
Peritumoral Tissue Compression is Predictive of Exudate Flux in a Rat Model of 
Cerebral Tumor: an MRI Study in an Embedded Tumor 

 

 
James R. Ewing1, 2, 3*, Tavarekere N. Nagaraja4, Madhava P. Aryal5, Kelly A. Keenan4, Rasha 

Elmghirbi1,3,  Hassan Bagher-Ebadian1,3, Swayamprava Panda1, Mei Lu6, Tom Mikkelsen1,4, 

Glauber Cabral1, Stephen L. Brown7 

   
1Dept. of Neurology, Henry Ford Hospital, Detroit, MI, 2Dept. of Neurology, Wayne State 

University, Detroit, MI,  3Dept. of Physics, Oakland University, Rochester, MI, 4Dept. of 

Neurosurgery, Henry Ford Hospital, Detroit, MI, 5Department of Radiation Oncology, 

University of Michigan Medical School, Ann Arbor, MI, 6Dept. of Public Health Sciences, Henry 

Ford Hospital, Detroit, MI, 7Dept. of Radiation Oncology, Henry Ford Hospital, Detroit, MI  

 

*Corresponding Author: James R. Ewing; jewing1@hfhs.org 
 
Grant sponsor: National Institutes of Health: MRI Biomarkers of Response in Cerebral 
Tumors; Grant number: R01 CA135329 
 
 
 
Word count: 9800 , Including appendix, 9  figures in main body, 1 in appendix, 42  
references, one Supplemental Material file. 
 
Running Head: Peritumoral tissue compression and glioma exudate 

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as doi:
10.1002/NBM.3418

http://dx.doi.org/10.1002/NBM.3418
http://dx.doi.org/10.1002/NBM.3418


 
Abstract: 

MRI estimates of extracellular volume and tumor exudate flux in peritumoral tissue are 

demonstrated in an experimental model of cerebral tumor. Peritumoral extracellular 

volume predicted the tumor exudate flux.   

Eighteen RNU athymic rats were inoculated intracerebrally with U251MG tumor cells and 

studied with dynamic contrast-enhanced MRI (DCE-MRI) approximately 18 days post-

implantation.  Using a model selection paradigm and a novel application of Patlak and 

Logan plots to DCE-MRI data, the distribution volume (i.e., tissue porosity) in the leaky rim 

of the tumor, and in the tissue external to the rim (the outer rim), was estimated, as was the 

tumor exudate flow from the inner rim of the tumor through the outer rim.  

Distribution volume in the outer rim was approximately half that of the inner adjacent 

region (p < 1X10-4). The distribution volume of the outer ring was significantly correlated 

(R2 = 0.9) with tumor exudate flow from the inner rim. Thus, peritumoral extracellular 

volume predicted the rate of tumor exudate flux. One explanation for these data is that 

perfusion, i.e., the delivery of blood to the tumor, was regulated by the compression of the 

mostly normal tissue of the tumor rim, and that the tumor exudate flow was limited by 

tumor perfusion. 

 
Key Words: Tumor Interstitial Volume, Interstitial Flow, Logan Plot, Patlak Plot, dynamic 

contrast enhanced MRI, DCE-MRI, tumor vasculature 

This article is protected by copyright. All rights reserved.



 

List of abbreviations: DCE-MRI, dynamic contrast enhanced MRI; CA, contrast agent; vp, 

plasma volume; AIF, arterial input function; Ktrans, forward volume transfer constant; ve, 

interstitial volume fraction; VD, extracellular distribution volume; kep, reverse transfer 

constant; ROI, region of interest; SM, standard model; GLM, generalized linear model; AIC, 

Akaike information criterion; 2GE, dual-echo gradient-echo; LL, Look-Locker; TIFP, tumor 

interstitial fluid pressure; PET, positron emission tomography; CT, computer-assisted 

tomography; H&E, hematoxylin and eosin 

This article is protected by copyright. All rights reserved.



Introduction:  

Using animals implanted with a model U251 cerebral tumor and studied twice in a 24 h 

interval by dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), an 

estimate of tissue extracellular volume fractions in both tumor boundary and the 

surrounding normal tissue will be presented. The outward flux of a contrast agent (CA) in 

interstitial tumor exudate in the tumor boundary will also be presented. Extracellular 

volume fraction and flux in the tumor boundary will be shown to be highly correlated. 

An outward transport of CA may indicate increased tumor interstitial fluid pressure (TIFP) 

(1-4), which is associated with increased tumor aggressiveness (3).  In order to 

noninvasively quantify TIFP, both the velocity of tumor fluid exudate and tissue fluid 

conductivity in the tumor boundary must be measured. It is the purpose of this paper to 

demonstrate methods for quantifying the extracellular distribution volume (VD) of CA at 

the tumor edge and in its normal surround, and to estimate tumor exudate flux at the 

tumor boundary. VD is closely related to porosity (φ) which in turn may be used, with 

appropriate calibration, to estimate tissue fluid conductivity (5). 

The stepping-off point of this paper lies in a previous consideration of model selection and 

systematic errors in DCE-MRI studies (6), where it was shown (Figure 7 of reference (6)) in 

the rat model of cerebral tumor employed herein that, in the apparently normal tissue 

rimming the embedded tumor, model failure in the form of near-zero and even negative 

estimates of plasma volume (vp) typically occurred. The apparent cause of this model 

failure (Figures 1, 2, 3 of reference (6))  was the transport, via tumor exudate streaming, of 

the CA from the tumor interior to the voxels where the negative estimates of vp appeared.  

Herein, a Logan Plot (7-9) is used to estimate the VD of CA in the tumor itself, and, uniquely, 

in the tumor surround. We have found (9) that a Logan Plot estimate of VD in the tumor is 

well correlated with cellular density and with a Standard Model (SM) (10) 

estimate of an equivalent quantity.  Assuming that the border of the leaky R3.10.E 
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vasculature can be identified and associated with the tumor, it will be demonstrated that, a 

stable estimate of VD in the tumor surround can be generated by a Logan plot with an 

appropriately chosen input function.  With the same assumptions it will also be shown that 

a Patlak Plot can estimate exudate flux through the tumor rim. Finally, the association of VD 

and flux at the tumor periphery will be demonstrated. 

Methods: 

Experimental methods, including the animal model, sample size, imaging methods, and 

post-mortem histopathology have been previously described (9,11) and are further 

summarized in the Supplemental Material. All the animals presented herein have had their 

test-retest DCE-MRI studies analyzed for standard pharmacokinetic parameters, with 

results summarized and reported in reference (11). Thus, the experimental methods used 

herein will be only briefly summarized.   

In a protocol approved by the Henry Ford Hospital institutional animal care and use 

committee, eighteen RNU athymic rats were inoculated intracerebrally with U251MG 

tumor cells and imaged approximately 18 days post-implantation. Tumors when imaged 

were about 5 mm in diameter. In order to establish test-retest variation in this animal 

model, two MRI studies were conducted for each animal, 24 hours apart. 

