```
                        REPORT
                            ON
            WIND PRESSURES ABOUT A BUILDING
                            and
ANALYSIS OF WIND STATISTICS OVER A FOUR-YEAR PERIOD
```

Prepared as a Thesis by W. A. Gardner under the direotion of J. E. Jmswiler

Department of Engineering Research

 University of MichiganAnn Arbor

FOR

Detroit Steel Produots Company

 and

 under the aireetion of 7. F. Emswiler.


```
nad
```


The allied oubjets of Notural Fentilation k Wind Infiltration are shroudect in myetary whoh has only began so be dispelled in the patt rew yeart. Praotically all of the information availsble on the subjeet is ompirical in nature ond has not been verified by orgenized inventications. For sail struaturen, such as dreiling housen and other buileing of equivalent eize, a knowledge of wind offects is not of great importance, but in the large buildinge whioh are beaoning more and rore numerous in the present-dey inaudtrial developant; the matter of infilifation and ecration by netural reane is one which denerter grave consideration.

The Department of ${ }^{\text {knfinearing licseareh of the }}$ Iniverbity of ifichigan has been cerrying out a program of investigation of the priniepleg of Natural Fentilation for several years under the direetion of professor I. 露. Emaniler. Thi work hat bean sponsored by the Detroit steal Produoti Company, of Detroit, 盖iohean, makers of the genestre produets, who heve bean pioneers in this tyo of investigation.

Tho progran for the year 19 in included a tuay of the relationship betwean the velocity of the wind: and
the preasures induced by thit velooity on the lee and windwera feces of builatigy, for the purpose of atermining the infiltration of air due to thea prescures, and olao for the purpose of deternaining the total overturning moment exerted on builaing by the wind. The reoords of the Detroit stetion of the Jaited states weather Buresu were studied and the magnitude and velooity of the winds in that dity during the monthe of December, tenuary, and February, for the pest four years ware compiled.

The material of the report is resented in the following ortar:

1. Equipment for the work, including reaume' of som or the difficulties encountered in securing setisfeotory equiprent.
2. Procedure of the work, fith description of the aisposition and operetion of the apperstas.
3. Interpretation of the sind cote taken with this apparatur.
4. in anslysia of the reeords of the wind in Detroit.
5. Conclustona derived from the year's work. EqULPAEME OR TKE WORX

The nature of the work involved required apparatue not readily available on the open market, and much of it mas built me required. It was found to be more satisfectory in the lomg run to buila some of the inetrumente
than to try to modify oxietine quipment, and this poliey was followed as olosely ac posible.

Inetrumente for hocoraing pressures.

The first piege of equipment necescary to secure deta on the reletion of the preceures ot virious points on - buildine was recording preseure instrument. Several obstacies had to be overoome before a satisfactory devioe could be seonred, and, while an aecount of these difficultiee is not exactiy relevant to the main purpose of this report, it is believed that abief review of some of the mafor itcms may be of value to anyone engaged in sinilar work.

It was deed ded to have three recording preasure geages in the set-up; one to be used for taking the velooiby pressure of the wind, one for the wind $\begin{gathered}\text { ard } \\ \text { Irescure, }\end{gathered}$ and one for the leevard prosure on the building. These instrumente were to take these prescures at three points around the bailding eimultanmousiy, and their records would later be eompared to establich the relationchip of the various preszures. An inctrument was required for this use which would record pressures renging up to one inoh of water, preferably in incremente of $.01^{\prime \prime}$ on atrip of paper in perfect mynhronien with others of the same tye. t minimur of inertia effect or lag was detired becauge of the rapid fluetuations in preesure inourred in working with the wind. In addition the instruments were to be at light as possible to facilitato tranaportation und ue.

The Baahraon gauge dsed in the work deseribed in the paper, "preseure Difforenoes serose findows in heletion
 Gamioan soolety of teating and ventilating agineers, Ootober, 1929 , was satisfactory in some respeote, but could not be mynolronized with ony othore; boeause it bad selfoontained olock-work motor, and was also very heavy and bulky. It also lsekod the continuout strip reooraing feature whoh was held to be very astrable. isg there were no other comaroial recordine gauges of the desired type evalable in the fall of 1929 , it was decided to buila one

 Fleure 1. which employed the well-known prinetple of a cloted bell pertianly immersed in 11 quid, whose position was varied by tho prescure in an air apace ineide tho bell, above the level of the licuia. A tube communicetea with The afr apace $1 n \mathrm{fide}$ the bell, and counter-balance sutained the weight of the beli itself. It wos plannca to attach pen to the noveble bell, whioh would leave a reeord on a continuous strip of peper aravn alone the outaide of the conteiner of the mparetur at epeed of about elx Inohes per minute by and syonronous motor. To prove the feasiblilty of the soheme, it was decided to buila one With a two-inen diameter beli, givinge ranes of $1-1 / 2$ inehes of water head for 3 inches of aisplacment of the bell. This was done, but what at iirst appeared to be
detsils of construetion turned into fumbine blook whioh delayed the whole progran for the year. The meomaideal counterbelano for the bell was most onnoying one. The first rethod employed was that of pessing two thin oords over a light drum supported on mall ball berrings. This meckaniam falled through two hitherto unsuspeated faetore. The inertia of the drum itoalf too great to enable the Inetrunent to respond to micht variatione in presture, even though it was built of sluminum. Aso, the ball bearinge were not so mooth az hed been antioipeted, aort or areg or cetoh in their movement was present, which persieted oven after several houre of ruming-in at high speed.

