, the alcohol substrate (1.0 equiv), and $\mathrm{NaO}^{t} \mathrm{Bu}$ (1.50-2.0 equiv). The flask was purged with N_{2} then the aryl or alkenyl halide (1.40-2.0 equiv), and dioxane or toluene (0.10 M) was added. The resulting mixture was heated to $90^{\circ} \mathrm{C}$ with stirring until the starting material had been consumed as judged by TLC analysis (ca. 12 h). The reaction mixture was then cooled to rt , saturated aqueous ammonium chloride ($6 \mathrm{~mL} / \mathrm{mmol}$ substrate) was added, and the mixture was transferred to a separatory funnel. The mixture was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$) then the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel. (+)-(S)-2-(Naphthalen-2-ylmethyl)-1-oxaspiro[4.4]nonane (2a). The general procedure was employed for the coupling of 1-(but-3-en-1-yl)cyclopentan-1-ol (28.0 mg, 0.20 mmol) and 2-bromonaphthalene ($75.0 \mathrm{mg}, 0.36 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathrm{L} 7(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of $90^{\circ} \mathrm{C}$ and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound ($31.1 \mathrm{mg}, 58 \%, 10: 1$ regioselectivity) as a colorless oil: $[\alpha]^{23}{ }_{\mathrm{D}}+12.4(c 2.1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 3$
H), 4.29-4.22 (m, 1H), 3.15 (dd, $J=13.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=13.3,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.95-1.87(m, 1 H$), 1.86-1.49(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.6,133.7$, $132.3,128.4,127.84,127.79,127.75,127.7,91.6,79.2,43.0,39.4,38.6,36.6,24.2 ;$ IR (film) 2953, 2361, 2338, $1508 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{CI}) 267.1743$ (267.1743 calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}, \mathrm{M}+$ H^{+}). The enantiopurity was determined to be 89:11 er by chiral HPLC analysis (Chiralcel OJH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 1 \% \mathrm{IPA} /$ Hexanes, $1.00 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{RT}=10.5$ and 12.8 $\min)$.

(+)-(S)-2-(Naphthalen-2-ylmethyl)-1-oxaspiro[4.4]nonane (2b). The general procedure was employed for the coupling of 1-(but-3-en-1-yl)cyclopentan-1-ol (28 mg , 0.20 mmol) and 4-bromobenzophenone ($94 \mathrm{mg}, 0.36 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathrm{L} 7(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of $90^{\circ} \mathrm{C}$, and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound ($34.6 \mathrm{mg}, 53 \%, 6: 1$ regioselectivity) as a clear oil: $[\alpha]^{23}{ }_{\mathrm{D}}+21.9$ (c 1.77, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.80-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.19$ (app. quint, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=13.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.48(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.5,144.1,137.9$, $132.2,130.1,129.9,129.4,128.3,128.2,127.6,91.5 .78 .5,42.7,39.2,38.4,36.4,31.3$, 24.0, 23.9; IR (film) 2959, 1655, 1606, $1277 \mathrm{~cm}^{-1}$. MS (CI) 321.1848 (321.1849 calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}\right)$. The enantiopurity was determined to be $82: 18$ er by chiral HPLC
analysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 1 \% \mathrm{IPA} /$ Hexanes, $1.00 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}$, $R T=17.4$ and 18.4 min$)$.

${ }^{(+)-(S)-2-(N a p h t h a l e n-2-y l m e t h y l) t e t r a h y d r o f u r a n t e t r a h y d r o f u r a n ~(2 c) . ~ T h e ~ g e n e r a l ~}$ procedure was employed for the coupling of pent-4-en-1-ol ($17 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2bromonaphthalene ($58 \mathrm{mg}, 0.28 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}$, 0.004 mmol) and $\mathbf{L 7}(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of $90^{\circ} \mathrm{C}$, and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound (9.9 $\mathrm{mg}, 23 \%$) as a light yellow oil. $[\alpha]^{23}{ }_{\mathrm{D}}=+2.1\left(\mathrm{c} 0.95, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 3 \mathrm{H}), 4.18$ (app. quint, $J=6.5 \mathrm{~Hz}, 1$ H), 3.95-3.89 (m, 1 H), 3.79-3.73 (m, 1 H), 3.08 (dd, $J=13.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (dd, J $=13.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H})$. Other spectroscopic data matched those previously reported. ${ }^{[1]}$ The enantiopurity was determined to be 58:42 er by chiral HPLC analysis (Chiralcel OJH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 1 \%$ IPA/Hexanes, 1.50 $\mathrm{mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{RT}=19.8$ and 26.1 min).

(+)-(S)-5-(Naphthalen-2-ylmethyl)-2,2-diphenyItetrahydrofuran (2d). The general procedure was employed for the coupling of 1,1-diphenylpent-4-en-1-ol ($48 \mathrm{mg}, 0.20$ mmol) and 2-bromonaphthalene ($58 \mathrm{mg}, 0.28 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathbf{L 7}(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of
$90^{\circ} \mathrm{C}$ and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound (48.7mg, 67%) as a white solid, $\mathrm{mp} 83-86{ }^{\circ} \mathrm{C} .[\alpha]^{23}{ }_{\mathrm{D}}+29.6\left(c 4.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~s}$, $1 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 7 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.53$ (app. quint, $J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=13.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.64$ $(\mathrm{m}, 1 \mathrm{H}), 2.58-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.4,146.9,136.6,133.7,132.3,128.31,128.25,128.2,127.88$, 127.87, 127.8, 127.6, 126.76, 126.74, 126.1, 126.0, 125.4, 88.5, 79.9, 42.8, 38.8, 31.0; IR (film) 2934, 1601, $1446 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{Cl}) 365.1899$ (365.1900 calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}, \mathrm{M}+$ H^{+}). The enantiopurity was determined to be 95:5 er by chiral HPLC analysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 2 \% \mathrm{IPA} /$ Hexanes, $1.00 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{RT}=5.2$ and 6.3 min$)$. When 2.0 equiv of $\mathrm{H}_{2} \mathrm{O}$ was added with toluene as solvent the enantiopurity was determined to be 96:4 er.

(+)-(S)-\{4-[(5,5-diphenyltetrahydrofuran-2-yl)methyl]phenyl\}(phenyl)methanone

(2e). The general procedure was employed for the coupling of 1,1-diphenylpent-4-en-1ol ($48 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 4-bromobenzophenone ($94 \mathrm{mg}, 0.36 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathrm{L} 7(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of $90{ }^{\circ} \mathrm{C}$ and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound ($52 \mathrm{mg}, 62 \%$) as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}+18.9$ (c 2.40, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 4$ H), 7.22-7.17 (m, 2 H), 4.42 (app. quint, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dd, $J=13.6,6.6 \mathrm{~Hz}, 1$ H), 2.91 (dd, J = 13.7, 6.4 Hz, 1 H), 2.68-2.61 (m, 1 H), 2.54-2.47 (m, 1 H), 2.03-1.96 ($\mathrm{m}, 1 \mathrm{H}$), 1.81-1.73 (m, 1 H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 196.7, 147.2, 146.7, 144.2, 138.0, 135.7, 132.4, 130.4, 130.2, 129.5, 128.40, 128.35, 128.2, 126.83, 126.80, 126.0, 125.9, 88.6, 79.5, 42.7, 38.7, 31.2; IR (film) 2362, 1654, $1446 \mathrm{~cm}^{-1}$. MS (CI) 419.2006 (419.2006 calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 92:8 er by chiral HPLC analysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \%$ IPA/Hexanes, 1.00 $\mathrm{mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{RT}=9.8$ and 11.7 min$)$. When 2.0 equiv of $\mathrm{H}_{2} \mathrm{O}$ was added with toluene as solvent the enantiopurity was determined to be 95:5 er (an unknown product co-eluted when water was used with this reaction see spectra for product $\mathbf{2 e}$ below.)