DCE-MRI studies were performed at 7 Tesla. The DCE-MRI sequence used was a dual-echo 

spoiled gradient-recalled (2GE) sequence with a 60 ms TR and tip-angle of 27°. This 

allowed the direct calculation of changes in T2* after the injection of CA, and thus the 

construction of a time trace of change in R1 that was free of T2* dephasing effects. Details 

may be found in reference (6). A three-slice set of 2 mm slices was centered over the tumor 

and a total of 150 image sets at intervals of 4 s were taken. Total run time was 10 minutes. 

Prior to the 2GE sequence, and immediately after, two Look-Locker (LL) sequences were 

run so that a voxel-by-voxel estimate of T1 in the tissue could be made pre- and post-CA 

administration. CA (Magnevist, Bayer Healthcare Pharmaceuticals, Wayne, New Jersey) 
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bolus injection was performed by hand push at image 15. After a data-driven process for 

model selection and parametric estimation (6,12,13), the slice with the largest tumor cross-

section, usually the center slice, was selected for further analysis so that it might be 

assumed that the radial movement of CA was taking place in the plane of the image. 

Numerical and Statistical Methods: 

Using data from a series of LL-MRI studies performed before and after the 2GE DCE-MRI 

study, voxel-by-voxel maps of T1 pre- and post-contrast were generated (12,14,15). After 

compensation for T2* effects, the points of the DCE-MRI data before CA administration, and 

the last few points of DCE-MRI data, were calibrated against the LL T1 estimates performed 

pre- and post-study, thus creating two points, pre- and post-CA administration, that were 

used to generate and stabilize the running estimate of ΔR1(t) (R1=1/T1), which in turn was 

used to approximate the concentration-time curve of CA in the tissue (13).   

 A scaled radiological arterial input function (AIF) was used as the AIF in all 

studies (6,9,16,17). The starting point of the AIF was aligned with the first 

appearance of CA in contralateral normal tissue. A global starting point was 

selected, usually one or two time points after the arrival of CA. For the calculation of the 

pharmacokinetic parameters of the SM, i.e. the extended Tofts (10,18), or 

extended Patlak model, or in this paper, Model 3, the next 90 points (6 

minutes) of data were fitted by minimizing the sum squared error.  For Logan plot 

calculations, because the Logan plot depends on the asymptotic behavior of the 

CA in the tissue, the entire interval of indicator uptake and clearance after the 

starting point was considered, with the linear last portion of the curve used to 

estimate VD. 

Model Selection: 

R3.1 

R3.7.C 

R3.19 

R3.9 
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Model selection in this experimental paradigm (DCE-MRI in a rat model of cerebral tumor) 

has previously been presented (6,12,13) and used to select regions of interest (ROIs) in 

recently published studies (11,16,19).  A full description of the model selection paradigm is 

presented in the supplemental material.  

In the SM, there are at most three parameters to be estimated: the plasma volume (vp), the 

forward volumetric transfer constant (Ktrans), and the reverse transfer constant (kep). The 

often-reported interstitial volume fraction ve is computed as Ktrans/kep, although, because 

information in the data that pertains to the leakage of CA to the interstitium has to do with 

the first and second derivatives of concentration-time data, it is the rate constant kep that is 

directly estimated. Consider the hierarchy of models that might prevail in the analysis of 

DCE-MRI data in the brain. For any one voxel, there are four possible descriptions, as 

follows: 0) the voxel contains little or no perfused tissue. Consequently, there is no 

detectable change in ΔR1 after CA administration and all parameters are not different from 

0. 1) The vasculature in the voxel does not detectably leak CA across the period of 

observation: vp≠0, Ktrans = kep = 0. This is the case in most normal brain. 2) The vasculature 

in the voxel detectably leaks CA, but there is little evidence of reflux from the tissue to the 

vasculature: vp≠0, Ktrans≠0, kep=0. and, 3) the vasculature detectably leaks CA, and there is 

evidence of reflux from the tissue to the vasculature. This is the full model described by the 

SM, vp≠0, Ktrans≠0, kep≠0.  These models are numbered 0 through 3, to reflect the number of 

parameters estimated.  The models are nested, both physiologically and mathematically, so 

they can be compared via an F-statistic (6,13), with the higher-order model selected only if 

it is a significantly better explanation of the data than the lower-order model. 

In each voxel, one set (0 to 3 in number) of parameters is reported, with the choice of 

model driven by a model comparison performed via a noncentral F-test (20). In the brain, 

the maps produced are: a map of model selection, a nearly complete map of plasma volume, 

a partial map of Ktrans, and a smaller map of ve.  See Figure 1 for an example of such maps. 
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The element of this process that was most important to this paper was the delineation via 

model selection of the edge of the tumor.  

Patlak and Logan Plots:   

Patlak and Logan graphical approaches are central to inferences about model behavior.  

The key test employed in each graphical approach addresses the question as to what 

portion of the data can be linearized, when plotted as a Patlak (21), extended Patlak (22) – 

an analysis that uses the SM - or Logan (8) plot.  The portions of data where linearity 

prevails indicates those times in the experiments where certain critical assumptions hold. 

In a region where a Patlak Model 2 plot is linear, indicator enters a last (sink) compartment 

and is trapped therein; only vp and Ktrans can be estimated. In a region where a Patlak Model 

3 plot is linear, an estimate of the full set of Model 3 parameters (including ve) is available. 

In a region where a Logan plot is asymptotically linear, the source and sink compartments 

reach an approximate equilibrium in concentration. Note that, while plasma concentration 

is considered the forcing function of the differential equation of the model (e.g. equation 1 

in Logan et al (8), if another forcing function is available, the relationship still holds. For 

instance, if the forcing function is the concentration of indicator in an adjacent space, and 

that space is the source of indicator, the relationships outlined above still hold, and the 

portions of data where the critical assumptions hold will still plot as linear functions.   

Statistical Methods for the Analysis of the Population Sample: 

“Signal-to-noise” (S/N) in the first echo of the 2GE DCE-MRI data prior to CA administration 

was assessed by measuring the average image intensity of the whole brain in the middle 

slice of the slice pack, divided by the image intensity in the portions of the image where no 

tissue resided. In order to allow a better sense of conditions in a tumor of 

about 5 mm diameter, S/N ± S.D for the tumor itself, was also estimated, 

however, because the receiver employed a surface coil, the gradient in image 

intensity contributed to the variance of the measure of signal..  Note also that this is not the 

R3.11 
R3.12 
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true S/N in the complex time-domain data, but it is a convenient metric that is unimodal in 

the true S/N.  

In the 18 studies, each with two measurements performed 24 hours apart, the parameters 

of interest were VD outside the tumor rim, and tumor exudate flux through the rim.  

Preliminary analyses examined differences in volume with t-tests and correlations between 

volume and flow with Pearson product-moment correlation coefficients.  In order to 

account for the effect of correlated measures due to repeated studies, the final reporting 

analysis utilized a Generalized Linear Model (GLM) approach, as implemented in the library 

nlme (23) of the R Statistical Package (24). In comparing models produced by GLM, the 

Akaike Information Criterion (AIC) was used as a measure of goodness-of-fit; differences in 

the AIC were used to predict the probability that a model was descriptive of variation in the 

dependent variable. 