The next atterapt to elininate drag in the novemeat of the bell was the substitution of very lioht shaft for the ball bearing arum easembly. The shaft wes supported in hardened oup and cone beariage, snd had two thin diaks With grooved odges for the oords mounted on it. While it was found that this reduced riotion and inertis oensiderably, and the bell was noticeably more sensitive to alight pressure variatione than foriserly, it wae still far frem satiafactory, and wan aisoarded.

In order to eliminate all meohanieal frietion, an experimont was tried in which the bell wes sutpended by - miff wire to a wooden float imereed in moroury an in Eigure 2. This gave nearly ecostant buoyant force, aim only one wire fren the ploet up through the moroury varisd the aieplasement of the maroury an the triotion, when all
parts were correctly alligned, was negligible. Fith this arrangement the apparctur wery sensitive to alight varietions of prassure, but was easily deranged and was by no mean partable. the minuteneas of the forcee avallable was shown very olearly when a pen was attachea to the moving bell of the cauge, es it immediately dectroyed the sensitivity of the apparatus merely by its frietion on the paper. It was also noted thet the drae of the licuid on the bell had considerable influence on the gpeed with whioh it responced to presture ehanges, and that gasoline was a mueh better ilquid for the purpose then weter, due to its Lower viscosity and arfinity for the brase of the bell. The zeohanism for movine the strip of peper at a constant synchronoue epeed wee developed without much trouble. The mall 4-satt synohronous motore made by the farren Telechron Comany for use in electric clooks, proved to be too mall to drive the tension arum of the apparatue, but the larger 0 and liwwatt sizea made by the ame firm were both found to be satieftotory. the haft of these units turne over at one r.p.m, through a 3600:1 speed-reduetion gear from the rotor of the motor, and was conneated through en 0lithan'e ooupling to the shaft of the roll whion pulled the paper strip past the pen of the gauge.
ne the principle of the bell type gence had been proved to be gatisfectory, the watin objeotion were to the suall magnitude of the foraes available, and to the meohanical suspension of the bell firat attempted, it was deoided
to double the diameter or the bell, thus quadrupling the force on its head, end to re-deaign the guage to ineorporate comptot sercury suepension sohsme. This was done as show in igure 4. The improved prosesure element differed from the temporary meroury suspension job mainly in that the reury was conteined in an inner eteel oup incide the water compartisent, instead or above the bell, with a rinemenaped wooden float supporting the bell by zeans of three atify teel roda. The fystem was mide stable by a pendulum which ran through the pressure inlet tube with the bob hanping in a chamber below the gauge proper. One of these gauges was built by the Instrument shop of the Tiniversity, but when the model was completed, it was found to be faulty in eome detalis or construction, and the time left to experiment was short thet it wat impossible to set it up ond try it out. It is thourht thet, if this line of experimentetion mere followed to a more fortunate conclusion, the gauge would be successful in its operation.

Arter the hydraulic geuge was abendoned, it was decided to try the slement of low-preneure geuge built by the Bristol Coweny, Feterbury, Conn., with the stripmoving manism driven by the syanhronous motor as desoribed above. in olement mioh worked in the range of -.3 inch to +.7 inch head of water wre secured, and had been muecesfully set up and calibrated whon bulletin from the Bristol comany announeed a new line of inttrumenta
driven by the same synohronous moters that had been tried here. As the result of some correpondence with them, it was deeided to buy their instruments and abenton offorts to develop any here, as the time left for experisenting wae mort. They provided us wh gates havine 10-1nch circular chart, roteting onee in 15 minutes, with pressure range of -3 inch to $+.71 n o k$ or water. The etrip recorders inde by this company were too oxpensive, so eventually the ciroular ohart type bad to be used. ne of the geuges was equ*ped with az sir-tight iron oese whieh, when topee for pipe fitting mede 1 posible to use it for aifferentisi pressure recorder in connection With a pitat tube for deteraing wind velooity. The other two vere in wooden cones for measuring total pressure only.

Auxiliemy Scuipment.
It was neaesaery to have som auxiliary ecuipment to use with the pressure gauges and all of this was built here. A Pitot tube whoh formed the tip of wind vane so as to present the nose to the wind at all times was the most fraportant of these auxiliaries. This deviee, shown in Figure 5, eeoured the velsoity pressure which was recorded by the differential prescure gauge ntioned in the precedin sargeraph. The tube was built nocording to N.s. * V. F. apeoifisations, with on outer statie-preseure tube of $5 / 8$ inch dianeter, and an inner total-preasure tube of $3 / 8$ inoh in diameter. The vane was of the split type
which insured maximua stability and the apseribly mes monnted on bell bearinge is order to inaure maximum senaitivity.

It was orifinally intendea to heve the mbole syten of mina-preesure recorder operfte atometieally: and to do this the pauges were to be run only when the wind whe in specified direation, plue or minus five degrees. socordingiy, eommatotor, igure 3, wes monnted on the wind-vent shart, and, aditwe not deErable to break the 110 -volt circuit for the gauge motors at the point where the vane would be on top of the strueture beine etudied, this ocmautator operatod e relay. The relay whe simple type mioh operated on 6 -rolt storage battery and broke the highor voltage eireuit ith e farooid suitoh unit racanted on rooker axin

ROCMDURE

The ideal situation for she work in this field would be an isolated builaing with no treen or other struature near by to iniluenoe the wind as it eprosehed the builising were the in brumonts wera loated. The nearest aproch to thia, bowever, that could be obtained中as the tower of the Jiohigan Union Guilding. This is eight stoxien high, Pour of wioh are above the main part of the builaing and is not equaled in height by an neax by obstruetions. The roof of the tower it aleo exsily abeostible and the top roon was vacant. Fhect oonditions,
together ith ite proxirity to the compus, made its use very denirable. The privilege of using the tower and the unocoupled top roon wes fortunately granted.

