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Summary

1. The effects of thmvasive bivalve®reissena polymorpha (zebra mussel) and
Dreissenarrostriformis bugensis (quagga mussel) on aquatic ecosystems, including Lake
Michigan, are a topic of current interest to scientists and resource manafger
hypothesized that the winter-spring phytoplankton bloom in Lake Michigan is reduced at
locations where the fraction of the water column clearedl@gbyDreissena filter
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feeding approached the net growth rate of phytoplankton, when the water column was not
stratified. To test this hypothesis, we compared the spatial distributidrestena filter

feeding intensity (determined from geostatistical modelling) to the spatiabdigin of
chlorophyll (determined from satellite remote sensing).

2. To map the spatial distribution Df eissena biomass and filtefeeding intensity, we
developedargeostatistical model based on point observations of mussel biomass
measured in Lake Michigan in 1994/95, 2000, 2005 and 2010. The model provided fine-
scale estimates of the spatial distribution of biomass for the surveyayehmovided
estimates, withtheir uncertainty, of total biomass lake-wide and within sub-regions. The
approach‘outlined could be applied more generally to map the distribution of benthic

biota in lakes from point observations.

3. Totalhiemass ddreissena in Lake Michigan, estimat from the geostatistical model,
increaged significantly over each fiyear period. The total biomass in units of k@

ashfree dry mass (AFDI) (with 90% confidence interval) was 6 (4-8) in 1994/95, 18
(14-23).in 2000, 408 (338-485) in 2005, and 610 (547-680) in 2010. From 1994/95 to
2005zinereases were observed in all regions of the lake (northern, central and southern)
and in all depth zones (< 30, 30-50, 50-90, and > 90). However, from 2005 to 2010, for
depthsof <50 m, biomass declined in the northern region, remained constant in the
central region, and increased in the southern region; biomass continued to incrdase in al

three lake regions for depths > 50 m.

4. The'filterfeeding intensity ddreissena exceeded the benchmark spring phytoplankton
growth'rate of 0.06 din 2005 for depths < 50 m (lake-wide). In 2010, the fifezrding
impact exceeded 0.06™dvithin depths < 90 m (lakeside), which greatly increased the
spatial area affected relative to 2005. A regression analysis indicatetfia i
relationship between the reduction in sateltiegived chlorophyll concentration (pie

r. bugensisiperiod to posD. r. bugensis period) and spatially ctocated filterfeeding
intensity.(fraction of water column cleared per day) during pemdds the water

column was not stratified (December to April).
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Introduction

The dreissenid mussel3reissena polymorpha (zebra mussel) ardreissena

rostriformis bugensis (quagga mussel), are prolific invaders of aquatic ecosystems.
Dreissena originated in the Ponto Caspian region, and spread to many aquatic systems in
Europerifitha 9" and 28 centuriegVanderploeget al., 2002; Karatayev, Burlakova &
Padilla;’2014)The larval mussels were carried to North America in ship ballast water
(Brown & Stepien, 2010and adults were first reported in the Laurentian Great Lakes in
1988, subsequently spreading through the Mississippi River system and to lakes and
reservoirs.in western North Ameri@enson, 2014). The spread@feissena is

facilitated bytheir pelagic larval stage and the ability of adults to attach to hard substrata,
including boats and ships, traits that are lacking in most freshwater bivalwestoati

North America(Vanderploeget al., 2002; Karatayev, Burlakova & Padilla, 2014).

Dreissena polymorpha andD. r. bugensis share many similarities; howevé, r.
bugensisis much better adapted to deep water. Karatayak (2011)reviewed the
course of invasion dD. polymorpha andD. r. bugensis across water bodies in Europe
andNerth-America and found that the two species often coexist in shallow systems
although, in"deep lakeB. r. bugensis typically displace®. polymorpha to become the
dominant'species within 10 y after it invades. Mafdtake Michigan is sufficiently deep
(75% ofthelakearea is> 30 m) to provide an advantagelor. bugensis overD.
polymorpha. Consistent with the pattern observed in other systBms,bugensis has
displacedD. polymorpha in Lake MichiganD. polymorpha was alone in 1994/9%). r.
bugensisibegan to invade northern Lake Michigan in 2000 (first found in 1997; Netlepa
al., 200%)yand totdDreissena biomass consisted almost exclusivelybot. bugensisin
2005 (Nalepa, Fanslow & Pothoven, 2010) and 2010 (Figalepaet al., 2019.

As anecosystem engineddyeissena modifies aquatic systems in several ways, having
substantial’ecologic¢Karatayev, Burlakova & Padilla, 2002; Vanderpl@tgl., 2002)
and economic effec{€onnellyet al., 2007).Dreissena alters benthic substrata by
creding aggregates of living mussels (‘druses’) and deposits of sDedissena may
create additional food and habitat for invertebrates in the littoral zone, but quagga
mussels in deep water may outcompete other invertebrates, decreasing ¢ngirydawl
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density (Vanderploegt al., 2002; Karatayev, Burlakova & Padilla, 201%he system
wide effect ofDreissena in most water bodies is to reduce phytoplankton abundance
(chlorophyll concentration) through the direct effect of filter feedingréitaye\et al.,