Results: 

S/N in the DCE-MRI experiments was ~ 30:1.  S/N in the tumor itself was ~35 ± 4. 

See Figure 1, where the results of pixel-by-pixel estimates of DCE-MRI 

model parameters in the brain of an athymic nude rat implanted with an U251 

tumor are mapped. This animal study is chosen as typical of the 18 studies 

summarized in this Results section, and will be used throughout to illustrate 

the methods employed in the analysis of the full set of studies. A second study is shown in 

the Supplemental Material. Shown left to right are estimates of vp, Ktrans, ve, and Model 

selection, where model 1 estimates only vp, model 2 estimates Ktrans and vp, and Model 3 

estimates ve, Ktrans, and vp. For reasons that will be explained below, the largest slice in the 

tumors in our animal model nearly always showed regions with near-zero or negative 

estimates of vp in the Model 2 regions. For instance, in Figure 1, the map of vp shows a 

nearly complete ring of negative estimates in the Model 2 region outside the tumor.  Since 

they imply a failure of conservation of mass, these estimates are clearly artifacts and point 

R3.12 
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R3.13 

to a model failure, but an insight into the source of these artifacts suggests a method for 

estimating the distribution volume of CA in the mostly normal tissue outside rim of the 

tumor.   

First, it should be demonstrated that the CA escapes the boundaries of the tumor. An 

examination of the typical histology of the U251 cerebral tumor (the hematoxylin and eosin  

stained section of Figure 2 of reference (6), of Figure 7s of the Supplemental Material, and 

of Figure 2 herein) shows that, on the scale of the DCE-MRI image sets, where the pixel 

sizes are about 250 microns, the edge of the tumor is confined to a 

single pixel.  The post-contrast T1-weighted images in reference (6), in 

Figure 2 herein, and in Figure 7s of the Supplemental Material, which were acquired about 

15 minutes after CA injection, show a bright rim of contrast  around the central lesion; the 

DCE-MRI data in reference (6) show that CA leaks from the tumor across 

the time of the experiment, and, since the area of contrast enlarges radially 

over time, is transported (by advection and/or diffusion) into the surrounding normal 

tissue, entering a region of mostly, or entirely, normal parenchyma where the blood-brain 

barrier restricts its reabsorption to the vasculature. 

Notice the three pixels in Figure 1 that are marked by an arrow and three small green dots 

placed on the map of model selection. Figure 3 shows the change in ΔR1 with time in the 

three linearly adjacent voxels, starting in the Model 3 region and proceeding outward in the 

Model 2 region. Two types of plot appear, with normally plotted data and curve fits in the 

left-hand figure, and Patlak-plotted data in the right-hand figure. In both figures, the three 

traces of concentration-time data, correspond top to bottom, to right to left points in Figure 

1. The top trace is ΔR1 data from pixel 1, the Model 3 voxel; the middle trace is data from 

pixel 2 the first Model 2 voxel outside the inner Model 3 region, and the bottom trace is 

data from pixel 3, the next voxel out. 

R.3.6A and C 
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Presumably, the tumor is the major source of CA seen in normal tissue in Figure 2. Consider 

top left region of interest (ROI) shown in Figure 4, defining the outer limit of the Model 3 

region, outside of which is a region of predominantly Model 2 behavior with near-zero or 

negative estimates of vp. Figure 5, left, displays the Patlak- and extended Patlak plots of 

concentration-time data in this inner rim ROI, demonstrating that Model 3 provides a 

better explanation of the behavior of the data than Model 2 because the Model 

3 plot is linear while the Model 2 plot is concave.  The F-statistic, with a value 

of 725, yielding a vanishingly small probability that the errors of the Model 2 fit and the 

Model 3 fit were drawn from the same distribution, confirms this judgment. SM estimates 

of vp, ve, and Ktrans in this inner-rim ROI are 1.1%, 10.8%, and 3.0 x10-2 min-1, respectively.  

The Logan plot estimate of VD is 11.4%.  These estimates reflect the typical physiology of 

this model of cerebral tumor, with fairly high vascular permeability, and a decreased 

distribution volume fraction relative to the typical 20% of normal brain tissue (25,26). 

If a three-pixel-wide ROI (Figure 4, top right) is formed outside the inner ring defined by 

the edge of the Model 3 region the (Model 2) Patlak plot of Figure 6 is obtained. This plot 

has an evident linearity, a positive slope, a negative intercept, and a convex curve 

connecting the linear part of the curve to the start of the data. An examination of the 

methods of plotting the Patlak and extended Patlak plots shows that a convexity in the 

Patlak plot can only be obtained if kep is negative, a clearly nonphysical situation that 

violates the conservation of mass, and/or the assumption of temporal stability. 

Nevertheless, the linear portion of the Patlak plot indicates that CA is entering the region, 

and is not being reabsorbed by the source. It also appears that the normalized standard 

radiological AIF to the outer region becomes approximately correct as the 

experiment proceeds, but that the input to this compartment lags the input of 

the adjacent compartment.  These observations suggest that CA enters the ROI from the 

adjacent inner surface, and does not re-enter the source compartment in an appreciable 

amount during the course of the experiment.  Note that, without a model selection 

R3.15 

R3.7.D 
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paradigm with its two-parameter fit resulting in a negative vp, in a three-

parameter SM analysis, vp and Ktrans would be positive, and kep negative, again signaling a 

model failure of standard pharmacokinetic modeling.  

Consider a thin outer ROI drawn immediately adjacent to, and outside, the ROI of the edge 

of the Model 3 region. This ROI, a single pixel wide, is shown as the middle panel of Figure 

4. Assume that the outer ring does not contain significantly leaky vasculature, and that the 

inner ring supplies the thin outer ring with the majority of its CA.  The Logan plot of the CA 

concentration in the inner ring (Figure 5 Right) shows that a transvascular equilibrium 

occurs where the Logan plot becomes linear, after 100 s, the 25th point post-CA 

administration. That is to say, the CA concentrations in plasma and interstitial fluid are 

approximately equal after the 25th point. Thus, it is plausible that, rather than using the 

arterial input function as an input to the outer ring, the CA concentration in the inner ring 

can be used as an input function, with the assumption that all the CA in the 

outer rim is obtained from the inner rim. It is assumed that the vascular 

volume of the normal contralateral caudate putamen is 1%. Since 

extravascular and intravascular CA concentrations have equilibrated, the extravascular 

concentration, i.e. the concentration of the interstitial fluid, is that of the blood. The trace of 

concentration in the inner ring is then normalized to be 100 times that of the trace of 

concentration in the (presumably non-leaky) contralateral caudate putamen. This is 

equivalent to requiring that the extravascular concentration of CA in the inner rim 

equilibrates with the intravascular concentration by the 25th point post- CA injection, and 

that the vascular concentrations of CA do not substantially influence the behavior of the 

concentration-time studies under consideration.  The biases introduced by vascular 

concentrations are examined in the Appendix.  