Digposition of Instruments.

The tower is equare and is $26-1 / 2$ feet on each side. The tower room is arranged as shown in legure 6 , with four window on eech rece except the north and east sices, which are out into by the stair wall. Two recordInf gauge, one for the leaward and one for the findward pressure, pere plaeed inele this room and were connected by mens of ghort rubber tubes to brese tubes set flum in boarde cut to fit the $\begin{aligned} & \text { ninow openinge. This mede it very }\end{aligned}$ easy to change the loeation of the instrumente to meet any oxistine conditions, as it was neogseary only to shut the window upon the board with the tube in it and then connect the ceage to it. The instruments were alweye placed as near the center of the face of the building as poseible so as to seoure aminum value of the induced wind pressures.

The top of the tower is similar in plan to thet of the tower room. It bat wide stone copine $8-1 / 2$ feet high around the odge. The Pltot tube and vane were placed on the north-west aorner of the tower, and the differential recording gaug was placed near it. ta the gheft of the vane mes five feet lone, it is believed that the wind atriking it was alnost uniffocted by the tower for alreetions ranging from sto te. Thia range of directions includen the provailing wind for this loality.

The relaya, bettery, and other equipaent were assembled in the tower room, and everything could be oontrolled from thet point. The two preseure gauges in the tower room were usually on opposite sides of the tower so to get record os leeward and windward preesures sfantaneousiy.

Direotion Control of Gauges.

The original intention was to set the 10-degree segman of the commutator to suit the prevaling direction of the wind at the time the recorde were taken, and then lot the control syetem stop and atart the three motors in unison so that the three reearde would be perfectiy synehronized when taken oft the gauges. In theory this was ell right, but in prectice it aid not work out perfectiy. The myohronous motors ufed were of z-watts capality and their startine torque wes so slipht that varistions in viscosity of the oil in the gear oase oontaining the 3600-to-l apeed reduetion were surficieat to influence the lag In etarting. A a result, by the tise the instruments had run the 15 rainutes required to fill ehert, in the short intervale that the wind was in the right direetion, the coldest instrunent had a considereble lag compred to the wamer ones. This lag could not be distributed prom portionally along the ohart because of the unequal nurber of starte ane stope at various parts of the oharts. is perfeet synchronization was nesesary in the se records; this ineceuraoy could not be tolereted and stope were taken to eliminte it.
 eet wown in Figures, 7 , and 0 , were resynohronized at every quarter revolution (6 hours on the arbitrary ethour
 turner value it entailed oonstacrable brouble end celay arine rux, and bould not be conslaerea as wholly batisfaetory.
a角 the man afficulty was in the startmandmop prinoiple of eutomite oontral, onother attempt was wie to record winde fron only preacribea areetion and ths
 of actigning and building an atomatie venting deviee whiok would open the totel progeure line rurining to the aifferential gauge from the pitot tube at all times ex sept when the wind was in the aesired aireetion. $\begin{gathered}\text { when the }\end{gathered}$
 was energized end aippet the ena of elass tube conneotea to the total-presaure 11ne into a onp of meraury, that allowing the atrerential gauge to operate in ite normal fanton as long as the wind remined in the destred direation. Fhis deviae and ite comections are shown oleariy in one of the photographn of the apperatus on the tower.

1t was intexded that this ayeten or operation would give velocity preemure hat of altarnate weations of zoro Filue ond of the true value takon when the vent was open and when it was olosed, reapectiviv, during poriodis in wioh the
wind was within the desired lomegrea range. However, the Intervals of time in whioh the wind stayed with the 10 degree segment were so short that the record, insted of being alternate stretohes of zero pressure, and fluctuating periode wen the wind was acting on the gauge through the pitot tube, wet composed almonentirely of up and down lines oused by the repid openine end closing of the vent. (20 -degree segront was put on the commatetor, but this ohange did not help materinlily the travel of the pen was still very erratio. Some of the records taken by the methods outlined were setisfoctory as regarge nocuraoy, but their preparation into umable form was so leborious the they were superseded by simpler sytete. Continuoue geogrds without Dizeotion Control.

It was gecided to saerifice the fenture of direetion control in order to geare perfeat synohronism and more readable record. This was aceompliahed by diseonnecting the oomatator and installing awitoh, which enabled the observer to start ond etop all three instrumente will from either the tower room or the root, when this was done, man of the previous diffioulty distppeared once and records were obteined which were much sasier to comptre and wioh matched perfeatiy in their timing, all three eynchronous motora functioned properiy when ruanine eteadily.

The ourves treced by the pens of the instrumente were much smoother wen the oharte were runnine teadily than whon the direction oontrol wate in use, and tho gain in accureay and readibility more than oftset the lose due to abandon1ng the seleotive function of the conmatator.

The inatrument after having been installed in the tower, were cheoked ageinet sencitive jiliaon Inclined Draft Gavoce, and were round to bo accurate within ol inch hed of water over their entire rance. statle head was imposed upon both the Brigtol and the Gllison eruges simultaneously by reans of a variable oolum of wetor in this oheck up.