2014; and works cited therein), although there are some mechanisms through which
Dreissena.can increase primary production under certain circumstances. For instance,
Dreissena increases water clarity through filter feeding and regenerates didsolv
nutrients;"which can stimulate growth of attached algae @#adophora) and

macrophytes to nuisance values (Vanderpkied)., 2002; Heckyet al., 2004; Auert

al., 2010).Dreissena may also promote the dominance of cyanobacterial blooms through
seletive feeding and alteration of the phosphorus cycle, (Vandergtadg 2001,
Obenouret al., 2014; Stefferet al., 2014), although such blooms are not presently an
issue in the pligotrophic main body of Lake Michigan. In additioneissena alters the
abundance and distribution of fish and wildlife through effects on benthic habitat and
prey species distribution (e.g., Schummer, Petrie & Bailey, 2@#)ause of the diverse
effectsqofdreissena on invaded systems, detailed distribution maps and dssroétheir
lakewide biomass are useful to ecologists and resource managers in ngeasdri

understanding the changes associated with invasion.

To map.spatial distribution, or to estimate an aggregated totaywesrspatial areg it

is necessary torpdict abundance for locations where observatawasot made. Surveys

of the benthos, including dreissenids, usually consist of a limited array of point
observations, with the number of points being limited by the considerable cost of data
collection'andsample processing. Nalepiaal. (2009) reporte@®reissena numerical

density. and biomass in Lake Michigan, derived from Ponar grab sample surveys
conducted.in 1994/95, 2000, and 2005; they produced maps of the spatial distribution of
Dreissena'numericaldensiy using natural neighbowspatial interpolatiofSibson, 1981),
and acknowledged the tendencytlut method to overestimal¥reissena densiy in deep
water;where mussel densities were expected to be low. Further, Nailgp2009)
estimated lagwide biomass by taking the are@aighted mean of point observations

within four broadlydefined, bathymetric depth intervals (< 30, 30-50, 50-90 and > 90

m), but did not account for spatial trends within the depth intervals. Bathymetric slepth i

an important predictor for the distribution of benthic biota. For example, é&aér
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(2013) reviewed 19 studies that found maximthaabundancef benthic animals

(primarily Diporeia spp.) within the Great Laked depths betweer30-50 m. Aueret al.
(2013) ollected Ponar grab samplesliporeia in Lake Superior in cross-isobath
transects, and identified a depth range (or sediment grain size rahigd) abundance

(> 95" percentile of profundal abundance); lakewide spatial distribution of abundance
was then estimated based upon bathymetry and grain size Thapgeostatistical

modelling approach described here offers advantages over previous methods of spatial
prediction‘or interpolation applied to benthos in the Great Ldkesovariates such as

bathyméry are readily incorporated, and 2) predictive uncertainty is readily giealntif

Here we test the hypothesis that the wisi@iing phytoplankton bloom was reduced in
locations wherd®reissena filter feeding intensity approached or exceeded the net growth
rate of phytoplankton. Prior to establishment of a large populatibnrofugensis in

Lake Miehigan, there was a wintspring phytoplankton bloom, with chlorophyll
concentration graduallycreasing from February until the onset of stratification in late
April-May (Fig. 2 data sourceYousefet al., 2014. The disappearance of the winter
spring phytoplankton bloom in the southern basin of Lake Michigan after establishment
of D. r. bugensis has been documented by several investigékaisnenstieét al., 2010Db;
Kerfootet.al,, 2010; Vanderploeg al., 2010; Youseét al., 2014). The wintespring

bloom is comprised of energy-rich diatoms, and the loss of this food source to pelagic
and benthiesinvertebrates has consequences throughout the food web, including for fish
(Madenjianet al., 2006; Nalepa, Fanslow & Lang, 2009; Pothoven, Fahnenstiel &
Vanderploeg, 2010B5everal lines of evidence implicate filter feedingby. bugensis

in the disappearance of the winspring bloom: 1) loss of the winter-spring bloom was
coincident with establishment of a large populatiod of. bugensis, 2) the reduction in
chlorophyll=a concentration and primary production occurred mainly in the isaher
period'when benthic filter feeding can draw down phytoplankton abundance throughout
the entire water column (Fahnensggdl., 2010b; Kerfoott al., 2010) and 3) measured
clearance rates @. r. bugensis could exceed the spring phytoplankton gitovate,
assuming a welinixed water columiVanderploegt al., 2010) Alternate explanations

for the loss of the winter-spring bloom, including reduced phosphorus loads, increased

zooplankton grazing and climate change were found to be unsatisf@etiongnstielet
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al., 2010b). Our study provides a new approach for assessing the relationship between
dreissenid filter feeding and the loss of the winter-spring bloom by considerispatal
association betweehe reduction in chlorophyll (from the pie r. bugensis period to

the posD. r. bugensis period) and the filtefeeding intensity oD. r. bugensis.

