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Abstract 
 Solvent interactions at the protein-solvent interface facilitate many biological 

processes such as protein-protein recognition, protein-DNA binding, and a variety of 

enzymatic mechanisms. Consequently, developing a comprehensive understanding of 

solvation effects has been pursued for many decades, and promises benefits to many 

branches of biomolecular science. The following series of studies explore the maturation and 

improvement of several computational solvent models and analytical methods for studying 

protein-solvent interactions, and is divided into two principle sections.  In the first half we 

create a detailed analysis of the protein-solvent interface, and explore dynamic mechanisms 

proteins employ for structural stability. The second half we follow the development and 

refactoring of accurate implicit solvent models to take advantage of modern parallel 

processing chips, and in doing so we enable new timescales for studying conformational 

equilibria and titration states.  

 Recent developments in 2DIR spectroscopy have enabled the study of site-specific 

hydration dynamics on protein and membrane surfaces. In the first three chapters we 

explore the development and significance of this new technology. The lifetime decay of 

signal amplitude and the spectral diffusion from metal carbonyl probe molecules report local 

water concentration and dynamics, respectively. By site-specifically bonding ruthenium 

dicarbonyl (Ru(CO)2) probes to different protein domains on lysozymes, we find direct 
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experimental evidence for spatially-heterogeneous hydrophobicity. Additionally, we find that 

hydration dynamics are slowed down on protein surfaces relative to those of bulk water, and 

that protein clusters can cooperatively reduce water dynamics over 15 Å from a protein 

surface. In addition to supporting these experimental findings, the subsequent MD 

simulations of the lysozyme systems indicated that specific features of solvent interaction at 

the protein-solvent interface originate from a collective behavior of local amino acids. Not 

only was it confirmed that solvent interaction around histidines can be modulated by nearby 

residues, but that average solvation around identical alpha helices on two homologous 

lysozymes can be dissimilar. These findings show that even with an abundance of identical 

residues, homologous proteins do not necessarily share similar interactions with solvents. 

Our results provide an intuitive picture of the dynamic aspects of protein hydration, and 

illustrate how proteins control their local solvent environments to facilitate biological 

processes. 

 Next we explore protein solvation from a more coarse-grained perspective through 

benchmarking and improving the Generalized Born implicit solvent model with a Simple 

sWitching function (GBSW). Implicitly represented solvent speeds up molecular simulations 

by reducing the system size and eliminating the need to equilibrate solvent molecule 

conformations. Additionally, through adjustments to solvation free energy parameters, 

applying instantaneous changes in pH or salt concentration are relatively straightforward to 

implement. Constant pH Molecular Dynamics (CPHMD) is one such pH model that adjusts 

the partial charges of titrating atoms to simulate the effects of pH on a given solute. Such 

usefulness, however, has often been accompanied by poor scaling of algorithms for large 

system sizes, and poor utilization of modern parallel computing hardware. With the new 

availability of graphics chips containing thousands of processing cores, there is a great 
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opportunity in refactoring these aging implicit solvent models into efficiently parallel 

processes. During our benchmarking study of CPHMD it was found to predict pKa values 

of residues to within 1 pKa unit, but was also far too slow to be used for high-throughput 

applications. Through reconstructing and parallelizing the algorithms of GBSW and 

CPHMD on graphics processing units (GPUs) we offer an improvement over the original 

algorithm by about 1-2 and 2-3 orders of magnitude respectively, depending on the system 

size and nonbonded cutoff parameters. The algorithms also scale better with system size 

than the originals, which broadens their applicability in both high-throughput and large-

system studies. 
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Chapter 1 
 

Introduction 
 

1.1  Proteins in Aqueous Solution 

 Many biological processes are mediated by the presence of water. Phenomena such 

as protein-ligand binding,1-6 protein-protein recognition,7,8 and ice crystal inhibition,9 derive 

function both by dynamically constraining the movements of water molecules, and by 

harnessing water’s electrostatic pressure.10-12 Understanding this mediation promises to 

benefit pursuits of drug discovery, and further complete our modeling of biology. As we 

develop experimental techniques for analyzing aqueous solvents interacting with protein and 

investigate the dynamic mechanisms of those experiments through computer modeling, it is 

essential that we account for the presence of water with sufficient detail.3,13-21 

 The spectroscopic experiments explored in this thesis report hydrogen bond 

dynamics. In order to simulate systems relevant to these experimental results we need to 

simulate the solvent in explicit, all-atom detail. These high-resolution models take many 

forms, and are broadly categorized into polarizable, such as SWM4-DP22 and SWM4-NDP23; 

and static charge models, such as SPC,24 SPC/E,25 TIP3P,26 and TIP4P26. Interestingly, 

SPC/E, despite being a relatively crude 3-point static charge model, has shown excellent 
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correspondence with experimental properties of water such as diffusion coefficients and 

melting temperatures.27-29 In addition to capturing bulk properties, SPC/E has been useful in 

studing fine details of water-solute interactions such as dynamical slowdown near 

hydrophobic surfaces, and rapid angular jumps associated with hydrogen bond 

reorganization.17,30-32 Due in part to its accuracy and low computational cost, SPC/E was 

used as the explicit solvent of choice in our modeling solvent interaction with 

macrobiomolecules. As we will see in later chapters, SPC/E was used to observe the fine 

angstrom-scaled details of average water placement at the protein-solvent interface, as well as 

long reaching effects, such as nanometer-scaled dynamic water slowdown near protein 

interfaces. 

 

1.2  Solvating Proteins in Water-Trifluoroethanol Cosolvent 

 Due to the large number of non-water components in the intracellular medium,33,34 

our studies of protein-solvent interfaces must address the effects of a cosolvent 

environment. Thus we chose a well-understood protein-cosolvent system, specifically 

lysozyme proteins in trifluoroethanol (TFE) mixtures,35 from which we begin our 

investigations of the protein-solvent interface. Previous NMR and circular dichroism studies 

of HEWL provided for us concentrations of TFE that neither change the helical content nor 

the tertiary contacts of lysozyme.36,37 In later chapters we will explore such systems using 

two-dimensional infrared spectroscopy (2DIR), and in doing so we gain an understanding on 

how solvation and dehydration can differ depending on the specific location on a protein. 

Additionally we explore generating compatible forcefield parameters for TFE, and we verify 

its ability to reproduce preferential solvation.38 Much in the same way the SPC/E model 

reproduces many of water’s experimental bulk properties despite only capturing water’s 
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small size and strong dipole, our TFE model reproduces features of a water-TFE mixture by 

simply having a relative distribution of hydrophobic and hydrophilic atom groups. Although 

such solvent systems are unnatural, each result gives us insight into how the heterogeneous 

distribution of partial charges of protein surfaces in turn produces a heterogeneous pattern 

of preferential solvation. 

 

1.3  Enabling pH-Coupled Conformational Dynamics 

 Proteins typically maintain their native structure and optimal functionality under a 

narrow range of pH.39-41 Consequently, many biological systems tightly control local solvent 

pH to tune the effectiveness of enzymes, or to promote a useful protein conformation.39,42,43 

Mitochondrial ATP synthase utilizes a trans-membrane proton gradient to power its rotary 

catalysis mechanism,44-46 and the departure from a normal pH range is known to be a driving 

force in forming the amyloid fibrils associated with Alzheimer’s disease.47,48 Additional 

examples of pH driven processes include the proton-activated gate mechanism of the KcsA 

potassium channel,49 and the catalytic pathway of dihydrofolate reductase.50 Finally, a notable 

survey by Aguilar et al. showed that about 60% of the protein-ligand complexes indicated 

that at least one titratable residue of the protein assumed a different protonation state 

between bound and unbound states.51 Although important to many biological processes, pH-

dependence in biomacromolecule simulations is greatly limited to short timescales, and is 

generally restricted to nanosecond-long timescales when proteins are simulated in full-atomic 

detail. This limitation effectively bars much observation of detailed, large-scale 

conformational dynamics and protein relaxation.  

 In the latter portion of this thesis we follow the process of parallelizing and 

improving of the constant pH molecular dynamics (CPHMD) titration method developed by 
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Lee et al.52,53 This method is a form of continuous titration, and it enables the simultaneous 

transformation of multiple residues among protonation and tautomeric states.  The result is 

a pH simulation method that can calculate pKa values of protein structures to within 1 pK 

unit,54 and when coupled to coarse-grained systems, can resolve the dominant folding 

pathway of the pH-sensitive HdeA homodimers.55 The parallelization process begins with 

refactoring the Generalized Born implicit water model with a Simple sWitching function 

(GBSW) model56 to function effectively on graphics processing units (GPUs) with thousands 

of parallel cores. Algorithmic improvements were made to enable better scaling with both 

system size and number of available parallel cores. The result was a version of GBSW that 

ran about 30 times faster and scaled better than its previous implementation. With the 

solvent model in place, we then added components of CPHMD inside the GBSW processes 

to gain an efficient and effective model of titration. We achieve speed increases of between 2 

and 3 orders of magnitude over the original CPHMD original algorithm, and consequently, 

we enable microsecond-long simulations of biological processes to be computed in all-atom 

detail using relatively inexpensive GPUs. This new tool promises to bring detailed answers 

for many more questions regarding pH-coupled protein conformational change, as well as 

make CPHMD’s pKa predictions fast enough and cost-effective enough to be appropriate 

for high-throughput applications.  

 

1.4  Thesis Outline 

 In Chapter 2 we introduce the methodology of probing local solvent environments 

using 2DIR, and we show that solvation and dehydration can differ depending on the 

specific location on a protein. Hen egg white lysozyme (HEWL) and human lysozyme 

(HuLys) offer homologous protein topologies, each with one solvent-exposed histidine. 
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Although the two proteins are 77% similar by amino acid sequence and are structurally 

different by only 0.54 Å root-means-square, the histidines are located on different domains 

of the protein. The H15 on HEWL is located on a turn adjacent to an alpha-helix, and the 

H78 on HuLys is located on a region without secondary structure. Local environments 

around these histidines were probed by covalently attaching a ruthenium-carbonyl 

vibrational chromophore. In initial studies the vibrational lifetime of the chromophore in 

H2O and D2O was used to measure not only the presence of water, but also the hindering of 

hydrogen bond reorientation dynamics in the nearby hydration water. It was found that 

different water dynamics correlate strongly with the local surface structure of the protein. 

The H15 probe location of HEWL is a low-curvature region solvated by orientationally 

constrained water, whereas the H78 site of HuLys is high-curvature and unstructured, and 

solvated by bulk-like water. To test the connection between constrained water and the 

thermodynamic driving force for dehydration by an amphiphilic co-solvent trifluoroethanol 

(TFE), lifetime measurements were made in a series of D2O/TFE solutions. In pure D2O, 

both sites were found to be hydrated based on their sub-5 ps vibrational lifetimes, which are 

consistent with water-assisted relaxation.57 Upon addition of TFE, however, the sites 

displayed markedly distinct responses. The lifetime of the probe at the H15 site of HEWL 

exhibited an order-of-magnitude slowdown in a 10% (v/v) TFE solution consistent with 

local dehydration, whereas the H78 labeled site of HuLys showed no TFE-dependent 

vibrational lifetime changes at any of the experimental concentrations.  

 In Chapter 3 we investigate the results of the previous chapter and explore the 

heterogeneous nature of preferential solvation of lysozyme by TFE-water mixtures. We use 

explicit solvent MD simulations to model human and hen egg white lysozymes mixed with 

water and different concentrations of trifluoroethanol. We then aligned each trajectory by 
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lowest protein backbone-atom root-mean-square deviation (RMSD) to one common 

structure. From these trajectories we then compute time-averaged three-dimensional 

histograms of the number density of solvent relative to each protein’s structure. These values 

represent the spatial distribution of both the probability of finding a type of solvent atom 

and solvent density. Using these data, we mapped out trends of trifluoroethanol interacting 

with lysozyme surfaces and suggest a possible explanation for the observed phenomena in 

the spectroscopic experiments. Finally, we made a spatially dependent, solvent-centric 

comparison of homology between HEWL and humLys. We find that the 2DIR studies’ 

reporting that the H78 site of HuLys is more hydrophilic than H15 site of HEWL is a 

reasonable conclusion. Additionally, we investigate how the homology of protein structure 

does not necessarily translate to similarities in solvent structure and composition, even when 

observing identical side chains. 

