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Floral and environmental gradients on a Late Cretaceous landscape
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Abstract. We describe an in situ fossil flora of Late Cretaceous age (;73 Ma [mega-
annum or million years]) from Big Cedar Ridge in central Wyoming, USA, which we sampled
using a modified line-intercept method to quantify the relative abundances of 122 taxa at 100
sites across 4 km of exposed sedimentary deposits. We also measured three physical variables
at each site: paleotopographic level, grain size, and total organic content. Paleoenvironmental
conditions and paleofloral composition at Big Cedar Ridge covary strongly and are highly
heterogeneous on small spatial scales. The reconstructed vegetation has some similarities with
extant topogenous fens, but also important differences. Non-monocot angiosperms were
abundant only on wet, mineral substrates that had been disturbed shortly before preservation,
consistent with the weedy life histories that are inferred for their Early Cretaceous ancestors.
Many non-monocot angiosperms grew in small, dispersed populations, consistent with the
hypothesis that they were biotically pollinated. Overall, non-monocot angiosperm abundance
was low compared with many modern wetlands. A single species of coryphoid palm was the
dominant on moist, stable, moderately organic-rich sites, a pattern seen in some subtropical to
tropical wetlands in the present day. Fern thickets at Big Cedar Ridge occupied highly
organic, possibly low-nutrient substrates, and were dominated by Dipteridaceae, Gleichenia-
ceae, Schizaeaceae, and Matoniaceae. The overall high diversity and abundance of
pteridophytes is unusual in the context of modern vegetation, regardless of climate zone,
and probably represents a late occurrence of pteridophyte-dominated vegetation that was
common earlier in the Mesozoic. Plant distributions at Big Cedar Ridge combine aspects of
pre-angiosperm and modern vegetation in a way that suggests both niche conservatism and
niche evolution on geological time scales.
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INTRODUCTION

As phylogenetic data, techniques, and understanding

have improved rapidly in recent years, it has become

increasingly common to reconstruct the ecological

history of groups using phylogenetic trees derived from

analyses of living species (e.g., Feild et al. 2004, 2009,

Davis et al. 2005, Wang et al. 2009). The basic procedure

is to develop a phylogenetic tree from genetic sequence

data, calibrate it to geological time using well-dated

fossils of known phylogenetic position, score the

terminals for an ecological trait, and then infer from

parsimony or likelihood analyses the ecological prefer-

ences of dated nodes. Phylogenetic insights of this kind

have led, for example, to the hypothesis that the earliest

angiosperms were small woody plants of disturbed,

understory sites in wet climates (Feild et al. 2004, 2009),

to the proposition that angiosperm-dominated forests

arose in the mid-Cretaceous (Davis et al. 2005, Wang et

al. 2009), and to the idea that the most diverse clades of

living ferns radiated in low-light environments under

angiosperm canopies in the Late Cretaceous and early

Cenozoic (Schneider et al. 2004, Schuettpelz and Pryer

2009). Although the phylogenetic approach has many

advantages, the ecological traits of living species exert a

strong influence on conclusions about the ecology of

extinct taxa. In particular, if the ecological traits or

preferences of the extinct species in a group were outside

the range encompassed by their living descendants,

phylogenetic reconstructions will be incorrect, and this is

particularly likely in lineages that are old enough to have

many extinct species. Discovering if and how the past

really is different from the present still requires data

from the fossil record.

The purpose of this paper is to demonstrate the large

amount of paleoecological information that can be
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deduced from study of an in situ fossil flora, and to give

insight into landscape-scale patterns of floral distribu-

tion in the Late Cretaceous. We are particularly

interested in Cretaceous vegetation because it is the

geological period during which angiosperms evolved,

radiated, and became common in terrestrial vegetation.

The oldest widely accepted angiosperm fossils are pollen

grains from the Valanginian Stage of the Early

Cretaceous (140–134 Ma [Hughes 1994]). Crown group

angiosperms began radiating in the Aptian (125–112 Ma

[Hickey and Doyle 1977, Hochuli et al. 2006, Friis et al.

2010]), and the largest proportional increase in angio-

sperm diversity occurred in the Albian-Cenomanian

(112–94 Ma), concurrent with origination of the major

extant clades within the most diverse subgroup, the

eudicots (Lidgard and Crane 1988, Lidgard and Crane

1990, Crepet et al. 2004, Friis et al. 2010).

The effect of angiosperms on Cretaceous vegetation is

less well understood than the timing of their diversifi-

cation. Early angiosperm fossils are rare, and assuming

no overwhelming bias against their preservation, it

seems unlikely they were abundant in pre-Aptian

vegetation. North American Aptian palynofloras are

dominated by pteridophytes and gymnosperms, with

,20% of taxa and specimens attributed to angiosperms

(Lupia et al. 1999). The oldest angiosperm-dominated

megafloral assemblages, in the early Albian, are

associated with evidence of disturbance such as fluvial

channels and/or fire (Hickey and Doyle 1977). The

inferred low leaf mass per area and high vein density of

Albian angiosperms implies high growth rates and short

leaf life spans, especially in the late Albian (Boyce et al.

2009, Brodribb and Feild 2010, Royer et al. 2010, Feild

et al. 2011). Angiosperm leaves became common in

many fluvial and coastal plain fossil assemblages by the

Late Cretaceous, but we are not aware of studies that

quantify their abundance. Proportional abundance has

been measured in Late Cretaceous palynofloras, which

show angiosperms increasing to an average of ;40% of

grains from 100–85 million years ago, then reaching a

plateau lasting until the end of the Cretaceous (Lupia et

al. 1999).

Increasing proportional abundance of angiosperms

appears mostly to have come at the expense of

pteridophytes and possibly non-conifer gymnosperms,

suggesting vegetation shifted from fern to angiosperm

dominance in many settings, and that conifers were

relatively unaffected (Lupia et al. 1999). This pattern

could be consistent with the idea that during the Late

Cretaceous angiosperm dominance continued to be

highest in disturbed or open habitats that had previously

been occupied mostly by ferns, as has been suggested

from small angiosperm diaspore size and the rarity of

large fossil angiosperm trunks (Tiffney 1984, Wing and

Tiffney 1987, Wing and Boucher 1998, Eriksson 2008,

Sims 2010). If many angiosperm lineages retained their

ancestral ruderal life history and preference for dis-

turbed habitats into the Late Cretaceous, it would be a

striking example of phylogenetic niche conservatism

(Prinzing et al. 2001, Crisp et al. 2009) during a major

evolutionary radiation.

In this paper we describe the floral and environmental

gradients preserved on a Late Cretaceous (;73 Ma)

landscape at Big Cedar Ridge in central Wyoming,

USA. The distribution and abundance of fossil plants

and their correlations with local environmental condi-

tions yield strong inferences about their ecological

preferences that are independent of both phylogenetic

position and functional interpretation of morphological

traits. Although vegetational patterns observed along an

irregular two-dimensional transect in a single deposit,

recording an instant in time, obviously cannot represent

the whole globe, the patterns of plant distribution at Big

Cedar Ridge do give direct evidence of the ecological

roles and preferences of major plant groups on this Late

Cretaceous landscape. We hope future studies will

establish the generality of these patterns.

Environmental context

The Big Cedar Ridge (BCR) tuff is a bentonitic

claystone bed in the middle part of the Meeteetse

Formation exposed along an irregular ;4 km transect

on the east side of Big Cedar Ridge, in the southeastern

Bighorn Basin, Wyoming (Fig. 1). The bentonitic

claystone is an altered volcanic ash erupted from the

Elkhorn volcanic field in southwestern Montana, ;150

km to the northwest. Such deposits are common in the

Meeteetse Formation (Hicks et al. 1995). The age of the

BCR tuff is 72.7 6 1.43 Ma, or late Campanian, which is

recalculated from the published Ar/Ar age of 71.7 6 0.7

Ma (Wing et al. 1993) using new radiometric decay

constants (Min et al. 2000) and monitor mineral age

(Kuiper et al. 2008). The age is also constrained by

fossils (the Meeteetse Formation is here underlain by

marine shale of the Baculites grandis Zone, (J. F. Hicks,

personal communication) and magnetostratigraphy ( just

above the base of Chron 31R; W. Clyde, personal

communication).

Leaf physiognomy (Wolfe and Upchurch 1987,

Falcon-Lang 2003), wood anatomy (Falcon-Lang

2003), and climate modeling (Valdes et al. 1996) all

indicate that Late Cretaceous paleoclimate in the

northern Rocky Mountains was warm (mean annual

temperature ;208C) and highly equable (seasonal

difference of ;48C). Widespread coals in the Meeteetse

Formation imply that precipitation was high and that

any dry season was short (Lottes and Ziegler 1994),

though fossil wood from slightly older rocks to the north

shows intervals of narrow growth rings possibly caused

by infrequent drought (Falcon-Lang 2003).

