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Summary 

1. The effects of the invasive bivalves Dreissena polymorpha (zebra mussel) and 

Dreissena rostriformis bugensis (quagga mussel) on aquatic ecosystems, including Lake 

Michigan, are a topic of current interest to scientists and resource managers. We 

hypothesized that the winter-spring phytoplankton bloom in Lake Michigan is reduced at 

locations where the fraction of the water column cleared per day by Dreissena filter A
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feeding approached the net growth rate of phytoplankton, when the water column was not 

stratified. To test this hypothesis, we compared the spatial distribution of Dreissena filter 

feeding intensity (determined from geostatistical modelling) to the spatial distribution of 

chlorophyll (determined from satellite remote sensing).  

2. To map the spatial distribution of Dreissena biomass and filter-feeding intensity, we 

developed a geostatistical model based on point observations of mussel biomass 

measured in Lake Michigan in 1994/95, 2000, 2005 and 2010. The model provided fine-

scale estimates of the spatial distribution of biomass for the survey years and provided 

estimates, with their uncertainty, of total biomass lake-wide and within sub-regions. The 

approach outlined could be applied more generally to map the distribution of benthic 

biota in lakes from point observations.  

3. Total biomass of Dreissena in Lake Michigan, estimated from the geostatistical model, 

increased significantly over each five-year period. The total biomass in units of 106 kg 

ash-free dry mass (AFDM) (with 90% confidence interval) was 6 (4-8) in 1994/95, 18 

(14-23) in 2000, 408 (338-485) in 2005, and 610 (547-680) in 2010. From 1994/95 to 

2005, increases were observed in all regions of the lake (northern, central and southern) 

and in all depth zones (< 30, 30-50, 50-90, and > 90). However, from 2005 to 2010, for 

depths of < 50 m, biomass declined in the northern region, remained constant in the 

central region, and increased in the southern region; biomass continued to increase in all 

three lake regions for depths > 50 m.  

4. The filter feeding intensity of Dreissena exceeded the benchmark spring phytoplankton 

growth rate of 0.06 d-1 in 2005 for depths < 50 m (lake-wide). In 2010, the filter-feeding 

impact exceeded 0.06 d-1 within depths < 90 m (lake-wide), which greatly increased the 

spatial area affected relative to 2005. A regression analysis indicated a significant 

relationship between the reduction in satellite-derived chlorophyll concentration (pre D. 

r. bugensis period to post D. r. bugensis period) and spatially co-located filter-feeding 

intensity (fraction of water column cleared per day) during periods when the water 

column was not stratified (December to April). 
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Introduction 

The dreissenid mussels, Dreissena polymorpha (zebra mussel) and Dreissena 

rostriformis bugensis (quagga mussel), are prolific invaders of aquatic ecosystems. 

Dreissena originated in the Ponto Caspian region, and spread to many aquatic systems in 

Europe in the 19th and 20th centuries (Vanderploeg et al., 2002;  Karatayev, Burlakova & 

Padilla, 2014). The larval mussels were carried to North America in ship ballast water 

(Brown & Stepien, 2010) and adults were first reported in the Laurentian Great Lakes in 

1988, subsequently spreading through the Mississippi River system and to lakes and 

reservoirs in western North America (Benson, 2014). The spread of Dreissena is 

facilitated by their pelagic larval stage and the ability of adults to attach to hard substrata, 

including boats and ships, traits that are lacking in most freshwater bivalves native to 

North America (Vanderploeg et al., 2002;  Karatayev, Burlakova & Padilla, 2014).  

Dreissena polymorpha and D. r. bugensis share many similarities; however, D. r. 

bugensis is much better adapted to deep water. Karatayev et al. (2011) reviewed the 

course of invasion of D. polymorpha and D. r. bugensis across water bodies in Europe 

and North America and found that the two species often coexist in shallow systems 

although, in deep lakes, D. r. bugensis typically displaces D. polymorpha to become the 

dominant species within 10 y after it invades. Most of Lake Michigan is sufficiently deep 

(75% of the lake area is ≥ 30 m) to provide an advantage to D. r. bugensis over D. 

polymorpha. Consistent with the pattern observed in other systems, D. r. bugensis has 

displaced D. polymorpha in Lake Michigan: D. polymorpha was alone in 1994/95, D. r. 

bugensis began to invade northern Lake Michigan in 2000 (first found in 1997; Nalepa et 

al., 2001), and total Dreissena biomass consisted almost exclusively of D. r. bugensis in 

2005 (Nalepa, Fanslow & Pothoven, 2010) and 2010 (Fig. 1: Nalepa et al., 2014). 

As an ecosystem engineer, Dreissena modifies aquatic systems in several ways, having 

substantial ecological (Karatayev, Burlakova & Padilla, 2002;  Vanderploeg et al., 2002) 

and economic effects (Connelly et al., 2007). Dreissena alters benthic substrata by 

creating aggregates of living mussels (‘druses’) and deposits of shells. Dreissena may 

create additional food and habitat for invertebrates in the littoral zone, but quagga 

mussels in deep water may outcompete other invertebrates, decreasing their diversity and 
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density (Vanderploeg et al., 2002;  Karatayev, Burlakova & Padilla, 2014). The system-

wide effect of Dreissena in most water bodies is to reduce phytoplankton abundance 

(chlorophyll concentration) through the direct effect of filter feeding (Karatayev et al., 

2014; and works cited therein), although there are some mechanisms through which 

Dreissena can increase primary production under certain circumstances. For instance, 

Dreissena increases water clarity through filter feeding and regenerates dissolved 

nutrients, which can stimulate growth of attached algae (e.g. Cladophora) and 

macrophytes to nuisance values (Vanderploeg et al., 2002;  Hecky et al., 2004;  Auer et 

al., 2010). Dreissena may also promote the dominance of cyanobacterial blooms through 

selective feeding and alteration of the phosphorus cycle, (Vanderploeg et al., 2001;  

Obenour et al., 2014;  Steffen et al., 2014), although such blooms are not presently an 

issue in the oligotrophic main body of Lake Michigan. In addition, Dreissena alters the 

abundance and distribution of fish and wildlife through effects on benthic habitat and 

prey species distribution (e.g., Schummer, Petrie & Bailey, 2008). Because of the diverse 

effects of Dreissena on invaded systems, detailed distribution maps and estimates of their 

lakewide biomass are useful to ecologists and resource managers in measuring and 

understanding the changes associated with invasion. 

To map spatial distribution, or to estimate an aggregated total over given spatial areas, it 

is necessary to predict abundance for locations where observations are not made. Surveys 

of the benthos, including dreissenids, usually consist of a limited array of point 

observations, with the number of points being limited by the considerable cost of data 

collection and sample processing. Nalepa et al. (2009) reported Dreissena numerical 

density and biomass in Lake Michigan, derived from Ponar grab sample surveys 

conducted in 1994/95, 2000, and 2005; they produced maps of the spatial distribution of 

Dreissena numerical density using natural neighbour spatial interpolation (Sibson, 1981), 

and acknowledged the tendency of this method to overestimate Dreissena density in deep 

water, where mussel densities were expected to be low. Further, Nalepa et al. (2009) 

estimated lakewide biomass by taking the area-weighted mean of point observations 

within four broadly-defined, bathymetric depth intervals (≤ 30, 30–50, 50–90 and > 90 

m), but did not account for spatial trends within the depth intervals. Bathymetric depth is 

an important predictor for the distribution of benthic biota. For example, Auer et al. 
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(2013) reviewed 19 studies that found maxima in the abundance of benthic animals 

(primarily Diporeia spp.) within the Great Lakes at depths between ~30-50 m. Auer et al. 