 In Chapter 4 we use the spectroscopic tools and simulation framework from 

previous chapters to explore crowding effects near protein surfaces. Again we use 2DIR 

spectroscopy of ruthenium-carbonyl complexes bound to lysozyme proteins. By observing 

the vibrational relaxation of the probes we determine local hydration dynamics at the probe 

binding sites. We place the lysozyme-probe complex in aqueous solutions of PEG400 (8–

9mer) ranging from 0 to 80% PEG400 by volume, and compare these results to previously 

reported experiments using glycerol.58 Then we carry out a parallel experiment with the 

probe complex in varying concentrations of excess lysozyme ranging from 20 to 160 

mg/mL, and we observe the effects of protein self-crowding. Interestingly, we find an 

abrupt dynamical transition of the protein and hydration dynamics induced by crowding, and 

the results suggest a dynamic hydration shell around the protein extending 15–20 Å, 

resulting in collective hydration for interprotein separations of 30–40 Å. To support and 
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elucidate a possible mechanism for these observations, MD simulations of protein-crowded 

were performed by arranging lysozyme molecules in varying distances from each other. The 

hydration structure and dynamics of the resultant trajectories were analyzed by averaging 

hydrogen bond counts and lifetimes in water near the hydration sites. Long-ranged 

slowdown of water dynamics similar to the experiments was observed. The consensus from 

both experiment and simulation, then, is the existence of two distinct dynamical regimes of 

biomacromolecules in solvent into “undercrowded” and “overcrowded” conditions.  

 Chapter 5 begins a series of studies where we explore and improve the implicit 

modeling of solvent. We begin with benchmarking the accuracy of the constant pH with 

molecular dynamics (CPHMD) model, and recapitulate the titratable residue pKa values of 

staphylococcal nuclease variants. In previous work by García-Moreno et al., the 

conformational role of aspartic and glutamic acids (GLU) in Δ+ PHS were studied in 

detail.59 All such residues were titrated for pKa calculations by measuring the pH dependence 

of the chemical shifts of Cγ or Cδ with two-dimensional HBHC(CBCG)CO experiments,59 

which led to a comprehensive quantification of the changes of internal energy within Δ + 

PHS in relation to introducing a hydrophilic residue into the hydrophobic core of the 

protein. The shielding effect of surrounding hydrophobic amino acids can reduce solvent 

interactions and consequently increases residue pKa values by as much as 5 pK units. The 

measured perturbation in pKa values for these systems provides an experimental basis for 

testing and assessing the accuracy of the CPHMD model. We find that for all variants of 

staphylococcal nuclease, including those variants that lack a fully-solved crystal structure, 

CPHMD correctly predicts perturbations in pKa values to within 1 pK unit. Although 

accurate and applicable to a wide range of systems, CPHMD is too slow to be useful for 

large systems or high-throughput studies. For instance, converging titrating residues of the 
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nucleases to optimal protonation states required over a week of simulation time. 

 In Chapter 6 we continue our studies of implicit solvent by refactoring the 

generalized Born with a simple switching function (GBSW) solvent model so it functions 

well on highly-parallel graphics chips. With the availability of graphics processing units 

(GPUs) carrying up to thousands of parallel processing cores and their newer ability to 

compute complex mathematical functions using C-like languages such as Open Computing 

Language (OpenCL) and Compute Unified Device Architecture (CUDA), a new frontier of 

GPU-powered ultra-parallel molecular dynamics software has come into being. Programs 

such as CHARMM,60 AMBER,61 OpenMM,62 GROMACS,63 and NAMD64 all offer GPU-

accelerated options for many types of simulations, all of which can replace the 

computational power of much larger computer networks with a single graphics card. Despite 

the fantastic improvements in molecular mechanics simulations afforded by GPUs, some 

algorithms remain challenging to parallelize. Notable among these are implicit solvent 

models, which either rely on recursive data processing or are inefficiently split into parallel 

functions. From the variety of implicit solvent methods for calculating solvation free energy, 

only those that use an uncoupled summation of Cramer-Truhlar-type atom-atom pairwise 

interactions,65 such as GBSA/OBC,66,67 have been implemented in GPU languages. Such 

implementations only required a retooled version of the neighboring atom interaction 

processes that were already developed for all-atom molecular mechanics.62-64,66 This chapter 

we outline the implementation of a parallel, atom-coupled volumetric integration approach 

to calculating solvation free energy using the GBSW algorithm. Depending on the system 

size and nonbonded force cutoffs, the new GBSW algorithm offers speed increases of 

between one and two orders of magnitude over previous implementations while maintaining 

similar levels of accuracy. We also demonstrate that these speed enhancements now make 
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accessible folding studies of peptides and potentially small proteins by utilizing our GPU-

accelerated GBSW model to fold the model system chignolin. 

 Chapter 7 extends the work performed in the GBSW solvent model to include the 

CPHMD model in its new highly-parallel processing platform. CPHMD models the 

influence of pH on a system by extending the Hamiltonian to include a continuous, pH-

sensitive λ  coordinate for each titrating residue. Each λ  coordinate determines which 

protonation state a residue resides in. As such, each titrating residue has different sets of 

partial charges for each titration and tautomeric state, and a potential energy function that 

connects the λ  coordinates to the local charge and pH environment. This model permits 

neighboring titrating residues to interact, and allows all residues to titrate simultaneously. By 

deconstructing the potential energy function and calculating most of it in parallel along with 

the GBSW solvent model, we see speed improvements in CPHMD of 2 and 3 orders of 

magnitude over its original form. With such speed improvements, the pH model is now 

appropriate for a much wider range of system sizes and trajectory lengths, and hopefully will 

enable the fine-tuning and wider acceptance of pH modeling in MD simulations. 

 The last chapter summarizes the results and draws general conclusions in the context 

of solvent modeling and analysis, and we discuss the new directions for adapting those 

models to a new frontier of highly-parallel processing hardware. 
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Chapter 2 
 

Site-Specific Dynamics of Water and 
Trifluoroethanol on Lysozyme Proteins 

 
 
 
 
  The work presented in this chapter has been published in the following papers: 
 

1. J. T. King, E. J. Arthur, C. L. Brooks, III, and K. J. Kubarych, “Site-Specific 
Hydration Dynamics of Globular Proteins and the Role of Constrained Water in 
Solvent,” The Journal of Physical Chemistry B 119(19), 5604-5611 (2012). 

 
2. J. T. King, E. J. Arthur, D. G. Osborn, C. L. Brooks, III, and K. J. Kubarych, 

“Biomolecular hydration dynamics probed with 2DIR spectroscopy: From dilute 
solution to a macromolecular crowd,” Chinese Chemical Letters 26(4), 435-438 
(2015). 

 

2.1  Introduction 

 Biological processes, from DNA replication to enzyme catalysis, occur in the 

presence of water. Water’s indispensible role in biology has motivated efforts to uncover the 

degree to which it actively participates in chemical events.2 As the universal solvent of living 

organisms, water has a remarkable ability to accommodate both hydrophilic solutes through 

strong electrostatic interactions, as well as hydrophobic solutes through subtle modifications 

to the hydrogen bonding network.1,3-18 The hydration of large solutes (> 1 nm), such as 
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membranes and proteins, requires significant rearrangements of the hydrogen bonding 

network leading to the sacrifice of hydrogen bonds. Hydration water—water directly 

solvating the large solute—is thus structurally and dynamically constrained, restricting the 

configuration space as well as limiting dynamical flexibility. These constraints endow 

interfacial water with properties that are different from the bulk liquid.  Whether or not one 

adopts a picture of protein dynamics as being “slaved” to the solvent, it is nevertheless clear 

that the preponderance of free energy changes attributable to the solvent arise from the 

relatively thin hydration layer of water solvating the protein.  

 The interest in studying and characterizing the properties of interfacial water arises 

from the extensive role that the protein-water interface plays in influencing such processes as 

small ligand binding,  protein-protein recognition,  and protein-DNA interactions.7 Studies 

of orientational and spectral dynamics of water near lipid bilayers,8 within reverse micelles,9,17 

or in the presence of small solutes indeed support the picture that limiting the configuration 

space can impose constraints on water’s dynamics. Additionally, molecular dynamics 

simulations have been used extensively to study dynamics that may be difficult to access 

experimentally, such as the immediate hydration environments of proteins.   Experimental 

evidence of water confinement near protein surfaces has been found by studying solvation 

dynamics of site-specific fluorescent probes of protein surfaces via ultrafast fluorescence 

upconversion.  Recently, the combined constraining influence of both protein and lipids has 

enabled NMR measurements of local water structure and its mobility using reverse micelle-

encapsulated ubiquitin.  THz absorption spectroscopy has also been demonstrated to be a 

powerful technique for studying the hydration environments of proteins.  Though these 

experiments provide evidence for constrained water, it remains unclear precisely which 

aspects of water’s motion are most strongly affected by the interface. 
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 In this chapter, we present evidence from ultrafast two-dimensional infrared 

spectroscopy that the primary dynamical distinction of hydration water is the protein’s 

suppression of large-angle orientational jumps. The unique dynamics of water have been 

used previously to sense the presence of water using 2DIR through its influence on both 

vibrational lifetimes31 and spectral dynamics.32-34 Since our probe is able to identify regions of 

hydration while simultaneously distinguishing between constrained hydration water and 

bulk-like solvation, we are able to determine directly from experiment that an amphiphilic 

cosolvent (trifluoroethanol) preferentially dehydrates the protein in the region where the 

protein constrains the water dynamics. Our data also show that the cosolvent associates 

directly with the protein by replacing water in the hydration shell, rather than indirectly by 

disrupting the hydration layer from a distance. This detailed picture of the heterogeneous 

dynamics of “biological water” should provide a microscopic basis for a more complete 

understanding of interactions between domains in large proteins, as well as between proteins 

in large-scale assemblies and pathological aggregates.  

 Here, we present experimental evidence for constrained biological water solvating 

model enzymes, hen egg white lysozyme (HEWL) and human lysozyme (HuLys), using a 

vibrational probe of structure and dynamics of the interfacial water solvating the near-native 

protein. By leveraging the isotope dependence of the probe’s vibrational relaxation in water 

(i.e. H2O and D2O) we are able to observe the influence of qualitatively distinct protein 

surfaces on the associated hydration dynamics. Using a relatively strong IR probe based on a 

transition metal carbonyl adduct, we are able to record 2DIR spectra with protein 

concentrations at the 100-200 µM level, which precludes complications due to the spatial 

coupling of hydration shells of other protein molecules in solution. The observed slowdown 

in water’s dynamics is the result of protein surface-induced constraints placed on a subset of 
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water’s fast dynamics, namely hydrogen bond switching events that occur through angular 

jumps,  which has proven difficult to observe with other spectroscopic techniques.  

 We study the hydration environment of two homologous proteins, hen egg white 

lysozyme and human lysozyme. The crystal structure of the hen egg white lysozyme 

ruthenium carbonyl complex (HEWL-RC) shows a Ru-carbonyl complex bound to the lone 

His15 residue (Fig. 1).34,36 While no crystal structure is available for the human lysozyme Ru-

carbonyl complex (HuLys-RC), the structure is deduced by imposing the octahedral 

coordination found in HEWL-RC and by Fourier transform IR spectra which show identical 

carbonyl stretching frequencies for both HEWL-RC and HuLys-RC. HuLys has a single, 

solvent-exposed histidine residue (His78) which is the proposed binding location of the 

metal-carbonyl complex. There are several examples of metal carbonyl complexes binding to 

surface histidines.  The linear and 2DIR spectra of HEWL-RC and HuLys-RC in D2O are 

shown in Figure 2.3. The linear spectrum of HEWL-RC shows two small additional bands 

Figure 2.1 Crystal structures of HEWL-RC (PDB code 2XJW) overlaid with the crystal structure of 
native HuLys (PDB code 2ZIJ). The binding location of the metal carbonyl on the HEWL protein 
has been determined by X-ray crystallography. While no crystallographic data are available for the 
HuLys-RC complex, the binding location is proposed by comparison with the HEWL-RC complex. 
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corresponding to the low-population binding locations (Asp18 and Asp52) found in 

crystallography,37 whereas the HuLys-RC shows only a single binding location. There is a 

slight (∼1 cm-1) shift in the vibrational frequencies of the two carbonyl modes, consistent 

with the metal center being coordinated to a histidine residue in both cases but having 

different local protein environments. In HEWL, His15 is in the highly structured α domain, 

whereas His78 of HuLys is located in the unstructured β domain (Figure 2.1). We note, 

however, that the unstructured domains of HEWL and HuLys are structurally similar. 