$(+)-(S)-5-[(6-m e t h o x y n a p h t h a l e n-2-y l) m e t h y l]-2,2-d i p h e n y l t e t r a h y d r o f u r a n ~(2 f) . ~ T h e ~$

 general procedure was employed for the coupling of 1,1-diphenylpent-4-en-1-ol (48 mg , 0.20 mmol) and 2-bromo-6-methoxynaphthalene ($85 \mathrm{mg}, 0.36 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathbf{L 7}(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of $90^{\circ} \mathrm{C}$ and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound ($52 \mathrm{mg}, 66 \%$) as a white solid, $\mathrm{mp} 93-96{ }^{\circ} \mathrm{C}$. $[\alpha]^{23}{ }_{\mathrm{D}}+29.8$ (c 5.19, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69$ (app. dd, $J=8.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.65(\mathrm{~s}$, 1 H), 7.53-7.46 (m, 4 H), 7.69 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36-7.28 (m, 4 H), 7.27-7.13 (m, 4 H), 4.50 (app. quint, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (s, 3H), 3.29 (dd, $J=13.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97(dd, $J=13.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H})$, 1.87-1.79 (m, 1 H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.4,147.4,146.9,134.2,133.3$, 129.2, 128.6, 128.3, 128.2, 127.7, 126.74, 126.72, 126.1, 126.0, 118.8, 105.8, 88.5 , 80.0, 55.4, 42.6, 38.8, 30.9; IR (film) 2937, 1605, $1448 \mathrm{~cm}^{-1} . \mathrm{MS}$ (CI) 395.2004 (395.2006 calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 95:5 er by chiral HPLC analysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 2 \%$ IPA/Hexanes, 1.00 $\mathrm{mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{RT}=7.5$ and 8.9 min$)$.

(+)-(S)-5-(4-Methoxybenzyl)-2,2-diphenyltetrahydrofuran (2g). The general

 procedure was employed for the coupling of 1,1-diphenylpent-4-en-1-ol (48 mg, 0.20 mmol) and 4-bromoanisole ($46 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($3.7 \mathrm{mg}, 0.004 \mathrm{mmol}$) and $\mathrm{L} 7\left(7.5 \mathrm{mg}, 0.010 \mathrm{mmol}\right.$), a reaction temperature of $90{ }^{\circ} \mathrm{C}$ and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound ($45.0 \mathrm{mg}, 65 \%$) as a colorless oil: $[\alpha]^{23}{ }_{\mathrm{D}}+24.5$ (c 2.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl_{3}) $\delta 7.47-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.82$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.33 (app. quint, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.08$ (dd, $J=13.6$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, \mathrm{J}=13.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.45(\mathrm{~m}, 1 \mathrm{H})$, 1.95-1.89 (m, 1 H), 1.76-1.70 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR (175 MHz, CDCl_{3}) $\delta 158.2,147.4$, $146.9,131.1,130.5,128.3,128.1,126.73,126.70,126.1,126.0,113.9,88.4,80.2,55.4$, 41.8, 38.8, 30.9; IR (film) 2936, 1606, $1512 \mathrm{~cm}^{-1}$. MS (CI) 345.1847 (345.1855 calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 94:6 er by chiral HPLCanalysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 2 \%$ IPA/Hexanes, $1.00 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}$, $R T=7.5$ and 8.9 min$)$.

$(+)-(S)$-1-Benzyl-5-[(5,5-diphenyltetrahydrofuran-2-yl)methyl]-1H-indole (2h). The general procedure was employed for the coupling of 1,1-diphenylpent-4-en-1-ol (48 mg , 0.20 mmol) and 1-benzyl-5-bromo-1H-indole ($103 \mathrm{mg}, 0.36 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathbf{L 7}(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of $90^{\circ} \mathrm{C}$ and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound ($63.5 \mathrm{mg}, 72 \%$) as a colorless oil: $[\alpha]^{23} \mathrm{D}+14.7$ (c 6.00 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.23-$ 7.18 (m, 3 H), $7.15-7.08$ ($\mathrm{m}, 4 \mathrm{H}$), $6.50(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.30 ($\mathrm{s}, 2 \mathrm{H}$), 4.44 (app. quint, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30(\mathrm{dd}, J=13.5,5.4, \mathrm{~Hz} 1 \mathrm{H}), 2.88(\mathrm{dd}, J=13.5,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.65-2.60 (m, 1 H), 2.55-2.50 (m, 1 H), 1.95-1.89 (m, 1 H), 1.84-1.78 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR (175 MHz, CDCl_{3}) $\delta 147.5,147.0,137.8,135.3,130.0,129.0,128.9,128.3,128.1$, 127.7, 127.0, 126.68, 126.66, 126.13, 126.08, 123.7, 121.4, 109.5, 101.5, 88.4, 80.9, 50.3, 42.8, 38.9, 30.9; IR (film) 2923, 1485, $1446 \mathrm{~cm}^{-1}$. MS (CI) 444.2319 (444.2322 calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NO}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 93:7 er by chiral HPLC analysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 2 \%$ IPA/Hexanes, $1.00 \mathrm{~mL} / \mathrm{min}, \lambda 254$ $\mathrm{nm}, \mathrm{RT}=10.8$ and 21.3 min).

(+)-(S)-Phenyl\{4-[(2,5,5-trimethyltetrahydrofuran-2-yl)methyl]phenyl\}methanone

(2j). The general procedure was employed for the coupling of 2,5-dimethylhex-5-en-2ol 1 ($26 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 4-bromobenzophenone ($94 \mathrm{mg}, 0.36 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathrm{L} 7(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of $90{ }^{\circ} \mathrm{C}$ and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound ($51.0 \mathrm{mg}, 77 \%$) as a colorless oil: $[\alpha]^{23}{ }_{\mathrm{D}}+3.48$ (c 7.10, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.54-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H})$, 1.95-2.03 (m, 1 H), 1.76-1.85 (m, 2 H), 1.56-1.66 (m, 1 H), $1.25(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 6 \mathrm{H})$, 1.14 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR (175 MHz, CDCl_{3}) δ 196.8, 143.9, 138.1, 135.6, 132.3, 130.8, 130.1, 129.9, 128.4, 83.3, 81.7, 48.5, 38.6, 36.7, 29.9, 29.4, 28.6; IR (film) 2966, 1654, $1277 \mathrm{~cm}^{-1}$; MS (ESI+) 309.1847 (309.1849 calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 38:62 er by chiral HPLC analysis (Chiralcel ADH, 25 $\mathrm{cm} \times 4.6 \mathrm{~mm}, 2 \% \mathrm{IPA} /$ Hexanes, $1.00 \mathrm{~mL} / \mathrm{min}, \lambda 195 \mathrm{~nm}, \mathrm{RT}=10.1$ and 10.8 min$)$.