The Logan plot of Figure 7 shows the result of these procedures.  The plot becomes linear 

after the 97th point post-contrast; fitting the last 35 points yields a slope of 0.0643, or an 

estimate of VD of 6.4%.  Contrariwise, the Logan plot of this data, but using the estimate of 

R3.16 

R3.18 
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R3.21 

CA plasma concentration versus time that resulted in the Logan plot of Figure 5 is shown in 

the insert of Figure 7. This graph yields a nonsensical result because the 

asymptotic behavior of the plot demonstrates a near-infinite slope, and thus 

cannot estimate distribution volume in the tissue. This is suggestive of the 

inner rim being the source of CA for the outer rim. 

Continuing with the practice of using the rim of the tumor as a source of CA in the adjacent 

outer voxels, consider the wide ROI shown in the top right-hand image of Figure 4. This ROI 

is 2 to 3 pixels wide and contains essentially all of the region outside of the tumor into 

which the CA leaks.  Thus, it satisfies the requirements of the Patlak (Model 2) model, in 

that it is a final compartment in which no return to the source compartment takes place.  

Figure 8 shows the resulting Patlak plot, which equilibrates very quickly, and appears to be 

linear for almost the entirety of the experiment.  The slope of the plot, 2.9 x 10-3 [ml/ml-

min] in this case, should give an estimate of the rate of transfer of the CA between the inner 

rim and the outer sink.  When normalized to the volume of the wide ROI and the area of the 

interface between the inner and outer ring ROIs (see the Appendix, Case 2), it yields an 

estimate of CA flux between the two compartments.  

The compartment size (of the wide outer ROI) into which the CA flows is 134 voxels, and 

there are 34 voxels on the rim of the tumor. Pixel edge sizes are 32/128 mm = ¼ mm; slice 

thickness is 2 mm. The average flux per voxel is thus about 4.5x10-2 μl/μm2s.  Taking the 

estimates of interstitial volume fraction to be 6.43x10-2 for the outer ring, and 1.14x10-1  

for the inner ring, this rate of flux yields an estimate of fluid velocity in the interstitial space 

in the outer ring of 0.70 μm/s, and for the inner ring, an estimate of 0.37 μm/s.  These 

velocities are in the range of other estimates of tumor velocity, i.e., less than 1 

μm/s.  See, for instance, Munson’s (27) Table 1, also Pishko et al (28). 

Table 1 summarizes the results of 34 studies in 18 animals.  Sixteen of these studies were 

repeated studies; in Table 1 the first and second of the studies are labeled “pre” and “post,” 

R3.4 

R3.20 
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respectively.  In the three parameters measured, there appeared to be no systematic 

differences between estimates in the two studies.  That is to say that the two studies did 

not differ significantly in their sample means between study 1 and study 2 in the estimates 

of any parameter, nor did the paired differences show a trend by a paired t-test. The 

smallest p-value for any of the paired t-test comparisons was ~0.3 for the paired estimates 

of exudate flux; the smallest p-value for any of the tests on the sample means of study 1 and 

study 2 was ~0.17, again for flux.   

The sample mean of VD in the inner ring ROI (tumor) was about 15%; in the (presumably 

normal) outer ring, it was about 10%. These estimates, particularly that of the outer ring, 

are smaller than the measured distribution volume of normal brain, which is about 20% 

across a wide variety of mammalian species (25,26). There were distinct differences 

between the estimated VD of the inner ring region and that of the immediately adjacent 

outer ring. In 33 of 34 studies, the distribution volume in the outer ring ROI was smaller 

than its immediately adjacent inner ring ROI, and the one case where the difference was 

reversed was that of the second-smallest tumor cross-sectional area in the sample. In an 

initial analysis of parameters, the estimate of distribution volume in the inner ROI was 

significantly larger than that of the immediately adjacent outer ring in both study 1 (p < 

4X10-4)  and study 2 (p < 1X10-4).  When calculating the difference between the inner and 

outer ring distribution volumes, there was no significant difference (p = 0.63) between 

study 1 and study 2.  A GLM analysis confirmed these findings: the outer ring ROI estimate 

of VD was highly predictive of the inner ring’s estimate of VD (p < 1X10-4). A regression 

slope of 0.528 demonstrated that the outer ring VD was usually about half that of the inner 

ring VD.  The intercept of this relationship was nonzero (intercept = 0.021, p~0.043), 

raising the possibility that some positive residual difference might be expected between 

the tissue of the inner (mainly tumor) and outer (mainly normal) ROIs.  These analyses 

present a picture of a relatively porous inner ring of tissue that was mainly tumor, and a 

compressed outer ring of mainly normal tissue, in which it might be expected that the 
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normal tissue would actually have a greater distribution volume than the tumor, absent the 

compressive forces placed on the outer ring by the tumor and the gradient of interstitial 

fluid pressure that typically exists in the rim of embedded tumors (29).  

See Figure 9. When the estimated flux from the inner ring ROI to the outer expanded ROI 

was considered in relation to the estimated VD of the thin outer ring, a very significant 

relationship was demonstrated. An R2 of 0.9 (N=34) calculated by a simple regression 

implied that all but a small amount of the variation in flux was described by the 

compressed distribution volume of the outer ring.  In a GLM analysis for repeated 

measures, a regression coefficient of 0.740 was demonstrated: VD in the outer ring 

predicted (p < 10-5) the exudate flux through the outer ring of compressed tissue. The 

intercept of the regression, -0.011 probably differed from 0 (p=0.049). The distribution 

volume of the inner ring was also a strong predictor of flux (p < 10-4), but a comparison of 

the two models via the AIC indicated that the outer rim VD was a vastly better predictor 

than the inner ring VD (ΔAIC = -45.5, p=1.7X10-20). A multivariate GLM analysis that 

included VD of the inner ring showed no advantage to the inclusion of that parameter in the 

model (ΔAIC = -8.9).  Thus, the estimated distribution volume in the rim of the normal 

tissue bounded by the tumor in itself appears to be sufficient to predict the rate of tumor 

exudate flux through the rim of the tumor in this model.   

Discussion: 

In an animal model of an embedded cerebral tumor, if its rim can be identified, 

a noninvasive estimate of extracellular space is available, both in the region of 

leaky vasculature, and in the immediate boundary of that region. If its rim of 

can be identified, an estimate of the exudate flow across the boundary of the tumor is also 

available.  In this paper, using model selection to define the rim of the tumor, estimates of 

VD of CA (porosity) in the rim of the tumor and flux through that rim resulted in the 

porosity strongly and independently predicting the flux.   