 The binding motif of the vibrational label to the proteins is shown in Figure 2.2. We 

also rely on comparisons with the small molecule dichloro-ruthenium(II) dimer (a so-called 

“carbon monoxide releasing molecule” often denoted CORM-2), which is the precursor to 

the labeling complex (referred to as CORM-3).38 Because of the scarcity of water-soluble 

metal carbonyls, we rely on comparisons between the labeled proteins and the CORM-2 

complex in both aqueous and organic solvents. While the molecules are clearly different, the 

comparison between these molecules is both robust and instructive. The crucial properties 

shared between these molecules are the presence of coupled CO chromophores as well as 

Figure 2.2 Structures of the vibrational chromophores used in this study. CORM-2 is used 
throughout the study as a model small molecule metal carbonyl. The key feature of the molecule 
that allows this comparison is the presence of multiple CO modes that are coupled, allowing for 
water-assisted vibrational relaxation. 
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the presence H2O of numerous low-frequency modes. The anharmonic coupling between 

the spectroscopic modes and the lower frequency modes of the molecule results in water-

assisted relaxation in aqueous environments, a key aspect of the results and interpretations 

presented here.39 The side chains that are in the immediate vicinity of the CO oscillators on 

HEWL-RC are isoleucine, phenylalanine, and alanine residues, which are nonpolar residues, 

as well as an arginine residue. The HuLys-RC probe is mostly exposed to the solvent, though 

it is neighbored by cysteine, leucine, and alanine. While the environment presented by the 

Figure 2.3 Linear FTIR spectra of HEWL-RC (a) and HuLys-RC (d) in D2O and H2O. The broad 
feature in the H2O spectrum is the bend- libration combination band, centered at 2150 cm-1. The 
2DIR rephasing spectra for HEWL-RC (b) and HuLys-RC (e) in D2O are shown for a waiting time 
of t2 = 500 fs. Monitoring the amplitude of the 2004 cm-1 peak as a function of waiting time, t2, 
provides the vibrational lifetime of the mode. For HEWL-RC there is no observable isotope effect 
in the vibrational relaxation between D2O and H2O (c), whereas HuLys-RC shows a very clear 
isotope effect (f). The lack of an isotope effect suggests solvation by slow constrained water, 
whereas hydration by bulk-like water leads to an observable isotope effect. These results 
demonstrate the heterogeneous nature of the water dynamics near a protein, where certain regions 
are hydrated by slow constrained water while other regions are hydrated by bulk-like water. 
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protein is an important aspect of the dynamics felt by the vibrational probes, the observed 

lifetimes are dominated by the hydration water. 

 Ultrafast 2DIR spectroscopy is used to study the hydration environments of HEWL-

RC and HuLys-RC in pure water solvent (either H2O or D2O), as well as in solvent mixtures 

of D2O and 2,2,2-trifluoroethanol (TFE) ranging from 0 to 20% TFE v/v. Because of the 

structural similarities of HEWL and HuLys (60% sequence homology, Cα rmsd = 1.1 A ̊), 

the two labeling locations, though occurring on different proteins, sample the heterogeneous 

protein structure as well as distinct solvation environments. The vibrational lifetime (T1) of 

the metal carbonyl probe is used as a reporter of the local solvation environment at the 

interfacial region of the protein. The lifetime is sensitive to the presence of water and has 

been shown to be an order of magnitude shorter in water (H2O or D2O)38 than in either 

proteinaceous environments40 or in polar organic solvents.  Thus, the vibrational lifetime 

effectively acts as a water sensor positioned at the protein−water interface. 

 

2.2  Water-Assisted Vibrational Relaxation 

 The sub-5- ps absolute vibrational lifetime of the CO modes reports on the presence 

of liquid water as the principal pathway for vibrational relaxation. We have previously shown 

that the vibrational lifetimes of metal-bound carbonyls are on the order of 50−100 ps.38 

Even in the highly polar solvent methanol, we find the vibrational lifetime of the small 

CORM-2 complex to be 42.25 ± 3 ps.41 In water, however, the vibrational lifetime of 

CORM-2 is an order of magnitude smaller, an effect attributed to the high density of 

vibrational states in which to dissipate energy as well as the extremely rapid fluctuations of 

charge, both hallmarks of water solvation.1 Water acts to facilitate the intramolecular 



24	
  

coupling of the solute vibrational degrees of freedom. The observed vibrational lifetimes of 

the protein-bound metal carbonyls also exhibit lifetimes on the order of 3−4 ps (Figure 

2.3)1,42-45 suggesting that the chromophores are sensitive to the interfacial water, which 

provides the dominant relaxation pathway. This conclusion, that the vibrational relaxation is 

sensitive mainly to the water hydrating the protein, was further verified using D2O−TFE 

solvent exchange discussed in detail below, where we find that replacing the hydration water 

with an alcohol cosolvent results in a pronounced increase in the vibrational lifetime. 

 

2.3  Constrained Water at the Protein Surface 

 The thermodynamic driving forces for hydrating small and large hydrophobic 

cavities differ according to the relative significance of enthalpic and entropic contributions. 

Small hydrophobes and small ions generally sustain water’s local hydrogen bonding network 

through subtle rearrangements, so that free energy gradients arise from changes in entropy.  

Conversely, large hydrophobes disrupt hydrogen bonding, leading to driving forces 

dominated by enthalpic changes.  Hence, one expects dynamical perturbations to reflect 

these distinct underlying free energy landscapes. 

 Figure 2.3 shows the Fourier transform IR (FTIR) spectrum of HEWL-RC in H2O 

and D2O. The vibrational probe has two IR-active CO modes located at 2004 and 2080 cm-1. 

We focus on the low-frequency mode of both HEWL-RC and HuLys-RC for analysis. Using 

2DIR spectroscopy, the vibrational lifetimes of the CO vibrational modes of HEWL-RC in 

H2O and D2O were extracted for the 2004 cm-1 mode and found to be 3.60 ± 0.18 and 3.73 

± 0.21 ps, respectively. This result is in stark contrast to what has previously been reported 

for water-assisted vibrational relaxation, where we observed pronounced isotope differences 
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between water and heavy water.47 

 The loss of the isotope effect can be explained in terms of the restraints that large, 

hydrophobic surfaces place on water’s hydrogen bonding structure and dynamics. 

Comprising a subset of water’s fast dynamics are hydrogen bonding switching events, which 

have been theoretically predicted33 and experimentally supported10 as occurring through 

abrupt angular jumps that involve large-scale motion of the hydrogen (or deuterium) atoms 

of the water.32,33,48-50 Small molecules at low concentrations do not disrupt hydrogen bonding 

networks and, more importantly, do not significantly limit the configuration space available 

to hydrogen bond partners, allowing this subset of water’s dynamics to occur unperturbed.  

Because the angular jump dynamics of water involve large displacements of the hydrogen 

atoms, these dynamics should also be particularly sensitive to isotope substitution. Hence, 

the solvent fluctuations that drive vibrational relaxation strongly reflect the dynamical 

differences between H2O and D2O. In fact, the water isotope effect on solvation dynamics 

had been successfully modeled from the perspective of Debye relaxation, which relates the 

macroscopic dielectric constant of water to the microscopic reorientation dynamics,10 though 

the angular jump mechanism had not yet been identified. 

 The dynamical constraints exerted by extended hydrophobic surfaces on the 

surrounding water arise from the restrictions imposed on the hydrogen bonding network by 

the surface.8 Extended surfaces limit both the configuration space available for hydrogen 

bonding as well as the associated dynamics, causing water to adopt geometries that are not 

favorable for hydrogen bond coordination while impeding switching events.17,31,32 The 

structured region surrounding the HEWL His15 label is an excellent example of a natural 
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extended biological surface with low curvature, hence the surface slows down the water 

dynamics by limiting the available partners for fast hydrogen bond switching while inhibiting 

the required coordinated reorientation that accompanies large angular jumps. Because the 

switching events involve large displacements of the hydrogen atoms, these motions 

contribute significantly to the measured vibrational relaxation isotope effect, which is only 

observed when the hydrating water exhibits bulk-like dynamics. This interpretation of 

“hydrophobic slowing” of water’s dynamics is consistent with what has been previously 

observed for small solutes at high concentrations, where neighboring solutes limit hydrogen 

bonding switching.  

 A cartoon depiction of hydrogen bond switching and its modification by the protein 

surface are shown in Figure 2.4. Since successful hydrogen bond switching events proceed 

through a bifurcated transition state where the switching hydrogen is fleetingly associated 

with both the initial and final partner O atoms,  the free energy barrier is necessarily 

Figure 2.4 Cartoon depicting the free energy surface for hydrogen bond jumps. The transition state 
has been identified as a bifurcated hydrogen bond with both initial and final donors (shown with 
cyan hydrogen bonds). In regions of constrained hydration, the protein limits the availability of final 
donors, raising the free energy barrier by decreasing its entropy. Besides the relatively rare jumping 
events, the rapid intrawell fluctuations are able to induce enhanced anharmonic coupling, assisting 
vibrational relaxation for both water isotopes. 
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influenced by the availability of such configurations. Relative to the bulk liquid, the protein 

interface deprives water molecules of potential partners, which reduces the availability of 

transition state candidates and lowers the entropy of the transition state. Nevertheless, 

hydrogen bond jumps are not the only source of environmental fluctuations leading to 

enhanced anharmonic coupling and the resulting carbonyl vibrational relaxation. The 

intrawell dynamics comprise the majority of these fluctuations (depicted by the stochastic 

trajectory in the cartoon), hence resulting in similarly rapid relaxation in both D2O and H2O. 

 The absolute value of the constrained H2O/D2O relaxation falls between the values 

of bulk-like H2O and D2O for both CORM-2 as well as HuLys-RC. While the dynamical 

nature of the solvent can be influential, it is only one component that determines the 

vibrational lifetime. The electric field generated by the solvent applies the force on the 

relaxing mode and is thus an important component of vibrational relaxation that we cannot 

probe directly. Because hydrophobic hydration is accompanied by dynamical and structural 

changes, the absolute lifetime observed for the constrained H2O/D2O will depend on any 

structural changes that occur in the hydration layer. Thus, the convergence of the H2O and 

D2O relaxation onto a single lifetime and the absolute value of the vibrational lifetime should 

be considered somewhat separately.  

 

2.4  Heterogeneous Water Environments 

 The homologous structures of HEWL and HuLys allow us to investigate the water 

dynamics near two qualitatively distinct protein−water environments (Figure 2.1). We have 

previously discussed the lack of an observable isotope dependence of the vibrational 

relaxation of the HEWL-RC complex, where the probe is located on a structured, extended 
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protein surface. In the HuLys-RC complex, however, the probe is located in an unstructured 

and flexible region of the protein. In contrast to HEWL-RC, the isotope effect is clearly 

observed in HuLys-RC, where the relaxation time constants for the 2004 cm-1 mode are 3.12 

± 0.26 ps and 4.70 ± 0.38 ps in H2O and D2O, respectively. Despite being located at the 

protein surface, the measured solvation dynamics appears more consistent with small 

molecule hydration. Given that the vibrational probe is attached to a histidine residue in 

both proteins, the data indicate that some degree of collectivity at each site leads to the 

protein’s heterogeneous influence on the hydrating water, as well as highlighting the role of 

surface topology on local hydrophobicity.15 

 The water dynamics surrounding the unstructured region of the HuLys-RC complex 

resembles what was previously observed for a small metal carbonyl, CORM-2, at low 

concentrations (∼2 mM). This similarity suggests that the solvation of the unstructured 

region of the protein is similar to what is seen for a small molecule, namely, that the 

hydration environment is essentially bulk-like. The picture that emerges from these 

measurements is that a protein’s ability to constrain hydration water dynamics is determined 

not only by the availability of solvent-exposed side chains capable of forming hydrogen 

bonds but also by the presence of a low-curvature surface topology. Though this view is 

consistent with the prevailing model of hydrophobic solvation,20-24,53 our work shows clearly 

how a single, relatively compact globular protein can exhibit both extremes of hydration 

structure and dynamics. 