The Meeteetse Formation was deposited in delta and

coastal plain settings on the western margin of the

Cretaceous Interior seaway that covered large parts of

central North America (Fig. 1A). Coarsening upward of

the formation at BCR records the progradation of a

large delta into the Cretaceous Interior Seaway. The
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southern exposures at BCR show sandy delta foreset

beds dipping up to 128 to the south or southeast, and
beds in this sequence show both asymmetrical and
symmetrical cross-lamination, indicating directional

flow down the delta front and also reworking by waves
(Fig. 1B, E). The absence of marine or trace fossils

implies that this delta lobe prograded into an interdis-
tributary bay rather than a fully marine environment.
BCR exposures just 2–3 km north lack a delta foreset

sequence, and the equivalent section consists of splay
deposits disrupted by roots and stem casts, suggesting

higher paleotopography.
Delta sediments at BCR are overlain by distributary

channel and splay deposits alternating with paleosols.

Channel bodies vary in size, with the largest being 4–8 m
deep, 20–60 m wide, and having levee deposits extending

hundreds of meters laterally (Fig. 1E). Paleosols

generally are low in organic matter, implying the

abandoned delta lobe remained a topographic high

above the swampy delta plain. The distributary channel

sequence is capped by a paleosol that underlies the BCR

tuff across the whole outcrop. This is the first carbon-

rich paleosol above the delta deposits, though the

amount of carbon varies laterally (see Results). Higher

carbon content to the south suggests this area remained

a topographic low. The lateral extent of this pre-tuff

surface across the whole outcrop indicates a stable land

surface formed when active deposition from the

distributary channel system ceased in this area. The

subsequent deposition of the BCR tuff, described in the

following section, suggests that the BCR area eventually

became a topographic low with respect to the surround-

ing landscape.

FIG. 1. The context of the Big Cedar Ridge (BCR) tuff, central Wyoming, USA. (A) Paleogeographic map showing the location
of the study area near the shore of the Interior Seaway ;73 Ma. The paleo-coastline is from Lillegraven and Ostresh (1990). (B)
Southern exposures of BCR in the vicinity of sites 43–45. White arrows point to the paleosol beneath the event bed, and bases of
arrows point to delta foreset cross beds. The hill is ;35 m high. (C) Contact between paleosol and overlying event bed at site 22.0,
indicated by white arrow; the vertical dimension of the photo is ;20 cm. (D) Positions of sites where the fossil flora and paleosol
were sampled (UTM grid, north to right; see Supplement for site coordinates). The dashed lines show that the sections on the left
are between sites 50.0 and 41.0, and the sections on the right are between sites 31.0 and 15.0. (E) Stratigraphic cross-sections
through portions of the Meeteetse Formation at Big Cedar Ridge showing deltaic and fluvial deposits, coals (black units), and the
position of the BCR tuff (gray-shaded unit). The symbols are in the key at the upper right of the figure. The numbers below each
column indicate the closest sampling site (map view in part D). Widths of lithological columns are proportional to grain size, with
coarser rock units extending farther to the right (long tick marks indicate the coarsest observed grain size, sand). Section height is in
meters above and below the datum level described in Methods. Note variations in tuff thickness corresponding to topography on
the underlying paleosol. Fluvial channels are more common to the north.
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Preservation of the fossil flora

The preservation of fossil plants in situ in one

sedimentary unit over a distance of 4 km is unusual,

but consistent with the rapid deposition of volcanic ash.

The 2–5 m thick BCR tuff is underlain by the laterally

extensive paleosol, and the tuff itself is composed of five

depositional subunits: a thin basal volcanic ash unit, a

thin clay bed, the fossil-bearing event bed, a layer of

macerated plant debris, and a capping bentonitic clay

deposit (Fig. 2). The BCR tuff is generally overlain by a

lignitic coal.

The basal unit, only 1–3 mm thick but widespread,

contains large (;1–2 mm), unworn, volcanic biotite

phenocrysts and lies directly on the paleosol that formed

the land surface. Similar biotite grains are also seen on

the upper surfaces of some fossil leaves preserved in this

unit (Fig. 3C). These crystals indicate an initial airfall of

volcanic ash on the vegetation and land surface. It is

possible that some of these leaves traumatically abscised

from growing plants in response to the ashfall (e.g.,

Burnham and Spicer 1986).

The second unit is a thin, tuffaceous clay 1–2 cm thick

that is horizontally laminated with biotites and coarser

tuff, which appears to have been deposited in quiet

water. It may represent continued ashfall into shallow

water, rather than directly onto the soil surface,

implying a brief period of flooding.

The third unit, which preserves nearly all of the fossil

plants, is 10–20 cm of bedded, fine-sand to silt-sized tuff

that fines upward to silty clay. Asymmetrical and

symmetrical small-scale cross-lamination indicates cur-

rent flow and wave action. Interference bedding around

some fossil plants suggests local unidirectional flow, and

rolled leaves indicate an extremely turbid flow. Else-

where laminae are predominantly horizontal, reflecting

laminar flow or quiet water deposition. Fossil plants

rooted in the paleosol underlying the tuff are generally

bent over at the top of this unit. This bed was probably

deposited as a flood of ash-laden water onto the

floodplain surface from a distributary channel, though

we cannot exclude the possibility of a mixture of rain

and ash falling directly from the sky, then being

redistributed by multidirectional, low-energy flows.

Many observations show that the fossils are in situ or

minimally transported: vertically compressed stems are

connected to roots in the underlying paleosol (Fig.

3A, B), there is excellent preservation of thin leaves

unlikely to have withstood transport, and leaves

attached to axes are moderately common (Fig. 3D).

Also, strong local variation in floral composition is

unlikely to have been preserved in a transported

assemblage (see Results).

The fourth unit is 1–20 cm thick, flat-laminated, and

composed of ash mixed with macerated, woody plant

debris resembling man-made particle board. At three

sites palm stems 10–15 cm in diameter project up

through units 1–3 and terminate at the top of the plant

debris layer, with a few fragmentary palms leaves found

at this level. The plant debris layer reflects deposition in

standing water of ash mixed with abraded, size-sorted

plant fragments.

The highest unit is a tuffaceous silt and clay 1–5 m

thick that fines upward. It has almost no organic matter,

laminations are rare, but at a few sites floating aquatic

plants were found ;1 m above the pre-tuff surface. This

capping clay unit represents rapid infilling with volcanic

ash of a shallow lake that occupied an interdistributary

depression. The low density of plant remains suggests

that the lake filled in quickly, although there are

branching vertical root traces in the lake-fill indicating

presence of (presumably) aquatic plants.

A coal containing coniferous logs overlies the BCR

tuff and signals the resumption of terrestrial deposition.

Roots from this level penetrate downward through the

underlying strata. The contact of the overlying lignite on

lacustrine deposits provides a paleo-horizontal baseline

FIG. 2. Idealized stratigraphic section through the BCR tuff
and associated deposits, consisting of eight units: underlying
channel sand (variably present); paleosol of variable thickness
and properties; thin, air-fall tuff with large biotite crystals
(thickness exaggerated); thin bentonitic clay; event bed of
irregularly cross-laminated tuff with abundant plant fossils,
some rooted in underlying paleosol; plant debris bed consisting
of horizontally laminated layers of woody, size-sorted frag-
ments; fine blocky bentonite (altered volcanic tuff ) with rare
aquatic fossils; overlying lignitic coal with large wood
fragments. Lithological symbols are as in Fig. 1.
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from which the local pre-tuff topography can be

reconstructed.

METHODS

Field and laboratory

The BCR flora is largely undescribed, so we segre-

gated fossils into operational taxonomic units (hence-

forth ‘‘morphotypes’’) for paleoecological analysis. We

made large fossil collections in advance of censusing,

sorted by morphotype, and then assembled a field guide

containing descriptions, diagnoses, and photographs to

ensure uniform identification among different census

takers and over the course of the census. Based on our

experience with identifying abscised leaves in extant

floras (e.g., Burnham et al. 1992, Burnham 1997), our

morphotypes are approximately equivalent to species.

Several new morphotypes were found during census-

ing. These were described and drawn in the field, then

collected and preserved for photography and descrip-

tion. During the census, specimens with uncertain

identifications were collected so their identity could be

confirmed by comparison with other material in our

collections. In 2007–2008 the morphotypes were re-

viewed and described in more detail using the terminol-

ogy of Ellis et al. (2009). This review incorporated

material collected between the original 1992 census and

2007, and led to improved circumscriptions of many rare

morphotypes. All uncertain identifications from the

original census were checked and updated to the most

recent informal taxonomy. Changes were among rare

forms for which most or all census specimens had been

kept, enabling us to revise the census unambiguously.

The nomenclatural status of most BCR fossils is

uncertain, so in this paper we refer to morphotypes

using a system of informal alphanumeric codes. Letter

codes are: L ¼ lycopsid, F ¼ fern, CY ¼ cycad, CO ¼
conifer, M¼monocot, DE¼ dicot with entire-margined

leaf, and DN¼ dicot with nonentire leaf. (We use dicot

colloquially to refer to non-monocotyledonous angio-

sperms because we cannot always distinguish eudicoty-

ledons from basal angiosperms using foliar characters.)