R3.10.E 
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A key reservation in this finding is that it is assumed that the methods in play did in fact 

define the rim of the tumor, and that there was little or no vascular leakage in the ROI 

defined as the normal tissue outside tumor edge.  A better model, given sufficient S/N, 

would assess both transvascular leakage and intervoxel transport. However, the 

information available in typical concentration-time curves is limited.  It appears that two 

parameters is the highest number that the data demands.  The suggestion that convection 

and vascular leakage be modeled simultaneously appears to demand at least four variables 

– vp, Ktrans, kep, and a directed inter-voxel flow.  Even in the tumor itself, typical values of R2 

are 0.98 and above (6,13), so, given the S/N of a typical experiment, a stable estimate of 

four or more model parameters appears unlikely (6).  It is possible that poroelastic 

modeling, given a starting-point estimate of distribution volumes (porosities), mechanical 

properties of tissue, and the time-dependent spatial concentrations of CA, might be 

employed to make a best-guess estimate of TIFP, intervoxel convection, and microvascular 

permeability (28,30-32).  This appears to be a natural extension of the work presented 

herein, but one notes that the S/N is limited in MRI studies of contrast transport, posing 

significant problems in extended modeling that uses dynamic MRI data for verification. 

Although it has been of secondary interest in DCE-MRI, voxel-to-voxel transport of CA has 

been noted in cerebral tumors, sometimes as a source of artifact (6,33), but also as a 

potential means of assessing tumor interstitial pressure (1-3) and/or evaluating tumor 

characteristics that affect the delivery of chemotherapy (30,34-36) and bias parametric 

estimates in DCE-MRI (30,34).  One experimental measure that affects all these 

considerations is the extracellular volume fraction, particularly because it can be expected 

that this quantity, equivalent to the porosity (φ) of the tissue when the tissue is studied as a 

poroelastic medium (31,37), is related to the fluid conductivity of the medium (5).  In the 

absence of in-vivo experimental evidence, fluid conductivity is sometimes modeled as a 

constant across tissues (e.g. (30), and also the supplemental material of reference (38)), 

which may lead to biased results. 
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In-vivo experimental estimates of porosity in tumors and normal tissues are relatively 

scarce. In humans, a PET study using 76Br-Bromide studied nine patients with cerebral 

tumors of varying grades, usually after bulk resection, and adjuvant therapy (39).  ROIs 

were chosen to incorporate the highest concentration of radiotracer, so estimates of 

extracellular volume in the tumor, which ranged from 16% to 62% might be expected to be 

biased high.  Estimates of extracellular volume in normal brain, about 20%, were in 

agreement with classical measures in the brains of a wide variety of animal species (25,26).  

While this in-vivo human study is interesting, the choice to inspect regions of highest 76Br 

uptake, coupled to the limited intrinsic resolution of PET, and the treatments, particularly 

tumor resection, that the patients in this group had undergone, shed little light on tissue 

porosity and/or exudate flux at the rim of the tumor.  Note also that a DCE-MRI study in 

patients with glioma (40) assessed interstitial volume in tumors as having two types of 

filling – the faster filling compartments had much lower values than the PET study, while 

the slower filling compartments tended to agree with the PET study, raising the likelihood 

that slowly filling necrotic regions were better sensed in the PET study. 

An investigation in a rat model of cerebral glioma (N=4) employing a 9L gliosarcoma cell 

line performed DCE-MRI studies at 4.7T with similar timing and CA to the work herein, but 

with a different analysis (BOLERO (41)) that included the effects of water exchange. This 

study yielded much larger estimates of ve than those that appear herein, with porosity 

estimates of about 0.5. This large interstitial volume fraction seems implausible when 

viewing histology of the closely packed cells of a 9L cerebral tumor. A later paper (42) 

using a water exchange model (BALDERO) (43) with all three eigenvalues in play and a 

normalized AIF estimated ve in a U87 cerebral tumor model to be about 15%, in fair 

agreement with this and other studies. We note that the estimate of Ktrans herein, and in 

other publications that use the SM to study both human and animal models of cerebral 

tumor (6,11,13,16) are in fairly good agreement with those of CT perfusion estimates (44) 

that use a similarly sized CA with no dependence on water exchange.  
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Some additional discussion is warranted by the concern that variation between the true 

AIFs in individual studies and the group-averaged AIF that was employed throughout the 

sample undermines the results of these studies.  The most straightforward approach to this 

topic is to refer to the tables of reference (11). That work contains a statistical analysis of 

the 24 hour test-retest variation in the sample of animals presented in this paper.  In Model 

3 regions, paired differences were not significantly different from 0 for any of the model 

parameters, or for either of the summary statistics (mean, median).  For Ktrans and ve 

(Tables 2 and 3), the sample of paired differences displayed very small medians and means, 

less than 3% for Ktrans, and about 5% for ve. The parameter vp showed higher sampling 

differences – about 15% in the mean, which might be expected of a parameter that, unlike 

Ktrans and ve, is sensitive to the high-frequency components of the AIF. Test-retest areas of 

Model 3 did not differ. Thus, the sample of animals used in this present paper doesn’t 

present a picture of large variability in the parametric estimates of the Model 3 region. A 

summary of Model 2 parameters and areas also did not show large sampling mean 

differences. This implies that the underlying processes involved in the DCE-MRI studies 

were stable, and should alleviate concern about the influence of hand injection of CA.   

There are sound physical reasons to explain the experiment’s insensitivity to the details of 

the shape of the input function. The transfer of CA to the interstitium constitutes a low-pass 

filter – the components of the input function that are passed to the interstitium are the 

ones with long time constants.  In the Model 3 regions (i.e., in the tumors) of both humans 

(13) and animals (6), R2 values of 0.98 and higher are typical for a 6 minute DCE-MRI 

analysis, so the low-pass filter explains almost the entirety of the signal behavior in the 

experiment.  In both humans (13) and animals (6), typical rate constants for transfer of CA 

to and from tissue (Ktrans and kep) in the tumor are < 0.1 min-1, meaning that the 

components of the input function that are important in Model 3 regions are those with time 

constants of about 10 minutes or longer. The most important element of the input function 

is the DC component; the short-term details of the shape of the input function do not 
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contribute strongly to the fitting of the major component of the tissue response. In order to 

reliably estimate the DC component of the input function, we utilize the very useful a priori 

knowledge that CA does not leak from the vasculature in normal tissue across the 6 minute 

time of the experiment (45), and that the plasma volume in the caudate putamen is 

approximately 1% (46).  These matters are further explained in the Supplemental Material. 

Figure 9, displaying 32 samples in 16 animals, appears to describe a major effect in the 

physiology of an embedded cerebral tumor; about 90% of the variation is explained by one 

relationship. That a decreased distribution volume in the rim of a tumor so strongly 

predicts tumor exudate flux generates a puzzle in modeling.  If one infers that tumor rim 

compression governs exudate flux to the practical exclusion of other effects, 

what then is the role of the T, or of the solid stresses generated by tumor 

growth?  Measures of TIFP in this model (data not shown) are generally in the range of 5 to 

15 mm Hg, and cellularity is also known to vary – Table 1 shows a factor of 4 in VD in the 

inner rim ROI. Since cellularity and VD co-vary (11), it is likely that tumor rim cellularity 

varied substantially, and along with that variation, tumor rim compression due to hyper-

cellularity varied from animal to animal. Further, a number of constraints having to do with 

the nature of the input function in the dynamic models were placed on the analysis of data, 

probably introducing a variation in those animals whose input function deviated from the 

assumptions necessary for the analysis. Despite these other likely variations, it appears 

that one parameter, the distribution volume in the rim beyond the tumor, was predictive of 

the great majority of the variation in the rate of exudate flux from the tumor. 