Methods
Physical'characteristics of Lake Michigan

Lake Michigan is one of the five Laurentian Great Lakes of North Ameriga 3Filt is

an oligotraphic lake with a surface aref57,800 km, a catchment of 118,000 kna

volume 'of 4,947 krhand a maximum depth of 281 (@oordinating Committee on Great
Lakes Basic Hydraulic and Hydrologic Data, 197¥)s dimictic, with periods of
complete.vercal mixing in spring and autumn with summer stratification and variable
stratification,and ice cover during wint@vanget al., 2012).Dates of stratification vary
from year to year and, in general, the surface mixed ([8ML.) varies seasonally and
temporallyfrom a few metres deep at the onset of summer stratificatiorJ{May to

10-20 mein JulyAugust(Beletsky, Schwab & McCormick, 2006). In the autumn, the
SMLsincCreases due to higher winds and convection (surface cooling), leading into the
isothemal period (Decembeéhpril) when the water column is vertically wetlixed
exceptfor.intermittent winter stratification when the surface is colder th@riBeletsky

& Schwab, 2001). Surface water temperature in the summer reaches ~20 °C. At depths
greaer than ~30 m, near-bottom water temperature is ~4 °C for most of the year, except
in late'summer and autumn when the deepening of the SML may bring warmer water
(typically < X0 °C) to the bottom.

Observed dreissenid mussel biomass

Numerical.densities dD. polymorpha andD. r. bugensis were obtained from samples
collected with a Ponar grab (sampling area = 0.04@miuly-August of 1994/95, 2000,
2005, and 201(Nalepaet al., 2008; Nalepat al., 2014). The number of stations
sampled was 90, 157, 160 and 144 in each of the four periods, respectively. Station
locations were largely the same in 2000, 2005 and 2010, but differed in 1994/95.
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Numerical density was convertedoei ssena biomass using lengtimass relationships

and length frequency distributio{Nalepaet al., 2009 Nalepaet al., 2014) Samples

were collected in triplicate at each station and were averaged by station arat year f
development of the geostatistical model. We repoeissena biomass in units of grams
ashfree dry tissue magg AFDM). Biomass may be converted to other units through
approximate empirical relationships obtained frionpolymorpha specimens: 1 g dry

tissue mass'= 0.88 g AFDM, 1 g dry tissue mass = 0.46 g c@vlatepaet al., 1993).

We choese'to conduct our ansily on totaDreissena biomass (sum db. polymorpha and

D. r. bugensis) because clearance rates of the two species, normalized to biomass, are not
significantly,different(Vanderploegt al., 2010) andD. r. bugensis dominated total

biomass‘insyears for which there were noticeable impacts.
Geostatistical model

We applied a geostatistical modelling framew(iggle & Ribeiro Jr., 2007; Chiles &
Delfiner, 2009) that has been previously used with fisheries benthicsnaveys(Jardim

& Ribeiro Jr; 2007; Jardim & Ribeiro Jr, 2008) and bottom-water hypoxia surveys
(Obenouret-al., 2013; Zhouet al., 2013). To avoid potential confusion, we emphasize
that the geostatistical model predicts dreissenid biomass acrossksgatdoesiot

make predictions across time. The geostatistical model was implemented using the R
packaggR Core Team, 2012geoR” (Ribeiro Jr. & Diggle, 2001).

The follewing is a brief explanation of the geostatistical modelling framewdrich is
described.in detail elsewhe(fieibeiro Jr. & Diggle, 2001; Diggle & Ribeiro Jr., 2007).
Data consist of individual response observatmprassociated with locations, which are

a subset of the observation region. In the geostatistical model, thegeZpors related

to an unobserved stochastic procgs3 called a ‘signal’, which fluctuates around an
underlying deterministic trenl(x)5. The signalS(x), is a stationary Gaussian process
characterized by a spatial variogram (covariance functien)ghypically fitted through
variogram analysis or likelihood estimati@ribeiro Jr. & Diggle, 2001)Here, a

spherical covariance functiqRibeiro Jr. & Diggle, 2001 )itted using restricted

maximum likelihoodZimmerman, 2010), was found to produce robust model parameter

estimates. Covariance parameters inckide’, andyp, which are commonly referred to
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as the nugget, partial sill and range, respectively. Coincident observatiors have
covariance of” + ¢ observations at very small (but npero) separation distances have

a covariance of%; and, as the separation distance increases to the ggngee(

covariance between observations decreasesdfamzero (and conversely, the variance
between.obseations increases fromi to ¢°+ ). For this study, a Box-Cox
transformationX=0.3) of the response was found to substantially improve the Gaussian
properties of the signal (Box & Cox, 1964; Ribeiro Jr., Christensen & Diggle, 2003).
Because the BeKox transformation cannot be applied to zero values, an offset of +0.01
g AFDM m*was first applied to all observations, and it was subsequently removed from

all model predictions after ba¢kansforming to the original scale.

The deterministic trend companmtg(or ‘drift’), F(x), characterizes the underlying, large
scale spatial and bathymetric trendZ{r). Here,F(x) is a design matrix with covariate
elementsofithe typk(x;), a measurement of tljfé covariate at thé" location.
Regression‘parameteyy, are estimated through generalized least squares, taking into
account the covariance structure of the response. When implemented with esyariat
this way, the geostatistical model is often referred to as a “Universal &rigiadel
(Chiles &Delfiner, 2009).

In our model, the design matrixx) included both bathymetric and spatial-coordinate
covariates. The depth dependenc®dissena biomass was found to be nonlinear and
non-monotonic, with a maximum abundamoeurring at an intermediate depth range. To
accommodate this pattern within the geostatistical model, we considered twocapproa

1) polynemial depth dependence, and 2) categorical depth variable (the depth range was
divided intora series of categorical variables representing different aépitails).