Numbers following the letter codes originally were

FIG. 3. Plant preservation. (A) Fern (morphotype F3) leaf with vertically oriented main stipe and horizontally oriented lamina,
indicating preservation in situ in the light-gray tuff of the event bed. The scale divisions in panels (A) and (C) are millimeters. (B)
Vertically oriented monocot leaves departing from one another at base of the event bed. The pen cap in panel (B) is 5 cm long. (C)
Biotite phenocrysts (arrows) on surface of a dicot leaf (morphotype DN17) collected from basal, air-fall subunit. (D) Leaves of a
platanaceous plant (DN5) still attached to the twig, indicating lack of transport. The largest leaf is 6 cm long.
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assigned in sequence, but because some morphotypes

were lumped in the process of description, not all

numbers are used in the current system. If we know the

formal taxonomic name and/or higher-level affinity for a

morphotype, we give this information where the

morphotype is first mentioned in the text.

We censused the flora at 100 sites across the 4-km

outcrop (Fig. 1D). Census sites were roughly square in

plan view and 1–3 m on a side, giving a mean site area of

3–4 m2. No excavation exceeded 9 m2, and only four

reached that size. Quarry size was limited to ensure that

each site represented only a small area of the original

vegetation. We estimate the 100 excavated sites had a

total area of ;400 m2. The first 42 sites (designated by

integer numbers) spanned the entire exposed area, and

were located so that the fossiliferous unit was neither

deeply buried nor highly weathered. Subsequently we

sampled 68 intervening sites (decimal numbers), focus-

ing on areas with high floral variability, but with exact

placement still constrained by weathering and the

amount of overlying rock.

At each site we exposed the fossiliferous unit and

collected it in irregular-sized blocks. Blocks were

censused if they were at least 10 cm on the longest axis,

and if the exposed bedding surface displayed at least one

fragment identifiable to major plant group. We excluded

small blocks to avoid incomplete and unidentifiable

specimens; blocks lacking any identifiable fossils were

ignored to save time and increase the power of the

census to detect rare morphotypes.

Estimates of bedding plane cover for each taxon were

made at each site using a line intercept method (Floyd

and Anderson 1987, Etchberger and Krausman 1997).

Excavated blocks were placed under a frame strung with

24 threads spaced at 2-cm intervals. The threads were 30

cm long and marked off in 2-cm intervals. Each block

was placed in the corner of the census frame with its long

axis perpendicular to the census lines, and each 2 cm

increment of census line was then scored as crossing one

of the recognized morphotypes, indeterminate remains

assignable to one of the major plant groups, plant debris

(covering an estimated 50% or 100% of the bedding

surface), woody axis, charcoal, amber, or blank bedding

plane. Increments crossing identifiable plant fragments

were scored for that morphotype or higher taxon in

preference to blank bedding plane, plant debris, wood,

charcoal, or amber (i.e., identifiable remains took

precedence over the other categories, and indeterminate

plant remains took precedence over blank bedding

plane). If an increment of census line crossed more than

one identifiable fragment, the increment was scored

fractionally for each morphotype. For example, if leaves

of three different morphotypes were crossed by the same

increment, each was scored as one-third of an increment.

Every increment that crossed the census block was

assigned to a category. We stopped censusing when we

reached ;2000 increments or the 9-m2 limit. At three

sites (20.0, 30.0, and 35.0) an additional 1000 or 2000

increments were scored to test the effect of larger sample

size on species diversity.

The percentage of organic carbon (% TOC) in the pre-

tuff paleosol was measured at each site by low-

temperature ashing (Wilde et al. 1979), and the grain-

size distribution of the paleosol was measured using a

Coulter counter at the Institute of Arctic and Alpine

Research Sedimentology Laboratory, University of

Colorado, Boulder. Color, texture, intensity of rooting

(four point semiquantitative scale), and depth of rooting

in the pre-tuff paleosol were observed at the 41 integer-

numbered sites.

At each floral census site we measured the strati-

graphic distance between the base of the ash and the

bottom of the overlying coal as a means of reconstruct-

ing local topography on the pre-tuff surface. The base of

the overlying coal represents the transition from

subaqueous to subaerial deposition, so we assumed it

was paleo-horizontal. Assuming equivalent compaction

across the outcrop, the stratigraphic distance from the

pre-tuff surface to the base of the coal should then be

inversely related to the original elevation of the pre-tuff

surface, with small distances (thinner tuff ) indicating

former local highs, and larger distances (thicker tuff )

indicating lows in the pre-tuff surface. We transformed

each stratigraphic distance by subtracting it from 5, thus

making higher paleo-elevations correspond to larger

values. Our measurements indicate local hummocks and

depressions in the pre-tuff surface, but the slightly lower

elevation of the southern outcrop compared with the

north, expected from broader stratigraphic consider-

ations, is not reflected in these measurements, probably

because the regional topographic gradient was slight.

Data analyses

Floral data were arranged in a 100-site by 122-taxon

matrix in which each cell contained a value representing

the number of increments of a taxon at a site

(Supplement). For most analyses the raw values were

replaced by proportions (number of increments assigned

to a given morphotype at a site divided by total number

of identified increments at the site), and then trans-

formed by taking the arcsine of the square roots of these

proportions. This transformation increases the linearity

of the proportions by reducing compression at the ends

of the scale induced by the limiting values of 0 and 1

(Sokal and Rohlf 1995). Quantitative environmental

data were arranged in a matrix of 100 sites by four

variables (% TOC, % sand, silt : clay ratio, and

topographic level in meters; see Supplement).

We used R version 2.7.1 for most data analyses (R

Development Core Team 2007). We analyzed floral

diversity at two spatial scales using the additive

approach (Lande 1996), as implemented in the package

stratigraph (Green 2010), which yields within- and

among-sample components of species diversity. Similar-

ity measures, resampling routines, and ordination

analyses were carried out using the R packages vegan,
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version 1.15-0 (Oksanen et al. 2008), and MASS version
7.2-42. Cluster analysis was provided by the R base

package. Species accumulation curves were calculated

using the software package EstimateS, version 8.2
(Colwell 2009).

RESULTS

Matrices of environmental and floral data are given in
the Supplement.

Paleoenvironmental variability

There is strong variation along the outcrop in all

measured environmental variables. Reconstructed to-

pography varies from 1.2 to 4.8 m above the arbitrary
horizontal baseline, TOC in the paleosol from 3% to

84%, sand from 1% to 65%, and the silt : clay ratio from

0.38 to 3.8 (Fig. 4 and Supplement).

The most conspicuous paleotopographic features are
depressions in three areas: one in the northern part of

the central outcrop (sites 16.4–19.3), a second in the

central part of the central outcrop (sites 35.0–36.5), and

a third in the southern outcrop (sites 46.0–48.0) (Fig. 4).
In each of these depressions we observed fine-scale

horizontal or cross-lamination in the upper 10 cm of the

paleosol, indicating that bioturbation did not have time
to erase primary bed-forms from sediment deposited

shortly before emplacement of the BCR tuff. The low

sand content in the uppermost part of the paleosol
within these depressions (Fig. 4B) may indicate they

were inactive channels filling with fine sediment at the

time the tuff was deposited. In the largest of the channels

(central outcrop sites 35.0–36.5) the flora includes
several dicot morphotypes with peltate and deeply

cordate leaves, as well as small, upright monocots

preserved as clusters of sheathing leaves (Fig. 3B, see

Floral composition and diversity). These may have been
floating and emergent aquatic forms, as would be

expected in and around the margin of a small pond in

an inactive channel.

Grain size of the pre-tuff surface fluctuates over small
distances in association with the paleochannels, but

there are larger-scale trends as well. The percentage of

sand is generally highest near the north end of the
central outcrop (sites 13.0–17.0) and around the channel

at the south end of the outcrop (sites 47.0–48.2),

although it rises to 9–18% in the channel in the middle
of the central outcrop (sites 35.3, 35.6, 36.0). Across

most of the central outcrop area the silt : clay ratio is ,1,

whereas in the southern outcrop area it is generally .1
(Fig. 4A).

Variation in TOC is also clearly linked to position on

the Big Cedar Ridge paleolandscape. Only sites in the

southern outcrop (39.0–51.0) have .40% TOC in the
paleosol (Fig. 4C). There is substantial heterogeneity

even within the southern outcrop, where the paleosol

within the paleochannel (sites 46.0–48.0) generally has
lower TOC (10–30%). In the central outcrop area

paleosol TOC generally is ,10%, but it is particularly

low within the central paleochannel (sites 35.0–37.0),
and then rises to 10–30% near the north end of the

central outcrop. Paleosol TOC at the far northern

outcrop, near sites 10.0–12.0, is ,10% (Fig. 4C).

Specific types of plant debris (woody axes, fossil
charcoal, amber) show little spatial pattern, but overall,

plant fragments are more abundant in the southern part

of the outcrop. We attribute this to the peat paleosol,
some of which was probably eroded and directly

redeposited in the lower part of the tuff. Wetter

conditions at the southern end of the outcrop also

may have favored the preservation of organic matter.