(2013) collected Ponar grab samples of Diporeia in Lake Superior in cross-isobath 

transects, and identified a depth range (or sediment grain size range) of high abundance 

(> 95th percentile of profundal abundance); lakewide spatial distribution of abundance 

was then estimated based upon bathymetry and grain size maps. The geostatistical 

modelling approach described here offers advantages over previous methods of spatial 

prediction or interpolation applied to benthos in the Great Lakes: 1) covariates such as 

bathymetry are readily incorporated, and 2) predictive uncertainty is readily quantified.  

Here we test the hypothesis that the winter-spring phytoplankton bloom was reduced in 

locations where Dreissena filter feeding intensity approached or exceeded the net growth 

rate of phytoplankton. Prior to establishment of a large population of D. r. bugensis in 

Lake Michigan, there was a winter-spring phytoplankton bloom, with chlorophyll 

concentration gradually increasing from February until the onset of stratification in late 

April -May (Fig. 2; data source: Yousef et al., 2014). The disappearance of the winter-

spring phytoplankton bloom in the southern basin of Lake Michigan after establishment 

of D. r. bugensis has been documented by several investigators (Fahnenstiel et al., 2010b;  

Kerfoot et al., 2010;  Vanderploeg et al., 2010;  Yousef et al., 2014). The winter-spring 

bloom is comprised of energy-rich diatoms, and the loss of this food source to pelagic 

and benthic invertebrates has consequences throughout the food web, including for fish 

(Madenjian et al., 2006;  Nalepa, Fanslow & Lang, 2009;  Pothoven, Fahnenstiel & 

Vanderploeg, 2010). Several lines of evidence implicate filter feeding by D. r. bugensis 

in the disappearance of the winter-spring bloom: 1) loss of the winter-spring bloom was 

coincident with establishment of a large population of D. r. bugensis, 2) the reduction in 

chlorophyll-a concentration and primary production occurred mainly in the isothermal 

period when benthic filter feeding can draw down phytoplankton abundance throughout 

the entire water column (Fahnenstiel et al., 2010b;  Kerfoot et al., 2010), and 3) measured 

clearance rates of D. r. bugensis could exceed the spring phytoplankton growth rate, 

assuming a well-mixed water column (Vanderploeg et al., 2010). Alternate explanations 

for the loss of the winter-spring bloom, including reduced phosphorus loads, increased 

zooplankton grazing and climate change were found to be unsatisfactory (Fahnenstiel et 
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al., 2010b). Our study provides a new approach for assessing the relationship between 

dreissenid filter feeding and the loss of the winter-spring bloom by considering the spatial 

association between the reduction in chlorophyll (from the pre D. r. bugensis period to 

the post D. r. bugensis period) and the filter-feeding intensity of D. r. bugensis.  

 

Methods 

Physical characteristics of Lake Michigan 

Lake Michigan is one of the five Laurentian Great Lakes of North America (Fig. 3). It is 

an oligotrophic lake with a surface area of 57,800 km2, a catchment of 118,000 km2, a 

volume of 4,947 km3 and a maximum depth of 281 m (Coordinating Committee on Great 

Lakes Basic Hydraulic and Hydrologic Data, 1977). It is dimictic, with periods of 

complete vertical mixing in spring and autumn with summer stratification and variable 

stratification and ice cover during winter (Wang et al., 2012). Dates of stratification vary 

from year to year and, in general, the surface mixed layer (SML) varies seasonally and 

temporally from a few metres deep at the onset of summer stratification (May-June) to 

10-20 m in July-August (Beletsky, Schwab & McCormick, 2006). In the autumn, the 

SML increases due to higher winds and convection (surface cooling), leading into the 

isothermal period (December-April) when the water column is vertically well-mixed 

except for intermittent winter stratification when the surface is colder than 4 ºC (Beletsky 

& Schwab, 2001). Surface water temperature in the summer reaches ~20 ºC. At depths 

greater than ~30 m, near-bottom water temperature is ~4 ºC for most of the year, except 

in late summer and autumn when the deepening of the SML may bring warmer water 

(typically < 10 ºC) to the bottom.  

Observed dreissenid mussel biomass 

Numerical densities of D. polymorpha and D. r. bugensis were obtained from samples 

collected with a Ponar grab (sampling area = 0.046 m2) in July-August of 1994/95, 2000, 

2005, and 2010 (Nalepa et al., 2008;  Nalepa et al., 2014). The number of stations 

sampled was 90, 157, 160 and 144 in each of the four periods, respectively. Station 

locations were largely the same in 2000, 2005 and 2010, but differed in 1994/95. 
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Numerical density was converted to Dreissena biomass using length-mass relationships 

and length frequency distributions (Nalepa et al., 2009;  Nalepa et al., 2014). Samples 

were collected in triplicate at each station and were averaged by station and year for 

development of the geostatistical model. We report Dreissena biomass in units of grams 

ash-free dry tissue mass (g AFDM). Biomass may be converted to other units through 

approximate empirical relationships obtained from D. polymorpha specimens: 1 g dry 

tissue mass = 0.88 g AFDM, 1 g dry tissue mass = 0.46 g carbon (Nalepa et al., 1993). 

We chose to conduct our analysis on total Dreissena biomass (sum of D. polymorpha and 

D. r. bugensis) because clearance rates of the two species, normalized to biomass, are not 

significantly different (Vanderploeg et al., 2010), and D. r. bugensis dominated total 

biomass in years for which there were noticeable impacts. 

Geostatistical model 

We applied a geostatistical modelling framework (Diggle & Ribeiro Jr., 2007;  Chiles & 

Delfiner, 2009) that has been previously used with fisheries benthic trawl surveys (Jardim 

& Ribeiro Jr, 2007;  Jardim & Ribeiro Jr, 2008) and bottom-water hypoxia surveys 

(Obenour et al., 2013;  Zhou et al., 2013). To avoid potential confusion, we emphasize 

that the geostatistical model predicts dreissenid biomass across space, but it does not 

make predictions across time. The geostatistical model was implemented using the R 

package (R Core Team, 2012) “geoR” (Ribeiro Jr. & Diggle, 2001).  

The following is a brief explanation of the geostatistical modelling framework, which is 

described in detail elsewhere (Ribeiro Jr. & Diggle, 2001;  Diggle & Ribeiro Jr., 2007). 