Tarigtion of Condt tions durina muns.
The greater part of the mans tere nate with the inatrumente disponed ae followat The aifferentisi geuge for astertaing the velocity presaure of the wind was on the northwest oorner of the tower. The other two eauges In the tower room were locetea at the east and wast fecen of the building. This arrangamet as atiafactory for nearly all oonditions encentered, as the protiling winds for the loality aw gouthwest to north. The windows and door of the tower room were kept closed most of the time to simulate wintor conditions in a builaing*

On one oceabion, won there was very high south
 south fae and fev runs wore usde with this arrangement. Alao on thit seme day some oxpmriments wre made by opening verioue windows in the tower roon and noting the subgequent effect on the ganes in the roon. The reaulta obtained were very intereeting, and promise gorde furthex information on 1 in erfeets hen mone into more exhauttively than was popable at this time.
 Fig. 1.

DIRECTION COYTROL COMMUTATOR Fig. 3.

TEMPORARY MERCURV SUSPENSION on pressure element. Fig. 2.

Fig. 4.

WIND VANE AND PITOT TUBE.

The Michigan Union, Ann Arbor, Michigan.

Interior of the Union Tower Room.

Control Station in the Union Tower Room. Gauge Connected to the Window at the Left.

A Bristol's recording Vacuum and Pressure Gauge.

PLAN VIEW OF THE UNION TOWER, TOP FLOOR. SCALE-4" $=1$ '.

A large number of oharte were obtained by making runa Whenover the 1 nd condition ware auitable. As taken, the reeorite were mareely in a uable forn as the oiroular charts with only one curve on each mere not readily aomparable nor easy of interpiretation. सach mun, which is a term used throughout this reporit to demeribe a aniplete set of three charts whion have been made simultaneousiy by the three recoring gaugea of the set-up, was theretoze frangeribed onto a mytom of rectangular coordinates. The thre curves of a mun are suparimposed on the same sheets to permit easy comparison. It will be noted thet ther ax two sheets of thesa curves for evary run so transeribed as they coula not be drawn to a proper acole on a single shaet. The seoond sheet of ach run in miked "Cont"d" to denignte It as the part eorresponding to the p, 路 section of the charts. A ample act of oharts, Run AB" is ineluded with the trangeribed curves (Figures 7, 8, and 9). Thes photostate are twomthirds the metual size of the original oharts, whoh are ten inohen in diaretar. Thus tho veloaity proseure, windward prosbure, and Leward prosaure cen be compared at a glance. The rung were erouped soeordiny to the diraetion of the wind and will be found to have boen treatad as grour rethor than as individual runa. 1na Noxmal to the Bullaing.

The roct inportant grouy of runs wer those taken when

taken representative pecimens, and the superimposed pressure ourves from the three inetruments are included in thia section. In arame theas curver the arbitrary scale of houre found on the charts supplied with the instruments wes used as one ordinate, and the hesd in inches of water an the other. is the instrumeate revolved once in 15 minutes inetead of once in 24 hours, the horizontel scale refuces to one inch being equal to . 783 of - minute infteed of l. 25 hours, whioh it wala be if the chart seale were true.
a stuay of the eurves of the se runc indiostas at a glance that the windard presture eurve is very similer to the velooity pressure ourve, and to less marked extent the leoware pressure ourve is mueh like the velocity preseure line. The veloolty preseure wes mors subject to mall fluctuations than elther of the other two pressures, due to the variable nature of the wind, and the emall mount of air involved in the transmission of these variations to the instrument. In the ase of the two gauges in the tower room, the neutral or referenae pressure in the room correceponds to the statio pressure improssed on the outaile of the pressure elament of the differential gauge usea for takine velocity pressures. However, it is not constant, nor nearly so an the statio pressure is, and the effect of its variation on the record of the windward pressure gave is as followi. in suden incease in the windward head on
the bullaing finds the room, or reference pressure with 1ow value, and the pen on the cuage registers the full difference between the mindward pressure ond room pressure; as the windward head pergista the room prescure inoreases becouse of leakage on the windward face of the building, and the differential registered by the gauge becomes smaller. Hence, the ourve traced by the pen jumpe suddenly to som high value aget of wind hite the building, and alopes down graduelly as the inner pressure builds up. In the meantime the trae windmard head may have been st conatant high value, but the geuge will heve shown ateady dearease; due solely to the change in the reference pressure. The sam thing applies to the leeward preseure; but here the effect is reversed, as an inerease in the reforence pressure increases the apperent suation registared by the gauge. The effect is not noticeable in the oase of the leeward pressure recorde beokuse the heade registered were quite mall at all tines.

The response of the windward presure to an inorease in the velacity pressure is dependent upon the direction of the wind at the inetant of increase. The more nearly normal the wind, the closer the agreement betweon the two ourves, and vice verak. as it wes previously explained thet the directional control was eiven up in order to ecoure better oharts, the directions noted on the eecompanying surves are those of the prevailing winds during the runs, ond are not to be taken as meang that the wind was
etrictiy confined to thet given seguent of the compass circle. As a rule, the higher the wind, the more unstable its drection is liable to be from minute to minate, while In the lower ranges the direction is notably more oonstant. Hence, the laok of agrement between minaward and velooity pressures is most notioeable in the runs with higher heads recorded in them. Fun " k ", the curves of whioh will be found at the end of this aection, is an exception to this rule, becauee it was taken while the airection control device was still in uee.