FIG. 4. Measured environmental variables at Big Cedar Ridge. Each vertical histogram line represents the value for an
environmental variable at a site: (A) silt : clay ratio, (B) percentage of sand by volume, (C) percentage of total organic carbon
(TOC) by mass. The dashed line represents the paleotopography of the pre-tuff paleosol surface, measured as described inMethods
and fitted with a Lowess curve. For the 10 sites lacking one or more measurements we interpolated values using inverse distance
weighting of values from the three nearest sites.
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Floral composition and diversity

We scored 211 786 2-cm increments (4236 m) of line

intercept in the event bed. Nearly half of the increments

(48%) crossed bedding planes lacking any fossils or plant

debris; 30% crossed unidentifiable plant debris. Further,

32 581 increments (15%) crossed fossils we could

identify to a specific morphotype, and an additional

5769 increments (3%) crossed fossils we identified to a

major plant group but could not identify to a specific

morphotype because of poor preservation (Table 1). The

proportion of increments per site identified to major

group varies from 5% to 35%, with a weak tendency for

sites at the southern, more organic, end of the outcrop to

have a higher proportion of cover we could identify as

belonging to one of the major groups. This probably

reflects better preservation rather than greater standing

biomass at the time of the ashfall, because at these sites a

greater proportion of the fossils also can be assigned to a

specific morphotype (i.e., details of venation are better).

Initial analyses of the Big Cedar Ridge flora (Wing et

al. 1993) recognized 155 morphotypes. After revision of

the original informal taxonomy, we recognize 159

vegetative and 15 reproductive morphotypes, which will

be described in more detail in a later paper. The census

recovered 122 of the vegetative and seven of the

reproductive morphotypes (see Supplement for full

data). We excluded reproductive morphotypes from

our analyses so that we compare photosynthetic area of

all taxa, but in any case only 19 increments (,0.05%)

were assigned to reproductive structures.

Dicots are by far the most diverse group overall (73

morphotypes, 60%), cryptogams are second (29 morpho-

types, 24%), and the other major groups have fewer than

10 morphotypes each (Table 1, Fig. 5). Mean sample

richness is 16.6 morphotypes, to which cryptogams (6.1

morphotypes) and dicots (5.8) contribute roughly equally

(37% and 35%, respectively), even though on average

there is less dicot cover per site. Monocots average 2.8

morphotypes per sample (17%), and on average fewer

than 10% of morphotypes in a sample are conifers or

cycads (Table 1). Dicots make up a much higher

proportion of diversity for the whole transect than for

individual samples because of high heterogeneity among

samples. Among-sample (beta) diversity is three times

higher for dicots than for cryptogams, and 10–20 times

higher than for the other major groups, and is also a

higher proportion of total diversity for dicots than it is for

other major groups (Table 1; Appendix A). Mean

frequency of occurrence for morphotypes in each group

is inversely related to among-sample diversity, with

conifer morphotypes occurring in 31 samples on average,

monocots in 23, cryptogams in 20, cycads in 11, and the

average dicot morphotype occurring in only 8 samples.

Clearly, conifer, monocot, and cryptogam species were on

average far more ubiquitous, and the high diversity of

dicots in the total flora reflects higher species density and

higher turnover in species composition across the BCR

landscape (Fig. 6).

Summing cover in all samples, cryptogams are 49%,

monocots 31%, dicots 12%, conifers 6%, and cycads 2%

(Fig. 5). The most abundant morphotype is M1, a

coryphoid palm that occupies 23% of total cover and

occurs at 81% of the sites (Fig. 7; Supplement). The next

seven most abundant morphotypes are all ferns,

TABLE 1. Paleofloral census summary, Big Cedar Ridge (BCR) tuff, central Wyoming, USA.

Group

Cover (in cm of line intercept)

Proportion of total
identified cover

Identified to
morphotype

Indeterminate but
assigned to major group

Total
cover

Cryptogams 36 204 1212 37 416 0.49
Conifers 4242 64 4306 0.06
Cycads 1277 33 1310 0.02
Monocots 16 891 7261 24 152 0.31
Dicots 6549 2967 9516 0.12

All 65 162 11 537 76 699 1.00

Notes: Results are based on 423 600 cm of line intercept of fossiliferous bedding surfaces at 100 excavations spanning 4 km of
outcrop (see Fig. 1 and Methods).

� Transect b richness calculations are according to Lande (1996), with abundance weighted as the natural log of the number of
increments.

FIG. 5. Diversity (richness) and dominance (cover) of major
plant groups. Note the inverse relationship between dominance
and diversity.

SCOTT L. WING ET AL.30 Ecological Monographs
Vol. 82, No. 1



including species in the families Schizaeaceae (F1,

Sectilopteris psilotoides, and F2, Anemia fremontii ),

Gleicheniaceae (F8, F9, F10), Matoniaceae (F17), and

Dipteridaceae (F11). The only two conifers that account

for .2% of measured cover are CO3 (probably

Cupressaceae), and CO7 (Araucarites sp.). The most

abundant cycad, CY3 (Ctenis sp.), accounts for 1.4% of

cover. The most abundant dicot (DN14, Saxifragales?) is

2.0% of total cover, but its overall abundance is entirely

the result of eight closely spaced sites in the middle

outcrop (sites 35.0–36.1); it is rare everywhere else. The

second most abundant dicot, DN12 (Austrobaileyales?),

about 1% of total cover, also is abundant at only a few

sites, most near the northern end of the outcrop.

The in situ preservation at BCR offers some clues to

the stature of the plants. Only five large, vertically

oriented carbonized stems were noted during excava-

tions. Each was rooted in the underlying paleosol and

ended abruptly above the top of the event bed, so we

could not assess the heights of the original plants. The

largest trunks were 10–20 cm in diameter, 20–30 cm tall,

and had a fibrous external morphology consistent with

palms. One stem, 8 cm in diameter and ;5 cm tall, gave

rise to large fern leaves belonging to morphotype F4

(Osmundaceae?). No silicified trunks were observed

along the 4 km of outcrop, although silicified wood is

preserved locally in the Meeteetse Formation. The rarity

of large trunks suggests that trees were sparse on the

BCR landscape, as does the high relative abundance of

fern foliage, which would probably have been a minor

component of total leaf area if the litter were derived

from a forest. In addition, roughly half of the dicot leaf

morphotypes are ,5 cm long and have features that are

common among herbs, such as being highly dissected,

having deeply cordate or funnel-form bases, thin texture

and poorly organized venation (Givnish 1987). Many of

these leaf morphotypes are found attached to slender or

fleshy-looking petioles oriented perpendicular to the

FIG. 6. Species accumulation curves for each major plant group. Estimates of richness (number of morphotypes) were made by
resampling the sites by species matrix 100 times without replacement. The x-axis reflects the amount of identified cover scaled in 2-
cm increments of line intercept as described in Methods. Gotelli and Colwell (2001) recommend scaling accumulation curves by
abundance rather than by number of sites if the probability of detecting species varies by site, as is the case here. The x-axis is
logarithmic to facilitate comparison of the curves. Error bars indicate 6SD. Note the steep slope of species accumulation for dicots.

TABLE 1. Extended.

Total
richness

Mean sample
richness

Standard deviation
of sample richness

Transect b
richness�

Proportion of
total richness from

transect b

Mean no.
samples per
morphotype

29 6.05 3.40 22.67 0.78 20
9 1.40 0.72 5.58 0.62 31
5 0.56 0.77 3.50 0.70 11
6 2.81 1.61 4.47 0.74 23
73 5.82 2.52 66.04 0.90 8

122 16.64 5.02 105.33 0.86 19
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plane of the lamina, also consistent with an herbaceous,

scrambling or climbing growth habit.

Floral associations

An average linkage cluster diagram constructed from

quantitative Bray-Curtis dissimilarity indices grouped

the sites into five major clusters with two outliers (Fig. 8,

Table 2). We designate the site clusters as floral

associations, each named for its dominant morphotype:

F11, F1, DN14, F2, andM1. The two sites placed outside

the major clusters were 14.1 and 37.1, both dominated by

the gleicheniaceous fern F8 (Fig. 8). K-means clustering

of the Bray-Curtis indices (Hartigan 1975, Hartigan and

Wong 1979) stipulating division into five groups yielded

similar results to the average linkage diagram, with only

9 of the 100 sites being assigned to different groups than

in the average linkage analysis, two of those being the

outliers from the average linkage tree.

Each of the five major floral associations has a

moderately to strongly coherent spatial distribution

(Fig. 9). All 22 sites assigned to the F11 association

occur at the south end of the outcrop, but none are

within the paleochannel there, which encompasses 8 of

the 9 sites in the F1 association. The remaining site in

the F1 association (36.5) is at the edge of the channel in

the central outcrop area (Fig. 9). Eleven of the 17 sites in

the DN14 association occur adjacent to one another in

the middle of the paleochannel in the central outcrop

area. The remaining six sites are farther north along the

outcrop, of which one (19.1) is associated with a

topographic low that might indicate another, smaller

paleochannel. The 20 sites in the F2 association occur in

the middle and northern part of the central outcrop

area, with 10 of them adjacent to one another north of

the deepest paleochannel, and the remaining 10 some-

what scattered. Sites in the M1 association show the

widest spatial distribution, occurring all the way from

the north end of the central outcrop to the paleochannel

in the southern outcrop area. Within the southern

paleochannel, sites belonging to the M1 association are

interspersed with sites of the F1 association; along the

north part of the central outcrop, sites of the M1

association are interspersed with those of the F2

association (Fig. 9).