Data consist of individual response observations z i  associated with locations x i , which are 

a subset of the observation region. In the geostatistical model, the response Z(x) is related 

to an unobserved stochastic process S(x) called a ‘signal’, which fluctuates around an 

underlying deterministic trend F(x)β. The signal, S(x), is a stationary Gaussian process 

characterized by a spatial variogram (covariance function) that is typically fitted through 

variogram analysis or likelihood estimation (Ribeiro Jr. & Diggle, 2001). Here, a 

spherical covariance function (Ribeiro Jr. & Diggle, 2001), fitted using restricted 

maximum likelihood (Zimmerman, 2010), was found to produce robust model parameter 

estimates. Covariance parameters include τ2, σ2, and φ, which are commonly referred to 
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as the nugget, partial sill and range, respectively. Coincident observations have a 

covariance of σ2 + τ2; observations at very small (but non-zero) separation distances have 

a covariance of σ2; and, as the separation distance increases to the range (φ), the 

covariance between observations decreases from σ2 to zero (and conversely, the variance 

between observations increases from τ2 to σ2 + τ2). For this study, a Box-Cox 

transformation (λ=0.3) of the response was found to substantially improve the Gaussian 

properties of the signal (Box & Cox, 1964;  Ribeiro Jr., Christensen & Diggle, 2003). 

Because the Box-Cox transformation cannot be applied to zero values, an offset of +0.01 

g AFDM m-2 was first applied to all observations, and it was subsequently removed from 

all model predictions after back-transforming to the original scale. 

The deterministic trend component (or ‘drift’),  F(x)β, characterizes the underlying, large-

scale spatial and bathymetric trends in Z(x). Here, F(x) is a design matrix with covariate 

elements of the type f j(x i), a measurement of the jth covariate at the ith location. 

Regression parameters, β j , are estimated through generalized least squares, taking into 

account the covariance structure of the response. When implemented with covariates, in 

this way, the geostatistical model is often referred to as a “Universal Kriging” model 

(Chiles & Delfiner, 2009).   

In our model, the design matrix F(x) included both bathymetric and spatial-coordinate 

covariates. The depth dependence of Dreissena biomass was found to be nonlinear and 

non-monotonic, with a maximum abundance occurring at an intermediate depth range. To 

accommodate this pattern within the geostatistical model, we considered two approaches: 

1) polynomial depth dependence, and 2) categorical depth variable (the depth range was 

divided into a series of categorical variables representing different depth intervals). 

Polynomial functions did not conform well to the observed depth dependence; a second-

order polynomial did not capture the asymmetry in the trend around the depth of 

maximum mussel density, and higher-order polynomials were more likely to produce 

unrealistic values at depth extremes. In contrast, the categorical depth variable conformed 

well to observed trends at shallow and deep extremes without being constrained to follow 

a prescribed functional relationship. Therefore, we selected the categorical depth variable 

as a predictor in the geostatistical model. A range of depth interval widths (10, 20 and 25 
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m) was considered for the categorical depth variable, and an algorithm was developed to 

combine depth intervals systematically, when necessary, to ensure a sufficient number of 

observations (n > 9) within each of the final intervals. Depth intervals with mean biomass 

< 0.1 g AFDM m-2 were not modelled geostatistically because their associated biomass 

was small and because inclusion of a large number of zero-value observations did not 

conform well to the Gaussian signal assumption. Thus, the depth covariates, Dk, include 

categorical variables for each of the k depth intervals included in the geostatistical 

formulation. Spatial-coordinate covariates were based on X and Y, the UTM easting and 

northing, respectively; both linear and quadratic spatial trends were considered (using X, 

Y, X2 and Y2). Each of the three sets of depth covariates (based on 10, 20 and 25m 

candidate depth interval widths), along with all possible combinations of linear and 

quadratic spatial trends, were evaluated based on a leave-one-out cross-validation and the 

Bayesian Information Criterion (BIC) (Schwarz, 1978;  Ribeiro Jr. & Diggle, 2001). The 

preferred depth interval width was selected based on comparison of cross-validation skill 

statistics, including the coefficient of determination (COD) and the percent bias in 

predicted versus observed results (on the original, untransformed scale). Linear and 

quadratic trends (with spatial coordinates) were then selected based on the BIC score.  

Spatial prediction was performed over a 2 km grid covering all of Lake Michigan. Grid 

and observation coordinates were projected to UTM Zone 16 North to minimize 

distortion in distance and area calculations. For deterministic trend development, spatial 

coordinates were converted to units of 105 m to avoid scale mismatch issues among 

covariates. Bathymetry was obtained from the NOAA National Geophysical Data Center 

(www.ngdc.noaa.gov/mgg/greatlakes/greatlakes.html). 

After the model was parameterized, conditional simulations (Ribeiro Jr. & Diggle, 2001;  

Chiles & Delfiner, 2009) were conducted by sampling from the uncertainty in S(x) and β 

at prediction grid locations x, thus creating a large number of realizations (1000) of the 

spatial distribution of Z(x) consistent with the original point observations. Prediction grid 

locations corresponding to depth intervals excluded from the geostatistical model (as 

described above) were simulated by randomly sampling from the excluded observations. 

From this ensemble of realizations, probabilistic estimates of spatially aggregated 

quantities were then derived (e.g., Obenour et al., 2013). Specifically, the mean, median 
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and 90% confidence intervals (based on the 5% and 95% quantiles) for biomass were 

calculated across the entire lake and within specific regions. 

Dreissena filter-feeding intensity, FC 

We calculated the filter feeding intensity (FC, day-1) by Dreissena as FC = B × C / d, 

where B is the biomass, C is the biomass-specific volume of water cleared by filter-

feeding per unit time, and d is the local bathymetric depth (Vanderploeg et al., 2010). We 

used C = 12 mL (mg AFDM)-1 h-1 at 3 ºC, based on experiments with D. r. bugensis from 

Lake Michigan feeding on Cryptomonas, a preferred food of Dreissena and a 

representative alga of the Lake Michigan winter-spring phytoplankton assemblage 

(Vanderploeg et al., 2010).  

The quantity FC may be thought of as the first-order rate coefficient for phytoplankton 

mortality due to dreissenid grazing under conditions of a vertically well-mixed water 

column. Vanderploeg et al. (2001;  2002;  2010) used FC to predict the effect of mussels 

on summer and winter assemblages of phytoplankton, based on the observation that 

dreissenids filter a broad range of particle sizes. Higgins & Vander Zanden (2010) used 

FC as a predictor of impact in meta-analyses of Dreissena across systems. Vanderploeg et 

al. (2010) related FC to an average net phytoplankton growth rate of 0.06 d-1 during 

spring isothermal conditions in Lakes Michigan, Erie, Huron and Ontario (Fahnenstiel et 

al., 2000) as a benchmark to estimate the ability of Dreissena populations to affect the 

winter-spring phytoplankton bloom.  