(+)-(S)-\{4-[(2-Methyl-5,5-diphenyltetrahydrofuran-2

$\mathbf{y l}) m e t h y l] p h e n y l\}(p h e n y l) m e t h a n o n e(2 k)$. The general procedure was employed for the coupling of 4-methyl-1,1-diphenylpent-4-en-1-ol (51 mg, 0.20 mmol) and 4-
bromobenzophenone ($94 \mathrm{mg}, 0.36 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7$ $\mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathrm{L} 7(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of $90^{\circ} \mathrm{C}$ and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound (74.8 mg, 86\%) as a colorless solid, mp 89-91 ${ }^{\circ} \mathrm{C}:[\alpha]^{23} \mathrm{D}+20.9\left(c 6.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.79-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.64(\mathrm{~m}, 1$ H), 7.46-7.54 (m, 6 H), 7.26-7.40(m, 6H), 7.16-7.25 (m, 2H), 3.03 (d, J = $13.2 \mathrm{~Hz}, 1$ $\mathrm{H}), 2.91(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m} 1 \mathrm{H}), 1.31(\mathrm{~s}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.7,148.2,147.7,143.8,138.0,135.6,132.3$, 130.6, 130.1, 129.9, 128.4, 128.1, 128.1, 126.7, 126.5, 126.0, 125.8, 88.7, 84.6, 48.5, 38.4, 37.4, 27.2; IR (film) 2966, 1654, $1277 \mathrm{~cm}^{-1}$; MS (ESI+) 433.2160 (433.2162 calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 95:5 er by chiral HPLC analysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 2 \%$ IPA/Hexanes, $1.00 \mathrm{~mL} / \mathrm{min}, \lambda 275 \mathrm{~nm}$, $R T=15.4$ and 18.1 min$).$

(+)-(S)-1-Benzyl-5-[(2-methyl-5,5-diphenyltetrahydrofuran-2-yl)methyl]-1H-indole

(2I). The general procedure was employed for the coupling of 4-methyl-1,1-diphenylpent-4-en-1-ol (51 mg, 0.20 mmol) and 1-benzyl-5-bromo-1H-indole (103 mg, $0.36 \mathrm{mmol})$ using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and L 7 (7.5 $\mathrm{mg}, 0.010 \mathrm{mmol}$), a reaction temperature of $90^{\circ} \mathrm{C}$ and a reaction time of 12 h . This procedure afforded the title compound ($80.5 \mathrm{mg}, 88 \%$) as a colorless solid, mp 127-128 ${ }^{\circ} \mathrm{C}:[\alpha]^{23} \mathrm{D}+22.6\left(c 6.91, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.43-7.51(\mathrm{~m}, 5 \mathrm{H})$,
$7.22-7.33(\mathrm{~m}, 10 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.4,1.6$ Hz, 1 H), $6.46(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 148.5,148.1,137.8,135.3,129.8,128.9,128.7,128.3$, $128.1,128.0,127.7,127.0,126.5,126.4,126.2,126.0,124.8,122.5,109.1,101.5,88.4$, 85.4, 50.2, 48.5, 38.8, 36.9, 27.1; IR (film) 2924, 1485, $1447 \mathrm{~cm}^{-1}$; MS (ESI+) 458.2478 (458.2478 calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be $96: 4$ er by chiral HPLC analysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 1 \%$ IPA/Hexanes, 1.00 $\mathrm{mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{RT}=11.6$ and 30.3 min).

(+)-(S)-4-\{4-[(2-Methyl-5,5-diphenyltetrahydrofuran-2-yl)methyl]phenyl\}morpholine
$(2 m)$. The general procedure was employed for the coupling of 4-methyl-1,1-diphenylpent-4-en-1-ol ($51 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 4-(4-bromophenyl)morpholine (87 mg , $0.36 \mathrm{mmol})$ using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and L 7 (7.5 $\mathrm{mg}, 0.010 \mathrm{mmol}$), a reaction temperature of $90^{\circ} \mathrm{C}$ and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound ($68.0 \mathrm{mg}, 82 \%$) as a colorless solid, $\mathrm{mp} 143-145{ }^{\circ} \mathrm{C}:[\alpha]^{23} \mathrm{D}+28.8\left(c 6.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47$ (dd, $J=12.8,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.09-3.14(\mathrm{~m}, 4 \mathrm{H}), 2.88(\mathrm{~d}, J=$ 13.5 Hz, 1 H), 2.74 (d, J = $13.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.59-2.68 (m, 2 H), 1.98-2.03 (m, 1 H), 1.69$1.74(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.7,148.4,148.0,131.3$,
$130.3,128.1,128.0,126.5,126.5,126.1,125.9,115.4,88.4,85.1,67.1,49.7,47.6$, 38.7, 37.0, 27.0; IR (film) 2966, 1515, $1446 \mathrm{~cm}^{-1}$; MS (ESI+) 414.2427 (414.2428 calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{2}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be $93: 7$ er by chiral HPLC analysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 2 \% \mathrm{IPA} /$ Hexanes, $1.00 \mathrm{~mL} / \mathrm{min}, \lambda 210 \mathrm{~nm}$, $R T=8.7$ and 10.7 min$)$.

(+)-(S)-4-[(2-Methyl-5,5-diphenyltetrahydrofuran-2-yl)methyl]benzonitrile (2n). The general procedure was employed for the coupling of 4-methyl-1,1-diphenylpent-4-en-1ol (51 mg, 0.20 mmol) and 4-bromobenzonitrile ($66 \mathrm{mg}, 0.36 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathrm{L} 7(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of $90{ }^{\circ} \mathrm{C}$ and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound ($27.0 \mathrm{mg}, 38 \%$) as a colorless solid, mp $100-104{ }^{\circ} \mathrm{C}:[\alpha]^{23}{ }_{\mathrm{D}}$ +23.9 (c 2.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-$ $7.42(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.22(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.95(\mathrm{~d}$, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.85(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.96-2.02(\mathrm{~m}, 1$ $\mathrm{H}), 1.79-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 148.1, 147.4, 144.2, 131.7, 131.4, 128.2, 128.2, 126.8, 126.6, 126.0, 125.7, 119.4, 110.1, 88.8, 84.3, 48.5, 38.2, 37.5, 27.3; IR (film) 2925, 2223, $1607 \mathrm{~cm}^{-1}$; MS (ESI+) 376.1670 (376.1670 calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}, \mathrm{M}+\mathrm{Na}^{+}$). The enantiopurity was determined to be $87: 13$ er by chiral HPLC analysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 2 \%$ IPA/Hexanes, $1.00 \mathrm{~mL} / \mathrm{min}$, $\lambda 195 \mathrm{~nm}, \mathrm{RT}=7.5$ and 8.4 min$)$.