Polynomial functions did not conform well to the observed depth dependence; a second-
order polynamial did not capture the asymmetry in the trend around the depth of
maximum_mussel density, and higleede polynomials were more likely to produce
unrealistic values at depth extremes. In contrast, the categorical deptheveoiziormed

well to observed trends at shallow and deep extremes without being constrained to follow
a prescribed functional relatidmp. Therefore, we selected the categorical depth variable
as a predictor in the geostatistical model. A range of depth interval widths (It 26 a
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m) was considered for the categorical depth variable, and an algorithm waspde\iel
combine depth imtrvalssystematically, when necessary, to ensure a sufficient number of
observationsi(> 9) within each of the final intervals. Depth intervals with mean biomass
< 0.1 g AFDM n¥were not modelled geostatistically because their associated biomass
was smdland because inclusion of a large number of zero-value observations did not
conform well to the Gaussian signal assumption. Timesgepth covariateB), include
categorical'variables for each of thdepth intervals included in the geostatistical
formulation:"Spatial-coordinate covariates were based andY, the UTM easting and
northing, respectively; both linear and quadratic spatial trends were codgjdgiregX,

Y, X? andY?). Each of the three sets of depth covariates (based on 10, 20 and 25m
candidate depth interval widths), along with all possible combinations of linear and
guadratic spatial trends, were evaluated based on adeaa@it crossvalidation and the
Bayesiannformation Criterion (BICYSchwarz, 1978; Ribeiro Jr. & Diggle, 2001). The
preferred depth interval width was selected based on comparison o¥alidsgion skill
statistiesyincluding the coefficient of determination (COD) and the perceninbia
predicted versus observed results (on the original, untransformed scale). Linear and

guadratic trends (with spatial coordinates) were then selected based on sEIC

Spatial prediction was performed over a 2 km grid covering all of Lake Michigah. G
and observation coordinates were projected to UTM Zone 16 North to minimize
distortionsinzdistance and area calculations. For deterministic trend develogpuedrdl
coordifates\were converted to units of &0to avoid scale mismatch issues among
covariatesBathymetrywasobtained from the NOAA National Geogical Data Center

(www.ngdc.noaa.gov/maga/greatlakes/greatlakes )atml

After'the'model was parameterized, conditional simulat{®iseiro Jr. & Diggle, 2001;
Chiles & Delfiner, 2009) were conducted by sampling from the uncertai@)imnds

at prediction, grid locations, thus creating a large number of realizations (1000) of the
spatial distribution oZ(x) consistent with té original point observations. Prediction grid
locations corresponding to depth intervals excluded from the geostatisticdl(asde
described above) were simulated by randomly sampling from the excluded obsstvati
From this ensemble of realizationsppabilistic estimates of spatially aggregated

guantities were then derivéd.g., Obenouet al., 2013) Specifically, the mean, median
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and 90% confidence intervals (based on the 5% and 95% quantiles) for biomass were

calculated across the entire lake anthin specific regions.
Dreissena filter-feeding intensity, Fc

We caleulated the filter feeding intensify day") by DreissenaasFc =B x C/ d,
whereB is the biomas<s is the biomasspecific volume of water cleared by filter
feeding per unit time, andlis the local bathymetric dep{ifanderploegt al., 2010) We
usedC'= 12 mL (mg AFDM)* h' at 3 °C, based on experiments withr. bugensis from
Lake Michigan feedig onCryptomonas, a preferred food dbreissena and a
representative alga of the Lake Michigan wirgpring phytoplankton assemblage
(Vanderploet al., 2010).

The quantityk-c may be thought of as the first-order rate coefficient for phytoplankton
mortality due to dreissenid grazing under conditions of a verticallymigikd water
column, Vanderploegt al. (2001; 2002; 2010) uséd to predict the effect of mussels
on summer-and winter assemblages of phytoplankton, based on the observation that
dreissenidsfilter a broad range of particle sizes. Higgins & Vandeleri§p010) used

Fc astapredictor of impact in mesaalyses oDreissena across systems. Vanderplostg
al. (2010)felated to an average net phytoplankton growth rate of 0:b6uting

spring isothermal conditions in Lakes Michigan, Erie, Huron and On{faaionenstieét

al., 2000)as a benchmark to estimate the abilityDoéi ssena populations to affect the

winter-spring phytoplankton bloom.
Satellite-derived chlorophyll concentration

SeaWIiES . (Seaiewing Wide Fieldof-view Sensor) data were downloaded from NASA's
Ocean Colar data archive (http://oceancolor.gsfc.nasa.gbelel2 (L2) images were
used for our,analysis with ~ 1 kilonne{km) pixel resolution for final

products. SeaDAS7 software was used to process and map the acquired data to UTM
(Zone 16North) projection.SeaWiFSL.2 chlorophyll maps were produced using the
NASA OC4 algorithm with methods fully described in Yousafal. (2014). Band ratio
algorithms for chlorophyll, such as OC4, are suitable for waters in which chloraphyl
the main colour producing agent, and are known to suffer from artifacts due to

interference from other constituents of surface waters, including suspanu=dl
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particles and coloured dissolved organic matter. Kedbalt (2008) found good
agreement between SeaWiB&rived chlorophyll anth situ measurements in Lake
Michigan (R = 0.874). Comparison of SeaWiFS OC3 chlorophyll retrieval (a band ratio
algorithm similar to OC4) ton situ chlorophyll measurements indicated that OC3
produced.acceptable retrievals for open waters of Lake Micli®jarchmaret al., 2013,
their Table 38) Comparison of SeaWiFSC4 chlorophyll to several hundred situ
chlorophyll'measurements in the Great Lakes indicated good agreement up to ghlloroph
concentration of gg L™ with increasing bias at higher chlorophyll concentraglogsht,
Barbiero & Warren, 2013, their Fig. 4). In order to avoid potential artifacts irdeatoy
optically complex waters, we excluded areas from our analysis with chlorophyl
concentfations > 8g L™ in any given SeaWiFS image. Chlorophyll concentrations >