Satellite-derived chlorophyll concentration 

SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data were downloaded from NASA’s 

Ocean Colour data archive (http://oceancolor.gsfc.nasa.gov).  Level2 (L2) images were 

used for our analysis with ~ 1 kilometre (km) pixel resolution for final 

products. SeaDAS7 software was used to process and map the acquired data to UTM 

(Zone 16 North) projection. SeaWiFS L2 chlorophyll maps were produced using the 

NASA OC4 algorithm, with methods fully described in Yousef et al. (2014). Band ratio 

algorithms for chlorophyll, such as OC4, are suitable for waters in which chlorophyll is 

the main colour producing agent, and are known to suffer from artifacts due to 

interference from other constituents of surface waters, including suspended mineral 
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particles and coloured dissolved organic matter. Kerfoot et al. (2008) found good 

agreement between SeaWiFS-derived chlorophyll and in situ measurements in Lake 

Michigan (R2 = 0.874). Comparison of SeaWiFS OC3 chlorophyll retrieval (a band ratio 

algorithm similar to OC4) to in situ chlorophyll measurements indicated that OC3 

produced acceptable retrievals for open waters of Lake Michigan (Shuchman et al., 2013, 

their Table 3). Comparison of SeaWiFS OC4 chlorophyll to several hundred in situ 

chlorophyll measurements in the Great Lakes indicated good agreement up to chlorophyll 

concentration of 3 µg L-1 with increasing bias at higher chlorophyll concentration (Lesht, 

Barbiero & Warren, 2013, their Fig. 4). In order to avoid potential artifacts introduced by 

optically complex waters, we excluded areas from our analysis with chlorophyll 

concentrations > 3 µg L-1 in any given SeaWiFS image. Chlorophyll concentrations > 

3 µg L-1 were limited to nearshore areas and to eutrophic Green Bay. In addition, we 

excluded areas shallower than 15 m to avoid artifacts caused by bottom reflectance. 

Monthly mean chlorophyll concentration was determined by averaging the cloud-free 

pixels of each daily satellite image over the month. We excluded monthly mean images 

with < 50% spatial coverage from the analysis, which mainly occurred in November to 

January due to greater cloud cover in these months.  

Regression of chlorophyll reduction on filter feeding intensity 

A regression analysis was conducted to test the hypothesis that the reduction in 

chlorophyll concentration (before and after the invasion of  D. r. bugensis), ∆Chl, was 

spatially associated with the filter feeding intensity, FC, during the isothermal period 

(when the water column is vertically well-mixed). To account for seasonal trends in 

chlorophyll concentration when estimating  ∆Chl, we compared chlorophyll 

concentration within the same month for different years. In our regression analysis, we 

accounted for three sources of uncertainty in the regression parameter estimates: 1) 

spatial and interannual variation in pre- and post-invasion chlorophyll, 2) parameter 

estimation by least-squares regression, and 3) estimation of dreissenid biomass spatial 

distribution by the geostatistical model. These sources of uncertainty were addressed by 

means of a sampling-based Monte Carlo method in which we sampled from the 

ensembles of pre-invasion years (1998-2001), post-invasion years (2005-2010), and 
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realizations of mussel spatial distribution from the geostatistical model. Samples of 

dreissenid biomass distribution for post-mussel years were determined through linear 

interpolation between the geostatistical conditional simulations of biomass distribution 

for 2005 and 2010. Each Monte Carlo sample produced a map of ∆Chl and a map of post-

invasion FC on the 2 km prediction grid, and 1000 such samples were created in total. To 

avoid influence of spatial autocorrelation on the regression,  ∆Chl was averaged lake-

wide within intervals of FC. The ten intervals of FC were selected to give an equal 

number of pixels within each interval (~1000). Thus, each sample produced 10 data 

points on which the regression was conducted. A two-segment, piecewise linear 

regression was selected. Regression parameter estimation was conducted using the R 

package “segmented” (Muggeo, 2003;  Muggeo, 2008). The Monte Carlo sampling 

method resulted in an ensemble of 1000 regression parameter estimates. To account for 

uncertainty in estimation of the parameters by regression, the ensemble was enlarged to 

10,000 by sampling (n = 10) from the uncertainty (i.e. standard error) of each of the 1000 

parameter estimates. The final parameter estimate and confidence interval was taken from 

the percentiles of the ensemble of parameter estimates. 

 

Results 

The maps of dreissenid mussel biomass (Fig. 4) produced by the geostatistical model 

show the spatial patterns of the invasion of Lake Michigan by D. polymorpha and D. r. 

bugensis. The geostatistical model expands upon the benthic survey data of Nalepa et al. 

(2014) by predicting biomass in locations that were not sampled to provide a distinct 

visualization of the ring of high dreissenid mussel biomass that developed around the 

lake within an intermediate-depth band in 2005, with further expansion of the depth range 

in 2010. The categorical depth intervals (Fig. 5) and spatial coordinates were found to be 

significant explanatory variables in models for each period (Table 1).  

The ability to quantify the spatial prediction uncertainty is an important outcome of the 

geostatistical modelling approach applied here. The standard deviation of the conditional 

simulations is an indicator of the spatial prediction uncertainty (Fig. 4, bottom). 

Throughout the lake, standard deviations are comparable in magnitude to the best 
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estimates of mussel biomass (Fig. 4), reflecting the fact that variance increases with 

increasing biomass (motivating the Box-Cox transformation of the observations). The 

sum of τ2 + σ2, representing the total variance of the observations around the covariate 

trend, was lowest in 1994-95 and increased substantially in later periods, consistent with 

the substantial increase in the variance of observations apparent in Fig. 5. This variability 

does not have a high degree of spatial correlation, as the range of spatial correlation (φ) 

was only 14.0 and 2.5 km in 1994-95 and 2010, respectively. The range of spatial 

correlation was larger in 2000 and 2005, but in these years the greatest portion of the 

variance was uncorrelated (i.e., σ2 < τ2). Due to the limited spatial correlation in the fitted 

model, proximity to sampling locations does not appear to substantially affect predictive 

uncertainty (Fig. 4, bottom), and although sampling effort increased from 1994-95 to 

later periods, there was no net reduction in predictive uncertainty. 

In order to summarize how biomass varied spatially and through time, biomass estimates 

developed through conditional simulations were aggregated lakewide and for the 

northern, central, and southern regions of the lake (Fig. 3), and for the same depth 

intervals used by Nalepa et al. (2009). Lakewide total biomass increased significantly for 

each five-year period from 1994/95 to 2010 (Table 2), despite the fact that biomass 

declined or remained constant in some regions in the period 2005 to 2010 (Fig. 6). The 

highest biomass (30-40 g AFDM m-2) occurred in the northern region in 2005 in the 30-

50 m depth range, and subsequently declined in 2010 (Fig. 6). However, biomass 

increased continuously over the study period in the southern region for all depth ranges, 

and at depths > 50 m over all regions.  

The spatial distribution of dreissenid filter feeding intensity, FC, (Fig. 7, top) was similar 

to that of mussel biomass (Fig. 4), but was intensified in shallower areas, as expected 

from the appearance of d in the denominator of the FC relationship. In 2005 and 2010, 

April chlorophyll (Fig. 7, bottom; Yousef et al., 2014) was greatly reduced lakewide, 

relative to 2000 and earlier (Figs 2 & 7), indicating near disappearance of the winter-

spring phytoplankton bloom. A white contour line was added to the chlorophyll plots in 

Fig. 7 to indicate the region in which FC exceeded the benchmark net growth rate of 

phytoplankton during the winter-spring bloom in Lake Michigan of 0.06 d-1; and we 

would expect the winter-spring bloom to be greatly reduced in this region. In 2005, and 
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to a greater extent in 2010, low chlorophyll concentrations are evident within the white 

contour lines (Fig. 7), providing observational evidence for a direct impact of dreissenid 

mussel filter feeding on the winter-spring bloom in Lake Michigan. 