 The heterogeneous nature of the hydration dynamics of a protein raises interesting 

questions regarding the role, if any, of the dynamically constrained water in biological 
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processes. It has long been speculated that hydrophobic hydration−hydration environments 

that constrain water−leads to entropic driving forces for surface processes, all of which 

require protein dehydration as the initial step.  A region of hydrophobic hydration can act as 

a “thermodynamic reservoir”, where entropy is created by relaxing constraints on the 

hydrating water, in turn enabling greater participation in enthalpically favorable hydrogen 

bonding. We examine hydrophobic assembly below using an amphiphilic alcohol cosolvent. 

 

2.5  D2O-TFE Solvent Exchange 

 The tight interplay between protein dynamics and the hydration environment 

suggests that modulations can significantly impact a protein’s dynamics, structure, and 

stability. The properties of a protein can be manipulated by adding small amounts of 

cosolvents, such as alcohols.  Low concentrations of 2,2,2-trifluoroethanol (TFE), for 

example, can stabilize protein secondary structure through a mechanism that is generally 

attributed to preferential solvation of the protein by TFE, promoting intramolecular 

Figure 2.5 Vibrational relaxation of CORM-2 in D2O/TFE mixtures, demonstrating the lifetime 
dependence on the cosolvent in the absence of preferential solvation. 
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hydrogen bonding within the protein by alleviating competition with external hydrogen 

bonding partners from hydrating water.  At higher concentrations, however, lacking the 

driving force of hydrophobicity, the protein becomes unstable and partially denatures into an 

unfolded state characterized by a loosening of the helix packing even as the helices 

themselves remain stabilized.41 Partial unfolding in lysozyme has been observed at TFE 

concentrations near 15% (v/v). The linear FTIR spectra of HEWL-RC in D2O/TFE 

mixtures show no significant changes in either the amide region of the spectrum or the metal 

carbonyl stretch bands.55 

 To investigate the thermodynamic connection between constrained water and the 

driving force for surface processes such as preferential dehydration, we studied the influence 

of the amphiphilic cosolvent TFE on the vibrational lifetime of the protein-bound 

vibrational probe. We have shown that the dominant pathway of vibrational relaxation for 

the protein-bound probes is driven by the interfacial water dynamics. Therefore, dehydrating 

the protein surface surrounding the probe should result in measurable changes to its 

vibrational lifetime. 

 As a control experiment, we measured the vibrational lifetimes of CORM-2 in a 

series of D2O/TFE mixtures (including pure D2O, 10, 20, 50, and 75% TFE, and pure 

TFE). Figure 2.5 shows the vibrational relaxation of CORM-2 in the D2O/TFE mixtures. At 

low concentrations, the vibrational lifetime remains dominated by water-assisted vibrational 

relaxation, only increasing from 4 to 6 ps over a range of 0−50% TFE. At higher 

concentrations, the relaxation becomes dominated by the TFE cosolvent, thereby increasing 

to 25 and 50 ps at 75% and pure TFE, respectively. It is clear that there is a nonlinear 

dependence of the vibrational lifetime on the solvent composition, likely due to the 

dominance of water-assisted vibrational relaxation as the most efficient relaxation pathway. 
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Hence, significant changes in the vibrational lifetime are only observed when water is at a 

very low concentration. These data provide a baseline for vibrational lifetimes in D2O/TFE 

mixtures in the absence of preferential solvation, which can be applied to the study of 

HEWL-RC and HuLys-RC in the presence of TFE. 

 Figure 2.6a shows the vibrational relaxation of HEWL-RC for four different TFE 

concentrations (0, 10, 15, 20% v/v). In pure D2O, the vibrational lifetime is 3.73 ± 0.21 ps. 

Upon addition of 10% TFE the vibrational lifetime increases to 32.76 ± 1.15 ps,56 suggesting 

that at low concentrations the alcohol dehydrates the protein near the vibrational probe in 

exchange for a preferred alcohol environment. Lacking water, the vibrational relaxation 

becomes significantly slower and resembles relaxation observed in CORM-2 in TFE 

environments (Figure 2.6c). In comparison to the T1 times for CORM-2 in D2O/TFE 

Figure 2.6 Vibrational relaxation for HEWL-RC (a) and HuLys-RC (b) in D2O/TFE mixtures 
ranging from 0% to 20% TFE v/v. The addition of small amounts of TFE results in a large 
increase in the vibrational lifetime of HEWL-RC, followed by a monotonic decrease upon further 
addition. The increase in lifetime at low concentrations is the result of preferential solvation, and 
the subsequent decrease in lifetime is the result of the onset of partial protein destabilization. In 
contrast, HuLys-RC shows no sensitivity to TFE, suggesting this region of the protein resists 
solvent exchange with TFE and remains hydrated. (c) A comparison of the cosolvent-dependent 
relaxation for HEWL-RC (circles) and CORM-2 (triangles) shows that at 10% TFE HEWL-RC 
indicates a local solvation environment with nearly no water, with a relaxation time scale similar to 
other metal carbonyls in alcohol environments. 
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mixtures, the HEWL-RC surface surrounding the vibrational probe has a solvation 

composition that resembles a solution between 75% TFE and pure TFE, clearly showing 

there is a lack of water at the protein surface. The vibrational lifetime achieved through only 

the addition of 10% cosolvent provides clear evidence that the TFE is preferentially drawn 

to the protein at the hydrophobic region. 

 Further addition of TFE induces a decrease of the vibrational lifetime, resulting in 

relaxation times that reflect a homogeneous solution of water and TFE (15% TFE T1 = 3.99 

± 0.60, 20% TFE T1 = 4.41 ± 0.48 ps). This decrease in vibrational lifetime, which returns 

to characteristic time scales for water-assisted relaxation by 20% TFE, warrants additional 

discussion. This experimental observation, that preferential solvation at low TFE 

concentration is not sustained at higher TFE concentrations, suggests the emergence of 

structural instability of the protein at TFE concentrations above 10%. Previous reports using 

a combination of spectroscopic techniques have shown that TFE concentrations near 15% 

can promote significant structural changes, including some destabilization of protein tertiary 

structure.54 Earlier work by Dobson using circular dichroism found TFE enhanced the 

overall helical content of the protein, but at the cost of destabilization of tertiary 

structure.55,57-62 Our experimental results are consistent with helical portions of the protein 

being susceptible to dehydration and interactions with the hydrophobic portions of TFE. 

The decreased lifetime is consistent with the following scenario: As the constrained water is 

relieved and the protein alters its structure, the solvation environment becomes a mixture of 

D2O/TFE as the collective influence of the extended hydrophobic surface is disrupted due 

to the loosened helix packing. 

 The mechanism by which small molecules denature proteins has been, and remains, 

an area of intense research.	
    The present data suggest that there is a direct interaction 
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between the protein surface and TFE, leading to the formation of a dehydrated interface 

between the protein and the cosolvent. This cosolvent shell in turn can modify the limited 

water dynamics at the surface by supplying hydrogen bonding partners through the alcohol’s 

hydroxyl group. This interpretation would be consistent with a mixed direct and indirect 

mechanism, where the cosolvent, directed to regions of constrained water, essentially coats 

the protein surface, promoting intraprotein hydrogen bonding and stabilizing secondary 

structure. Cosolvent association destabilizes the tertiary contacts between helices once the 

protein becomes so dehydrated that it loses the hydrophobic driving force to fold, resulting 

in partial denaturation. This picture of TFE-modulated lysozyme stability is consistent with 

thermodynamic measurements based on calorimetry and structural studies using NMR 

spectroscopy.  

 While we observe that the structured region of the HEWL-RC complex leads to 

constrained water that can drive solvent exchange, the unstructured β-region of HuLys is 

solvated by bulk-like water, suggesting that this region would not experience substantial 

solvent exchange. Figure 2.6b shows the vibrational relaxation of HuLys-RC in TFE/D2O 

solution. Indeed, the vibrational relaxation of the label at this site shows no dependence on 

TFE, indicating that this location resists preferential dehydration by TFE and shows a 

solvation environment that might be expected for a simple mixture of D2O/TFE (Figure 

2.5). Comparing the experimental observations of HEWL-RC and HuLys-RC, it is clear that 

the interaction of TFE with the protein depends, to some degree, on the extended properties 

of the surface and not simply on individual amino acid residues since the vibrational probe is 

attached to a histidine residue in both cases. 

 The correlation between constrained water and solvent exchange demonstrates how 

the release of dynamically constrained water can drive hydrophobic association. It is known, 
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however, that for many association processes the entropic contribution is insufficient to 

account for the total change in free energy.1 While the hydrophobic interaction between the 

protein surface and the hydration environment is indeed the driving force for such 

processes, its influence is not limited to entropic changes associated with liberating the 

water’s constraints65 since expelling hydration water affords enthalpic gains by restoring 

hydrogen bonding that is diminished near extended surfaces.66 Moreover, since many 

macromolecular assembly processes are kinetically controlled, the time required to allow for 

the diffusive liberation of constrained water may be too long given that the approaching 

extended hydrophobic surfaces are both solvated by water with diffusivity that is lower than 

the bulk. 

 

2.6  Conclusions 

 The results presented here provide a site-specific probe of heterogeneous hydration 

dynamics of large proteins in pure H2O and D2O and, more importantly, provide 

experimental evidence of the mechanism of the hydration slowdown. A key aspect of this 

work is the study of labeled proteins at micromolar concentrations, which allows an 

unobstructed observation of the influence of the protein surface on hydration water. The 

results indicate that a single lysozyme protein is capable of influencing its hydration 

environment. This result is to be contrasted to numerous other studies that rely on high 

concentrations of solute to observe slowed water dynamics, where the crowding of multiple 

solutes can cooperatively constrain the hydration water. Although crowding is a central 

aspect of in vivo chemical biology, it is essential to characterize a single protein’s influence 

over its hydration environment in addition to the specific or nonspecific perturbations 
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induced by crowders. Evidence for constrained water is found near the large, structured α 

domain of HEWL (Figure 7b), where the individual amino acid residues act in a cooperative 

manner to create an extended hydrophobic surface, depriving water of hydrogen bonding 

partners. In contrast, bulk-like water is found on the unstructured region of HuLys (Figure 

7c), where the residues behave as independent solutes with a hydration environment 

resembling that of a small molecule. Around these individual residues water retains a bulk-

like hydrogen bonding network, and the dynamics are not suppressed. It is important to note 

that it is precisely this unstructured and flexible region that acts as a flap over the substrate 

binding site. 