3 ug L were limited to nearshore areas and to eutrophic Green Bay. In addition, we
excluded-areas shallower than 15 m to avoid artifacts caused by bottom reflectance.
Monthlysmean chlorophyll concentration was determined by averaging the fobmud-
pixels of each daily satellite image over the month. We excluded monthly megasima
with <509% spatial coverage from the analysis, which mainly occurred in November to

Januarysdue to greater cloud cover in these months.
Regressionof chlorophyll reduction on filter feeding intensity

A regression analysis was conducted to test the hypothesis that the reduction in
chlorophyll.concentration (before and after the invasioof. bugensis), AChl, was
spatially. associated with the filter feeding intendity, during the isothermal period
(whengthe water column is vertically watlixed) To account for seasonal trends in
chlorophyll concentration when estimatintChl, we compared chlorophyll
concentration within the same month for different years. In our regressionignakys
accounted for three sources of uncertainty in the regrepsi@meter estimates: 1)
spatial andinterannual variation in pre- and post-invasion chlorophyll, 2) parameter
estimation by leastquares regression, and 3) estimation of dreissenid biomass spatial
distribution by the geostatistical model. These sour€esicertainty were addressed by
means of a samplingased Monte Carlo method in which we sampled from the

ensembles of pre-invasion years (1998-2001), post-invasion years (2005-2010), and
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realizations of mussel spatial distribution from the geostatisticalel. Samples of
dreissenid biomass distribution for post-mussel years were determined thnaagh |
interpolation between the geostatistical conditional simulations of biomass distributio

for 2005 and 2010. Each Monte Carlo sample produced a m#phbind a map of post-
invasionke.0n the 2 km prediction grid, and 1000 such samples were created in total. To
avoid influence of spatial autocorrelation on the regressit@hl was averaged lake

wide within'intervals of¢. The ten intervals dfc were selected to give an equal

number of pixels within each interval (~1000). Thus, each sample produced 10 data
points'en which the regression was conducted. Asegment, piecewise linear
regression'was selected. Regression parameter estimation was consincf¢deuR

package “segmentediMuggeo, 2003; Muggeo, 2008). The Monte Carlo sampling
method resulted in an ensemble of 1000 regression parameter estimates. To account fo
uncertainty.in estimation of the parameters by regression, the ensembleavgaieal
10,000:by.sampling (n = 10) from the uncertainty (i.e. standard error) of each of the 1000
parameter estimates. The final parameter estimate and confidence interval wa®taken

the percentiles of the ensemble of parameter estimates.

Results

The mas of dreissenid mussel biomass (Fig. 4) produced by the geostatistical model
show the“spatial patterns of the invasion of Lake Michigab.kpolymorpha andD. r.
bugensis=ifhe geostatistical modekpands upon the benthic survey data of Na¢eph

(2014) by predicting biomass in locations that were not sampled to provide a distinct
visualization. of the ring of high dreissenid mussel biomass that developed around the
lake within.an intermediatdepth band in 2005, with further expansion of the degotlge

in 2010. The categorical depth intervals (Fig. 5) and spatial coordinates were found to be

significant’explanatory variables in models for each period (Table 1).

The ability'te quantify thepatial prediction uncertainty is an important outcomthef
geostatistical modelling approach applied héitee standard deviation of the conditional
simulations is an indicator of the spatial prediction uncertainty {kigottom).

Throughout the lake, standard deviatians comparable in magnitude to thetbe
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estimates of mussel biomg$sg. 4), reflecting the fact that variance increases with
increasing biomass (motivating the BGox transformation of the observations). The
sum ofz?+ &%, representing the total variance of the observations around theatev
trend, was lowest in 1994-95 and increased substantially in later periods, conststent w
the substantial increase in the variance of observations apparent inTHigs Bariability
does not have a high degree of spatial correlation, as theahggatial correlatiofp)
wasonly14.0 and 2.5 km in 1994-95 and 2010, respectively. The range of spatial
correlation'was larger in 2000 and 2005, but in these years the greatest portion of the
variance was uncorrelated (i.6* < 7°). Due to the limited spatial correlation in the fitted
model,jpreximity to sampling locations does not appear to substantially affectimedi
uncertainty(Fig. 4, bottom), and although sampling effort increased from 1994-95 to
later periods, there was no net reductiopriedictive uncertainty.