The geostatistical model results allow us to estimate when the filter feeding intensity, FC, 

first exceeded benchmark phytoplankton growth rate within specific regions and depth 

ranges. In 2000, FC was much less than 0.06 d-1 over most of Lake Michigan, but slightly 

exceeded that value in the northern region (Fig. 8). In 2005, FC exceeded 0.06 d-1 in all 

regions for < 30 and 30-50 m depth ranges. In 2010, compared to 2005, FC declined in 

the northern region, remained constant in the central region, and continued to increase in 

the southern region. In the 50-90 m depth range, FC first exceeded 0.06 d-1 on a lakewide 

basis in 2010, resulting in a large expansion of the area impacted by dreissenid grazing 

(Fig. 7). 

To test our hypothesis that the post-invasion reduction in chlorophyll, ∆Chl, was spatially 

associated with Dreissena filter feeding intensity, FC, we conducted a regression 

analysis. The two-segment, piecewise linear regression model used (Fig. 9) has four 

parameters, each of which may be interpreted to provide information relevant to our 

hypothesis: 1)  γ0, the y-axis intercept, ∆Chl at FC = 0, represents the reduction in 

chlorophyll at locations that were not locally affected by Dreissena filter feeding, 2)  γ1, 

the slope of the line segment from FC = 0 to FC = γb, is expected to be negative if ∆Chl is 

spatially associated with FC, 3)  γb, the breakpoint value of FC for the piecewise 

regression, is expected to be near the benchmark phytoplankton growth rate of 0.06 d-1, 

and 4)  γ2, the slope of the line segment for FC >  γb, is expected to have a slope of zero 

because the local impact of Dreissena filter feeding is expected to saturate at FC greater 

than the phytoplankton growth rate.  

Results of the regression analysis indicated significant negative values of  γ0 for 

February, April to August, and December (Fig. 10, top), indicating a significant post-

invasion reduction in chlorophyll concentration even at locations where local filter 

feeding intensity was near zero. Significant negative  γ1 values were found for December 

to April (Fig. 10, bottom), indicating that filter feeding had a significant localized effect 

up to some threshold value in FC (γb). As expected, these significant local effects 
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occurred in months when the lake was relatively well-mixed vertically. Also consistent 

with our hypothesis was the finding that  γ1 values were not significantly different from 

zero for months associated with summer stratification (May to November), with the 

exception of June, which had a significant positive value of  γ1. For months associated 

with the winter-spring bloom (February to April),  γb was 0.03 d-1 (0.00 to 0.08, 95% CI 

for the three months combined), not significantly different from the benchmark 

phytoplankton growth rate of 0.06 d-1. Finally,  γ2 was not significantly different from 

zero (95% CI does not include zero) for any month, indicating that the reduction of 

chlorophyll due to the local effect of Dreissena filter feeding was saturated for FC >  γb. 

   

Discussion 

Before the invasion of Lake Michigan by D. r. bugensis, a late winter to spring (March to 

May) phytoplankton bloom was typical (Fahnenstiel & Scavia, 1987;  Fahnenstiel et al., 

2000;  Kerfoot et al., 2008;  Kerfoot et al., 2010). Lake Michigan was often vertically 

well-mixed during the spring bloom (Fahnenstiel et al., 2000), resulting in spatial 

patterns of winter-spring chlorophyll concentrations related to bathymetry: higher 

chlorophyll in moderate depth regions where SML-mean light exposure is higher, and 

low chlorophyll in the deep central basins where SML-mean light exposure is least (Fig. 

7; 1998, 2000).  

Initiation of the winter-spring phytoplankton bloom in lakes and oceans is sensitive to the 

thickness of the surface mixed layer which, in combination with the light attenuation 

coefficient, controls the mean light exposure of phytoplankton cells (Sverdrup, 1953;  

Fahnenstiel et al., 2000;  Siegel, Doney & Yoder, 2002). In order for the winter-spring 

phytoplankton bloom to begin, the population growth rate must exceed loss processes, 

which include phytoplankton respiration, excretion, sinking, and losses to heterotrophic 

grazing; thus the critical light level to initiate the winter-spring bloom (i.e. compensation 

irradiance) increases with increasing losses of phytoplankton to heterotrophic grazing 

(Sverdrup, 1953;  Siegel, Doney & Yoder, 2002). If grazing pressure on phytoplankton is 

sufficiently high, then the compensation irradiance may not be exceeded until the 
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thickness of the surface mixed layer has been reduced by summer stratification, and the 

winter-spring bloom may not occur at all.  

While the disappearance of the winter-spring phytoplankton bloom after the dreissenid 

invasion has been shown previously for the southern basin of Lake Michigan (Fahnenstiel 

et al., 2010b;  Kerfoot et al., 2010;  Vanderploeg et al., 2010;  Yousef et al., 2014), our 

refined maps of dreissenid biomass spatial distribution, covering all of Lake Michigan, 

show the spatial coherence of the mussel filter feeding intensity with reduced chlorophyll 

concentrations. There was a significant reduction in chlorophyll caused by the local 

impact of dreissenid filter feeding (Fig. 10,  γ1 < 0) in winter and spring, when Lake 

Michigan is often well-mixed to the bottom. The local filter-feeding impact saturated 

when the fraction of the water column cleared per day by Dreissena was near the 

benchmark spring phytoplankton growth rate of 0.06 d-1. In addition to the local filter-

feeding impact, a post-invasion reduction in chlorophyll occurred lake-wide, including 

locations that were not locally affected by dreissenid grazing (Fig. 10,  γ0 < 0).  

The significant positive  γ1 value that occurred in June was surprising because it might be 

interpreted to suggest greater chlorophyll concentration at locations where dreissenid 

filter feeding intensity was greatest. Direct, local effects of dreissenid filter feeding would 

not be expected in June when stratification cuts off benthic filter feeders from surface 

chlorophyll. One possible explanation for the higher June chlorophyll concentration in 

locations affected by dreissenid filter feeding is an indirect effect through altered nutrient 

cycling; uptake of available phosphorus may have been delayed by suppression of the 

winter-spring bloom so that available phosphorus in June was greater post- than pre-

invasion. Additional data would be needed to test this hypothesis. June was also unique 

for having the largest post-invasion reduction in chlorophyll (Fig. 10, top) that was not 

related to local filter-feeding impacts (negative γ0 value). The large lake-wide reduction 

in June chlorophyll after the invasion is likely to be a cumulative effect of the 

suppression of the winter-spring bloom over the preceding months. 

The mid-lake reef provided an interesting test of the ability of the geostatistical model to 

predict the occurrence of Dreissena at locations where observations were not available in 

the Ponar survey data set. The mid-lake reef has a substratum consisting of carbonate 
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rock, and separates the southern and central regions of Lake Michigan (Fig. 3). This reef 

area could not be sampled in the surveys owing to the inability of the Ponar grab to 

collect a sample from a hard substratum. The geostatistical model predicted the 

occurrence of Dreissena on the mid-lake reef complex based on the suitable depth habitat 

of the reef (depths of 40 - 100 m). Surveys and images taken with a remotely operated 

underwater vehicle (ROV) indicated that D. r. bugensis was scarce on the reef complex in 

2002 but had densely colonized it by 2006 (Houghton, Paddock & Janssen, 2014), which 

is consistent with the spatial distributions shown in Fig. 4. 