 In addition to the heterogeneous nature of hydration dynamics surrounding large 

globular proteins, this study also reveals the correlation between dynamically constrained 

water and the driving force for site-specific association at the protein surface. The free 

energy that is released upon dehydration of constrained water appears to be sufficient to 

drive the association of small molecules to the protein surface. Using a water sensing 

vibrational probe, we can distinguish between direct cosolvent−protein association and 

Figure 2.7 Cartoon demonstrating the effect of extended surfaces on hydrogen bonding switching 
events. Small molecules do not perturb the hydrogen bonding networks at small concentrations (a), 
while extended protein surfaces, like the surface found near the vibrational probe on HEWL-RC 
(b), can limit the hydrogen bonding network and the hydrogen bonding switching events. Loose, 
unstructured regions of proteins, like that surrounding the probe on HuLys-RC (c), act more like a 
collection of small molecules, where bulk-like dynamics can be preserved. 
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indirect disruption of the hydration layer. On the basis of the marked changes in the 

vibrational lifetime, our data are consistent with direct displacement of water from the 

protein surface. This view is further supported by the subsequent cosolvent-induced 

destabilization caused by competing out the water to such an extent that the protein’s 

tertiary structure loosens, evidenced by the infiltration of water in the absence of the 

structured, extended hydrophobic surface. Taken together, our data indicate that the spatially 

heterogeneous dynamics of hydration water is, to a significant degree, responsible for site-

directed hydrophobic association, a perspective that should be helpful in rationalizing and 

perhaps in guiding the controlled disruption of deleterious protein−protein interactions. 

 Water’s importance in biology cannot be overstated, but ample evidence shows that 

often only a small amount of water is truly necessary for function.1,2 Water-sensitive 

vibrational probes on the surfaces of proteins will enable an experimental platform to 

systematically map interactions between proteins and other biomacromolecules including 

DNA and antibodies while simultaneously monitoring the role (or lack thereof) played by 

the thin layer of hydration water. 
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Chapter 3 
 

Heterogeneous Preferential Solvation of 
Water-Trifluoroethanol Cosolvents on 

Homologous Lysozymes 
 
 
 
  The work presented in this chapter has been published in the following papers: 
 

1. E. J. Arthur, J. T. King, K. J. Kubarych, and C. L. Brooks, III, “Heterogeneous 
Preferential Solvation of Water and Trifluoroethanol in Homologous 
Lysozymes,” The Journal of Physical Chemistry B 118(28), 8118-8127 (2014). 

 

3.1  Introduction 

 The interiors of metabolizing cells have high concentrations of proteins, nucleic 

acids, and small molecules that can constitute more than 40% of the total cellular mass.  In 

some cases, the density of non-water components in cells exceeds 400 g/L, which makes 

cytoplasmic crowding on the same order as that found in protein crystals.  Contributions to 

crowding effects arise not only from biomacromolecules, but also a plethora of smaller 

osmolytes varying from sugars, such as sucrose and trehalose, to polymers, such as 

polysaccharides and ribonucleic acids.  Previous studies have shown that such crowding 

effects from cytoplasmic osmolytes can significantly change the thermodynamic and kinetic 
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properties of not only nucleic acids and proteins, but also of water molecules.  Furthermore, 

the complex interplay of chemicals in the cytoplasm remains difficult to characterize as 

simple cosolvent systems, such as octanol-water mixtures.  After decades of research, the 

molecular mechanisms and biological significance of osmolytes interacting with 

biomacromolecules remain an active area of study.  

 Water molecules interacting with hydrophobic solutes have fewer available hydrogen 

bonding partners relative to the bulk, which can result in significantly constrained 

movements and diffusion rates. When water solvates large molecules (>1 nm), the physical 

constraints cause large changes to its network of hydrogen bonds. These can halve the 

average time between hydrogen bond jumps, and slow diffusion by more than an order of 

magnitude.  Dynamically constrained solvent is not only a structural component to biology,  

but its altered chemistry is also exploited by processes such as protein-ligand binding,	
  	
  

protein-protein recognition,  ice crystal inhibition,45 and protein-DNA interactions.46,47  It is 

therefore a necessity to molecular biology, especially when studying within the context of 

cell-like environments, to deconvolve the influence on hydration environments near proteins 

due to various interactions, such as van der Waals, electrostatics, and protein topology.  

 Previous studies of proteins interacting with cosolvents have shown that changes in 

transfer free energy of solvent molecules near a protein’s surface relative to the bulk, or so-

called “epistructural interfacial tension”, receives electrostatic contributions from the 

protein’s interfacial topology.  This notion has led to accurate docking predictions of small 

molecules on a protein’s surface using implicit-water methods such as the three-dimensional 

reference interaction site model (3D-RISM).  However, further evidence has shown that not 

all protein-ligand systems may be mapped accurately without a dynamic, explicit 

representation of water intermediating protein-ligand associations.  These studies have led to 
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reassessments of such simplified models, even by coupling them to molecular-dynamics 

(MD) simulations to increase conformational sampling of both protein and solvent.  Owing 

to the complexity of liquid solvent and the rapidly fluctuating nature of protein topology, it 

may be premature to suggest a theoretical model short of an all-atom MD simulation that 

predicts protein-solvent interactions accurately.  It may also be an equally arduous task to 

modify a topology-based approach, such as 3D-RISM, to represent accurate hydrophobic 

protein-solvent interfaces and three-body interactions for any particular protein-ligand-water 

system.  Thus for this study we turn to all-atom MD simulations as a means to investigate 

biomolecular interactions in mixed-solvent systems. 

 Previous work by King et al.32 on systems of lysozyme and trifluoroethanol used the 

method of two-dimensional infrared spectroscopy (2DIR) to investigate how solvation and 

dehydration can differ depending on the specific location on a protein. Hen egg white 

lysozyme (HEWL) and human lysozyme (HuLys) offer homologous protein topologies, each 

with one solvent-exposed histidine. Although the two proteins are 77% similar by amino 

acid sequence and are structurally different by only 0.54 Å root-means-square, the histidines 

are located on different domains of the protein. The H15 on HEWL is located on a turn 

adjacent to an alpha-helix, and the H78 on HuLys is located on a region without secondary 

structure. Local environments around these histidines were probed by covalently attaching a 

ruthenium-carbonyl vibrational chromophore. In initial studies the vibrational lifetime of the 

chromophore in H2O and D2O was used to measure not only the presence of water, but also 

the hindering of hydrogen bond reorientation dynamics in the nearby hydration water. It was 

found that different water dynamics correlate strongly with the local surface structure of the 

protein. The H15 probe location of HEWL is a low-curvature region solvated by 

orientationally constrained water, whereas the H78 site of HuLys is high-curvature and 
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unstructured, and solvated by bulk-like water. To test the connection between constrained 

water and the thermodynamic driving force for dehydration by an amphiphilic co-solvent 

trifluoroethanol (TFE), lifetime measurements were made in a series of D2O/TFE solutions. 

In pure D2O, both sites were found to be hydrated based on their sub-5 ps vibrational 

lifetimes, which are consistent with water-assisted relaxation.55-57 Upon addition of TFE, 

however, the sites displayed markedly distinct responses. The lifetime of the probe at the 

H15 site of HEWL exhibited an order-of-magnitude slowdown in a 10% (v/v) TFE solution 

consistent with local dehydration, whereas the H78 labeled site of HuLys showed no TFE-

dependent vibrational lifetime changes at any of the experimental concentrations.  

 These data indicate that the local solvent compositions at the two sites are different.  

Previous NMR and circular dichroism studies of HEWL confirms that a 10% concentration 

of TFE does not change the helical content nor the tertiary contacts of lysozyme, which 

supports the conclusion that the change in vibrational lifetime is not due to a change in 

protein conformation.  This result is consistent with prior observations that helical regions 

on proteins (such as the H15 on HEWL) are preferentially solvated by TFE more than 

unstructured regions (such as the H78 on HuLys).61 Additionally, this result suggests that 

local solvation structure and dynamics can be modified by local protein topology. 

 The simulations of the present study are designed to investigate these results and 

explore the heterogeneity of preferential solvation of lysozyme by TFE-water mixtures. In 

the current study we used explicit solvent MD simulations to model human and hen egg 

white lysozymes mixed with water and different concentrations of the cosolvent 

trifluoroethanol. We then aligned each trajectory by lowest protein backbone-atom root 

mean square deviation (RMSD) to one common structure. We used these trajectories to 

compute time-averaged three-dimensional (3D) histograms of the number density of solvent 
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relative to each protein’s structure. These values represent the spatial distribution of both 

probability of finding a type of solvent atom and solvent density. Using these data we 

mapped out trends of trifluoroethanol interacting with lysozyme surfaces and suggest a 

possible explanation for the observed phenomena in the spectroscopic experiments. Finally, 

we made a spatially-dependent, solvent-centric comparison of homology between HEWL 

and HuLys. 

 

3.2  Simulations 

 Two homologous lysozyme systems were simulated: hen egg white lysozyme 

(HEWL; PDB code 3IJU) and human lysozyme (HuLys; PDB code 2ZIJ). Eighteen replicas 

of both proteins were created, which consisted of three separate trajectories for each of six 

concentrations of TFE: 0%, 1%, 5%, 10%, 15%, and 20% by volume fraction (v/v). 

Water/TFE mixtures exhibit a nonideality of less than 10 mL per liter (less than 1%), so a 

ratio of molar fractions could be approximated by a ratio of volume fractions. Equation 1 

shows how the precise number of TFE and water molecules could be calculated for a given 

cosolvent when assuming the solution behaves ideally.  

 

 eq. 1 

 

Vm is molar volume, x is mole fraction, and N is the number of solvent molecules. The 

number of TFE and water molecules used in each simulation is listed in the original text for 

this chapter. 

Vm
TFE (%TFEv / v)

Vm
H2O (%H2Ov / v)

≈ xTFE
xH2O

= N TFE

NH2O

= G(r)TFE
G(r)H2O
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 Hydrogen atoms were added to the proteins using the pdb2gmx utility in the 

GROningen MAchine for Chemical Simulations (GROMACS).62 All replicas were solvated 

in SPC/E water60 using the genbox utility in GROMACS with rectangular edges at least 20 Å 

from all protein atoms. Excess charge from the protein was neutralized by placing 8 chloride 

ions per lysozyme at random locations in the solvent using the genion utility in GROMACS. 

The TFE structure was energy-minimized using the Gaussian ’03 software package.63 An 

appropriate number of TFE molecules were added to each replica simultaneously with the 

chloride ions, using the genion utility from GROMACS. The locations of the TFE molecules 

were randomized for each replica to enhance the sampling of solvent configurations.  

 All 36 systems (2 proteins x 6 TFE concentrations x 3 independent trajectories) were 

simulated using the GROMACS macromolecular modeling package (version 4.5.5).64  The 

antechamber program from the Antechamber package (version 1.25)64 was coupled with 

Gaussian ‘03 to assign partial charges and to create an Amber-like forcefield for TFE. Partial 

charges were assigned using the Restrained Electrostatic Potential (RESP) method.65 The 

remaining atoms of each replica were simulated using the AMBER99-all-atom force field.66 

Each replica was an isobaric-isothermal ensemble, and was maintained at 1 atm and 300 K 

using the Berendsen barostat and thermostat respectively.57 A time coupling constant of 1 ps 

was used for both pressure and temperature, and the system compressibility was set to 4.5 x 

10-5 bar. Electrostatic energies were determined using particle-mesh Ewald (PME) 

summations58,67 with a Fourier-transform grid width of 1.2 Å, and real-space Coulomb and 

Lennard-Jones cutoffs of 9 Å. The magnitude of the PME-shifted potential at the cutoff was 

set to 10-5, and the Leapfrog Verlet integrator was used with an integration time step of 1 fs. 

Each replica was energy minimized using a steepest-descent algorithm for 500 steps with a 

tolerance of 10 kJ mol-1 nm-1, followed by an equilibration run for 50 ps, and finally a 
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production run of 20 nanoseconds (ns). Coordinates were saved every 1 picosecond (ps), 

which yielded a total of 60,000 structures for each protein at each concentration.  

 

3.3  Volumetric Distribution Function of Solvents 

 Owing to the extremely low flexibility, high stability, and highly-conserved structure 

of the two lysozymes,  all saved structures from all simulations represent fluctuations of one 

lysozyme system. The calculated circular dichroism (CD) shows an ellipticity of 10.1 ± 0.8 

degrees, and the root-mean-square deviation (RMSD) of protein backbone atoms from the 

initial structure was 1.0 ± 0.1 Å. Additionally, no protein structure shows an RMSD of 

backbone atoms greater than 2 Å from any other structure, even between human and hen 

egg white lysozymes.67,68 Although concentrations of TFE were simulated that would 

normally denature lysozyme, it may be that the mechanism of denaturing takes place on 

timescales longer than the 20 ns simulated in this study. These conditions permit the 

calculation of high-resolution three-dimensional (3D) solvent distribution functions centered 

on a relatively static protein structure.   