In ordertersummarize how biomass varied spatially and through time, biostiasstes
developed-through conditional simulations were aggregated lakewide and for the
northern, central, and southern regions of the lake (Fig. 3), and for the same depth
intervals used by Nalep al. (2009). Lakewide total biomass increased significantly for
each fiveyear period from 1994/95 to 2010 (Table 2), despite the fact that biomass
declined.or.remained constant in some regions in the period 2005 to 2010 (Fig. 6). The
highest biomass (30-40 g AFDMoccurred in the northern region in 2005 in the 30-
50 m deptherange, and subsequently declined in 2010 (Fig. 6). However, biomass
increased continuously over the study period in the southern region for all dept range

and at depths > 50 m over all regions.

Thespatialdistributionf dreissenid filter feeding intensitlc, (Fig. 7, top) was similar

to that.of'mussel biomass (Fig, #ut was intensified in shallower areas, as expected
from the appearance dfin the denominator of thec relationship. In 2005 and 2010,

April chlorophyll (Fig. 7, bottom; Yousetd al., 2014 was greatly reduced lakewide,
relative to 2000 and earlier (Figs 2 &, Indicating near disappearance of the winter
spring phytoplankton bloom. A white contour line was added to the chlorophyll plots in
Fig. 7 to indicate the region in whidk: exceeded the benchmark net growth rate of
phytaplankton during the winter-spring bloom in Lake Michigan of 0.0pahd we

would expect the winter-spring bloom to be greatly reduced in this region. In 2005, and
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to a greater extent in 2010, low chlorophyll concentrations are evident within tlee whit
contour lines (Fig. 7), providing observational evidence for a direct impact of elnass

mussel filter feeding on the wintspring bloom in Lake Michigan.

The geostatistical model results allow us to estimate when the filter feeding intEpgsit

first exceeded benchmark phytoplankton growth vatlin specific regionsand depth

ranges - In2000F ¢ was much less than 0.08 dver most of Lake Michigan, but slightly
exceeded that value in the northern region (Fig. 8). In ZB®8Bxceeded 0.06Tin all
regions.for.< 30 and 30-50 m depth ranges. In 2010, compared toF2008¢lined in

the northern region, remained constant in the central region, and continued to increase in
the southérn region. In the 50-90 m depth rakgdirst exceeded 0.06'tbn a lakewide

basis in 2010, resulting in a large expansion of the area impacted by dreissanigl gra

(Fig. 7).

To test our hypothesis that the post-invasion reduction in chloropi@hl, was spatially
associated witlDreissena filter feeding intengy, Fc, we conducted a regression
analysis. The twsegment, piecewise linear regression model used (Fig. 9) has four
parametersyeach of which may be interpreted to provide information relevant to our
hypothesis: 1)yo, the yaxis interceptdAChl atF¢ = 0, represents the reduction in
chlorophyll at locations that were not locally affecteddrgissena filter feeding, 2)v;,
the slope of the line segment frdfg = 0 toF¢ =y, is expected to be negativeaChl is
spatially-associated withc, 3) vp, the breakpoint value &fc for the piecewise
regressionyis expected to be near the benchmark phytoplankton growth rate df 0.06 d
and 4),, the slope of the line segment f&¢ > vy, is expected to have a slope of zero
because the local impact Bf eissena filter feeding is expected to saturaté-atgreater

than the phytoplankton growth rate.

Results'ofthe regression analysis indicated significant negative \odilyggor

February, April to August, and December (Fig. 10, top), indicating a significant post
invasion reduction in chlorophyll concentration even at locations where local filter
feeding intensity was near zero. Significant negativealues were found for December
to April (Fig. 10, bottom), indicating that filter feeding hasdignificant localized effect

up to some threshold value i E). As expected, these significant local effects
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occurred in months when the lake was relativelyaweled vertically. Also consistent
with our hypothesis was the finding that values werenot significantly different from
zero for months associated with summer stratification (May to November)theith
exception of,June, which had a significant positive valug;0for months associated
with theswinterspring bloom (February to April)y, was 0.03 @ (0.00 to 0.08, 95% ClI
for the-three-months combined), not significantly different from the benchmark
phytoplankton growth rate of 0.06'dFinally, y» was not significantly different from
zero (95%,Cl does not include zero) for any month, indicating that the reduction of

chlorophyll.due to the local effect bireissena filter feeding was saturated 6 > yy,.

Discussion

Before.thesinvasion of Lake Michigan By r. bugensis, a late winter to spring (March to
May) phyteplankton bloom vg&typical(Fahnenstiel & Scavia, 1987; Fahnenstiel.,
2000; (Kerfootet al., 2008; Kerfoott al., 2010) Lake Michigan was often vertically
well-mixedduring the spring bloortFahnenstieét al., 2000) resulting in spatial
patternstef wintespring chlorophyll concentrations related to bathymetry: higher
chlorephyll in moderate depth regions where SML-mean light exposure is higher, and
low chlorophyll in the deep central basins where Skfikan light expsure is least (Fig.

7; 1998;:2000).

Initiation of the winterspring phytoplankton bloom in lakes and oceans is sensitive to the
thickness.of the surface mixed layer which, in combination with the light atienuat
coefficient,.controls the mean light exposure of phytoplankton cells (Sverdrup, 1953;
Fahnenstieét al., 2000; Siegel, Doney & Yoder, 2002). In order for the wisf@ing
phytoplankten bloom to begin, the population growth rate must exceed loss processes,
which include phytoplankton respiration, excretion, sinking, and losses to heterotrophic
grazing; thus the critical light level to initiate the winggring bloom (i.e. compensation
irradiance) increases with increasing losses of phytoplankton to heterotyogitiity
(Sverdrup, 1953; Siegel, Doney & Yoder, 2Q02razing pessure on phytoplankton is

sufficiently high, then the compensation irradiance may not be exceeded until the
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thickness of the surface mixed layer has been reduced by summer stratjfenadidme

winter-spring bloom may not occur at all.