Given the rapid expansion of D. r. bugensis over the 15-year sampling period, and the 

decline in phytoplankton, it is interesting to consider whether there is any indication that 

this species has approached a limited carrying capacity in Lake Michigan over the most 

recent period (2005 to 2010). Note that D. r. bugensis first invaded Lake Michigan in the 

northern region (first found in 1997) and subsequently spread southwards (Nalepa et al., 

2001;  Nalepa, Fanslow & Lang, 2009). In the < 30 m depth interval, biomass converged 

toward 10 g AFDM m-2, decreasing in the northern, increasing in the southern and 

remaining constant in the central region. In a similar manner, biomass converged toward 

20-30 g AFDM m-2 within the 30-50 and 50-90 m depth intervals. The observation that 

biomass declined or remained constant in some northern regions, while biomass 

increased in the south but had not yet reached the peak values observed in the north, 

would be consistent with carrying capacities of ~10 g AFDM m-2 in the < 30 m depth 

range and 20-30 g AFDM m-2 in the 30-90 m depth range. Since biomass was still 

increasing in the > 90 m depth range lake-wide, and this range comprises a large portion 

of total lake area (43%), further monitoring will be needed to reveal the ultimate carrying 

capacity for Dreissena in Lake Michigan. 

We expect spatial patterns in Dreissena biomass in Lake Michigan to continue to shift in 

relation to variable population growth and responses to environmental conditions (self-

induced or otherwise). As illustrated, biomass can be broadly different depending on lake 

region and depth. Since dreissenids have such profound impacts on water quality, nutrient 

and energy cycling, and the abundance of other species, not only in Lake Michigan 

(Fahnenstiel et al., 2010a) but in other bodies of water (Higgins & Vander Zanden, 

2010), detailed distribution maps based on benthic surveys and the geostatistical 
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modelling approach outlined here provide a valuable tool for assessing and interpreting 

further impacts at both whole lake and regional scales. 

 

Supporting information 

Electronic data set: Lake Michigan Dreissena biomass values from the geostatistical 

model on the 2-km prediction grid are provided in the text files 

“Rowe_etal_LakeMichiganDreissenaBiomass_X.txt”, where X is the year (1994-95, 

2000, 2005, 2010), and the Dreissena biomass observed values are provided in the file 

“Nalepa_DreissenidLakeMichigan.txt”. 

 

Acknowledgments 

M. D. Rowe received funding through the National Research Council Research Associate 

program. Additional support was provided by NOAA GLERL, the University of 

Michigan Water Center, and the Cooperative Institute for Limnology and Ecosystems 

Research (CILER). D. Scavia, University of Michigan, is gratefully acknowledged for 

comments on the manuscript. This is GLERL Contribution No. XXXX. 

 

References 

Auer M., Tomlinson L., Higgins S., Malkin S., Howell E. & Bootsma H. (2010) Great 

Lakes Cladophora in the 21st century: same algae-different ecosystem. Journal of 

Great Lakes Research, 36, 248-255. 

Auer M.T., Auer N.A., Urban N.R. & Auer T. (2013) Distribution of the Amphipod 

Diporeia in Lake Superior: The Ring of Fire. Journal of Great Lakes Research, 

39, 33-46. 

Beletsky D. & Schwab D. (2001) Modeling circulation and thermal structure in Lake 

Michigan: Annual cycle and interannual variability. Journal of Geophysical 

Research, 106, 19745-19771. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Beletsky D., Schwab D. & McCormick M. (2006) Modeling the 1998–2003 summer 

circulation and thermal structure in Lake Michigan. Journal of Geophysical 

Research, 111, 1-18. 

Benson A.J. (2014) Chronological history of zebra and quagga mussels (Dreissenidae) in 

North America, 1988-2010. In: Quagga and Zebra Mussels: Biology, Impacts, 

and Control. (Eds. T.F. Nalepa & D.W. Schloesser), pp. 9-29. CRC Press, Boca 

Raton. 

Box G.E. & Cox D.R. (1964) An analysis of transformations. Journal of the Royal 

Statistical Society. Series B (Methodological), 211-252. 

Brown J.E. & Stepien C.A. (2010) Population genetic history of the dreissenid mussel 

invasions: expansion patterns across North America. Biological invasions, 12, 

3687-3710. 

Chiles J.P. & Delfiner P. (2009) Geostatistics: modeling spatial uncertainty, John Wiley 

& Sons. 

Connelly N.A., O’Neill Jr C.R., Knuth B.A. & Brown T.L. (2007) Economic impacts of 

zebra mussels on drinking water treatment and electric power generation 

facilities. Environmental Management, 40, 105-112. 

Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data. (1977) 

Coordinated Great Lakes Physical Data. Chicago, IL and Cornwall, ON. p. 9. 

Diggle P. & Ribeiro Jr. P. (2007) Model-based Geostatistics, Springer, New York. 

Fahnenstiel G., Nalepa T., Pothoven S., Carrick H. & Scavia D. (2010a) Lake Michigan 

lower food web: Long-term observations and Dreissena impact. Journal of Great 

Lakes Research, 36, 1-4. 

Fahnenstiel G.L., Pothoven S., Vanderploeg H., Klarer D., Nalepa T. & Scavia D. 

(2010b) Recent changes in primary production and phytoplankton in the offshore 

region of southeastern Lake Michigan. Journal of Great Lakes Research, 36, 20-

29. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Fahnenstiel G.L. & Scavia D. (1987) Dynamics of Lake Michigan phytoplankton: recent 

changes in surface and deep communities. Canadian Journal of Fisheries and 

Aquatic Sciences, 44, 509-514. 

Fahnenstiel G.L., Stone R.A., McCormick M.J., Schelske C.L. & Lohrenz S.E. (2000) 

Spring isothermal mixing in the Great Lakes: Evidence of nutrient limitation and 

nutrient-light interactions in a suboptimal light environment. Canadian Journal of 

Fisheries and Aquatic Sciences, 57, 1901-1910. 

Hecky R., Smith R.E., Barton D., Guildford S., Taylor W., Charlton M., et al. (2004) The 

nearshore phosphorus shunt: a consequence of ecosystem engineering by 

dreissenids in the Laurentian Great Lakes. Canadian Journal of Fisheries and 

Aquatic Sciences, 61, 1285-1293. 

Higgins S.N. & Vander Zanden M.J. (2010) What a difference a species makes: a meta-

analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological 

Monographs, 80, 179-196. 

Houghton J.S., Paddock R. & Janssen J. (2014) Invasion of quagga mussels (Dreissena 

rostriformis bugensis) to the mid-lake reef complex in Lake Michigan: a 

photographic montage. In: Quagga and Zebra Mussels: Biology, Impacts, and 

Control. (Eds. T.F. Nalepa & D.W. Schloesser), pp. 65-70. CRC Press, Boca 

Raton. 

Jardim E. & Ribeiro Jr P.J. (2007) Geostatistical assessment of sampling designs for 

Portuguese bottom trawl surveys. Fisheries Research, 85, 239-247. 