(+)-(R)-\{4-[(2-Methyl-4,4-diphenyItetrahydrofuran-2-

yl)methyl]phenyl\}(phenyl)methanone (6). The general procedure was employed for the coupling of 4-methyl-2,2-diphenylpent-4-en-1-ol ${ }^{[3]}$ ($51 \mathrm{mg}, 0.20 \mathrm{mmol}$) and (4bromophenyl)(phenyl)methanone ($94 \mathrm{mg}, 0.36 \mathrm{mmol}$) using a catalyst composed of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathbf{L} 7(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of $90^{\circ} \mathrm{C}$, and a reaction time of 12 h in 2 mL of dioxane. This procedure afforded the title compound ($73 \mathrm{mg}, 84 \%$) as a light yellow oil. $[\alpha]^{23}{ }_{\mathrm{D}}=+0.01$ (c $5.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.57-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 11 \mathrm{H}), 7.16-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1$ H), $2.81(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.12$ (s, 3 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 196.7,146.5,143.4,138.0,135.7,132.4,130.6$, 130.1, 130.0, 128.6, 128.5, 128.4, 127.3, 126.4, 126.4, 83.7, 75.5, 56.5, 50.3, 47.8, 26.9; IR (film) 2926.7, 2247, 1654, $1276 \mathrm{~cm}^{-1}$; MS (ESI+) 433.2164 (433.2162 calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 51:49 er by chiral HPLC analysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \% \mathrm{IPA} /$ Hexanes, $1.00 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}$, $R T=15.6$ and 21.3 min).

Determination of absolute configuration:

Product 2i was synthesized according to general procedure D. The optical rotation of this compound $\left([\alpha]^{23}{ }_{\mathrm{D}}+4.54\left(c 0.22, \mathrm{CHCl}_{3}\right)\right.$); was compared with that in the literature ${ }^{[9]}$ $\left(\mathrm{lit}[\alpha]^{23} \mathrm{D}+8.30\left(c \quad 0.6, \mathrm{CHCl}_{3}\right)\right)$. Both compounds were dextrorotatory, thus $\mathbf{2 i}$ was assigned the (S) configuration on this basis.

(+)-(S,E)-5-[3-(4-Methoxyphenyl)allyl]-2,2-diphenyltetrahydrofuran (2i): The general procedure was employed for the coupling of 1,1-diphenylpent-4-en-1-ol ($48 \mathrm{mg}, 0.20$ mmol) and (E)-1-(2-bromovinyl)-4-methoxybenzene ($85 \mathrm{mg}, 0.40 \mathrm{mmol}$) using a catalyst composed of $2 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.6 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathbf{L 7}(7.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, a reaction temperature of $90^{\circ} \mathrm{C}$ and a reaction time of 12 h . This procedure afforded the title compound (14 mg, 18%) as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}+4.54\left(c \quad 0.22, \mathrm{CHCl}_{3}\right)$; lit ${ }^{[9]}[\alpha]^{23}{ }_{\mathrm{D}}$ +8.30 (c 0.6, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.33-7.23$ (m, 6 H), 7.22-7.15 (m, 2 H), 6.83 (d, J = $8.8 \mathrm{~Hz}, 2 H$), $6.40(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (dt, J = 15.7, 7.0 Hz, 1 H), 4.31-4.21 (m, 1 H), 3.80 (s, 3H), 2.70-2.58 (m, 2 H), 2.57$2.40(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 1 \mathrm{H})$. Other spectroscopic data matched that of the literature. ${ }^{[9]}$ The enantiopurity was determined to be 79:21 er by chiral HPLC analysis (Chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 0.5 \%$ IPA/Hexanes, 1.00 $\mathrm{mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{RT}=17.5$ and 18.8 min$).$

Screen of Chiral TADDOL-Derived Phosphite Ligands:

References

[1] M. B. Hay, A. R. Hardin, J. P. Wolfe, J. Org. Chem. 2005, 70, 3099.
[2] B. E. Carpenter, I. R. Hunt, B. A. Keay, Tetrahedron: Asymmetry 1996, 7, 3107.
[3] Y. Jeong, D. -Y. Kim, Y. Choi, J. -S. Ryu, Org. Biomol. Chem, 2011, 9, 374.
[4] A. Alexakis, J. Burton, J. Vastra, C. Benhaim, X. Fournioux, A. van den Heuvel, J.-M.
Levêque, F. Mazé, S. Rosset, Eur. J. Org. Chem. 2000, 4011.
[5] M. Hatano, O. Ito, S. Suzuki, K. Ishihara, J. Org. Chem. 2010, 75, 5008.
[6] Z. Cai, N. Yongpruksa, M. Harmata, Org. Lett. 2012, 14, 1661.
[7] M. B. Hay, J. P. Wolfe, J. Am. Chem. Soc. 2005, 127, 16468.
[8] A. Faulkner, J. S. Scott, J. F. Bower, Chem. Comm. 2013, 49, 1521.
[9] M. T. Bovino, T. W. Liwosz, N. E. Kendel, Y. Miller, N. Tyminska, E. Zurek, S. R.
Chemler, Angew. Chem. 2014, 126, 6501; Angew. Chem. Int. Ed. 2014, 53, 6383.

 study ouner garistaz Study owner krohem

Plot coste 2015-05-14

人 Agilent Technologies

Sample Name
 Sale collected 2016-05-14
 Fube sequence CARBON

Temperature 26
study owner garietuz
arintuz

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\B. Hopkins 12 -arylcyclohexanols\RACcyclohexanol-BAH-7-176-1.00mL_min-4.00\%IPA-OJH.Icd

Acquired by	: Admin
Sample Name	$:$ RACcyclohexanol-BAH-7-176-1.00mL_min-4.00\%IPA-OJH
Sample ID	\vdots
Tray\#	$: 1$
Vail \#	$: 1$
Injection Volume	$\vdots 1$ uL
Data File Name	$:$ RACcyclohexanol-BAH-7-176-1.00mL_min-4.00\%IPA-OJH.Icd
Method File Name	:Cyclic Urea Method.Icm
Batch File Name	\vdots
Report File Name	Default.Icr
Data Acquired	$: 6 / 17 / 2014$ 3:49:42 PM
Data Processed	$: 6 / 17 / 2014$ 4:54:01 PM

<Chromatogram>

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	21.833	38905320	645897	49.439	55.274
2	24.956	39788133	522646	50.561	44.726
Total		78693453	1168542	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:\...|Data\B. Hopkins\2-arylcyclohexanolsICHIRAL-cyclohexanol-BAH-9-62-1.00mL_min-4.00\%IPA-OJH-3days.Icd
Acquired by : Admin
Sample Name
: CHIRAL-cyclohexanol-BAH-9-62-1.00mL_min-4.00\%IPA-OJH-3days
Sample ID
$\therefore 1$
Tray\#
: 1
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
: 1 uL
: CHIRAL-cyclohexanol-BAH-9-62-1.00mL_min-4.00\%IPA-OJH-3days.Icd
: Cyclic Urea Method.Icm
:
: Default.lcr
: 2/9/2015 10:31:38 AM
: 2/9/2015 11:41:41 AM
<Chromatogram>

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 254nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	21.535	10056711	144136	99.784	99.956
2	25.931	21749	63	0.216	0.044
Total		10078460	144200	100.000	100.000

Agilent Technologies	Sample Name Date collected	2015-03-16	Pulse sequence Solvent cdol3	CARBON	Temperature 22 Operator

Agilent Technologies	Sample Name Date collected 2015-03-21	Pulse sequence Solvent cdcl3	Carbon	Temperature 22 Operator bahopki	Study owner Printed from	bahopki kr.chem.Isa.umich.edu-vnmrs500

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalB. HopkinsISprio-RAC-BAH-8-92(1)-1.00\%IPA-1.00mL_min-OJH1.Icd

<Chromatogram>

C:ILabSolutions\DatalB. Hopkins\Sprio-RAC-BAH-8-92(1)-1.00\%IPA-1.00mL_min-OJH1.Icd
mAU