One explanation for these data is that perfusion, i.e., the delivery of blood to the tumor, was 

regulated by the compression of the tumor rim, and that the total exudate flow was limited 

by total perfusion. It has been demonstrated that TIFP is regulated by perfusion pressure 

(47). It can be reasoned that TIFP, exudate flow, and compression of the tumor rim all co-

vary in a fashion that depends on the relative mechanical properties of the tumor and its 
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surround.  This paper is not the place to carry out a poroelastic analysis of the range of 

possibilities, but we note that, in many tumors, the rigidity of the extracellular matrix, and 

of the tumor itself, is greater than that of the normal tissue in which the tumor is 

embedded, and that modeling of solid stresses in tumors predict that “elevated radial and 

circumferential stress levels extend beyond the tumor by at least one tumor radius (31).”  If 

that is the case with the U251 tumors studied in this work, then a picture is presented of a 

relatively incompressible, albeit tightly packed, tumor surrounded by a layer of relatively 

compliant tissue whose mechanical properties essentially regulate flow in to, flow out of, 

and interstitial fluid pressure within the tumor. 

 

Note that U251 tumors of the size that were studied, 5-8mm diameter, typically have 

necrotic cores. Thus, these embedded tumors may not have had the central support that 

has been modeled in solid tumors (31,38).  It may be that, without that central support, the 

solid stress associated with proliferating cells assumes less importance than the solid 

stress associated with a pressure gradient that projects into the normal surround of an 

embedded tumor.  

 

A number of fairly strong constraints have been placed on the analysis 

of data in this work.  Many of these have to do with the nature of the 

input function to the system being studied.  In estimating Ktrans, kep, vp, 

and VD in the Model 3 region, it was assumed that a group-averaged arterial input function 

would serve adequately for individual input functions. It was also assumed that the 

integrated tissue response in the (presumably) non-leaky caudate putamen would serve to 

scale the group-averaged input function (by a factor of 100). In the Model 2 region, it was 

assumed that no vascular leakage occurred, that the sole source of contrast was the 

adjacent inner region, and that the contrast concentration of the inner rim could also be 

scaled to the contrast of the caudate putamen.  It was assumed that for the time of the 
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experiment, all of the tumor exudate remained within the bounds of an extended ROI 

drawn around the inner rim, and also that, at some time after the equilibration of the inner 

rim’s extra- and intra-vascular concentrations, the amount of indicator flowing into, and 

out of, the thin outer rim equilibrated. Many of these assumptions and constraints are 

reasonable, based on the linearities in the data analysis that tend to confirm them, and on 

the generation of an orderly set of inferences that, in their internal consistency, tend to 

support the assumptions. However, some caution is necessary; these observations should 

be replicated in other tumors and tissues, and, where practical, be compared with other 

measures of exudate flow. 

 

We note the benefit of using the model selection paradigms that were employed in this 

effort. The boundary of the Model 3 region apparently serves as a discriminant between 

tumor and normal parenchyma, and provides a clear choice for the location of a driving 

function of tumor exudate flow.  Model selection in the GLM analyses also helped to provide 

a clear picture of the relative strengths of the associations between measured parameters, 

and allowed a clear path to the inferred relationships between flow and VD. A model 

selection procedure generated an observation, the negative values of vp in the Model 2 rim 

of the tumor, that led to the hypothesis that CA was streaming from the leaky inner rim to 

the non-leaky outer rim, and thence to the ability to estimate VD in the boundary region of 

the tumor.   

 

These results prompt a cautionary comment about the costs of employing a priori 

knowledge in model fitting.  It does seem to make sense in the analysis of DCE-MRI data to 

at least bound the search space to physically possible values, and non-negative constraints 

are almost universally employed in DCE-MRI. Note, however, that estimates that lie outside 

those bounds signal that a fundamental mismatch between model and measurement has 

occurred; the work herein would probably not have been generated if there had been a 
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non-negative constraint on the parameter estimates.  That said, it would be quite possible, 

if another reliable way to define the edge of the tumor could be described, to proceed to 

estimate tissue compression and flux in the boundary of the tumor.  It appears that the 

information contained in that analysis constitutes a description of tumor physiology, and 

probably of changes in tumor physiology under treatment. 
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Table 1 
 