Jardim E. & Ribeiro Jr P.J. (2008) Geostatistical tools for assessing sampling designs 

applied to a Portuguese bottom trawl survey field experience. Scientia Marina, 

72, 623-630. 

Karatayev A.Y., Burlakova L.E., Mastitsky S.E., Padilla D.K. & Mills E.L. (2011) 

Contrasting rates of spread of two congeners, Dreissena polymorpha and 

Dreissena rostriformis bugensis, at different spatial scales. Journal of Shellfish 

Research, 30, 923-931. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Karatayev A.Y., Burlakova L.E. & Padilla D.K. (2002) Impacts of zebra mussels on 

aquatic communities and their role as ecosystem engineers. In: Invasive aquatic 

species of Europe. Distribution, impacts and management. (Eds., pp. 433-446. 

Springer. 

Karatayev A.Y., Burlakova L.E. & Padilla D.K. (2014) Zebra versus quagga mussels: a 

review of their spread, population dynamics, and ecosystem impacts. 

Hydrobiologia, 1-16. 

Kerfoot W.C., Budd J.W., Green S.A., Cotner J.B., Biddanda B.A., Schwab D.J., et al. 

(2008) Doughnut in the desert: Late-winter production pulse in southern Lake 

Michigan. Limnology and Oceanography, 53, 589. 

Kerfoot W.C., Yousef F., Green S.A., Budd J.W., Schwab D.J. & Vanderploeg H.A. 

(2010) Approaching storm: disappearing winter bloom in Lake Michigan. Journal 

of Great Lakes Research, 36, 30-41. 

Lesht B.M., Barbiero R.P. & Warren G.J. (2013) A band-ratio algorithm for retrieving 

open-lake chlorophyll values from satellite observations of the Great Lakes. 

Journal of Great Lakes Research, 39, 138-152. 

Madenjian C.P., Pothoven S.A., Dettmers J.M. & Holuszko J.D. (2006) Changes in 

seasonal energy dynamics of alewife (Alosa pseudoharengus) in Lake Michigan 

after invasion of dreissenid mussels. Canadian Journal of Fisheries and Aquatic 

Sciences, 63, 891-902. 

Muggeo V.M.R. (2003) Estimating regression models with unknown break‐ points. 

Statistics in medicine, 22, 3055-3071. 

Muggeo V.M.R. (2008) Segmented: an R package to fit regression models with broken-

line relationships. R news, 8, 20-25. 

Nalepa T.F., Cavaletto J.F., Ford M., Gordon W.M. & Wimmer M. (1993) Seasonal and 

Annual Variation in Weight and Biochemical Content of the Zebra Mussel, 

Dreissena polymorpha, in Lake St. Clair. Journal of Great Lakes Research, 19, 

541-552. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Nalepa T.F., Fanslow D.L. & Lang G.A. (2009) Transformation of the offshore benthic 

community in Lake Michigan: recent shift from the native amphipod Diporeia 

spp. to the invasive mussel Dreissena rostriformis bugensis. Freshwater Biology, 

54, 466-479. 

Nalepa T.F., Fanslow D.L., Lang G.A., Lamarand D.B., Cummins L.G. & Carter G.S. 

(2008) Abundances of the amphipod Diporeia spp. and the mussels Dreissena 

polymorpha and Dreissena rostriformis bugensis in Lake Michigan in 1994-1995, 

200, and 2005. NOAA Technical Memorandum GLERL-144, Ann Arbor, 

Michigan, USA, p. 25, 

http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-144/tm-144.pdf. 

Nalepa T.F., Fanslow D.L., Mabrey K., Lang G.A. & Rowe M.D. (2014) Lake-wide  

benthic surveys in Lake Michigan in 1994-1995, 2005, 2005, and 2010: 

Abundances of the amphipod Diporeia spp., and abundances and biomass of 

mussels Dreissena polymorpha and Dreissena rostriformis bugensis. NOAA 

Technical Memorandum GLERL-164, Ann Arbor, Michigan, USA, p. 25, 

http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-164/tm-164.pdf. 

Nalepa T.F., Fanslow D.L. & Pothoven S.A. (2010) Recent changes in density, biomass, 

recruitment, size structure, and nutritional state of Dreissena populations in 

southern Lake Michigan. Journal of Great Lakes Research, 36, 5-19. 

Nalepa T.F., Schloesser D.W., Pothoven S.A., Hondorp D.W., Fanslow D.L., Tuchman 

M.L., et al. (2001) First finding of the amphipod Echinogammarus ischnus and 

the mussel Dreissena bugensis in Lake Michigan. Journal of Great Lakes 

Research, 27, 384-391. 

Obenour D.R., Gronewold A.D., Stow C.A. & Scavia D. (2014) Using a Bayesian 

hierarchical model to improve Lake Erie cyanobacteria bloom forecasts. Water 

Resources Research, 50, 7847-7860. 

Obenour D.R., Scavia D., Rabalais N.N., Turner R.E. & Michalak A.M. (2013) 

Retrospective analysis of midsummer hypoxic area and volume in the northern 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Gulf of Mexico, 1985–2011. Environmental Science & Technology, 47, 9808-

9815. 

Pothoven S.A., Fahnenstiel G.L. & Vanderploeg H.A. (2010) Temporal trends in Mysis 

relicta abundance, production, and life-history characteristics in southeastern 

Lake Michigan. Journal of Great Lakes Research, 36, 60-64. 

R Core Team. (2012) R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, 

http://www.R-project.org/. 

Ribeiro Jr. P.J., Christensen O.F. & Diggle P.J. (2003) geoR and geoRglm: software for 

model-based geostatistics. In: Proceedings of the 3rd International Workshop on 

Distributed Statistical Computing (DSC 2003), Vienna, Austria. (Eds. K. Hornik 

& L. Friedrich & Z. Achim), pp. 1-162003. 

Ribeiro Jr. P.J. & Diggle P.J. (2001) geoR: A package for geostatistical analysis. R-

NEWS, 1, 15-18. 

Schummer M.L., Petrie S.A. & Bailey R.C. (2008) Dietary overlap of sympatric diving 

ducks during winter on northeastern Lake Ontario. The Auk, 125, 425-433. 

Schwarz G. (1978) Estimating the dimension of a model. The Annals of Statistics, 6, 461-

464. 

Shuchman R.A., Leshkevich G., Sayers M.J., Johengen T.H., Brooks C.N. & Pozdnyakov 

D. (2013) An algorithm to retrieve chlorophyll, dissolved organic carbon, and 

suspended minerals from Great Lakes satellite data. Journal of Great Lakes 

Research, 39, 14-33. 

Sibson R. (1981) A brief description of natural neighbour interpolation. In: Interpreting 

Multivariate Data. (Eds. V. Barnett), pp. 21-36. Wiley, New York. 

Siegel D., Doney S. & Yoder J. (2002) The North Atlantic spring phytoplankton bloom 

and Sverdrup's critical depth hypothesis. Science, 296, 730-733. A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Steffen M.M., Belisle B.S., Watson S.B., Boyer G.L. & Wilhelm S.W. (2014) Status, 

causes and controls of cyanobacterial blooms in Lake Erie. Journal of Great 

Lakes Research, 40, 215-225. 