In addition to being grouped by proximity to paleo-

channels, the five floral associations show differences in

percent TOC and silt : clay ratio of the underlying

paleosol, and in topographic level (Fig. 10; Appendix

B). The mean percentage of TOC for sites in the F11

association is significantly higher than it is for all other

clusters (P� 0.01; Kolmogorov-Smirnoff test withHolm-

Bonferroni correction for multiple tests). Mean TOC for

sites in theDN14 association is significantly lower than for

all other associations (P , 0.01), and sites in the F1

association have significantly higher TOC than those in

the F2 association (P , 0.01) (Fig. 10; Appendix B). Sites

in the M1 association are not significantly different in

percent TOC from those in the F2 or F1 associations,

although the difference between M1 and F1 sites is nearly

statistically significant (P ¼ 0.05) with the Holm-

Bonferroni correction. None of the associations have

significant differences in the percentage of sand in the

paleosol except for sites in theM1 association, which have

more sand than the F11 sites (P , 0.05 with correction)

(Appendix B). Differences in the topographic level and

silt : clay ratio of sites belonging to different floral

associations are of mixed significance, with the F11 sites

being the most divergent.

The F11 association is the most distinct in terms of

environmental variables (statistically distinct from the

other associations in 12 of 16 Kolmogorov-Smirnoff

tests using the Holm-Bonferroni correction), the DN14

association sites are the next most distinct (different in 8

of 16 tests), followed by the F2 association (6 of 16

tests), and F1 and M1 associations (both distinct in only

5 of 16 tests; Appendix B). As a group, sites of the M1

association are not significantly different in any of the

environmental variables from those in either the F2

association or the F1 association. The sites of the F2 and

F1 associations are not statistically distinguishable

except in percentage of TOC. The environmental

gradients that were likely responsible for differences

among floral associations are described and discussed in

Floral and environmental gradients.

Within-site species richness is approximately equal for

all five floral associations (Table 2), but sites belonging

to the M1 and F2 associations have higher dominance as

measured by Simpson’s Index. The F11 and F1

associations have lower among-site richness than the

others, and the F11 association in particular has a

shallower species accumulation curve than the DN14,

F2, and M1 associations because of more homogeneous

floral composition among sites (Appendix C).

Floral and environmental gradients

There is very high heterogeneity in floral composition

across the BCR landscape. Bray-Curtis dissimilarities

(Bray and Curtis 1957, Bloom 1981, Faith et al. 1987)

between pairs of sites are 0.2–1.0, with a mean of 0.75;

43% of the values are .0.8. A Bray-Curtis index of 1.0

indicates no overlap in composition.

Mantel tests demonstrate that floral distances between

pairs of sites (Jaccard’s index) are highly significantly

associated with inter-site distances in meters, as well as

!
FIG. 7. Dominance–diversity curve for summed census data. The y-axis is the number of 2-cm increments of bedding plane

intercepted by each taxon (log scale). Letter-number codes denote the taxa. Colors indicate major plant groups (green, cryptogam;
blue, conifer; purple, cycad; red, monocot; yellow, dicot). Note the predominance of ferns and conifers, as well as one species of
palm. Full abundance data by morphotype code are given in the Supplement.
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with distances in environmental space (P , 0.001,

Appendix D). Inter-site Jaccard’s indices calculated

separately for cryptogams, monocots, and dicots all

show significant relationships with environmental dis-

tances. Inter-site Jaccard’s indices calculated from

conifer and cycad composition, however, are not

significantly correlated with inter-site distances in

environmental space (P ¼ 0.11 and 0.828, respectively).

The most abundant conifer, CO3, is typically 1–5% of

identified leaf cover, and has the lowest coefficient of

variation among sites of any morphotype at BCR. Its

relative ubiquity (occurring at 93% of the sites) probably

explains the absence of a correlation between Jaccard’s

indices calculated from conifer species abundances and

the environmental distances between sites. Cycads are

quite rare and undiverse (mean abundances of ,0.5%

except for CY3 with a mean abundance of 1.6%),

making it difficult for variations in their abundances to

be evaluated statistically. The absence of a significant

correlation between intersite distances in meters and

FIG. 8. Average linkage cluster diagram of BCR sites derived from Bray-Curtis dissimilarity indices. Each terminus represents a
sampling site indicated by its number. Locations of selected site numbers are shown in map view in Fig. 1, and UTM coordinates are
given in the Supplement. We recognize five major floral associations, referred to by their dominant taxa: F11, F1, DN14, F2, and M1.
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intersample Jaccard’s indices calculated from cycad

morphotype abundances probably reflects the small

number of cycad morphotypes (5), their low abundanc-

es, and the small number of samples in which cycads

occur (N ¼ 41).

We used nonmetric multidimensional scaling

(NMDS) based on Bray-Curtis dissimilarities (Cox and

Cox 2001, McCune and Grace 2002), detrended

correspondence analysis (DCA) (Hill and Gauch

1980), and canonical correspondence analysis (CCA)

(ter Braak 1986, 1987) to perform ordinations on the

floral data. Ordination plots were visually similar

regardless of method, but DCA using standard settings

in the vegan package (four rescaling cycles, 26 segments,

and no downweighting of rare species [Oksanen et al.

2008]) produced the strongest correlation of environ-

mental variables with site scores.

The DCA plots show that sites belonging to four of

the five floral associations occupy somewhat distinct

parts of the two-dimensional ordination space (Fig.

11A). Sites assigned to the F11 association using cluster

analysis plot to the right on axis 1, as do the abundant

taxa at these sites: F17 (Matoniaceae), F11 (Dipteris,

Dipteridaceae), F10 (Gleicheniaceae), and F14A (Dry-

opteridaceae?), along with CY3, CY4, and CY5 (Fig.

11B). Sites that preserve these morphotypes in high

abundance typically rest on peat soil (Fig. 11A) and

have relatively low abundances of monocots (except for

M11 and M7), dicots (except for DN9, Ranunculales?),

and conifers (except for CO3) (Fig. 11B; Supplement).

Sites assigned to the F1 association are adjacent to those

in the F11 association in the ordination plot (these two

associations link in the cluster analysis as well, seen in

Fig. 9), and have axis 1 values intermediate between the

F11 association sites and those belonging to the M1 and

F2 associations (Fig. 11A). The F1 association separates

moderately well from all other floral associations on axis

three of the DCA (not shown). Floral similarities

between sites in the F11 and F1 associations include

moderate abundance of F10, F14A, M1, M7, and CO3

(Table 2). Sites with F1 association floras generally have

intermediate levels of TOC, and many are associated

with the paleochannel in the southern outcrop, but all

sites with .25% sand in the substrate have low

abundances of F1. Sites assigned to the M1 and F2

associations overlap broadly with one another in the

lower left quadrant of the DCA, and have moderate to

low amounts of TOC (Fig. 11A). They are similar in the

other environmental variables as well. Cluster analysis

links these associations closely (Fig. 9), but there is

separation of these two associations on axis four of the

DCA (not shown). They are typified by high abundances

of M1, F2, CO7, CO3, and CO10, and are frequently

associated with DN4 and DN18. Sites in the DN14

association form a relatively discrete cluster in the upper

left quadrant of the DCA, and typically have very low

TOC (Fig. 11A). These sites have high abundance of

DN14 (Saxifragales?), and the emergent aquatic M11,

but share moderate abundance of M1, CO3, and CO7

with sites in the M1 and F2 associations. Nearly all of

TABLE 2. Abundance and diversity data for the five floral associations identified with cluster analysis (Figs. 8, 9; also seeMethods:
Data analyses).

A) Rank order values:

F11 association F1 association F2 association M1 association DN14 association

Rank order Taxa % Taxa % Taxa % Taxa % Taxa %

1 F11 28 F1 48 F2 58 M1 68 DN14 21
2 F17 19 F9 18 M1 14 F2 7 M1 12
3 F10 11 F10 6 CO7 5 F9 3 CO3 6
4 F14A 8 M1 5 CO3 3 CO3 3 M11 6
5 CY3 4 F8 4 F8 2 CO7 2 DN12 5
6 F1 4 F14A 2 F4 2 F1 1 DN21 5
7 M7 3 F3 2 F1 2 F8 1 F16 5
8 M1 3 F13 2 DN12 1 F13 1 F4 4
9 F6 2 M7 2 DN18 1 DN4 1 CO7 3
10 CO3 2 CO3 1 CO5 1 F14 1 F13 2

B) Floral association parameters:

Parameter F11 association F1 association F2 association M1 association DN14 association

Total cover (cm) 17 041 7589 16 671 13 862 5466
No. sites 22 9 24 21 17
Taxa/site� 16.6 14.6 17.3 16.6 17.1
No. taxa 70 55 82 87 75
Taxa/100 cm
of intercept

0.4 0.7 0.5 0.6 1.4

Taxa/site 3.2 6.1 3.4 4.1 4.4

Notes: Each floral association is named by its most abundant taxon. The most abundant 10 taxa in each association are listed in
the table, with % indicating the percentage of the total identified cover in all sites assigned to that association. The lines below the
10 most abundant taxa summarize the floral data for each association.