 First, periodic boundary conditions are used to align the protein at the center of each 

box. Then all saved structures from all simulation are aligned by least-squares fitting of 

protein backbone atoms to a single energy-minimized reference structure of HEWL. The 

reference structure is obtained from the first frame of one of the production runs of HEWL. 

Finally, time-averaged solvent distribution functions G(r) are calculated for each trajectory 

using voxelized 3D histograms with a 1 Å3 resolution using Equation 2, as performed in 

previous studies.  The solvent distribution function G(rxyz) is approximated by integrating the 

time-averaged solvent density ρ for a voxel of size ∆x∆y∆z. The data is then normalized for 
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bulk density ρbulk, which resulted in a series of 36 maps of solvent distribution, each with a 

protein in the center. 

 

 eq. 2 

 

 As an artifact of the least-squares fitting of saved structures, the corners of the 

periodic boundary boxes rotate during simulation. As such, G(r) data at the corners is not 

representative of bulk solvent in the solvent distribution functions, and was removed before 

analysis. This left a spherical volume of solvent density with a radius of 41 Å and an edge 

with bulk solvent density. This radius also maintains a minimum of 18 Å between all protein 

atoms and the edge of the spherical volume. Radial distribution functions of solvent from 

protein atoms indicate that no significant solvent clustering occurs much more than 9 Å 

from the surface of the protein.67 Hence, interactions between the protein and the solvent, 

such as an enhanced solvent density, are not omitted from analyses by removing the corners. 

Furthermore, the edge of the data is representative of the time-averaged bulk density of 

water and TFE. The solvent densities at the edge of the spherical shape of the G(r) 

histograms are averaged to calculate the ρbulk of TFE and water.  

 All data within the G(r) histograms converged to consistent values in each voxel: the 

protein and water densities converged within the first 1-2 ns of simulation time, and TFE 

density within 5-14 ns. This indicates that a 20 ns simulation is sufficient to sample the 

atomic densities of 3D space sufficiently for further analysis.58 TFE, relative to water, has a 

slower reorientation time and a slower diffusion time, thus G(r) functions of TFE require 

G(rxyz ) = G(rxyz ,t) t

=
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more sampling to converge to one set of values, especially at lower concentrations. It may 

be, then, that shorter simulations would not sample a long enough trajectory to understand 

the average movements of TFE around lysozymes.	
   

 

3.4  Local Percent of TFE by Volume 

 As noted in the simulation procedure, water/TFE mixtures are sufficiently ideal to 

translate a percent TFE by volume into a ratio of molecules to within 1% accuracy. 

Conversely, we can calculate the concentration of TFE v/v of a given volume from the 

number density of solvent molecules using Equation 1. Since the solvent distribution 

function G(r) is the time-averaged number density of solvent molecules, we can relate it to 

equation 1 and find the percent TFE v/v of the solvent distribution function G(r). By 

converting solvent atom counts per cubic angstrom into moles per cubic centimeter, we 

calculate of the percent TFE v/v for a single voxel. This calculation works wherever the 

volume in question contains solvent density from both water and TFE. 

 Every residue on human lysozyme shares a corresponding spherical volume with a 

residue on hen egg white lysozyme, except for the T43 which has no analogous residue on 

HEWL. These volumes can then be used to compare simulations with different solvent 

concentrations and different protein identities. These spheres of radius 7 Å, are centered at 

the average center of geometry of a residue’s backbone atoms. The result is a total of 36 

analogous spheres for every residue location, with each sphere consisting of 1437 voxels. 
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This selection encompasses 86% of volume with three times the bulk density of TFE. Since 

there is no clear method for rotating and realigning the grid of one residue to another, 

comparisons between non-analogous residues are not performed in this study. 

 The goal of this study is to analyze protein solvation, so buried residues are excluded 

from solvent analysis. A residue is considered buried if its average SASA is less than 17 Å2, 

which led to 97 solvent exposed residues on HEWL, and 89 for HuLys.58,69 Interestingly, 

human lysozyme on average had slightly less SASA than HEWL, and thus was slightly more 

spatially compact a protein. 

 As shown in Figure 3.1a, helical regions of the protein (green) show an enhanced 

concentration of TFE by up to 5.6% v/v relative to the bulk, while unstructured regions of 

the protein (magenta) show an enhanced concentration of water by up to 3.5% v/v relative 

to the bulk. By “helical” we mean both alpha-helical and 3/10-helices, and by “unstructured” 

Figure 3.1 A) Percent TFE v/v calculated for the local environment of each surface-lying residue. 
Shown here are the average percentage of TFE for alpha-helices (green) and unstructured regions of the 
protein (magenta). Alpha-helices show a local increase in TFE relative to the bulk (grey/black), while 
unstructured regions show a relatively bulk-like concentration. The error bars are the standard deviation 
among the three parallel trajectories for each protein at each concentration. B) HEWL is shown as a 
visual cue for the general distribution and location of high density hot spots. TFE (red) and water (cyan) 
did not overlap in this data.  C) The total volume of hot-spots for water and TFE exhibit a crossover 
near 10% TFE, beyond which the majority of hot spots are due to TFE. The error bars are the standard 
deviation among the three parallel trajectories for each protein at each concentration. 
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we mean turns, bends, and regions without secondary structure. This result is reasonable, 

since helices are both richer in solvent-exposed hydrophobic residues, and have been 

previously shown to be preferentially solvated by TFE.  Unstructured regions, on the other 

hand, have more hydrophilic residues, and are preferentially solvated by water. A feature of 

high local concentrations of TFE (such as 15 and 20% by volume) is a greater standard 

deviation in solvent density data among parallel simulations. As mentioned in the previous 

section, this may be attributed to the longer time needed for TFE solvation data to converge. 

 What was not revealed in the data was a correlation between an individual residue’s 

hydrophobicity and the local concentration of TFE. As discussed in later in the section 

“Insight into Site-Specific Dehydration near Lysozymes”, a single residue’s local 

concentration of TFE is most influenced by neighboring residue effects than its own 

hydrophobicity. Only when averaging over protein domains does a trend in TFE solvation 

become greater than the variance in the data.  

 Interestingly, the 50 residues with the highest local concentration of TFE from 

simulations of 15% bulk v/v TFE match more than 50% of the TFE-lysozyme crystal 

contacts in found in X-ray studies.  These data indicate the forcefield choices reliably 

captures features of lysozyme in a water/amphiphilic cosolvent mixture. 

 

3.5  Solvent Hot Spots 

 Hot spots contain a high number density of one solvent type. Within these regions 

of space, the probability density of a solvent is similar to that of the protein backbone atoms, 

which effectively makes them extensions of the protein’s surface topology into the 

surrounding solvent. In terms of G(r) data, hot spots are voxels that have an averaged local 

solvent density much higher than that of the bulk. For the simulations at 10% v/v TFE, the 
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G(r) functions show maxima over 2 and 12 times higher than the bulk density of water and 

TFE respectively. Isosurfaces enclosing these high-density regions on HEWL are shown in 

Figure 3.1b. No simulation shows hot spots extending further than 5 Å from protein atoms, 

indicating that stationary, high-density solvent clustering does not form in the bulk solvent 

during the simulations, and that large perturbations in solvent density do not extend beyond 

5 Å from the surface of the protein. This also suggests protein-protein interactions from 

opposite sides of the lysozyme did not extend through the periodic boundaries of the 

solvent box. 

 The total volume of high-density solvent for all simulations averaged to 642 ± 91 Å3, 

which indicates that a feature of the protein-solvent interface is a conserved volume of 

strongly-associated solute. With respect to the relative sizes of TFE and water molecules 

(126 Å3 and 32 Å3 respectively) this space corresponds to about 5 TFEs or 20 waters. What 

does change among different cosolvent concentrations is the identity of solvent dominating 

the hot spots. Interestingly, as the bulk concentration of TFE increased, the interfacial 

solvent environment shows a transition from being water-dominated to being TFE-

dominated at the same concentrations that are known to denature lysozyme in experiments. 

High-density solvent is rich with water at low concentrations of TFE in the bulk, and in 15 

and 20% TFE v/v in the bulk, the high-density solvent became dominated by TFE, as 

shown in Figure 3.1c. This observation is also reflected in the standard deviation of local 

concentration of TFE, as noted in the previous section. Although we see no evidence that 

the proteins denature during the simulations, this transition may lend insight into the 

mechanism that unfolds the protein. Lysozyme retains its native fold by maintaining a 

relatively consistent distribution of strongly-associated water. It is the removal of this water 
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that leads to a non-native packing of the protein. Experiments have shown that lysozymes 

denaturing thermally also experience a disruption in their hydrogen bonding network before 

unfolding.51,67,71 

 

3.6  Insight into Site-Specific Dehydration near Lysozymes 

 Studies of both model hydrophobic interfaces and biomolecules have provided 

insight into the nature of hydration water on the molecular scale. Patel et al. calculated the 

Figure 3.2 The local solvent structures near the histidines in simulations of 10% TFE v/v. A) HEWL 
(yellow) with histidine 15 (orange sticks) is surrounded by TFE (red) and water (blue) isosurfaces. B) 
Isosurfaces for histidine 78 on HuLys. Notice that both locations are surrounded by similar ratios of 
both solvent types. C) and D) show the probability of finding a number of empty voxels near the local 
environments around each histidine at various cosolvent concentrations. Notice that the distribution 
for HEWL’s H15 site broadens out at much lower concentrations of TFE than HuLys’ H78 site. 
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probability density distributions of finding water near the solute-solvent interfaces of model 

systems, which included hydrophobic methyl groups, hydrophilic hydroxyl groups, melittin 

dimers, and biphenyl dioxygenase (BphC). Despite the chemical differences, it was found 

that the time-averaged number densities for water at the solvent interface are independent of 

the hydrophobicity of the surface itself. What differs markedly is the probability of finding a 

very small number of water molecules near each type of surface. That is, deviations from the 

average number density of water, corresponding to de-wetting, are much more likely in the 

vicinity of hydrophobic surfaces than hydrophilic ones.   

 Although the simulations of the current study cannot reach the level of precision in 

the work done by Patel et al., with some margin of error we can still infer the relative 

hydrophobicity of the two histidine sites. By counting the number of empty voxels around 

each histidine for each simulation we obtain the metric shown in Figure 3.2c and 2d, which 

shows a systematic increase in the number of waterless voxels with an increase in the 

concentration of TFE. The data clearly shows that beyond the variation of the data, when 

the histidines are exposed to higher concentrations of TFE one is more likely to find a 

vacuum-like environment around H15 of HEWL, and one is more likely to find a hydrated 

environment around H78. By the same logic from the studies of Patel et al., we therefore 

find H15 is becoming more hydrophobic with an increase in local TFE. This observation is 

likely influenced by the large difference in SASA between the residues: 55.1 and 175.1 Å2 for 

H15 (HEWL) and H78 (HuLys) respectively. Figure 3.2a and b shows a visual reference of 

the relative surface area and solvent composition. 

 Although this particular TFE model is not properly tuned to exhibit a maximum 

number of evacuated voxels at the experimentally-analogous 10 % TFE by volume, it does 

support the hypothesis that TFE dehydrates the H15 location of the HEWL protein. These 
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data suggest that a direct mechanism of locally dehydrating the surface of lysozyme causes 

the change in signal amplitude from the protein label. As TFE removes neighboring water 

molecules, it also reduces the number of water molecules that can couple to the probe. The 

H78 on HuLys has more SASA, and consequently many opportunities for water to reach 

and couple with the probe.  

 

3.7  Pearson Correlation Coefficients 

 Since all G(r) functions are analogous 3D histograms, direct comparisons of the 

distribution of solvent density are made between pairs of simulations. Specifically, the local 

environments around each residue (detailed above as being 7 Å spherical volumes) are 

selected and analyzed by calculating Pearson correlation coefficients between sets of 

analogous voxels using Equation 4.  