While the disapearance of the wintexpring phytoplankton bloom after the dreissenid
invasion has been shown previously for the southern basin of Lake Mi¢Rafamenstiel
et al., 2010b; Kerfoott al., 2010; Vanderploeg al., 2010; Youseét al., 2014), our
refined“maps-of dreissenid biomass spatial distribution, covering all of Lakeddichi
show the spatial coherence of the mulel feeding intensitywith reduced chlorophyll
concentrations. There was a significant reduction in chlorophyll caused bydhe loc
impact ef dreissenid filter feeding (Fig0, y; < 0) in winter and spring, when Lake
Michigan/is often welimixed to the bottom. The local filtdeeding impact saturated
when the fraction of the water column cleared per dayigjssena was near the
benchmark spring phytoplankton growth rate of 0.96ld addition to the local filter
feedingrimpact, a postivasion reduction in chlorophyll occurred lake-wide, including

locations'that were not locally affected by dreissenid grazing 1Bigyo < 0).

The significant positivey; value that occurred in June was surprising because it might be
intefpretedto suggest greater chlorophyll concentration at locations erieésgsenid

filter feeding intensity was greatest. Direct, local effects of dreis$iteidfeeding would

not be epected in June when stratification cuts off benthic filter feeders froracgurf
chlorophyll. One possible explanation for the higher June chlorophyll concentration in
locations,affected by dreissenid filter feeding is an indirect effect thralsgied nuient
cycling; uptake of available phosphorus may have been delayed by suppression of the
winter-spring bloom so that available phosphorus in June was greater post- than pre-
invasion:“Additional data would be needed to test this hypothesis. June was also unique
for having the largest post-invasion reduction in chlorophyll (Fig. 10, top) that was not
related to local filteffeeding impacts (negativg value). The large lakevide reduction

in June _chlorophyll after the invasion is likely to be a cumulatifexzeof the

suppression of the winter-spring bloom over the preceding months.

The midlake reef provided an interesting test of the ability of the geostatistical model to
predict the occurrence @freissena at locations where observations were not avkslab
the Ponar survey data set. The rakle reef has a substratum consisting of carbonate
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rock, and separates the southern and central regions of Lake Michigan (Fig. 3)efThis re
area could not be sampled in the surveys owing to the inability of tree Biab to

collect a sample from a hard substratdime geostatistical model predicted the

occurrence oDreissena on the mid-lake reef complex based on the suitable depth habitat
of the reef,(depths of 40 - 100 m). Surveys and images taken with a remotely operated
underwatervehicle (ROV) indicated tHatr. bugensiswas scarce on the reef complex in
2002 but'had densely colonized it by 2006 (Houghton, Paddock & Janssen, 2014), which
is consistent with the spatial distributions shown in Fig. 4.

Given the rapid expansion Bf r. bugensis over the 15-year sampling period, and the
decline in phytoplankton, it is interesting to consider whether there is any ioditfzt

this species has approached a limited carrying capacity in Lake Michigan overdhe m
recent period (2005 to 2010). Note tBatr. bugensis first invaded Lake Michigan in the
northerneregiorffirst found in1997)andsubsequently spread southwafdalepaet al.,
2001; *Nalepa, Fanslow & Lang, 2009). In the < 30 m depth interval, biomass converged
toward 10 gAFDM m?, decreasing in the northern, increasing in the southern and
remaining constant in the central region. In a similar manner, biomass caht@nged
20-30 gAFDM m within the 30-50 and 50-90 m depth intervals. The observation that
biomass.declined or remained constant in some northern regions, while biomass
increased in the south but had not yet reached the peak values observed in the north,
would beseconsistent witbarrying capacities of ~10A4FDM m? in the < 30 m depth

range and 2@0 gAFDM m? in the 30-90 m depth range. Since biomass was still
increasing in the > 90 m depth range kakde, and this range comprises a large portion
of total lake area (43%)), filmer monitoring will be needed to reveal the ultimate carrying
capacity.foiDreissena in Lake Michigan.

We expect spatial patternsieissena biomass in Lake Michigan to continue to shift in
relation to variable population growth and responses to emugntal conditions (self

induced or otherwise). As illustrated, biomass can be broadly different depending on lak
region and depth. Since dreissenids have such profound impacts on water quality, nutrient
and energy cycling, and the abundance of other species, not only in Lake Michigan
(Fahnenstieét al., 2010a) but in other bodies of wateliggins & Vander Zanden,

2010), detailed distribution maps based on benthic surveys and the geostatistical
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modelling approach outlined here provide a valuable to@d$eessing and interpreting

further impacts at both whole lake and regional scales.