The lecwerd herd behaves in exactly the oppoeite way fron the windar head, as it becomes are responsive to ohanges in velocity when the wind is not normal to the buildine than shen it is normal. Thie is pertioularly well brought out in the curves of run "Ab". In the sectionc marked "1" and "2", which were one continuous stretoh on the ariginal charta, the wind changed fromproctioally due west to northwest, and the bitherto fine acrement of the velooity and windwara bead curvea was immadately broken up, while the agreenent between the Felooity and leeward head curves noticeably improved during this time. These effects agree with previounly observed phenomena concerzing wind effecta on obstructions, as ind at angle of Less than 90 degrees to the windward reae produces a greater suotion in the rear of the obstanle netr the ocrner around whioh the wind is blowing than normel wind does. 2xperimenta with long struetures have shown thet the nention is higher near the windwer corner than it is further
along the leoward face, bub in the ouse of this manl scuare towtor the inorease in suetion wee probably general when the wind swung around way frem the normal ande.

The agrecment betwen the various pressures recorted is interesting to note in the rune mentionea, but the originnl transoribed ourvet oonvey no quantitstive iden of their ectual reletionship. Hence. it was decided to present their infometion in abotilied form. so acoonplish thic it wes neoesaary to oonstruct act of ourvas whioh would pregent the realis of oomperison of the varioup preseures throughout the oix runs included in this group, and would establish e relation betmeen them. $n 0-$ coraingly; set of bxe were tajen whth the velooity head In inches of weter as ons ordinate and the hesd induced by this velooity head on the windward and leamary faces of the building ws the other axdintet a large number of pointe were then plotted. and the pathe of the curves on Tigure 20 were detarmined. Phe points thompelves are too numereus to be shown, but with aix mung to wark from there is every reaton to belifte that the curves shown are oorrect. The higher values ot both the leeward and windugrd prescures were very defintely determined by the relation of the preg sure ourves in run "k", Which wes fortanately not only of high velocity, but limited to netriy a due whet wind by the direetion control.

It will be noted that the windward nead ourve is atralght inne whose value is 80 per oent or the veloeity
heac. Tha leownd head ourre is stoep ot the lower part, where it quals about 40 per oent of the velocity heac, but dropz to around 15 per aent at the hieher valuea of the veloaity haad. The third ourve, eallea the rotal Head", is the aum of the wnaward end locwart heade, and ia toout oqual in value to the velocity head. The totel head exceeds the volocity hemd at sora pointa, whoh seera to be an anomaly until it is considered that the windward head ie sort of plled-up mas of air; and the leenarg hoed en attenueted region in the rough shape of ame and that it is not nocossary that both be maintained by the aame group of sivine partielea of air, but may be considered to be mainteined by innumerable particles moving at ehigh velocty, wheh in this way may impart total head to the pressure regions of more than their individual heade. at the higher values of the felocity head tho total head Grops off, due to the fallIng off of the slope or the leevard had ourve.
 agein th the aifferenoe thet the induceg heods are dram कहingt the velooity in miles pez houx instead of the velom oity head itcelf. The relation botwen volooity an head in Iluid flaw, $\nabla^{2}-2$ eh, hich raduees to $M-45.5 \sqrt{p}$ for air
 wat used for this tranaposition.

Only on poaition of the windward presoure reenracr was umed in any one of these runs as to thought desireble to have comparison between the ralue for the wintward heed
in these oxperiments and thet ueed in the $4 . E . H^{\circ}$ \& V. 其. formula of $P=, 00048 \mathrm{H}^{2}$. In Figure 12, therefore, the obeerved mindward head, the maximumaleulated head, and 68 per oent of the maximum ooloulated head, fhich is used as an average value by meny designers, are all plotted againat the velooity in mop. h. The resulting ourves show that the observed hes lies betmeen the other two in value, end approximetes 80 per cent of the value of the maximum head eivon by the formula. One point reasinge eannot be considered as giving a true serage of the pressure on the face of a gill, oapecialiy when the builaine is es irregular the thion tower, but from the te ourves it would appear thet the point seleoted was nearly right ac could heve been round.

In the last of the set of curvea besed on this series of ruat, ligure 15 , the total displacing force of the wind on the building or the sum of the windward and leeward heade, was converted from inches of weter to pounds per square root, and plotted againet the velosity. Then the value of the resistane that would be offered by - flat plate normel to the mind wes computed from the well known formale $P=.0038$ Am 2, shen P is in pounds per square foot, A in equare feet, and 青in mep.h. This rormule is used extensively in aerodynemisml work, and wes originally deternined by miffel in hic rescerch on the eubjeet. It is eiven in warner'a "Airplane Dealen", and Honteith's meimple Aerodynaides and the Airplene", With the coefrictent .0032
as used hers. When the flat plate risistance in pound per square foot is aiso plotted against the velooity in mon. it is soen that the two eurves are very similar in form, but thet the wind pressure is at all times less than the flat plate resistance. This is what might be expected, since a rlat plate offers more opportunity for violent edaies and vortioea to form imadiately behind it than does a builaing with considereble depth. The resultant deerease in suetion, or leeward hoad, bohind a building Is suffioient to account for the lower tothl displacing force, as evidenced in the ourves shown, However, the agreament is closer than would at ifst be expeeted when the difference in the form of the two obstructions in the path of the find 18 oonsidered.

Hinde other Than Noxpal to the Building.