 

 eq. 4 

 

 Here, the solvent densities of two local environments are compared by multiplying 

each normalized element x from one residue’s G(r) to its corresponding analogous element y 

from another residue’s G(r). This process converts the shapes of two solvent densities into a 

CorrCoefxy =
(xi − x)(yi − y)
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value that indicates their relative similarity: 0 as non-correlative (no spatial overlap of data), 1 

as a perfect correlation (a perfect spatial overlap of data), and -1 as a perfect anticorrelation. 

No attempt is made in this study to remedy the anti-aliasing artifacts of G(r) data that occur 

when aligning non-analogous volumes. Thus no comparison between non-analogous 

locations are made (such as between two alanines on different protein domains).  

 Using Equation 4, we investigate three aspects of protein-solvent interactions: how 

Figure 3.3 For all plots, only data from solvent-exposed amino acids are considered. Panels A 
through D show average correlation coefficients between amino acids of one protein (HEWL or 
HuLys) in solutions of different concentrations of TFE v/v. All correlations fall between 1 (on the 
diagonals) and 0.54 (at the corners) in these plots. Plots A and C are correlations of water densities at 
different concentrations, and plots B and D are correlations of TFE. Plot E is an average correlation 
of G(r) functions around each amino acid by comparing residues from HEWL to its homologue on 
HuLys. The error bars are the standard deviation of data among the correlations of amino acids. Plot 
F is the same analysis as seen in Plot E, except that only residues on the alpha helix that has 100 % 
conservation of residue identity. A stronger correlation is observed here, but due to neighboring 
effects of non-identical amino acids, the TFE distributions remained nonhomologous between the 
proteins. 
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much simulation time is needed to converge on one solvent density distribution (comparing 

a residue site to itself at different times within the same simulation); what TFE and water 

interactions are conserved in cosolvent mixtures (comparing a site on one protein to itself in 

different cosolvent mixtures); and what TFE and water interactions are conserved between 

homologous proteins (comparing a site on HEWL to a homologous site on HuLys). 

 When calculating the convergence of solvent density around residues within a single 

simulation, we find that 20 ns of simulation provides sufficient sampling. Correlations of 

local G(r) functions at each residue site are made between the instantaneous and time-

averaged G(r) functions. Due to the low flexibility and high stability of lysozyme systems as 

well as the high diffusion rate of the solvents, local G(r) functions of water, the protein, and 

TFE converge within 2 ns, 2 ns, and 14 ns respectively, and had maximum correlations of 

0.89, 0.75, and 0.62, respectively.73 This indicates that each trajectory not only converges to a 

self-consistent atomic density, but also is well-correlated to the average of all densities. As 

such, the average G(r) function of all 60 ns of simulation at each concentration is used as a 

representative atomic occupancy distribution of each protein in that corresponding 

environment. 

 Comparisons between identical amino acids at different concentrations of TFE 

revealed that for a single protein, there is a persistent configuration of solvent density 

(Figure 3.3a-d). Water and TFE have minimum correlations of 0.54 and 0.45 respectively, 

which indicates that even when placing a lysozyme in the extremes of 1% and 20% TFE, the 

local solvent density retains least a 45% overlap between any two simulations of that protein. 

When placed in solutions that showed better sampling for the cosolvent (such as in 5% and 

10% TFE), the correlation coefficients between simulations rises even higher to 0.89 and 

0.83 for water and TFE respectively. While comparing simulation data of one protein in 
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different concentrations of TFE, not only can representative information be gained from 

G(r) data between cosolvent concentrations for a protein, but also the lysozymes 

preferentially configure the solvent molecules on their surfaces regardless of the solvent 

composition. Remarkably, solvent molecules quickly find preferred configurations both 

when subjected to low sampling rates (such as TFE G(r) data in the 1% TFE simulations) 

and when experiencing lower diffusion of solvent molecules (such as in the 15 and 20% 

TFE simulations). 

 Next we explore what happens when imposing a hard cutoff, as defined in Equation 

5. The This technique reduces the effects of noise on the correlation coefficient analyses, 

and presumably defines a more rigid shape to solvent configuration near the lysozymes.  

 

 eq. 5 

 G(r) functions then converted into rigid-boundary maps of high-density solvent 

where any location within G(r) with more than twice the bulk value of a solvent the ρbulk is 

1, and every other space is 0. Correlation coefficients of G’(r) functions are decreased on 

average by 0.13 as compared to those reported in Figure 3.3a-d, indicating that the shapes of 

high-density solvent are also conserved between different bulk concentrations of TFE. This 

comparison also suggests there are thermodynamic minima on the protein for binding 

specific solvent components, and that these are maintained, at least in part, regardless of the 

bulk cosolvent composition.  

 When making comparisons between local solvent density around the two lysozymes, 

as shown in Figure 3.3e and f, TFE correlation coefficients are impacted much more than 

those of water. Hen egg white and human lysozymes are 77% similar and 60% identical 

G '(r) =
0; G(r) < (2 × ρbulk )
1 ; G(r) ≥ (2 × ρbulk )

⎧
⎨
⎩
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according a Smith-Waterman alignment.74 When ignoring the shape of solvent density, the 

Pearson correlation coefficient between the local concentrations of TFE by volume around 

each residue is 0.55, as calculated with Equation 3. Presumably the proteins should have 

similar shapes of local solvent density, and comparably high correlation coefficients. 

Correlation coefficients between local volumes of the two proteins, shown in Figure 3.3e, 

average to 0.51 ± 0.03 for water and 0.26 ± 0.13 for TFE. These were 0.10 (water) and 0.22 

(TFE) less than the lowest correlation values from Figures 3a-d.  

 Unexpectedly, while sequence alignment is a good predictor of similarity of G(r) data 

for water, it isn’t for TFE. The two homologous lysozymes share similar shapes of G(r) data, 

which translates to correlations similar to identical amino acid sequence alignment. Even so, 

water’s solvent density near HEWL is more similarly shaped between cosolvents of 0 and 

20% TFE v/v than it is to HuLys with the same concentration of TFE. The correlations of 

averaged TFE density between the two proteins is even lower, indicating that although both 

lysozymes are similar in sequence, they have dissimilar interactions with water and TFE. 

Moreover, both proteins are more similar in their interaction with water than with TFE. 

 To ensure that noise in the G(r) functions were not falsely inflating the error of the 

analyses, parallel calculations were run with voxel volumes of 8 and 64 Å3 (2 and 4 Å of 

voxel side lengths). The G(r) functions with reduced resolutions changed correlation 

coefficients by no more than 0.11, which indicates that the observations discussed above are 

resolution-independent.  

 In order to locate the sources of dissimilar solvent interactions, correlations are 

segregated by secondary structure type, residue identity, residue similarity, and 

hydrophobicity. Unfortunately, there are no apparent correlations of the shape of G(r) data 

between the two types of proteins beyond the variation of the data. Of particular interest is 
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the alpha helix from residues 105 to 114 on HEWL that is entirely conserved between the 

two lysozymes. An illustration of solvent density at the conserved alpha helix is shown in 

Figure 3.4, and their correlations are shown in Figure 3.3f. There is an average 0.11 and 0.03 

increase in correlation for water and TFE respectively for this particular group, which still 

falls 0.17 short of the lowest correlations of that same group when comparing only one 

protein to itself in different cosolvents. Comparing homologous residues in the binding 

pockets of the proteins yields correlations that are lower than the average.  

 Evidentially, water and TFE interact with the specific details of protein surfaces 

differently. Water, being relatively small and having several axes of symmetry, resembles a 

more ideal solvent molecule than TFE. Its average interaction with the protein interface is 

conserved between HEWL and HuLys as much as their amino acid sequences. TFE, being 

Figure 3.4 All three figures above show a reference lysozyme tertiary structure (yellow) and the 
residues of the alpha helix that are conserved between hen egg white and human lysozymes (orange). 
Since this study ignores buried residues, only the surface-lying residues 107, 108, 109, 112, 113, and 
114 are shown as sticks. Panel A illustrates the configuration of side chains, and panels B and C 
overlay the protein with solvent density averaged from the three replicas at 10 % TFE. Even though 
this helix is completely conserved between the proteins, both in amino acid sequence and relative 
backbone RMSD, the averaged solvent densities of water (cyan) and TFE (red) are significantly 
different at this region. This difference illustrates that neighboring effects on solvent density from 
non-identical residues extend over many angstroms, and that a region with conserved amino acid 
sequence does not necessarily indicate a region with conserved solvent interactions. 
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nine times larger, having fewer axes of symmetry, and having more internal degrees of 

freedom (such as dihedral angles), is more sensitive to influences from neighboring residues. 

Although the extent of these influences is unclear, they are long-ranged enough to disrupt 

the solvent density near the conserved alpha helix. In order to have similar solvent density at 

one homologous location between two proteins, it may require conserved topological 

features on the protein surfaces beyond the 7 Å radius used in the calculations of this study. 

Observing that TFE can influence water molecules as far as 8 Å away (twice the length of a 

TFE molecule) when in solution,49 it is reasonable to expect that small differences in a 

protein’s surface topology can have similarly long-reaching influences on solvent 

interactions. 

 Since the two proteins are highly conserved both in enzymatic mechanisms and 

physiological distribution among species,1 the homology of solvent interactions may be 

unimportant to lysozyme chemical activity. Conversely, the similarity of averaged solvent 

interactions between two proteins may not indicate a structural homology. A well-

equilibrated G(r) function of solvent density may be a poor predictor for G(r) functions of 

homologous systems, even with solvent molecules as small as TFE. When comparing a 

region of the protein with similar chemical function (and presumably similar charge 

distribution), such as the binding pocket, there always is a wide standard deviation of 

correlations between individual residues. For instance, W62 shows good correlations 

between the lysozymes in various cosolvents for both water and TFE, but a key catalytic 

residue D52 always shows a poor correlation. It may be that specific residues must maintain 

a certain number density of solvent interaction to maintain chemical properties (such as 

protein stability or catalytic reactivity). Other residues merely need to enforce electrostatic 

qualities in a reactive center. Even though TFE is not a target molecule for lysozyme 
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catalysis, this study suggests that targeted binding experiments with one lysozyme may not 

predict well results from similar experiments with another lysozyme. 

 

3.8  Conclusions 

 Inspired by our experiments of mapping site-specific solvent interactions of 

lysozymes, we present here an analytical approach to using molecular dynamics for 

characterizing local interactions of lysozyme residues with a water-TFE cosolvent. This is a 

process of aligning all trajectories to one homologous structure, making a time-averaged 3D 

G(r) function of the data, and dividing G(r) into small volumes that encapsulate high-density 

solvent. As such we show a process for locating probable crystal contacts, observing 

preferential solvation trends, and comparing protein homology from the shape of averaged 

solvent density. These techniques are fully generalizable to proteins interacting with 

cosolvents of denaturants, small molecules, and salts. 

 We show that our trifluoroethanol forcefield mimics its basic chemical properties, 

such as preferentially solvating alpha helices more than unstructured regions of the protein 

and finding crystal contacts. Additionally we find that at concentrations above 10 percent 

TFE, water around the protein is displaced with TFE. This is consistent with a water 

displacement mechanism for TFE chemically denaturing lysozymes. Using our system setup 

we also found that it might be TFE displacing water hot spots on lysozyme that results in 

the protein denaturing. With regards to site-specific solvent dynamics, as with the 

ruthenium-dicarbonyl experiments on human and hen egg white lysozyme, displacing water 

on the surface of the protein can isolate regions of the protein from the bulk solvent and 

effectively shut off pathways of energy transfer from small molecule probes to the 

surrounding solvent.  
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 Using 3D G(r) function we have a method for comparing the shape and overlap of 

averaged solvent density around proteins. We find that the two lysozymes conserve solvent 

hot spots despite being surrounded by different concentrations of TFE. We also find that 

homologous proteins may share similar interactions with one solvent, such as water, but not 

share similar interactions with another solvent, such as TFE. Larger solvent molecules with 

more degrees of freedom may have more pronounced effects from neighboring residues, 

and accordingly exhibit greater differences in average solvent interaction. Conversely, smaller 

solvents with several axes of symmetry, such as water, can have similar interactions with 

homologous proteins. What is very clear is that homologous proteins may be poor 

representations of one another when measuring solvent molecule interactions.  
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Chapter 4 
 

The Effects of Crowding on Hydration 
Dynamics Near Lysozymes 

 
 
 
  The work presented in this chapter has been published in the following papers: 
 

1. J. T. King, E. J. Arthur, C. L. Brooks, III, and K. J. Kubarych, “Crowding 
Induced Collective Hydration of Biological Macromolecules over Extended 
Distances,” The Journal of the American Chemical Society 136(1), 188-194 
(2014). 