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 254 nm 4 nm

Peak	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.418	1241027	40824	49.700	53.782
2	12.802	1256030	35082	50.300	46.218
Totail		2497057	75905	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:L...IData\B. Hopkinsicyclopentylfused (3018-15 and on)\CHIRAL-BAH-9-147(2)-1.00\%IPA-1.00mL_min-OJH.Icd

Acquired by
Sample Name
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed

CHIRAL-BAH-9-147(2)-1.00\%IPA-1.00mL_min-OJH
\therefore
$: 1$
1 uL
CHIRAL-BAH-9-147(2)-1.00\%IPA-1.00mL_min-OJH.Icd Cyclic Urea Method.Icm

Default.Icr 4/10/2015 10:45:11 PM 4/10/2015 11:20:21 PM
<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

C:I...IDatalB. Hopkinslcyclopentylfused (3018-15 and on)\RAC-BAH-9-58(5)-1.00\%IPA-1.00mL_min-ADH.Icd

Acquired by
Sample Name
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed

RAC-BAH-9-58(5)-1.00\%IPA- 1.00 mL _min-ADH
$: 1$
$: 1$
: 1 uL
RAC-BAH-9-58(5)-1.00\%IPA-1.00mL_min-ADH.Icd Cyclic Urea Method.Icm

Default.Icr 5/8/2015 1:22:52 PM 5/8/2015 1:50:25 PM
<Chromatogram>

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 254 nm 4 nm

Peak	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	17.333	14045763	531427	49.132	53.520
2	18.224	14541794	461515	50.868	46.480
Total		28587558	992942	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

Acquired by	: Admin
Sample Name	: CHIRAL-BAH-9-180(3)-1.00\%IPA-1.00mL_min-ADH
Sample ID	
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 1 uL
Data File Name	: CHIRAL-BAH-9-180(3)-1.00\%IPA-1.00mL_min-ADH.Icd
Method File Name	: Cyclic Urea Method.Icm
Batch File Name	
Report File Name	: Default.lcr
Data Acquired	: 5/8/2015 2:54:37 PM
Data Processed	: 5/8/2015 3:18:40 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PeakTable
PDA Ch1 254 nm 4 nm

Peak	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	17.430	860939	30219	18.094	18.474
2	18.385	3897330	13358	81.96	81.526
Totail		4758269	163577	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalB. Hopkinslother THFSIRAC-BAH-9-149(1)-1.00\%IPA-1.50mL_min-OJH.Icd	
Sample Name	: RAC-BAH-9-149(1)-1.00\%IPA-1.50mL_min-OJH
Sample ID	
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 1 uL
Data File Name	RAC-BAH-9-149(1)-1.00\%IPA-1.50mL_min-OJH.Icd
Method File Name	: Cyclic Urea Method.Icm
Batch File Name	
Report File Name	Default.lcr
Data Acquired	: 4/12/2015 11:07:32 AM
Data Processed	: 4/12/2015 11:53:14 AM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalB. Hopkinslother THFSICHIRAL-BAH-9-166-1.00\%IPA-1.50mL_min-OJH.Icd

Acquired by
Sample Name
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
: Admin
CHIRAL-BAH-9-166-1.00\%IPA-1.50mL_min-OJH
$: 1$
$: 1$
CHIRAL-BAH-9-166-1.00\%IPA-1.50mL_min-OJH.Icd
Cyclic Urea Method.Icm
Default.Icr
5/5/2015 6:02:55 PM
:5/5/2015 7:12:57 PM
<Chromatogram>
C:ILabSolutions\Data\B. Hopkinslother THFSICHIRAL-BAH-9-166-1.00\%IPA-1.50mL_min-OJH.Icd
mAU

1 PDA Multi $1 / 230 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 230 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	19.272	16768556	273470	58.206	64.431
2	25.328	12040354	150966	41.794	35.569
Total		28808910	424436	100.000	100.000

2d

\qquad

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalB. Hopkinsigemdiphenyl thflRAC-BAH-9-27-2.00\%IPA-1.00mL_min-ADH-2.Icd
Acquired by
Sample Name
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired Admin
RAC-BAH-9-27-2.00\%IPA-1.00mL_min-ADH-2 1
$: 1$
$: 1 \mathrm{uL}$
: RAC-BAH-9-27-2.00\%IPA-1.00mL_min-ADH-2.Icd
Cyclic Urea Method.Icm

Data Processed

> Default.Icr
> 4/6/2015 11:36:45 AM
<Chromatogram>

C:ILabSolutions\DatalB. Hopkinsigemdiphenyl thflRAC-BAH-9-27-2.00\%IPA-1.00mL_min-ADH-2.Icd
mAU

2d

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable

PDACh1 254 nm 4nm					
Peak $\#$	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	4.873	742501	75958	50.586	52.078
2	6.031	72592	6989	49.414	47.922
Iotal		1467793	145854	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\B. Hopkinsigemdiphenyl thfICHIRAL-BAH-9-144(1)-2.00\%IPA-1.00mL_min-ADH.Icd

Acquired by
Sample Name
Sample ID
Tray\#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed

Admin
CHIRAL-BAH-9-144(1)-2.00\%IPA-1.00mL_min-ADH
$: 1$
$: 1$
$: 1$
$: 1 u L$
$: 1 \mathrm{uL}$
: CHIRAL-BAH-9-144(1)-2.00\%IPA-1.00mL_min-ADH.Icd
: Cyclic Urea Method.Icm
: Default.Icr
4/7/2015 2:28:04 PM $: 4 / 7 / 2015$ 2:43:36 PM
<Chromatogram>

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 254 nm 4 nm

Peakł	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	5.218	11628104	1328650	95.102	95.642
2	6.325	598911	60539	4.898	4.358
Total		12227015	1389189	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\B. Hopkinsigemdiphenyl thflCHIRAL-BAH-9-152(1)-2.00\%IPA-1.00mL_min-ADH-2.Icd

Acquired by
Sample Name
Sample ID
Tray\#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed

CHIRAL-BAH-9-152(1)-2.00\%IPA-1.00mL_min-ADH-2
$\vdots 1$
$: 1$
: 1 uL
CHIRAL-BAH-9-152(1)-2.00\%IPA-1.00mL_min-ADH-2.Icd Cyclic Urea Method.Icm

Default.lcr 4/16/2015 1:32:51 PM : $4 / 16 / 2015$ 1:50:10 PM
<Chromatogram>

C:ILabSolutions\Data\B. Hopkinsigemdiphenyl thflCHIRAL-BAH-9-152(1)-2.00\%IPA-1.00mL_min-ADH-2.Icd mAU

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 254 nm 4nm

Peak $\#$	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	5.220	5795128	672196	95.568	96.400
2	6.345	268775	2501	4.432	3.600
Totai		6063903	697297	100.000	100.000

Data file /home/bahopki/vnmrsys/data/BAH-9-178-2proton.fid \quad Plot date 2015-05-08

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalB. Hopkinsigemdiphenyl thfIRAC-BAH-9-163(2)-5.00\%IPA-1.00mL_min-ADH.Icd
Acquired by Sample Name Sample ID
Tray\#
Vail \#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
RAC-BAH-9-163(2)-5.00\%IPA-1.00mL_min-ADH
$\vdots 1$
$: 1$
RAC-BAH-9-163(2)-5.00\%IPA-1.00mL_min-ADH.Icd
: Cyclic Urea Method.Icm
: Default.Icr
4/22/2015 11:43:27 PM : 4/23/2015 12:14:45 AM