The runs when the wind was at angles other than 90 degrees to the face of the tower are not eapable of belag grouped together and analyzed as whole, because of the Farying offeeta resulting. fron slight chagges in direotion, and the virtual impossibility of obteining duplicnte recorde in the thort time available. They will therefore be treated indiviaualiy.
Run "y": Run "y" wes taken when there was very btrong wind omine from so degrses west of south, To mect this condition the gauge in the tower reom whith wasualiy on the wast wide was roved to the south side of the room, the other gauge being left on the east elde. As the wind was not normal to any one face, ther was no way to get atrictiy windward and locward preasure velation, but in the titiling of the charts, tho south
face is spokon of as "windward" and the east face as "leevard" beouee they most nearly eatiefy normal conditions.

It will be seen frow the pressure ourves of run " $\mathrm{y}^{\prime \prime}$ that the run was remarkable in that hien and low velooities oocurred in quiak suocestion. The windward preseure ourve follows the velocity pressure ourve quita closely, Wh no periods of marked alverenes from the general trend of the velocity head line. Phi is what would be expeoted when it is considered that the wind was only 20 degrees froz normal to the south face of the building most of the time, and thet the general effeote noted in the westeriy runs were of the same oharster. However, the leeward head curve is quite different from any encountered before. It follow, or mirrors, the velodity bead ourve very closely, and the magnitude of the recum formed is greater than in any other oase noted. ss the wind swept around the southeast corner of the tower, a muel greater veaum was formed on the east faee than when the flow was due west along the south sibe. the eddy ourrents formed were naturally more Fiolent with this angling direstion of the wind, and were more nearly comparable to those formed behind a thin, flat glate, than behina builaing.

Whon the induced heads are plotted against the velocity head in Pigure 14, the differences between a normal and an anglinf wind beoome very apparent. The windwerd head in less affected than the lowward. Instead of
heing 80 per cent of the velacity bead, the windward now equal: about 74 per cent, and is atill atreight-line function. The leeward heal ourve, however, starts ofr as a Etraight line at lower values of the velocity head, and instead of decreasing its slope, inoreases it until the velooity head is . 80 inch of weter. The leoward head ie . 20 ineh, or 36.2 per cont, ingtead of 15 per cent at a similar point in the ease of the normal to builaing runa. The gun of the wind-ward and leoward heads is neariy equal to the velocity head throughout ite range.

With the inacuod heeds plotted against veloeity intend of velocity head in ingure 15 , the difference in still more clearly marked between these curver and those of normal winds. The sum of the leeward and winaward heads does not equal the linear displacing foroe of the Wind on the buildiag, however, the two frces coneldered are not opposite siden of the tower. It is also quite probeble that if the instrument s hed been conneeted to different points along the east and couth faces of the tower, the resultant ourvea would have had aifferent trend from thome obtained with the gauges connected to at near the center of the faces as the window openinge would perait, which was the oase during this sun. Thia is partioularly true in the case of the leeward head eurve, because of the non-uniform suetion zone formed by the amgline wind on the eat face. the unusually Wide renge of the prescures obtained during this run mado it posibible to secure a large nuaber of points by
which to plot these ourves, e elreuxstanee which wes guite fortunate. The wind war preseure ourve was not oompared With the oalculeted value, and the displacing force observel was not draw ageinst the flat plete resistane beatue the cases were not analogous in this ingtance. Funt "g" and "t*: Runs "s" and "t" were made on the same (ay, and with the wind renelay from north to northwort. They do not fall into the nomme olas therefore, and are interesting bectuse t some tines the wind was anozt perallel to the two faces of the bullaing. where the guqees were located.

In run "g", the agreament between the leepard and the veloaity-head ourves is periaps the best of ay run
 head ourve appears to be refleesion of the veloeity-hend 15ne, and follows its ohanges vary falthrully. This 1 d due to the reoxe pronouned effest then an angling wind has upos the quetion zone at the rear face of the builaine near the corner around whioh it weeps then normel wind hae upon the aution zone extendine crose the whole read of the builaing. The windward preseure qauge evidentiy ald not respond to the slight preteure built up until "g" on the time eale. After this point it fanetioned properiy, end the agrecment of the windard-head ourve with the velocitym heat ourye is very good for the rest of the run. The reage of pressures taken wes not sufficient upon whioh to base
ourve giviag the relationshipe ostablished in other runt. as the minam velooity head was only 80 inoh of water. The first half of man "t" 18 whout any parm tioularly noteworthy features, but in the gecond shoet of the ourve traced rrom the aharts of thiz run, very penuliar behsvior of the windward head ourve is apparent.粦th the velooity head ranging betwen .08 and . 26 inch of Weter, the wind ward head hovers sround the zero presgure Line, iliting only to of inch of water an maximum and cotuslly becoring -.02 inoh at two points on the ourve. The instruacnt waparentiy not jamed or atuck, beause minor Iluetuations oceurrea during the tine in which it registered zero plue or minue ol inoh of water.