 Dist. Volume, Inner Edge Dist. Volume, Outer Edge Inner-Outer Flux [μl/μm2-s] 
 PRE POST Δ PRE POST Δ PRE POST PRE POST Δ 
JS80  0.0691   0.0404   -0.0287  0.0151  
JS81 0.0653 0.0731 -0.0077 0.0484 0.0618 -0.0134 -0.0169 -0.0113 0.0249 0.0344 -0.0095 
JS82 0.2003 0.1842 0.0160 0.1093 0.1122 -0.0029 -0.0910 -0.0720 0.0575 0.0614 -0.0039 
JS83 0.1390 0.1842 -0.0452 0.0973 0.1430 -0.0456 -0.0417 -0.0413 0.0562 0.0726 -0.0164 
JS87 0.1679 0.1385 0.0294 0.1552 0.1067 0.0485 -0.0127 -0.0318 0.1097 0.0641 0.0457 
JS91 0.1443 0.1460 -0.0017 0.1017 0.1062 -0.0045 -0.0425 -0.0397 0.0606 0.0588 0.0018 
JS93 0.1827 0.1512 0.0315 0.0842 0.0976 -0.0134 -0.0985 -0.0536 0.0509 0.0529 -0.0020 
JS101 0.0767 0.0921 -0.0154 0.0498 0.0722 -0.0224 -0.0269 -0.0199 0.0264 0.0349 -0.0085 
JS132 0.1065 0.1140 -0.0075 0.0762 0.0643 0.0119 -0.0304 -0.0497 0.0487 0.0452 0.0035 
JS134  0.1677   0.0960   -0.0718  0.0539  
JS135 0.1335 0.1210 0.0125 0.1163 0.0669 0.0494 -0.0173 -0.0541 0.0957 0.0454 0.0504 
JS162 0.1950 0.1379 0.0571 0.1833 0.1121 0.0712 -0.0118 -0.0259 0.1322 0.0817 0.0505 
JS163 0.0381 0.0716 -0.0334 0.0448 0.0438 0.0010 0.0067 -0.0277 0.0350 0.0174 0.0176 
JS180 0.2178 0.1956 0.0222 0.1560 0.1436 0.0124 -0.0618 -0.0520 0.1058 0.1070 -0.0012 
JS181 0.1393 0.1261 0.0132 0.0835 0.0913 -0.0078 -0.0558 -0.0348 0.0479 0.0618 -0.0139 
JS195 0.1163 0.1751 -0.0587 0.0789 0.1040 -0.0251 -0.0374 -0.0710 0.0474 0.0777 -0.0303 
JS205 0.3011 0.2388 0.0623 0.1307 0.1468 -0.0161 -0.1704 -0.0920 0.1002 0.0835 0.0167 
JS207 0.2144 0.1597 0.0547 0.1309 0.1061 0.0248 -0.0835 -0.0536 0.0891 0.0658 0.0233 
Mean 0.1524 0.1414 0.0081 0.1029 0.0953 0.0042 -0.0495 -0.0472 0.0680 0.0599 0.0077 
SEM 0.0166 0.0110 0.0089 0.0102 0.0075 0.0077 0.0110 0.0050 0.0327 0.0215 0.0244 
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Figure 1: Parametric maps left to right: vp, Ktrans, ve and Model selection. For the 
Model selection map, yellow is Model 3 acceptance, dark red is Model 2 
acceptance, red is Model 1 acceptance. In order to better display the range of 
values, the map of vp was windowed to set negative values to 0.  Pixels 1, 2, 3 are 
marked with green dots and numbered from right to left, with pixel 1 placed in 
the margin of the Model 3 region, and pixels 2 and 3 in the Model 2 region in a 
line proceeding from pixel 1. Banding in the parametric maps and model 
selection is due to Gibbs ringing in the original 2GE data set.   
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Figure 2: Left: post-contrast T1-weighted image In the 
animal of figure 1.  Right: H&E staining of a centrally located 
tissue slice. The MRI image was acquired about 15 minutes 
after the injection of contrast agent.  The central tumor 
mass is fairly well matched by the central but somewhat 
darker region of enhanced contrast, demonstrating the 
likely convection of the CA from the central lesion. 
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Figure 3:  Left: Data and curve fits from the three marked pixels of Figure 1. 
These three traces, top to bottom, correspond to right to left in Figure 1 – The top 
trace is ΔR1 data from pixel 1, the Model 3 voxel, the middle trace is data from 
pixel 2, the first Model 2 voxel outside the inner Model 3 region, and the bottom 
trace is data from pixel 3, the next voxel out.  Right: linearized fits to the data 
showing the (Model 3) Extended Patlak fit (top) and the two (Model 2) Patlak fits 
of the data shown on the left. 
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Figure 4: Three regions of interest in the animal 
under study. Left: an ROI defined as mainly Model 3, 
and inside the regions of negative estimate of vp in 
Figure 1. Middle: an ROI of single-pixel width, 
adjacent and outside of the ROI on the left, defined 
mainly by lying inside the regions of negative 
estimate of vp. Right: the ROI of the middle panel, 
widened to include all of the regions of negative vp 
outside the inner rim defined by the right panel.  The 
intent of these ROIs was to define a source region 
(left panel), an equilibrating region (middle panel), 
and a sink (right panel).  
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Figure 5: Left: Patlak (concave curve) and extended Patlak (linear curve) plots of 
response in the inner rim ROI (top left, Figure 4). Right: Logan plot of the same data.  
Both plots of the data employed the group-averaged estimate of the arterial input 
function, normalized to the plasma volume of the contralateral caudate putamen. 
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Figure 6: A Patlak Plot (Model 2) of the concentration-time 
data in the enlarged outer rim of the tumor. The input 
function employed was that of the group-averaged estimate 
of the arterial input function, normalized to the plasma 
volume of the contralateral caudate putamen, as in Figure 5.  
Note the linearity of the latter part of the curve, and the 
convex curvature of the early part of the curve, signaling a 
model failure. 
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Figure 7: A Logan Plot of the concentration-time data in the 
thin outer rim of the tumor (central ROI, Figure 4). The 
input function employed was that of the normalized 
indicator concentration in the inner ROI.  The equilibration 
point on the Logan Ordinate of about 80 min is evident, 
yielding an estimate of distribution volume of about 6.4%. 
The same concentration-time data, plotted as a Logan plot, 
but using the estimated plasma concentration as an input 
function (Figures 5, 6) is plotted in the insert to 
demonstrate that the plasma concentration is not a viable 
input function for the concentration-time data of the thin 
outer rim, since the asymptotic behavior of the plot 
demonstrates a near-infinite slope, and thus cannot 
estimate distribution volume in the tissue. 
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Figure 8: A Patlak Plot (Model 2) of the 
concentration-time data in the enlarged outer rim of 
the tumor (top right ROI in Figure 4), using as an 
input function the data of the innermost adjacent 
ring.  The linearity of this portion of the curve is 
evident, thus supporting the assumptions of the 
model. The slope of the line yields an estimate of 
interstitial flow of tumor exudate. 
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Figure 9: Exudate flux from the inner rim of the tumor to the outer ring in 
18 animals. The 16 repeated studies are connected with dashed lines. This 
very significant co-variance implies that a knowledge of VD in the rim of 
the tumor will yield a remarkably precise prediction of exudate flow, 
regardless of other parameters such as TIFP and tumor porosity, which 
might otherwise be thought necessary for a prediction of the exudate flow 
rate. 
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Appendix:  
 

 
Case 1: The Logan Plot in the Thin Rim: 
 

See Figure A1, Case 1. In Case 1, fluid carries an indicator from compartment 1 to 

compartment 2.  The dimensions of compartment 2 are small compared to the velocity of 

the fluid so that, after a short time, the indicator begins to exit compartment 2.  When the 

slope of the input function to compartment 2 begins to change slowly, approximately the 

same amount of indicator is leaving the compartment as is entering it.  This is an 

 
Figure A1: A two-compartment system.  In case 1, contrast agent flows in to, and out 
of, compartment 2.  After some time t1*, the vascular concentration of contrast agent 
in compartment 1 equilibrates with its interstitial concentration. After some time t2*, 
the inflow and outflow of contrast agent in compartment 2 is approximately 
equilibrated.  The equilibration is demonstrated by the Logan Plot of this data 
becoming linear.  In case 2, contrast agent flows into compartment 2, but is not 
cleared from the compartment.  After some time t’, a Patlak Plot (Model 2) becomes 
linear. 
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equilibrium condition that can be exploited to evaluate the distribution volume of 

compartment 2. 

 

Assume that there is no leakage from the microvasculature in compartment 2, that 

intravascular concentration of indicator can be ignored, and that indicator flows only from 

compartment 1 to compartment 2, and thence to a sink.  In a differential time interval, the 

change in the quantity, Q2(t) of the indicator equals the difference between the quantity 

entering, and the quantity leaving the compartment: 

,        [1] 

where F is the flow from compartment 1 to compartment 2, C1e(t), and C2e(t) are the 

concentrations of indicator in the extracellular interstitial fluid of compartment 1 and 

compartment 2, respectively. 