Supparting information

Electronic data set: Lake Michig@reissena biomass values from the geostatistical
modelonsthe 2-km prediction grid are provided in the text files

“Rowe: etal= LakeMichiganDreissenaBiomassxt”, where X is the year (1994-95,
2000, 2005,2010), and tibreissena biomass observed values are provided in the file

“Nalepa_DreissenidLakeMichigan.txt”.
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Table 1. Geostatistical covariate trend model, skill statistics, and covariaaceepers
for each year. Percent bias aiwfficient of determination (COD) were determined by
leaveone-out cross validation. The covariates are the categorical depth vabgbéesl
spatial coordinateX andY (UTM easting and northing, respectively). The covariance
parameters’ ands?® are the nugget and partial sill (for B&ox transformedreissena

biomass) an@ is the range of spatial correlation (km).

Year Covariates Pct. bias COD 1 o [0)
1994-95 D+ X+Y -9.3 0.27 0.0 0.7 14.0
2000 Dy + X -179 0.13 14 0.5 96.1
2005 ( [Di+X+Y+X +V -0.4 027 45 2.8 293
2010 Dy+X+Y+Y 24 046 04 25 25

Table 2: Mean and percentiles of the Lake Michigan @taissena biomass from the

conditional'simulations, millions of kg agtee dry mass.

Year Mean 5 25 50 75 95

1994-95 6 4 5 6 7 8
2000 18 14 17 18 20 23
2005 408 338 376 406 437 485
2010 610 547 582 607 636 680

Figure captions

Fig. 1."Summary of thBreissena survey data (Ponar grab samphalepaet al., 2019,

showing the displacement DBf polymorpha by D. r. bugensis over the study period. The

top panel shows the percentage of stations at which each species was detected. The
bottom panel shows boxplots of biomass at the sampling stations. Boxplots indicate the 5,
25, 50, 75 and 95percentile of the observations, and the mean is indicated by a symbol.
The number of stations sampled in each period is given below the plot.
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Fig. 2. Monthly lake-wide mean surface chlorophyll concentration from SeaWhik@ae
sensing imagery for the period 1998 through 20ddusefet al., 2014) Vertical dashed
lines indicate April of each year.

Fig. 3..Map.of Lake Michigan showing bathymetry contours and regions that veere us
to summarize results. The inset in the right panel shows the location of Lakigdién

North Americar

Fig. 4."Spatial distribution of mean (top row) and standard deviation (bottom row) of
dreissenid'mussel biomass from geostatistical conditional simulations. Obsaivesl v

are shownras circles, in the same colour bar scale.

Fig. 5. Boxplots of observed dreissenid mussel biomass as related to station depth where
samples were collected. The bathymetric depth intervals that were used to ereate th
categorical depth variable in the covariate trend model are indicated forezadh the

study period (vertical lines). The depth ranges shaded in grey had minimalsbkicand

were treated separately from the geostatistical model. Boxplots are definedgadlin F

Note that'the yaxis scale differs among years.

Fig. 6. Mean dreissenid mussel biomass within regions of Lake Michigan indicated in
Fig. 3¥Boxplots indicate the 5, 25, 50, 75, anll p&rcentiles of the 1000 values

obtained from the conditional simulations.

Fig. 7.'Spatial distribution of the fraction of the water column cleared per day by
Dreissena filter feeding,F¢ (top row), and the mean April chlorophyll concentration for
corresponding years from the SeaWiFS satellite (Yoeisaf, 2014) (bottom row). 1998
was, the earliest year available for SeaWiFS chlorophyll, so it was patred994/95

Fc. Thesblack and white contour line indicates the 0.06ldmmtour of the fraction
cleared perday, which is the benchmark phytoplankton growth rate during the winter-
spring bloom (Vanderploeg al., 2010). Areas shaded in grey were excluded from the
analysis by quality screening criteria applied to the sateléteszed chlorophyll data (see
Methods).
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Fig. 8. Fraction of the water column cleared per dapigyssena filter feeding,Fc,
summarizedver the regions indicated in Fig. 3. The dashed line indicates the 0:66 day

level of fraction cleared per day. Boxplots are defined as in Fig. 8.

Fig. 9. /An_example of fitting a piecewise linear regression model of spatiafigciated
valuesqof filterfeeding intensity and the change in chlorophyll concentrati@hl( pre

D. r. bugensis'period to posD. r. bugensis period). In this example, the month is April,
the preD. r. bugensis year is 1999, and the pd3tr. bugensis year is 2009. Each point in
the plotsrepresents the med@hl for an interval of¢ (~1000 2km pixels per interval;

point shewn at mean value BE for each interval).

Fig. 10. Parameter estimates by month for the piecewise linear regressiGhlain Fc
(one example shown in Fig).9rhe parametey is the yaxis interceptAChl atF¢ = 0)
andy; is the slope of the line segment betwéern= 0 and the breakpoint value 6.

Each bar represents the median of the Monte Carlo ensemble of parameterssiimdate
the numberis the frequency of occurrence of negative values in the ensemble. Bars
shadedsiniblack indicate a significant difference from zero (95% CI, based on iescent
of therensemble, did not include zero). Negagwmdicates a lakavide pastinvasion
reduction’in chlorophyll independent of the spatial distributioDrefssena filter

feeding. Negative; indicates a posnvasion reduction in chlorophyll that is spatially

associated witlDreissena filter feeding intensityFc.
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Dreissena biomass, g AFDM m2
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V1, slope of Fc vs AChI
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