The explanation of the se phenoment lies in the fact that when the wind swinge around to an anele of 15 Cogrean or less whth the windward race of builatng, the pressure on thet fact becomes negative rather than positive. This was oberved in model teata made to determine oortain facts coneerning natural vantilation. It is interosting to have it subgtentiaten by the $\begin{gathered}\text { ot } \\ \text { resulta, though }\end{gathered}$ the exact angle of the wind at whioh the pressure changed orer acula not be dotermined in this oase, as it was when models of buildines were uted in a wnd tunnel.
 coming frem 5.80°. ${ }^{\text {F }}$, and with the south windowe of the towes rooin all open and the presaure geuge on the anth side of the reon the presure line ran to an open
window and was fastened to board placed as usuel in the window opening. The veloctty prearure was not taken during this run the wind was so high that it was feared that permanent injury mient be done to the geuge if it were connedtet. However, as this run wes teken on the same afternoon at iun "Y", sn idee of the volocity head may be obtained from that run, though they wore higher yet for Run "Aa". Eith the windows on the windward side open, and all othar openinge in the roon closed, it will be notioed thet the wiadward-preseure curve roughly resenblee a mewtooth effect. if sudien gust of wind would build the pressure up irmediately, then in lull of the wind the pressure would gradually diminiah until the next gust. The room seemed to act as marge tank in water circuit, the air within it beinf compresed by sudden lerge presture jusps outside and then belng relensed gredually within a period of about 10 seconds.

It is noteworthy that the pressure was at all time greater than zero, which shows that there was enough oxfiltration from the room to mintain a preseure differential between the outer face of the window and the room immediately inside, as on opposite aldes of a diaphragm in an orifice meter. This is cortain, bcouse if there ware no flow thrag! the indows, the pressure ineide would have equalled that outside, and the gage would not have remponded at all. at one point on the ourve, when the
door was opened, the preesure remained nearly constant for a short time, the flow through the room inareased. Inoidentilly the pressure on the deor, whck opened outwaraf. wes uffledent to require coneiderable effort to close it. When closed, the door was tight fitting, and all of the Window wer quipped with metalle meather stripping, 60 it is probable that for an un-weather-trippod sash the base in of the presbure curve would have teen higher in value.

$$
\begin{array}{cc}
\text { Velocity Pressure Chart. } \\
\text { Run Ab" } 5 / 24 / 30 \text { W to NW Wind. } \\
& \text { Fig. } 7 .
\end{array}
$$

Windward Pressure Chart.
Run "Ab"
5/24/30
W to IWW Wind.
Fig. 8.

Leeward Pressure Chart.
Run "Ab" 5/24/30 W to IYW Wind.
Fig. 9.

0% Jynss 74%

OHM $34 / 755.38 d$

Problem No

，															
								合							
									－						
	\％				8										
	＊				7									0	${ }^{4}$
	8				है										I
	$\stackrel{\square}{4}$			8	号									N	约 4
					S										
														v	
														$\%$	
														？	
											－				
											－				
														2	
												1		，	
					$\operatorname{cop}_{8}^{8} 8^{8}$							）	。		$\stackrel{8}{8}$
				soup			＂11－	PDJ							

	100																	
	\checkmark																	
									1	Totar	Head							
	${ }^{\infty}$																	
	$\leqslant 30$																	
	5							1										
										Windw	ward	Head						
	80																	
	${ }^{5}$					1												
	Na_{3}											Induc	ED	Heados		Loci	H	
					\bigcirc							Wino	S	$20^{\circ} \mathrm{W}$		Rum	Y '	
	30																	
			1	-														
		18																
			$2 x$					Velocit	ity	Head -	- inction	hes		water:				
	710																	
	,								v	,	ard	Head				Sig.ta		

(

It was thought desirable to senure some information regarding the past behavior of the wind, upon which predietions of fature 简inds might be based. as Detroit was convenient and the Loogl atation of the Feather Buram of the United States Department of Agriculture keeps very aomplete reoord of the winds, it wan decided to make une of thelar observations. Aocordingly, through the oourtesy of lit. Conger, the ohief metoorologist, records for the last four winters, 192027 through 2929-30, were stadied for the three nonths of Deoerber, January, and february, and data taken on the daily average temperature and the veloeity and direction of the wind for evary hour of the day. The three months chosen are the ooldest ones in the yoar, and are those during wioh the inriltration of air due to induced wind pressures is most important in the heating of buildings.

In its original conaition the information gathered was of little direet value. Therefore, to make it more readable it was rearraned in the following manner: the anmometer records gave the direction of the wind by the four cardinal points of the compass or a combintion of two adjacent points to indionte an intermediate direetion, so the aight aifferent Arections noted in the log book were used as headings, and the number of hours par year, during the daylight hours of

6 a.m. to $6 \mathrm{p} . \mathrm{m} .$, that the 1 ad blew in that direotion with a velocity of $10 \mathrm{~m} \cdot \mathrm{p}$.h. or nore, was noted below. It mas decided to restriot the compilation of this data to these hours, beeause the hoating load of Large buildings is greatest during the day and dininishes at night, when the majority of the oceupants are away. Men mep.h. was get as the lower lint of the wind data as the pressures indueed by Finds of less than this velocity are practically negligible when considering infiltration. In Table I Fhioh presonts this data two coluanc of figures will be found under each winter's heading in aom direation. The left-hand figure givea the number of hours during that winter that the wind blew with the velooity given at the left of the page, while the righthand solumi carfies puming total of all the hours of wind at that and all higher veloeities. The perceatage of the total number of hours of wind of any dixection for any one saason is given at the botton of the colum for that inter, winle the average percentage for four winters oecupies the space below this, under the direction heading.