2e

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PeakTable
PDA Ch1 254 nm 4 nm

Peal\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	9.987	18652646	1152095	50.859	54.585
2	11.867	18022436	958560	49.141	45.415
Tota.		36675082	2110655	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\B. Hopkinsigemdiphenyl thflCHIRAL-BAH-9-171(1)-5.00\%IPA-1.00mL_min-ADH.Icd
Acquired by Sample Name Sample ID
Tray\#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired Admin
CHIRAL-BAH-9-171(1)-5.00\%IPA-1.00mL_min-ADH

Data Processed
$: 1$
$: 1$
: 1 uL
: CHIRAL-BAH-9-171(1)-5.00\%IPA-1.00mL_min-ADH.Icd Cyclic Urea Method.lcm

Default.Icr
: 5/2/2015 12:02:09 PM $: 5 / 2 / 2015$ 12:44:56 PM
<Chromatogram>

1 PDA Multi 1/254nm 4nm
PeakTable
PDACh1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	9.734	8178331	542062	93.068	94.082
2	11.585	609165	34098	6.932	5.918
Totai		8787496	576160	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutionsIData\B. Hopkinsigemdiphenyl thflCHIRAL-BAH-9-165(4)-5.00\%IPA-1.00mL_min-ADH.Icd

Acquired by
Sample Name Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed

Admin
CHIRAL-BAH-9-165(4)-5.00\%IPA-1.00mL_min-ADH
$: 1$
$: 1$
: CHIRAL-BAH-9-165(4)-5.00\%IPA-1.00mL_min-ADH.Icd
: Cyclic Urea Method.Icm
Default.Icr
4/24/2015 7:47:58 AM
: 4/24/2015 8:04:49 AM
<Chromatogram>

1 PDA Multi 1/254nm 4nm
PeakTable
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	9.837	17433060	1144879	94.713	95.438
2	11.730	973158	54726	5.287	4.562
Tota.		18406218	1199605	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutionsIData\B. Hopkinsigemdiphenyl thfIRAC-BAH-9-142(1)-2.00\%IPA-1.00mL_min-ADH.Icd
Acquired by Sample Name Sample ID
Tray\#
Vail \#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed : Admin
RAC-BAH-9-142(1)-2.00\%IPA-1.00mL_min-ADH
+
$\therefore 1$
$: 1$
$: 1$
$: 1$ uL
: 1 uL
: RAC-BAH-9-142(1)-2.00\%IPA-1.00mL_min-ADH.Icd Cyclic Urea Method.Icm

Default.Icr
4/6/2015 1:02:20 PM 4/6/2015 1:28:36 PM

<Chromatogram>
$2 f$
C:ILabSolutionsIDatalB. HopkinsIgemdiphenyl thfiRAC-BAH-9-142(1)-2.00\%IPA-1.00mL_min-ADH.Icd
mAU

1 PDA Multi $1 / 254 n m 4 n m$
PeakTable
PDACh1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	7.454	3362119	291487	50.829	53.807
2	8.805	3252515	250237	49.171	46.193
Totai		6614634	541724	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSoluti Acquired by	atalB. Hopkinsigemdiphenyl thflCHIRAL-BAH-9-144(2): Admin
Sample Name	: CHIRAL-BAH-9-144(2)-2.00\%IPA-1.00mL_min-ADH
Sample ID	
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 1 uL
Data File Name	: CHIRAL-BAH-9-144(2)-2.00\%IPA-1.00mL_min-ADH.Icd
Method File Name	: Cyclic Urea Method.lcm
Batch File Name	
Report File Name	: Default.lcr
Data Acquired	: 4/7/2015 3:49:10 PM
Data Processed	: 4/7/2015 4:59:12 PM

<Chromatogram>

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	7.495	6299925	527840	94.803	95.510
2	8.872	345355	24817	5.197	4.490
Totail		6645280	552657	100.000	100.000

\qquad

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutionsIData\B. Hopkinsigemdiphenyl thfIRAC-BAH-9-158(1)-1.00\%IPA-1.00mL_min-ADH.Icd

Acquired by
Sample Name
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
: Admin
: RAC-BAH-9-158(1)-1.00\%IPA-1.00mL_min-ADH
$: 1$
$\vdots 1$
: 1 uL
: RAC-BAH-9-158(1)-1.00\%IPA-1.00mL_min-ADH.Icd Cyclic Urea Method.Icm

Default.Icr
4/20/2015 11:12:08 PM 4/20/2015 11:25:00 PM

<Chromatogram>

1 PDA Multi 1/230nm 4nm
PeakTable
PDA Ch1 230 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	6.922	16482730	762059	50.931	47.384
2	8.115	15880069	846210	49.069	52.616
Total		32362798	1608269	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutionsIData\B. Hopkinsigemdiphenyl thflCHIRAL-BAH-9-170(I)-1.00\%IPA-1.0mL_min-ADH.Icd
Acquired by Admin
Sample Name
Sample ID
Tray\#
Injection Volume
Data File Name
CHIRAL-BAH-9-170(I)-1.00\%IPA-1.0mL_min-ADH
$: 1$
$: 1$

Method File Name
Batch File Name
Report File Name
Data Acquired
: 1 uL
CHIRAL-BAH-9-170(I)-1.00\%IPA-1.0mL_min-ADH.Icd
Cyclic Urea Method.Icm

Data Processed

$$
\begin{aligned}
& \text { Default.Icr } \\
& \text { 5/1/2015 6:05:32 PM }
\end{aligned}
$$

$$
\begin{aligned}
& 5 / 1 / 2015 \text { 6:05:32 PM } \\
& : 5 / 1 / 2015 \text { 6:46:19 PM }
\end{aligned}
$$

<Chromatogram>

C:ILabSolutionsIDatalB. HopkinsIgemdiphenyl thfichIRAL-BAH-9-170(I)-1.00\%IPA-1.0mL_min-ADH.Icd
mAU

1 PDA Multi $1 / 230 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 230 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	7.076	15706142	769699	94.696	93.385
2	8.215	879721	54526	5.304	6.615
Totail		16585863	824224	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\B. Hopkinsigemdiphenyl thflCHIRAL-BAH-9-158(3)-1.00\%IPA-1.00mL_min-ADH.Icd
Acquired by Admin
Sample Name
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
CHIRAL-BAH-9-158(3)-1.00\%IPA-1.00mL_min-ADH
\vdots
$: 1$
CHIRAL-BAH-9-158(3)-1.00\%IPA-1.00mL_min-ADH.Icd
: Cyclic Urea Method.Icm
Default.Icr
: 4/21/2015 12:21:25 AM 4/21/2015 12:31:07 AM

<Chromatogram>

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable

PDACh1 254 nm 4 nm					
Peal	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	6.990	891515	4479	95.481	94.667
2	8.204	42192	2521	4.519	5.333
Totail		933707	47270	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutionsIData\B. Hopkinsigemdiphenyl thfIRAC-BAH-9-167(1)-2.00\%IPA-1.00mL_min-ADH.Icd

Acquired by
Sample Name
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
RAC-BAH-9-167(1)-2.00\%IPA-1.00mL_min-ADH