� Mean number of taxa per site.
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the DN14 association sites occur in paleochannels.

Many of the morphotypes that plot in the upper left

quadrant of the DCA are rare elsewhere on the BCR

landscape.

The strong correlation of DCA axis 1 with soil TOC is

evident from the shading of points in Fig. 11A. The

bivariate correlation of axis 1 scores of sites with their

percentage of TOC is high (r2 ¼ 0.65, P , 0.001),

suggesting that TOC, or a factor correlated with it,

exerted a strong influence on plant distributions. This is

also evident in the CCA ordination, where %TOC has

the highest loading of any variable we measured (Fig.

12).

Examining the abundances of individual morphotypes

against %TOC in the paleosol shows that many of those

that are abundant at sites with TOC .50% are also

common at a few sites with TOC ,40%. In contrast,

morphotypes that are abundant at some sites with low

TOC are never abundant at sites with TOC .40%. The

correlation between high TOC and plant species

abundances is thus asymmetrical.

In the present day, preservation of high levels of

organic matter in soils formed under warm climates

requires long periods of flooding, low pH, or both (Gore

1983). Since decay rates are likely to have been similar in

the Cretaceous, and BCR existed in a subtropical

climate, high TOC probably indicates one or both of

these factors were involved. Floral gradients correlated

with TOC may reflect the inability of some species to live

on substrates that were permanently wet or acidic.

Although there are no gradients in site richness

expressed in the ordination, on average samples in the

lower left quadrant (M1 and F2 associations) have lower

evenness than the rest (mean Simpson’s index for lower

left quadrant samples is 0.56, for all other samples, 0.73;

Kolmogorov-Smirnoff test D ¼ 0.404, P ¼ 0.0004)

reflecting the high dominance of M1 and F2 at these

sites.

DISCUSSION

All of the sedimentological and depositional data, as

well as the abundant preservation of plant fossils and

organic carbon, indicate that the Big Cedar Ridge tuff

preserved a wetland ecosystem. Within this setting the

preservation of in situ plant fossils and the soil they grew

on allows us to directly assess spatial variation in floral

composition and its correlation with soil characteristics.

Our results show that (1) soils and floral composition

varied markedly and in a correlated way across the BCR

landscape, (2) the strongest predictor of floral compo-

sition is the amount of organic matter in the soil, (3) the

vegetation was dominated by ferns (especially on peaty

soils) and palms (on organic-rich mud), and (4) dicots

were highly diverse because of their heterogeneity

among sites but dominant only at a few sites with

mineral substrate and associated evidence for recent

disturbance. Here we compare the inferred vegetation

types of the BCR landscape with similar modern

environments, and the inferred growth habits and

strategies of some BCR plants with those of their

probable living relatives. We ask if extant relatives of

BCR fossils still form similar vegetational associations

and live in similar environments.

Diversity.—The BCR flora is among the richest local

compression fossil assemblages of any time or place,

with a total of 122 morphotypes from the ;400 m2 of

excavated area. This is more species than were found at

two sites famous for their diversity: the early Paleocene

Castle Rock ‘‘rain forest’’ in Colorado (;104 leaf taxa

[Johnson and Ellis 2002, Ellis et al. 2003]), and the

subtropical early Eocene site at Laguna del Hunco,

Argentina (102 leaf taxa [Wilf et al. 2003]). We are not

able to correct for differences in sampling effort because

the other sites were censused by leaf count rather than

line intercept, but all three floras have been intensively

sampled by paleobotanical standards, meaning many

person-weeks of collecting. There are differences in

depositional setting among the three floras, with Castle

Rock being a nearly in situ fluvial wetland something

like BCR, though forested, and Laguna del Hunco being

a crater lake into which plant remains were probably

transported from surrounding terrain.

The mean richness of BCR collecting sites (16.6

morphotypes in ;3–4 m2) is also high compared with

many fossil compression assemblages representing

warm, wet vegetation (e.g., Wing and DiMichele 1995,

Wilf et al. 2003, Wing et al. 2009). Richness at BCR is

not particularly high, however, compared with modern

herbaceous wetland vegetation. Fens in Iowa average 12

species per 0.25-m2 quadrat, and 80 species per fen

(Nekola 2004). Midwestern U.S. fens as small as 80 ha

can have .500 species (Amon et al. 2002). Freshwater

coastal marshes in Louisiana average 8–12 species per

m2 (Mancera et al. 2005), and transects of temperate to

subtropical North American wetland vegetation that are

hundreds to thousands of meters long commonly record

50–200 species (e.g., Laliberte et al. 2007, Flinn et al.

2008, Peirson and Evans 2008, Carr et al. 2009). The

high diversity of BCR relative to other fossil assemblag-

es probably reflects unusual preservation of herbaceous

as well as the few woody plants, rather than high

diversity of the original flora compared with extant

floras in similar habitats.

!
FIG. 9. Proportional abundance of the 10 most common morphotypes by site. The black curve indicates the reconstructed

topography. Sites are arranged ordinally with north to the right, but distances are not proportional. Site designations across the
bottom are color coded according to membership in the five floral associations derived from the cluster analysis. See Results: Floral
composition and diversity.
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Although total floral diversity at BCR is not

particularly high compared with modern wetland

vegetation, the number and proportion of pteridophyte

species is high, with 29 morphotypes (24% of total plant

diversity) in the flora as a whole, and .6 species of

pteridophytes per ;3–4 m2 site. Fern diversity of 20

species/ha is considered high in temperate eastern North

America (Karst et al. 2005), and much larger areas

(.1000 ha) support similar numbers of species (Greer et

al. 1997). Quadrats of 16 m2 in Quebec include 0–6

species, and 50-m2 plots include no more than 7 species

(Karst et al. 2005). Even in the tropics small areas do

not necessarily support many more species of pterido-

phytes than are found at BCR. Lwanga et al. (1998)

found 0–15 species of ferns in a large number of 23 100

m transects at 12 study forests in Uganda. With 33–50

such transects per forest, a much larger sampling area

than at BCR, they recovered 29.5 species on average.

Kessler (2001) used plots of 400 m2 to assess pterido-

phyte diversity at 65 mid-elevation forested sites in

tropical Bolivia, a region of globally high pteridophyte

diversity (Kreft et al. 2010). Mean pteridophyte richness

per plot ranged from 0 to 47.9 species, and the mean

number of terrestrial pteridophytes per plot ranged from

0 to 20.9 species (Kessler 2001). Working at four widely

separated sites in terra firma forest of lowland Ama-

zonia, Tuomisto and Poulsen (2000) found 24–32

species of terrestrial pteridophytes per 0.65–1.0 ha plot.

Subplots of 100 m2 include 1–18 species, with the mean

number of species per subplot varying from 5 to 10

species depending on the site.

The proportion of species at BCR that are pterido-

phytes is also high relative to modern floras. A global

survey shows that pteridophytes on average account for

8% of species in montane biomes, 6.8% in moist broad-

leaved forest biomes, and 3.6% in all continental biomes

(Kreft et al. 2010), compared with 24% of species at

BCR, which was neither montane nor fully tropical.

In the context of present-day vegetation, the pterido-

phyte diversity recovered from BCR (presumed to

represent terrestrial pteridophytes because of the ab-

sence of evidence for a canopy), is high for a small area

of warm, coastal wetland at mid-latitude. The high

species density and high proportional diversity of

pteridophytes at BCR is consistent with the idea that

ferns were a larger proportion of herbaceous plant

diversity in the Late Cretaceous than they are today, and

were replaced by monocotyledonous angiosperms in

many wetland habitats. Compilations of Cretaceous

pollen and macrofossil records show that the relative

diversity of pteridophytes declined through much of the

Late Cretaceous, but that they typically composed 20–

40% of species in local floras, even to the end of the

period (Lidgard and Crane 1988, Crane and Lidgard

1989, Lidgard and Crane 1990, Lupia et al. 1999,

Nagalingum et al. 2002), making the high pteridophyte

diversity at BCR typical of its time.

Fossil fern thickets.—The rarity of fossil trunks and

the high abundance of foliage of Schizaeaceae (F1, F2,

F5), Dipteridaceae (F11), Gleicheniaceae (F8, F9, F10),

Matoniaceae (F17), and Dryopteridaceae (F14A) im-

plies that much of the BCR landscape was occupied by

low-statured vegetation dominated by ferns, a ‘‘fern

thicket.’’ Fern thickets are today minor landscape

elements in both temperate and tropical settings.

Temperate fern thickets (e.g., Matteuccia struthiopteris

[Flinn et al. 2008]) form underneath forests dominated

by either angiosperms or conifers, and ferns have been

shown to inhibit successful establishment of temperate

deciduous forest trees, probably by light competition in

the seedling phase (George and Bazzaz 1999). One

temperate fern, Pteridium aquilinum, even dominates

extensive patches of open country, probably because of

the deep shade cast by its frond mats, the thick

accumulation of litter beneath its canopy, and the toxic

compounds in its leaves that slow their decomposition

and deter herbivory (Marrs et al. 2000, Griffiths and

Filan 2007). Pteridium does not do well in saturated

soils, however (McGlone et al. 2005, Marrs and Watt

2006).