The peroentage results are more vivialy ghown in Pigure 16 where there is agraphieal representation of the sane figures show in Table I. The ootagon represents the eight airectlons, while the longth of the bar ereated on eath side of the oetagon represents the percentage of total wina in that airection for each season. The overvhelaing
predominance of southwest and west winda is surprising at first glance and, while the percentage in the various directions might be expected to therer off gradually from the prevalling southwsst as it doss in the elookwise airection, the suaden arop wen going from southwest to south is very unueual. During the daylight hours of the winter of 1929-30 there was not a single hour durine whieh the wind blaw from the acuth with a velocity of $10 \mathrm{mop.h}$. or more. If the winters of 192p27 and 1927-28 were considered alon e , the northwest winds would be more prominent than mien all four winters are considered. This suggests the possibility of a false conclusion beling drawn from four seasons' averages and also that an analysia over a longer period of time might be valuable. Howaver, time did not permit of such an analysis when the distinot differenee between the winters of 1927-38 and 1928-29 was notea.

Figure 16 gives a good 1 dea of the general diatribution of the wind in Detroit, but gives no clue as to velocity wh which it blew in the various direetions. The values for the four winters were averaged, therefore, and the distribution of total hours of $10 \mathrm{~m} . \mathrm{p}, \mathrm{h}$. and above in each direstion is shown in Figure 17. The totals for each direction are also split up to show the duration of minds of varying velocities. The first step out from the oentral ootagon includes all those from 10 to $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. , the next, those from 15 to $20 \mathrm{~m} . \mathrm{p.h}$. , and so on.

The predominance of the southwest winds is again
striking not oaly in quantity, but in winds of hieh velooity. There is more than half agein as moh southwest mind of over 20 盕.p.h. than there is from all the other direetions pat together. A tendenay tor the highor inds to come rrox the southwest is anow by the faet that there is more mest wind of 10-15 $\mathrm{m}, \mathrm{p}, \mathrm{h}$. than there is couthweat wina of that velocity raige, Whil. in all the other valocity ranges, the aouthwest exceeds the west winds. It would seen from these results that in plamaing to oombat wind inilitration, the southweat and west Find would be the only ones to be oonsidered in the Detroit distriet.

The texperatures for each airection were carefully areraged for the four seamons, and will alwo be found on Figure 17, at the onds of the wind-the fieure. Thoy axe somewhat higher than might be expected for those monthe of the year, but the relative values of the northarly and southerly areetions are what one would expect. 保e intemediate teaperatures also follow regular order, as the tomperatures inerease from north to south, both ways aroand the ifgure. Yhough it does not show In this figure, while the original data was being taken it was noticed that the days during whioh the highest winds mere observed were not those of extremely low temperatures. In fact, the high winds ware accompanied by moderate temperatures, and on the very ooldest days the winds wore not partioularly high.

Thus the established practioe of figuring infiltration for the highest winda and lowaxt tamperatures obaerved in looality would appear to be ovexiy cautious, gince the two worst conditions do not oceur simultaneousiy.

Table 1 (cont)

FIG. 16.
DISTRIBUTION OF WIMDS
WITH A VELOCITY OF 10 MP.H. AMD OVER. DURING DAYLIGHT HOURS OF DEC., JAN., AMD FEB. IN DETROIT, MICHIGAN.

FIG. 17.
AMOUNT OF WIND AMD AVERAGE TEMPERATURES FOR THE WINTERS 1926-27 THRU 1929-30. IN DETROIT, MICHIGAN.

From consideration of the resulta of the effeot of the wind around a builaing it is apparent that when the wind is normal to a faec of the building the windward preseure varies direobly as the velocity head, and is equal to about 80 per cent of the veloaity head. The leward pressure does not vary direethy as the velosity head, but ia equal to about 13 per cent of the velooity head at the highar waluen of the velocity head. The total head induced by the winds is silghtIy graater than the veloaity head until the velocity reaches 32 m.p.h., mere it is equal to it. Above $32 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. the total induced head falis below the Feloaity head until at $43 \mathrm{~m} \cdot \mathrm{p} . \mathrm{h}$. , the Lindt of the ourrag irawn, it is equal to about 83.5 per eant of the veloaity haad. The observed Findward head falla between the maximuan head ealoulated from the formula $p=$ $.00048 W^{2}$, and the valwe generally used by designers, wioh is 68 per oent of the maximum ealculated head. The observed haad is BO per cont of the caloulated head in these teste. Then the wind was not normal to the faec of the building, the windward head was about 74 per cent of the vem loeity head, for a wind 20 degrees leas than normal to the face. The leawrard head is greater then in the ease of the nommal $\begin{aligned} & \text { nis, as } \\ & \text { it equals } 23 \text { per eont at the higher rangeo }\end{aligned}$ of the Feloaity head. The sum of the windmard and leeward
heads is equal to the veloelty head up to a veloeity of 85 mep．h．and then rises slighty gbove the veloeity head in Falue．

Then the mind besomes nearly parallel to the faes of a buildine，the windward pressure tlustuates betrem pouitive and negative values．The oxitioal angle for this olange is With the wind at about 15 aegrees to the race of the bailding．险故 only the Findward windows of a building open， there in still onough exfiltration from the poon to maintain a pressure differenoe aeross the open winders whioh varies in value with the veloaity of the wind and the air－tightness of the rocua．

The reoorde of the $\begin{aligned} & \text { nind in Detroit for the past }\end{aligned}$ four winters thow that the west and soathwast inds are the predominating ones for that viainity；also that the latter are those having the higher valoaities．牟he northwest winds are quite prorinent，but the south winds are almost negilgible in amount．The tomperatures for tho same period of time are fairly high，and refute the idea that high oinds ecompany low－temperature periods，as only moderate winds were observed during the oold anape．

39015096049914