Method File Name
Batch File Name
Report File Name
Data Acquired
$\vdots 1$
$: 1$
: RAC-BAH-9-167(1)-2.00\%IPA-1.00mL_min-ADH.Icd
: Cyclic Urea Method.Icm

Data Processed

> Default.Icr
> 5/3/2015 9:57:24 PM
: 5/3/2015 10:28:12 PM
<Chromatogram>

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 254 nm 4 nm

Pealł	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.836	1143534	65081	49.978	65.593
2	21.333	1144518	34138	50.022	34.407
Total		2288053	99219	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\B. HopkinsIgemdiphenyl thflCHIRAL-BAH-9-175(2)-2.00\%IPA-1.00mL_min-ADH.Icd
Acquired by
: Admin
Sample Name : CHIRAL-BAH-9-175(2)-2.00\%IPA-1.00mL_min-ADH
Sample ID
\div
Tray\# $\quad: 1$
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
$: 1$ uL
: CHIRAL-BAH-9-175(2)-2.00\%IPA-1.00mL_min-ADH.Icd
: Cyclic Urea Method.Icm
: Default.lcr
<Chromatogram>

C:ILabSolutions\DatalB. HopkinsIgemdiphenyl thflCHIRAL-BAH-9-175(2)-2.00\%IPA-1.00mL_min-ADH.Icd
mAU
(
1 PDA Multi 1/254nm 4nm

PeakTable					
PDA Ch1 254nm 4nm					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	10.632	10096553	593722	93.160	96.529
2	21.141	741340	21347	6.840	3.471
Total		10837893	615069	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\B. HopkinsIgemdiphenyl thflRAC-BAH-9-138(1)-1.00\%IPA-0.50mL_min-ADH.Icd
Acquired by
: RAC-BAH-9-138(1)-1.00\%IPA-0.50mL_min-ADH
Sample Name
Sample ID
: 1
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
$: 1$
: 1 uL
: RAC-BAH-9-138(1)-1.00\%IPA-0.50mL_min-ADH.Icd
: Cyclic Urea Method.Icm
Default.|cr
: 4/3/2015 2:58:02 PM
Data Processed $\quad: 4 / 3 / 2015$ 3:22:05 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PeakTable
PeakTable
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	17.433	11809441	465170	48.852	54.004
2	18.786	12364382	396186	51.148	45.996
Total		24173823	861356	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\B. HopkinsIgemdiphenyl thflCHIRAL-BAH-9-138(2)-1.00\%IPA-0.50mL_min-ADH.Icd
Acquired by : Admin
Sample Name : CHIRAL-BAH-9-138(2)-1.00\%IPA-0.50mL_min-ADH
Sample ID
Tray\# : 1
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
: 1
: 1 uL
: CHIRAL-BAH-9-138(2)-1.00\%IPA-0.50mL_min-ADH.Icd
Cyclic Urea Method.Icm

Data Processed
: Default.lcr
: 4/3/2015 3:26:59 PM
<Chromatogram>

C:ILabSolutions\Data\B. Hopkins\gemdiphenyl thflCHIRAL-BAH-9-138(2)-1.00\%IPA-0.50mL_min-ADH.Icd
mAU

1 PDA Multi $1 / 254 \mathrm{~nm} 4 n m$
PeakTable
PDA Ch1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	17.493	9690833	388542	79.180	86.888
2	18.827	2548227	58633	20.820	13.112
Total		12239059	447175	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalZac GIRAC-ZJG-2-189C-1-DPEPhos-4bromobenzophenone-2.00\%IPA-01.0mL_min-ADH.Icd

Acquired by
Sample Name
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name Batch File Name
Report File Name
Data Acquired
Data Processed
: Admin
RAC-ZJG-2-189C-1-DPEPhos-4bromobenzophenone-2.00\%IPA-01.0mL_min
$: 1$
$: 1$
: 1 uL
RAC-ZJG-2-189C-1-DPEPhos-4bromobenzophenone-2.00\%IPA-01.0mL_min-ADH.Icd
: Cyclic Urea Method.lcm
Default.lcr
4/29/2015 2:38:55 PM
4/29/2015 2:57:12 PM
<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolu Acquired by	IDatalZac GICHIRAL-ZJG-2-197-4bromobenzophenon-2.00\%IPA-01.0mL_minADH.Icd : Admin
Sample Name	: CHIRAL-ZJG-2-197-4bromobenzophenon-2.00\%IPA-01.0mL_minADH
Sample ID	
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 1 uL
Data File Name	: CHIRAL-ZJG-2-197-4bromobenzophenon-2.00\%IPA-01.0mL_minADH.Icd
Method File Name	: Cyclic Urea Method.lcm
Batch File Name	
Report File Name	: Default.lcr
Data Acquired	: 5/2/2015 11:08:59 AM
Data Processed	: 5/2/2015 11:24:17 AM

<Chromatogram>

1 PDA Multi 1/195nm 4nm
PeakTable
PDA Ch1 195 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.101	10171837	637898	37.522	45.663
2	10.851	16936870	759064	62.478	54.337
Total		27108707	1396962	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalZac G\RAC-ZJG-2-201A-1-DPEPhos-4bromobenzophenone-2.00\%IPA-01.0mL_min1.Icd
Acquired by : Admin
Sample Name
: RAC-ZJG-2-201-1-DPEPhos-4bromobenzophenone-2.00\%IPA-01.0mL_min1
Sample ID
$: 1$
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
: 1 uL
: RAC-ZJG-2-201A-1-DPEPhos-4bromobenzophenone-2.00\%IPA-01.0mL_min1.Icd
Batch File Name
Report File Name
Data Acquired
:
5/14/2015 5:38:49 PM
Data Processed

$$
: 5 / 14 / 2015 \text { 6:13:17 PM }
$$

<Chromatogram>

> C:ILabSolutions\Data\Zac GIRAC-ZJG-2-201A-1-DPEPhos-4bromobenzophenone-2.00\%IPA-01.0mL_min1.Icd mAU
> 1 PDA Multi 1/275nm 4nm
> PeakTable

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalZac GICHIRAL-ZJG-2-208B-Bligand-4bromobenzophenone-2.00\%IPA-01.0mL_min-ADH.Icd Acquired by : Admin Sample Name
: CHIRAL-ZJG-2-208B-Bligand-4bromobenzophenone-2.00\%IPA-01.0mL_mi
Sample ID
$\vdots 1$
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
$: 1$
: CHIRAL-ZJG-2-208B-Bligand-4bromobenzophenone-2.00\%IPA-01.0mL_min-ADH.Icd
Batch File Name
Report File Name
Data Acquired
: Cyclic Urea Method.lcm
: Default.Icr
: 5/14/2015 4:44:49 PM
Data Processed
: 5/14/2015 5:15:41 PM

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\Zac GIRAC-ZJG-2-206-1-DPEPhos-bromobnindole-1.00\%IPA-01.0mL_min1.Icd

Acquired by
Sample Name
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
: Admin
:RAC-ZJG-2-206-1-DPEPhos-bromobnindole-1.00\%IPA-01.0mL_min1
$\vdots 1$
$: 1$
: 1 uL
RAC-ZJG-2-206-1-DPEPhos-bromobnindole-1.00\%IPA-01.0mL_min1.Icd
: Cyclic Urea Method.lcm

