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It’s refreshing to watch the ongoing synthesis between population-level processes and ecosystem-
level processes that is taking place in the ecological literature. After decades during which the two 
fields developed without adequate interaction, population ecology and ecosystem ecology are coming 
back together. And we shouldn’t be surprised; ecosystem ecology emerged in large part from studies 
of successional processes (Gleason 1926, Clements 1936), and Tansley (1935) was explicit in pointing 
out that ecosystems exist as interactions between organisms and the abiotic environment.

Our ability to use these two bodies of theory to inform each other will only be as good as our 
mechanistic understanding of the links between them. One among many ecological links between 
populations and ecosystems occurs through the chemical structure of plant material. Plant chemistry 
responds to population level processes, such as trophic interactions, and mediates ecosystem 
processes, such as nutrient cycling. Plant chemistry is therefore a fundamental nexus that links trophic 
interactions with ecosystem processes. 

Although many authors have contributed to our understanding of this nexus, there is one “paper 
trail” of published work that has substantially influenced my own thinking. It concerns specifically 
how chemical defense induction in plants influences the rate at which nutrients cycle in terrestrial 
systems.

The paper trail starts with the recognition that plants are not passive recipients of herbivore damage, 
but rather respond to herbivore and pathogen attack by inducing chemical defenses (Green and Ryan 
1972). Defense induction often includes increases in classes of recalcitrant organic molecules (Schultz 
and Baldwin 1982) that can reduce herbivore fitness (Rossiter et al. 1988). Critically, these same 
recalcitrant molecules, such as tannins and lignin, were already known by ecosystem ecologists to 
resist decomposition by soil microbes (Meentemeyer 1978). In other words, herbivore attack could 
induce changes in foliar chemistry that could slow the rate of litter decomposition (Findlay et al. 
1996).

It turns out that the chemical traits that make plants less palatable to herbivores are often the same 
chemical traits that reduce rates of litter decomposition (Cornelissen et al. 1999). Because we now 
recognize the fundamental role that litter chemistry plays in decomposition and nutrient dynamics 
across diverse biomes (Cornwell et al. 2008), we have grown to appreciate the importance of “after-
life” effects of induced chemical defenses on ecosystem processes (Chapman et al. 2006).

This paper trail illustrates how a population-level process (herbivory on individual plants) can 
mediate an ecosystem process (decomposition and nutrient cycling in soil). Given that herbivore 
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populations are influenced in part by interactions with their natural enemies (Ripple et al. 2014), it 
should be no surprise to find fundamental links between the population ecology of predators and 
the dynamics of ecosystems (Strickland et al. 2013). Of course, variation in nutrient dynamics in 
ecosystems can then “cascade back up” to influence the ecology of herbivores and their enemies. But 
that’s a paper trail for another day.
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