Fern thickets also occur in the subtropics. Lygodium

microphyllum (Schizaeaceae) has become an invasive

weed in subtropical Florida, dominant in large gaps

created by tree falls and other disturbances, and

favoring disturbed sites with wet soils (Pemberton and

Ferriter 1998, Lynch et al. 2009). A species of Lygodium

(morphotype F5) occurs at BCR, and though it is not

FIG. 10. Boxplot showing differences in percentage TOC
among sites belonging to the different floral associations
defined by cluster analysis. Thick horizontal lines are mean
values, rectangles indicate 6SD, ‘‘whiskers’’ are 62SD, and
circles are outlier points.
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FIG. 11. Detrended correspondence analysis (DCA) of (A) BCR samples and (B) morphotypes. Shading of site symbols varies
directly and continuously with the total organic carbon (TOC) of the sub-tuff paleosol (0% TOC, white; 100% TOC, black). The
colors of the numbers indicate which cluster each site belongs to (green, F11 association; gray, F1 association; black, F2
association; red, M1 association; yellow, DN14 association). Site symbols with a large X are within the large paleochannel in the
central outcrop, sites with a small x are within the paleochannel in the southern outcrop, and sites with a horizontal line are in a
small paleochannel near the north end of the main outcrop. Sites from the southern outcrop are enclosed by a black line.
Morphotype designations are color coded by major plant group (green, cryptogams; magenta, cycads; blue, conifers; yellow,
monocots; red, non-monocot angiosperms). The 30 most abundant morphotypes are indicated by larger font sizes.

February 2012 39LATE CRETACEOUS LANDSCAPE



abundant, Schizaeaceae is the most abundant fern

family at BCR because F1 and F2 are both widespread

and common.

Fern thickets dominated by Gleicheniaceae are

common in wet, particularly upland, tropical regions,

where species of Gleichenia, Dicranopteris, Sticherus and

other genera can sometimes make up 75% of cover over

areas of .1 ha (Walker 1994, Cohen et al. 1995, Walker

and Boneta 1995, Russell and Vitousek 1997, Russell et

al. 1998, Ohl and Bussmann 2004, Amatangelo and

Vitousek 2009). Typically, these gleicheniaceous fern

thickets occur on highly leached, nutrient-poor soils, or

are associated with recent (and often frequent) distur-

bance. Some fern thickets grow following anthropogenic

disturbance, and/or are formed by introduced species

that may not be limited by specialized parasites and

predators, but others form following massive natural

disturbance events (Spicer et al. 1985). Once established,

gleicheniaceous ferns generate thick accumulations of

organic matter on and above the soil surface through

slow decay of their marcescent leaf tissues (Russell and

Vitousek 1997, Amatangelo and Vitousek 2009). The

layers of living fronds (.1 m deep), dead fronds/stipes

(;1 m deep) and a root mat (;35 cm deep) create dense

shade, and release few nutrients via decay, preventing

woody plants from colonizing and allowing the ferns to

maintain dominance for decades (Slocum et al. 2006).

Did the fern thickets at BCR grow in areas strongly

affected by disturbance and/or nutrient limitation? The

answer varies by the type of fern thicket. Sites

dominated by F2 are not associated with channels or

other indicators of disturbance, they have moderate soil

organic content, and they are spatially interspersed with

sites dominated by palms. Thus we have no evidence

that dominance by F2 was correlated with high levels of

disturbance or nutrient stress. In contrast, sites domi-

nated by F1 have moderately high organic levels and

evidence of channeling, and sites dominated by F11 have

very high levels of organic matter. The high soil organic

matter at F11-association sites could indicate some

degree of nutrient stress, with N and/or P limitation

being common on peat substrates in wetlands today

(Stanek et al. 1977, Verhoeven 1986, Vitt and Chee 1990,

Bridgham and Richardson 1993, Bedford et al. 1999,

Lähteenoja et al. 2009). Nevertheless, even the most

organic-rich soils at BCR have at least 15% silt and clay,

and the upper delta plain depositional setting we infer

would have been subject to intermittent flooding from

nearby channels, which would likely have supplied

nutrients dissolved during weathering of volcanic areas

to the west. In light of these observations, it is unlikely

that any part of the BCR landscape had the very low

nutrient levels commonly found, for example, in

ombrogenous bogs (Verhoeven 1986, Pastor et al. 2002).

The role of disturbance in generating the fern thickets

at BCR is hard to evaluate. Highly organic soils, seen

particularly under the F11 association, must have

required some years or decades to accumulate, making

it unlikely that disturbance would have come in the form

of erosion or major depositional events that would have

left clastic deposits. Other sources of disturbance, such

as fires and grazing by large herbivores, might have left

less sedimentary evidence. Fossil charcoal is common in

most rocks of the Meeteetse Formation, but we did not

observe unusually high concentrations of it in the fern-

dominated areas of BCR. We searched for, but did not

find, trackways indicating the passage of large animals.

The best we can say is that we found no evidence for

frequent or recent disturbance of the fern thickets at

BCR.

If the fern thickets at BCR were neither strongly

nutrient limited nor early successional, then the domi-

nance of ferns over much of this subtropical, coastal

landscape is quite unusual in the context of modern

vegetation, in which monocotyledonous angiosperms

(typically grasses or sedges) dominate warm-climate

wetlands (e.g., Loveless 1959, Gore 1983, Clarkson et al.

2004). Fern-dominated fossil floras, on the other hand,

have been widely reported from Cretaceous rocks

(Rushforth 1971, Harris 1981, Crabtree 1988, Skog

and Dilcher 1994, Cantrill 1996, Van Konijnenburg-Van

Cittert 2002, Nagalingum and Cantrill 2006, Deng et al.

2008). Many of these are in situ or minimally

transported assemblages, for which the relative abun-

dance of fern foliage can be taken as a rough indication

of their relative abundance in the original vegetation.

Fossil floras dominated by ferns are less common in the

Late Cretaceous than in the Early Cretaceous, but the

evidence from BCR suggests that as late as the latest

Campanian, schizaeaceous, dipteridaceous, gleichenia-

ceous, and matoniaceous ferns were still able to

dominate the vegetation of a habitat they no longer

command today: warm coastal wetlands without strong

nutrient limitation or frequent disturbance.

Dicot paleoecology.—Dicot dominance at BCR is

restricted to sites near the major channels that have

mineral soil. The inferred habitat is therefore one with

high water availability, high nutrient levels, and high

light levels resulting from the recent disturbance

associated with channel erosion. Although a few of the

dicots may have been floating or emergent aquatics

(inferred from their peltate leaves) these were rare, and

we infer from the depositional setting that the common

dicot morphotypes were early-successional herbs and

woody plants. This inference is supported by the

morphology of dicot leaves, which often are small in

size, cordate or dissected, and have slender petioles

positioned at an angle to the lamina, as is typical of

many herbs and vines. As in the Early Cretaceous

(Hickey and Doyle 1977), dicots were not a major

contributor to vegetation in what were probably the

more stable, competitive, and resource-limited parts of

the BCR landscape (Wing and Boucher 1998). The high

abundance of dicots in the most disturbed habitats at

BCR is consistent with hypotheses that rapid growth in

rich habitats was an important aspect of flowering plant
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success in the Cretaceous (Hickey and Doyle 1977, Bond

1989, Wing and Boucher 1998, Philippe et al. 2008,

Berendse and Scheffer 2009, Boyce et al. 2009, Bond and

Scott 2010, Brodribb and Feild 2010, Royer et al. 2010).

Dicots are rare, yet have high beta diversity across all

BCR habitats, except the area with the strongest

evidence for disturbance, thus indicating that dicot

populations were small and dispersed at the local scale

except in disturbed areas. It has been argued that

reproductive success in patchy populations is facilitated

by biotic pollination (e.g., Regal 1982 and references

therein), although more recent reviews show little

difference in pollen limitation of reproductive success

between biotically and abiotically pollinated species

(Knight et al. 2005). Nevertheless, pollen transport has

been shown to limit reproductive success in some

abiotically pollinated plants living in fragmented habi-

tats (Friedman and Barrett 2009). The rarity and

dispersed occurrence of dicots at BCR is consistent with

biotic pollination among these Late Cretaceous angio-

sperms (Wing et al. 1993), and furthermore, there is

direct evidence for entomophily in the morphology of

many Late Cretaceous angiosperm flowers (Crepet 1984,

Friis et al. 2006) and pollen types (Hu et al. 2008).

Some authors have portrayed angiosperm success in

the Cretaceous as primarily the result of the capacity for

rapid growth (e.g., Midgley and Bond 1991, Taylor and

Hickey 1996, Boyce et al. 2009, Brodribb and Feild

2010, Royer et al. 2010), whereas others have favored

the importance of insect pollination that permitted

spatially dispersed populations to persist (e.g., Regal

1977, Crepet 1984). At BCR we find evidence for both

attributes: dicot abundance centered in the most

nutrient-rich and disturbed part of the landscape, where

high growth rates would have been most advantageous,

and a scattering of rare individuals across the landscape

that is consistent with dispersed populations connected

by insect pollination. If the distribution pattern of dicots

at BCR is typical of Late Cretaceous landscapes, this

suggests that both rapid growth rate and biotic

pollination were important to the success of the group.