: Default.lcr
5/16/2015 11:18:00 AM
5/16/2015 12:05:19 PM

<Chromatogram>

C:ILabSolutions\Data\Zac GIRAC-ZJG-2-206-1-DPEPhos-bromobnindole-1.00\%IPA-01.0mL_min1.Icd
mAU

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	11.505	6336323	221869	49.463	80.036
2	27.434	6473788	55341	50.537	19.964
Total		12810111	277211	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalZac GICHIRAL-ZJG-3-6-A-Bligand-bromobnindole-1.0\%IPA-01.0mL_minAD1.Icd

Acquired by
Sample Name
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
: Admin
: CHIRAL-ZJG-3-6-A-Bligand-bromobnindole-1.0\%IPA-01.0mL_minAD1
$\vdots 1$
$: 1$
: 1 uL
: CHIRAL-ZJG-3-6-A-Bligand-bromobnindole-1.0\%IPA-01.0mL_minAD1.Icd
: Cyclic Urea Method.Icm
: Default.lcr
: 5/16/2015 12:06:37 PM
: 5/16/2015 1:06:37 PM
<Chromatogram>

1 PDA Multi 1/254nm 4nm
PDA Ch1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	11.592	30684412	846134	95.635	98.815
2	30.326	1400511	10144	4.365	1.185
Total		32084923	856277	100.000	100.000

Agilemt Technologies

Sample Name \quad Puase sequence CARBON \quad Temperature 2026
study ouncer garistux Study own
Prirted tom ariotar Sole coliected 2015-05-14 Solvent osola Fomperature arieta. ca.umloh.edu-wnerce 600

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalZac GIRAC-ZJG-2-201B-1-DPEPhos-4bromobenzomorpoli-2.00\%IPA-01.0mL_min2.Icd Acquired by : Admin
Sample Name
: RAC-ZJG-2-201B-1-DPEPhos-4bromobenzomorpoli-2.00\%IPA-01.0mL_min
Sample ID
$\vdots 1$
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
$: 1$ uL
: RAC-ZJG-2-201B-1-DPEPhos-4bromobenzomorpoli-2.00\%IPA-01.0mL_min2.Icd
: Cyclic Urea Method.lcm

Data Processed
: 5/14/2015 5:17:10 PM
: 5/14/2015 5:34:30 PM

<Chromatogram>

C:ILabSolutions\DatalZac GIRAC-ZJG-2-201B-1-DPEPhos-4bromobenzomorpoli-2.00\%IPA-01.0mL_min2.Icd mAU

1 PDA Multi 1/210nm 4nm
PeakTable
PDA Ch1 210 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.637	10540544	739139	49.688	55.597
2	10.569	10672771	590323	50.312	44.403
Total		21213314	1329462	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalZac GICHIRAL-ZJG-2-205-1-4bromobenzomorpoli-2.00\%IPA-01.0mL_min.Icd
Acquired by Admin
Sample Name
CHIRAL-ZJG-2-205-1-4bromobenzomorpoli-2.00\%IPA-01.0mL_min
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
: 1
$: 1 \mathrm{uL}$
: CHIRAL-ZJG-2-205-1-4bromobenzomorpoli-2.00\%IPA-01.0mL min.Icd
: Cyclic Urea Method.lcm
: Default.lcr
5/11/2015 12:11:49 PM
5/11/2015 12:32:52 PM
<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\DatalZac G\RAC-ZJG-2-207-1-DPEPhos-bromo4benzonitrile-2.00\%IPA-01.0mL_min.Icd

Acquired by	$:$ Admin
Sample Name	$:$ RAC-ZJG-2-207-1-DPEPhos-bromo4benzonitrile-2.00\%IPA-01.0mL_min.
Sample ID	$\vdots 1$
Tray\#	$: 1$
Vail \#	$: 1$ uL
Injection Volume	$:$ RAC-ZJG-2-207-1-DPEPhos-bromo4benzonitrile-2.00\%IPA-01.0mL_min.lcd
Data File Name	$:$ Cyclic Urea Method.Icm
Method File Name	
Batch File Name	Default.lcr
Report File Name	$: 5 / 12 / 20153: 11: 17$ PM
Data Acquired	$: 5 / 12 / 20153: 20: 54$ PM
Data Processed	

<Chromatogram>

C:ILabSolutionsIDataZZac G|RAC-ZJG-2-207-1-DPEPhos-bromo4benzonitrile-2.00\%IPA-01.0mL min.lcd

1 PDA Multi $1 / 195 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 195 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	7.467	10329364	884476	49.713	52.115
2	8.348	10448562	812688	50.287	47.885
Total		20777926	1697164	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\Zac GICHIRAL-ZJG-3-2-Bligand-bromobenzonitr-2.00\%IPA-01.0mL_min1ADH.Icd

Acquired by Sample Name Sample ID Tray\#
Vail \# Injection Volume Data File Name Method File Name Batch File Name Report File Name Data Acquired Data Processed
: Admin
RAC-ZJG-3-2-DPEPhos-bromobenzonitr-2.00\%IPA-01.0mL_min1ADH
$\vdots 1$
: 1
: 1 uL
: CHIRAL-ZJG-3-2-Bligand-bromobenzonitr-2.00\%IPA-01.0mL_min1ADH.Icd
Cyclic Urea Method.Icm
Default.lcr
5/13/2015 4:39:14 PM
: 5/13/2015 4:56:56 PM

<Chromatogram>

1 PDA Multi 1/195nm 4nm
PeakTable
PDA Ch1 195 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	7.484	20895001	1791445	86.563	87.549
2	8.371	3243362	254773	13.437	12.451
Total		24138363	2046218	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions IDatalZac GITHFs\RAC-ZJG-3-96-DPEPhos-benzophenone-5.0\%IPA-1.0mL_minADH.Icd

Acquired by	$:$ Admin
Sample Name	$:$ RAC-ZJG-3-96-DPEPhos-benzophenone-5.0\%IPA-1.0mL_minADH.Icd
Sample ID	\vdots
Tray\#	$: 1$
Vail \#	$: 1$
Injection Volume	$: 1$ uL
Data File Name	$:$ RAC-ZJG-3-96-DPEPhos-benzophenone- 5.0% IPA-1.0mL_minADH.Icd
Method File Name	$:$ Cyclic Urea Method.Icm
Batch File Name	\vdots
Report File Name	$:$ Default.Icr
Data Acquired	$: 8 / 14 / 2015$ 11:04:13 AM
Data Processed	$: 8 / 14 / 2015$ 11:29:30 AM

<Chromatogram>

1 PDA Multi 1/254nm 4nm
PeakTable
PDA Ch1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	15.632	12769339	498328	49.746	57.006
2	21.332	12899764	375837	50.254	42.994
Total		25669103	874165	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

Acquired by	: Admin
Sample Name	: CHIRAL-ZJG-3-97-1st-L7-benzophenone-5.0\%IPA-1.0mL_minADH.Icd
Sample ID	:
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 1 uL
Data File Name	: CHIRAL-ZJG-3-97-1st-L7-benzophenone-5.0\%IPA-1.0mL_minADH.Icd
Method File Name	: Cyclic Urea Method.Icm
Batch File Name	:
Report File Name	: Default.lcr
Data Acquired	: 8/14/2015 11:33:50 AM
Data Processed	: 8/14/2015 11:59:52 AM

<Chromatogram>