Sverdrup H. (1953) On conditions for the vernal blooming of phytoplankton. Journal du 

Conseil, 18, 287-295. 

Vanderploeg H.A., Liebig J.R., Carmichael W.W., Agy M.A., Johengen T.H., 

Fahnenstiel G.L., et al. (2001) Zebra mussel (Dreissena polymorpha) selective 

filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and 

Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1208-1221. 

Vanderploeg H.A., Liebig J.R., Nalepa T.F., Fahnenstiel G.L. & Pothoven S.A. (2010) 

Dreissena and the disappearance of the spring phytoplankton bloom in Lake 

Michigan. Journal of Great Lakes Research, 36, 50-59. 

Vanderploeg H.A., Nalepa T.F., Jude D.J., Mills E.L., Holeck K.T., Liebig J.R., et al. 

(2002) Dispersal and emerging ecological impacts of Ponto-Caspian species in the 

Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59, 

1209-1228. 

Wang J., Bai X., Hu H., Clites A., Colton M. & Lofgren B. (2012) Temporal and Spatial 

Variability of Great Lakes Ice Cover, 1973-2010. Journal of Climate, 25, 1318-

1329. 

Yousef F., Kerfoot W.C., Shuchman R. & Fahnenstiel G. (2014) Bio-optical properties 

and primary production of Lake Michigan: Insights from 13-years of SeaWiFS 

imagery. Journal of Great Lakes Research, 40, 317-324. 

Zhou Y., Obenour D.R., Scavia D., Johengen T.H. & Michalak A.M. (2013) Spatial and 

temporal trends in Lake Erie hypoxia, 1987–2007. Environmental Science & 

Technology, 47, 899-905. 

Zimmerman D.L. (2010) Likelihood-Based Methods. In: Handbook of Spatial Statistics. 

(Eds. A.E. Gelfand & P.J. Diggle & M. Fuentes & P. Guttorp), pp. 45-56. CRC 

Press, Boca Raton, FL. 

 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Table 1. Geostatistical covariate trend model, skill statistics, and covariance parameters 

for each year. Percent bias and coefficient of determination (COD) were determined by 

leave-one-out cross validation. The covariates are the categorical depth variables Dk, and 

spatial coordinates X and Y (UTM easting and northing, respectively). The covariance 

parameters τ2 and σ2 are the nugget and partial sill (for Box-Cox transformed Dreissena 

biomass) and φ is the range of spatial correlation (km). 

Year Covariates Pct. bias COD  τ2
 σ2

 ϕ 

1994-95 Dk + X + Y -9.3 0.27 0.0 0.7 14.0 

2000 Dk + X -17.9 0.13 1.4 0.5 96.1 

2005 Dk + X + Y + X
2
 + Y

2
 -0.4 0.27 4.5 2.8 29.3 

2010 Dk + X + Y + Y
2
 2.4 0.46 0.4 2.5 2.5 

 

Table 2: Mean and percentiles of the Lake Michigan total Dreissena biomass from the 

conditional simulations, millions of kg ash-free dry mass. 

Year Mean 5 25 50 75 95 

1994-95 6 4 5 6 7 8 

2000 18 14 17 18 20 23 

2005 408 338 376 406 437 485 

2010 610 547 582 607 636 680 

 

 

Figure captions 

 

Fig. 1. Summary of the Dreissena survey data (Ponar grab samples, Nalepa et al., 2014), 

showing the displacement of D. polymorpha by D. r. bugensis over the study period. The 

top panel shows the percentage of stations at which each species was detected. The 

bottom panel shows boxplots of biomass at the sampling stations. Boxplots indicate the 5, 

25, 50, 75 and 95th percentile of the observations, and the mean is indicated by a symbol. 

The number of stations sampled in each period is given below the plot. 
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Fig. 2. Monthly lake-wide mean surface chlorophyll concentration from SeaWiFS remote 

sensing imagery for the period 1998 through 2010 (Yousef et al., 2014). Vertical dashed 

lines indicate April of each year. 

Fig. 3. Map of Lake Michigan showing bathymetry contours and regions that were used 

to summarize results. The inset in the right panel shows the location of Lake Michigan in 

North America. 

Fig. 4. Spatial distribution of mean (top row) and standard deviation (bottom row) of 

dreissenid mussel biomass from geostatistical conditional simulations. Observed values 

are shown as circles, in the same colour bar scale. 

Fig. 5. Boxplots of observed dreissenid mussel biomass as related to station depth where 

samples were collected. The bathymetric depth intervals that were used to create the 

categorical depth variable in the covariate trend model are indicated for each year in the 

study period (vertical lines). The depth ranges shaded in grey had minimal biomass, and 

were treated separately from the geostatistical model. Boxplots are defined as in Fig. 1. 

Note that the y-axis scale differs among years. 

Fig. 6. Mean dreissenid mussel biomass within regions of Lake Michigan indicated in 

Fig. 3. Boxplots indicate the 5, 25, 50, 75, and 95th percentiles of the 1000 values 

obtained from the conditional simulations. 

Fig. 7. Spatial distribution of the fraction of the water column cleared per day by 

Dreissena filter feeding, FC (top row), and the mean April chlorophyll concentration for 

corresponding years from the SeaWiFS satellite (Yousef et al., 2014) (bottom row). 1998 

was the earliest year available for SeaWiFS chlorophyll, so it was paired with 1994/95 

FC. The black and white contour line indicates the 0.06 day-1 contour of the fraction 

cleared per day, which is the benchmark phytoplankton growth rate during the winter-

spring bloom (Vanderploeg et al., 2010). Areas shaded in grey were excluded from the 

analysis by quality screening criteria applied to the satellite-derived chlorophyll data (see 

Methods).  A
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Fig. 8. Fraction of the water column cleared per day by Dreissena filter feeding, FC, 

summarized over the regions indicated in Fig. 3. The dashed line indicates the 0.06 day-1 

level of fraction cleared per day. Boxplots are defined as in Fig. 8. 

Fig. 9. An example of fitting a piecewise linear regression model of spatially-associated 

values of filter feeding intensity and the change in chlorophyll concentration (∆Chl, pre 

D. r. bugensis period to post D. r. bugensis period). In this example, the month is April, 

the pre D. r. bugensis year is 1999, and the post D. r. bugensis year is 2009. Each point in 

the plot represents the mean ∆Chl for an interval of FC (~1000 2-km pixels per interval; 

point shown at mean value of FC for each interval). 

Fig. 10. Parameter estimates by month for the piecewise linear regression of ∆Chl on FC 

(one example shown in Fig. 9). The parameter γ0 is the y-axis intercept (∆Chl at FC = 0) 

and γ1 is the slope of the line segment between FC = 0 and the breakpoint value of FC. 

Each bar represents the median of the Monte Carlo ensemble of parameter estimates, and 

the number is the frequency of occurrence of negative values in the ensemble. Bars 

shaded in black indicate a significant difference from zero (95% CI, based on percentiles 

of the ensemble, did not include zero). Negative γ0 indicates a lake-wide post-invasion 

reduction in chlorophyll independent of the spatial distribution of Dreissena filter 

feeding. Negative γ1 indicates a post-invasion reduction in chlorophyll that is spatially 

associated with Dreissena filter feeding intensity, FC.  
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