Although we do not yet know the phylogenetic position

FIG. 12. Canonical correspondence analysis showing the relationship between site positions based on floral composition and
four measured environmental variables: percentage total organic carbon (TOC), topographic level (elevation), percentage sand,
and silt : clay ratio. Site symbols are shaded and morphotype designations are colored as in Fig. 11.
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of most BCR dicots we are confident that many belong

to eudicot lineages, suggesting that rapid growth and

biotic pollination were part of the ecological strategy of

derived angiosperm lineages in the Late Cretaceous.

Palm paleoecology.—As the single most abundant

species at BCR, the coryphoid palm M1 was recovered

from all habitat types, although it is most dominant on

sites with moderate levels of organic matter and no

evidence for recent disturbance. High abundance in

what we infer to be stable, nutrient-rich habitats leads us

to hypothesize that M1 was a competitive dominant

among BCR plants. Work in the modern Neotropics

documents palms as dominant in many poorly drained

or flooded habitats (Tomlinson 1979, Svenning 2001). In

tropical wetland vegetation a single species of palm may

make up 60–70% of the understory plant cover, and

their high abundance limits establishment of seedlings

and saplings of other species through shading, thus

influencing tree composition (Svenning 2001). Palms of

low stature (e.g., Sabal and Serenoa) are also abundant

to dominant in coastal lowlands of the southeastern

United States, where a combination of tolerance to

stress and disturbance (slow growth rates, long leaf life

spans, tolerance of low nutrient soils, and fire resistance)

allows them to persist in high abundance (e.g.,

Abrahamson 2007). These palmetto thickets of south-

eastern North America, where combined nutrient stress

and regular fire favor palm cover, provide an alternate

modern analog for palm-dominated vegetation at BCR,

but we find no fossil evidence for either low nutrient

levels or regular fires, at least relative to the rest of the

BCR landscape. Dominance of part of a landscape by

palms has been observed in at least one other Late

Cretaceous flora (from Europe), where, as at BCR,

palms have highest abundance in fine-grained wetland

deposits and dicots are more abundant in coarser

channel-margin sediments (Herman and Kvaček 2007).

Gradients on the BCR landscape.—In living wetland

vegetation, even small changes in topography often have

a strong effect on floral composition (e.g., Carr et al.

2009). The strong influence of topography on species

composition reflects multiple edaphic characteristics that

vary with site elevation: flood frequency, fire frequency,

and a host of chemical attributes of soil including pH,

oxygen, and nutrient availability (e.g., Schalles and Shure

1989, Svenning 2001, De Steven and Toner 2004, Bowles

et al. 2005, Dick and Gilliam 2007, Laliberte et al. 2007).

Given the strong relationship between topography and

floral composition on extant landscapes, it is surprising

that at BCR the topographic variable has a relatively

weak (though highly significant) correlation with floral

composition. This may reflect the difficulty of accurately

measuring paleotopography on the ancient landscape.

The lower, wetter conditions at the south end of the BCR

outcrop suggested by our stratigraphic and sedimento-

logical data (see Development of the BCR landscape) may

have been associated with lower topography, but a very

low gradient would have been impossible to measure.

Therefore, topography might have covaried more

strongly with floral composition (and other environmen-

tal variables) than our results indicate.

Although we cannot directly measure the environ-

mental gradients at BCR, we infer from the geological

context and soil data that the landscape was perennially

moist to wet, and that the environmental gradients most

important for floral composition were probably distur-

bance (in the form of channel erosion/deposition), and

nutrient availability (negatively associated with soil

organic matter). Although much of variation in floral

composition is correlated with soil/environment vari-

ables, the Mantel tests show that floral composition

varies even more strongly with simple distance than with

environmental proxies. This suggests that variation in

the composition of vegetation was also caused by

patchiness in colonization and growth, and/or by

environmental variables we are currently unable to

measure. This is particularly evident in the alternation of

F2- and M1-dominated localities at small spatial scales

in the absence of any clear pattern of variation in the

substrate. The insignificant differences in substrate

characteristics between sites of the M1 and F2 associ-

ations, and their interspersed spatial arrangement,

suggests that the difference in floral composition reflects

either an unobserved environmental variable (such as

light), or the unpredictable occupation of space by

individual palms, which might dominate the sites in

which they occur simply because they are large plants

compared with the ferns.

Evolution of ecological strategies.—Although the BCR

fossil plant assemblage is unusually well preserved, it is

far from unique, and therefore the kind of information

we present here can be (and has been) obtained for fossil

assemblages of many ages (DiMichele and Gastaldo

2009). Fossil floras that preserve information about

vegetational and habitat heterogeneity on a scale of

meters to hundreds of meters are known from every

interval of geological time since the advent of vascular

land plants (e.g., Devonian [Andrews et al. 1977];

Carboniferous [Wnuk and Pfefferkorn 1987, DiMichele

and Nelson 1989, Gastaldo et al. 2004, DiMichele et al.

2009, Oplustil et al. 2009]; Permian [Pfefferkorn and Jun

2007]; Triassic [Cúneo et al. 2003, Artabe et al. 2007];

Jurassic [Spicer and Hill 1979]; Cretaceous [Cantrill

1996]; and Cenozoic [Gemmill and Johnson 1997,

Davies-Vollum and Wing 1998, Williams et al. 2003,

2009]). The fossil record clearly documents changes in

ecological strategies and preferences of organisms

through time. There is considerable work involved in

making the ‘‘snapshot reconstruction’’ of a single place

and time, of course, but in aggregate many such

snapshots yield a moving picture of the evolution of

ecological strategies and preferences within lineages over

geological time. Such data can be used to test hypotheses

developed from phylogenetic inferences or observations

of ecological processes in the present, potentially

establishing the strength of phylogenetic inferences
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about the evolution of ecological traits, and the

generality of ecological trends and patterns observed

among the 1% of species that happen to be alive today.

CONCLUSIONS

1) The Big Cedar Ridge tuff preserves in situ or

minimally transported plant fossils that record the

species composition and relative abundances of plants

in an ;74 million-year-old wetland growing on a

subtropical delta plain.

2) Floral composition and paleosol features measured

at 100 sites spaced along a 4-km transect indicate strong

gradients in environmental conditions and floral com-

position. We recognized five floral associations: two

types of fern thickets dominated by pteridophytes that

occurred on the most organic-rich substrates; a third

type of fern thicket occurring on moderately organic

soil; palm-dominated vegetation in the same environ-

ment; and dicot-dominated vegetation associated with

mineral soils in abandoned channel scours.

3) The distributions of species and paleosol charac-

teristics suggest that nutrient stress and disturbance were

the major factors controlling floral composition, with

ferns in the families Gleicheniaceae, Dipteridaceae, and

Matoniaceae dominant at the most stressed sites, dicots

dominant only at the most disturbed sites, and palms

mixed with some conifers and schizaeaceous ferns most

abundant at sites that were neither highly stressed nor

highly disturbed. The environmental gradients we infer

for the BCR landscape are among the important factors

determining floral composition in many present-day

wetland environments.

4) The overall high dominance and diversity of ferns

at BCR is not seen in similar climates or habitats today,

and would be unusual in any modern environment.

Fern-dominated fossil assemblages such as BCR are

moderately common in the Cretaceous, indicating that

pteridophytes have lost ground (literally) with respect to

other plant groups, mostly angiosperms, since the

Campanian Age.

5) The overall rarity and high beta diversity of dicots

at BCR is consistent with the hypothesis that many Late

Cretaceous angiosperms were insect pollinated and

occurred in spatially dispersed populations. The high

abundance of dicots in the most disturbed habitats is

consistent with hypotheses that rapid growth and short

generation times were important aspects of flowering

plant success in the Cretaceous.

6) In general, fossil floras preserved in situ provide a

remarkable opportunity to reconstruct the relationships

between extinct plants and their growth environments,

and to gain insight into the way earlier members of

extant lineages lived and interacted with the physical

environment and one another. The distribution of fossil

plants on ancient landscapes can be a source of ideas

about how plant ecological strategies have evolved

through geological time, and of data for testing

paleoecological hypotheses derived from studying phy-

logenetically ‘‘basal’’ extant species or from studying the

functional morphology of fossils. Ongoing studies of

similar deposits in other places will establish if the

patterns described here were geographically widespread.

We hope that this study provides an example of how

much ecological information can be preserved in the

spatial distribution of fossil plants, and its value in

developing and testing paleoecological hypotheses.
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SUPPLEMENTAL MATERIAL

Appendix A

Additive diversity analyses of BCR census data (Ecological Archives M082-001-A1).

Appendix B

Significance tests of environmental differences between floral associations data (Ecological Archives M082-001-A2).

Appendix C

Species accumulation curves for floral associations recognized from cluster analysis data (Ecological Archives M082-001-A3).

Appendix D

A table of Mantel tests showing statistical significance of the association between floral distance, spatial distance, and
environmental distance data (Ecological Archives M082-001-A4).

Supplement

Floral morphotype abundances and environmental data for each site at Big Cedar Ridge (Ecological Archives M082-001-S1).
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