 

Integrating and dividing by the volume of the second compartment:  

      

Generates an expression in concentrations and specific flows: 

          [2] 

Where, in compartment 2 V2 is the volume, V2p is the plasma volume,  is the specific flow 

[ml/ml-min], and v2p is the fractional plasma volume. By convention, lower-case letters are 

associated with quantities that are normalized to volumes. Initially, consider only the 

interstitial concentrations (i.e., assume v2p = v1p= 0, where vip is the fractional plasma 

volume of the ith compartment). Continuing: 

      [3] 
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Note that  where v2e is the fractional volume of the interstitial space in 

compartment 2 and C2(t) is the concentration of indicator in compartment 2.  Dividing both 

sides of the equation by C2(t) and transposing two terms yields an equation in the form 

proposed by Logan (8). 

 

       [4] 

 

Under the assumption that the concentration of CA has equilibrated between inflow and 

outflow, and that  a Logan Plot with    on the ordinate 

and  on the abscissa will yield a straight line with a slope of v2e. 

 

The interstitial concentration in compartment 1, C1e(t) is related to the tissue 

concentration, C1(t), via the relation . An estimate of v1e is available through 

the Model 3 analysis, but there is a more reliable estimate of C1e(t) that can be obtained 

through its behavior as described by a Logan Plot.  In the case at hand, an examination of 

the Logan Plot of indicator concentration in the Model 3 region (i.e., compartment 1) at the 

edge of the tumor demonstrates that the exudate fluid in compartment 1 equilibrates with 

the plasma concentration.  That is, the Logan Plot of compartment 1 becomes linear, with a 

slope of VD, at times .  Given this, the same tactic that applies to calibrating Cp(t), i.e., 

scaling an input function to a large area of normal caudate putamen, with the assumption 

that vp in the caudate putamen is 1% of tissue volume, can be applied to the section of C1(t) 
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where .  This practice was followed throughout in estimating the interstitial space at 

the rim of the tumor. 

 

It should be noted that only C1(t), C2(t), and (indirectly) Cp(t) are observable.  The presence 

of a non-zero vascular volume, filled with CA, introduces a bias into the result above.   

 

Generally, since compartments 1 and 2 are adjacent, we can assume that the plasma 

concentrations in the two compartments are approximately equal. Thus C1p(t)= C2p(t) = 

Cp(t). The quantity of CA in compartments 1 and 2, respectively, are 

      

 

 

Dividing each by the volume of its compartment yield the following relationships between 

the measureable quantities C1(t) and C2(t), and the quantities of interest, C1e(t) and C2e(t): 
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From Equations 2 and 5,  

    

Rearranging and collecting terms to generate an equation in the form of a Logan Plot, 
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As before, the quantity   is estimated after the equilibration of plasma and interstitial 

concentrations in compartment 1, and set equal to Cp(t).  This yields an equation in the 

form of a Logan Plot equation: 

, [6] 

Where α is the factor that scales the measured change in contrast in region 1 to the known 

concentration, that of the plasma, after time t1*. Thus, a Logan Plot with   
on the 

ordinate and , on the abscissa, with α adjusted to equal
 plasma concentration, 

when the conditions of the assumption are met (flow of contrast in to, and out of 

compartment 2 is balanced), coupled with a slowly changing plasma concentration, will 

yield a straight line with a slope of .  The interstitial volume fraction 

actions v2e and v1e are generally larger than their respective plasma volume fractions 

(typically a factor of 10 or more). Thus, assuming the worst case of v1p = 0, with the other 

compartment ratio of relative volumes ~ 1/10, there is an upper limit on the error 

introduced by the presence of CA in compartments 1 and 2 of about 10%. Generally 

speaking, since v2p ≈ v1p, the error can be expected to be much smaller than 10%.  

 

JS132 

v1p v2p v1e v2e 
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0.0110 0.01 (est) 0.114 0.0642 

 

Case 2: The Patlak Plot in the Wide Rim: 

 

In Case 2 above, no contrast exits from Compartment 2, considerably simplifying the 

treatment of the model. We ignore for the time being the plasma volume of compartment 1, 

V1p. 

         [7] 

      [8] 

Normalizing to the volume of the second compartment and dividing both sides by C2p(t) 

yields the Patlak (Model 2) equation.  

.        

Remembering once again that C1e(t) is known to equilibrate with the plasma concentration, 

we can say that after a time t1* the following relationship should hold: 

, and a plot of on the ordinate and   on 

the abscissa will yield a straight line with a slope of specific flow [ml/ml-min]. 

 

Note that this result pertains to specific flow normalized to the volume of compartment 2.  

Since the size of compartment 2 varies across animals, another measure of transfer 

between the two compartments must be adopted in order to make comparisons. The total 

flow to compartment 2 is fV2, through a boundary of N2b voxels, where V2 is the volume of 

the second compartment, and N2b is the number of voxels in the inner boundary of 

compartment 2, i.e., the number of voxels in the thin outer rim. The volume of the second 
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compartment is V2 = N2vVv, where N2v is the number of voxels in compartment 2, and Vv is 

the volume of each voxel. Thus, if A2b is the area of the inner surface of the outer ring ROI, a 

statistic that measures flux through the boundary can be calculated as: , in 

[mm3/mm2 min]. This measure is reported as the flux across the boundary of the tumor.   

 

Since the porosity of the thin outer rim can be estimated, another interesting measure that 

can be generated is the mean interstitial velocity of the tumor exudate. Given a measure of 

flux, ϕ, the velocity of the tumor exudate in the interstitium is .   

 

We now turn to an evaluation of the errors introduced by ignoring the plasma 

concentration of CA in compartment 1. From Equations 5 and 8,  

     

     
 

Dividing both sides by C2p(t) to generate an equation in the form of Patlak graphical 

equation: 
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At equilibrium in compartment 1, C1p(t) = α C1(t) and C1p(t)=C2p(t),  

.
 

Thus, the bias (overestimate) introduced into the estimate of flow from compartment 1 to 

compartment 2 is of the order of the ratio of the plasma to interstitial volume in 

compartment 1.  In our example, this estimation error is ~10%.  We note that the estimate 

produced by fitting the Patlak Plot of case 2 can be multiplied by  , thus producing 

an unbiased estimate of flow.  However, this would add the errors in estimating v1p and v1e 

to the errors of estimating flow between the compartments.  We have judged that a known 

bias of around 10% is acceptable for a stable estimate of intercompartmental flow.
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Peripheral Tissue Compression Predicts Exudate Flux in a Rat Model of 
Embedded Cerebral Tumor: an MRI Study 
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Exudate flux from an inner ring ROI (tumor) to an outer ring ROI (mostly normal tissue) 
versus the extracellular volume (VD) of the outer ring ROI in 18 athymic rats with an 
embedded U251 cerebral tumor. Sixteen of the studies were repeated in a 24 hour 
interval. The 16 repeated studies are connected with dashed lines. This very significant 
co-variance (R2 = 0.9) implies that a knowledge of VD in the rim of the will yield a 
remarkably precise prediction of exudate flow, regardless of other parameters such as 
TIFP and tumor porosity, which might otherwise be thought necessary for a prediction 
of the exudate flow rate. 
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