 

4.1  Introduction 

 The hydrophobic effect is a powerful driving force crucial in biological systems,2 

playing a key role in protein folding3-5 and membrane formation,6 as well as directing surface 

association processes.7,8 It has been predicted9,10 and experimentally observed11,12 that the 

energetic balance of hydrophobic hydration depends on the size of the hydrated molecule. 

For small solutes, the cost of hydration is largely entropic as the water enhances its local 

structure to minimize hydrogen bond losses, while the cost of hydrating larger molecules is 

largely borne by enthalpic contributions as the solute forces the disruption of water’s 

hydrogen bonding network.10 The corresponding dynamics of the surrounding water has 

been more difficult to access, though experiments and simulations are converging on a view 
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where small hydrophobes exert negligible influence over the dynamics of the surrounding 

water molecules when in dilute concentrations,13-15 while large hydrophobic solutes can 

constrain and hinder the surrounding water by limiting the ability of hydrogen bond 

exchange.14-16 The crossover occurs on the nanometer length scale, which is characteristic of 

proteins, lipids, and other biomolecules. 

 The perturbation of water by hydrophobic structures can have significant 

implications in cellular environments, where the structural and dynamic correlation lengths 

may extend well beyond the space available from interstitial water. Crowding effects are 

generally considered in terms of energetics focusing on protein stability and refolding 

kinetics,17-24 where entropic forces arising from hard-core repulsions between 

macromolecules compete with enthalpic forces arising from weak attractions. Due to the 

challenging nature of experiments, dynamic aspects of crowding are more elusive, though 

progress in new methods of spectroscopy, including time-resolved fluorescence,25 terahertz 

absorption,26,27 NMR,28,29 and 2DIR,15 have allowed for the interfacial region of hydrated 

proteins to be studied directly. In particular, studies using THz absorption spectroscopy, 

coupled with molecular dynamics (MD) simulations, have found evidence of a dynamic 

hydration shell surrounding proteins ranging from 10 to 30 Å, depending on the protein.26,27 

As a striking example, antifreeze proteins were found to have a hydration environment that 

can extend upward of 30 Å.27 Additionally, photon echo experiments of hemoglobin in 

erythrocytes30 and optical Kerr effect (OKE) spectroscopy,31,32 which measures the low-

frequency Raman response, have been used to observe a general slowing of the system 

dynamics with increasing concentrations, though no dynamic transition was apparent from 

the data. 

 Within the context of crowding, there is a dichotomy between what can broadly be 

classified as “chemical” and “physical” effects. For instance, studies comparing monomeric 
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and polymeric sucrose (Ficoll 70) arrive at different conclusions. Pielak et al.20 observe no 

difference in protein stability (chymotrypsin inhibitor 2), whereas Gruebele et al.21 find 

pronounced differences in folding kinetics (phosphoglycerate). Our work focuses on 

dynamics using a similar comparison. If the differences in chemical interactions are minimal, 

is there a fundamental difference between macromolecular and small molecule crowding? In 

order to make progress, we have discovered that it is essential to perform experiments over a 

wide range of additive concentrations, as will be detailed below. 

 Questions remain regarding the relevant length and time scales associated with 

crowding. While ultrafast spectroscopic studies have uncovered the strong coupling between 

hydration water and protein flexibility, it is still unclear over what distances this coupling can 

persist, and whether the disruption of water upon crowding has a structural component or if 

it is a purely dynamic phenomenon. If there is a crowding dependence to the hydration 

structure, basic statistical mechanics tells us that there will be an energetic contribution due 

to the altered water–water and water–protein pair correlation functions. In the absence of a 

structural change, however, only dynamical measurements will be able to discern a detailed 

microscopic picture, as is the case, for example, with studies on the glass transition. In 

addition, measurements of diffusion in cellular environments show a general decrease in 

diffusion constants upon crowding,24,33 but it is difficult to directly relate macroscopic 

diffusion constants to microscopic properties of the solvent, namely local solvent friction. 

 To address these issues, we use ultrafast two-dimensional infrared (2DIR) to study 

the picosecond dynamics of HEWL labeled with a transition metal carbonyl vibrational 

probe covalently attached to the surface exposed His15 residue (the labeled protein is 

referred to as HEWL-RC).34 Metal carbonyls offer ideal vibrational probes for biological 



78	
  

 

 

molecules due to the inherent strength of the transition and the frequency of the vibrational 

modes, giving strong signal in a region of the IR spectrum that is free from the protein and 

water background.14,15 Additionally, lysozymes are robust proteins that maintain structural 

integrity in crowded solutions.35 The X-ray crystal structure of HEWL-RC is shown in 

Figure 4.1, as well as a linear FTIR spectrum of the C≡O modes of the vibrational probe. 

We study the dynamics of the system through the frequency–frequency correlation function 

(FFCF), a powerful observable unique to 2DIR that reports on the equilibrium structural 

fluctuations that modulate the transition frequency of a probe molecule. The surface location 

of the vibrational probe used here allows us to study both the hydration dynamics and the 

protein dynamics simultaneously. The FFCFs exhibit rapid initial picosecond decays due to 

motion of the hydration water, followed by a significant static offset arising from 

Figure 4.1 Crystal structure of HEWL-RC, linear and 2DIR spectra, example FFCF. (a) Structure of 
the metal–carbonyl vibrational probe and the crystal structure of the His 15 labeled HEWL carbonyl 
complex (probe site highlighted in yellow). (b) Linear FTIR spectrum and (c) 2DIR spectrum shown 
for the metal–carbonyl CO region. (d) Example of a typical frequency–frequency correlation function, 
showing an initial decay on the order of a few picoseconds corresponding to the hydration dynamics, 
followed by a static offset due to protein inhomogeneity that is not sampled within the experimental 
window. 
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fluctuations that are too slow to be fully sampled within the experimental window.14 We 

attribute the static offset of the correlation function to slow protein fluctuations, though 

other work looking at similar correlation functions have suggested that the slow dynamics 

could arise from very slow exchange between surface water and bulk water.25 While these 

contributions are difficult to distinguish experimentally, we believe that the spectral 

signatures between surface and bulk water are not as significant as the inhomogeneity arising 

from protein fluctuations. Since the region of the protein we probe experimentally is not 

located on the cleft region, but rather on an open, flat region of the protein, we do not 

expect idiosyncratically slow exchange of hydration water with the bulk. Simulations by 

Laage et al.16 have used site-specific analysis around a protein surface and have found that 

the majority of the water molecules experience only a mild slowdown due to the protein 

surface, while a handful of water molecules located in cleft regions of the protein or in the 

interior, experience significant slowdown upward of 100 ps. Thus, distinct populations of 

hydration water can lead to mean residence times that are significantly longer than what the 

majority of the water experiences. Recent work on biomolecule hydration has highlighted the 

importance of considering metrics other than averages in describing interfacial water 

structure and thermodynamics.36 In addition, slow translational motion of water from the 

surface to the bulk is more apparent through techniques such as NMR28,29 and Overhauser 

dynamic nuclear polarization (ODNP),37 whereas experiments that measure ultrafast 

correlation functions tend to be predominantly sensitive to local dynamics. 

 Though the vibrational relaxation of the probe precludes time resolving the protein 

motion, the magnitude of the static offset can be used as a proxy for the protein dynamics. 

Hence, a single probe’s FFCF is sensitive to both the hydration and protein dynamics 

separately, offering a perspective that is generally not available from THz or OKE 

spectroscopy, where the two contributions are mixed. We measure the protein-hydration 
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dynamics of HEWL-RC in aqueous (D2O) solutions of PEG400 (8–9mer) ranging from 0 to 

80% PEG400 by volume, and compare these results to previously reported experiments 

using glycerol.14 In addition, we carry out a parallel experiment of HEWL-RC in varying 

concentrations of excess lysozyme ranging from 20 to 160 mg/mL, which acts to self-crowd 

the labeled protein with a complex electrostatic surface, which contrasts starkly with that 

presented by the uncharged polymer crowder. 

 We present a comprehensive picture of the picosecond protein and hydration 

dynamics under crowding conditions. We find an abrupt dynamical transition of the protein 

and hydration dynamics induced by crowding, which is unique from the temperature 

dependent transition that is observed in hydrated proteins.33,38 The results suggest a dynamic 

hydration shell around the protein extending 15–20 Å, resulting in collective hydration for 

interprotein separations of 30–40 Å. We also find that the collective water dynamics can be 

up to an order of magnitude slower than that for bulk water. In addition, we find that the 

presence of this transition seems to be due to the macromolecular nature of the crowding 

agent since it is absent in the case of solvation by glycerol/water solutions. The existence of 

two distinct regimes, each of which is largely dynamically decoupled from the fine details of 

the surrounding solvent fluctuations, suggests the partitioning of biomacromolecules into 

“undercrowded” and “overcrowded” conditions. Based on our measurements, many cellular 

environments can be classified as being “overcrowded.” 

 

4.2  Polymer Crowding 

 There is experimental evidence that PEG400 adopts a compact structure when in 

dilute aqueous solution.39,40 For example, small angle neutron scattering results show that the 
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radius of gyration of PEG400 measured at 1% (v/v) in D2O is 2 nm,39,40 which is similar in 

size to a typical protein. The structure of PEG400 at high concentrations, however, remains 

unclear, though it has been proposed that the short polymer adopts an entangled structure. 

Nevertheless, the effect of PEG on protein and hydration dynamics should be largely due to 

the volume it excludes and the associated perturbation of its hydration environment, where 

the protein and hydration water reside largely in the pores of the entangled polymer solution. 

 The protein and hydration dynamics were studied in D2O/PEG400 solvent mixtures 

of 0, 20, 40, 60, and 80% PEG400 v/v. Figure 4.2 shows the FFCFs for each solution and 

the experimental fits, consisting of a single exponential decay (due to hydration water) and a 

static offset (due to slow protein dynamics). In pure D2O, the hydration dynamics occur with 

a 2.7 ps time constant, which is slower than that of bulk D2O by a factor of 2. This 

observation has previously been reported14 and is in quantitative agreement with MD 

simulations of Laage and co-workers that specifically investigated the influence of the 

Figure 4.2 Interfacial water and protein dynamics of HEWL-RC in D2O/PEG mixtures. (a) FFCFs 
for HEWL-RC in D2O/PEG mixtures, ranging from pure D2O to 80% PEG by volume. (b) 
Hydration time scale, obtained by the initial decay of the correlation function, and the protein 
dynamics, estimated by the static offset of the correlation function, plotted as a function of solvent 
composition. A strong coupling is clear from the data, with both the hydration and protein dynamics 
slowing down as glycerol is added to the system. There is also a sharp dynamic transition occurring at 
roughly 60% PEG. We suggest this transition results from the extended protein hydration 
environment overlapping with the PEG hydration environment. (c) The vibrational relaxation, 
estimated from the rephasing signal amplitude, lacks any PEG400 dependence suggesting that the 
protein remains fully hydrated in the region around the probe. 
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protein on extended hydrogen bond jumps of the hydration water.16 At high PEG400 (80% 

v/v) concentration, the hydration dynamics slow by nearly a factor of 4, and the protein 

contribution increases by about 75% relative to pure D2O. Surprisingly, a dynamic transition 

is observed around 50% D2O where there is a significant, abrupt slowing of the protein-

hydration dynamics. On either side of this transition, the protein and hydration dynamics are 

only weakly coupled to the polymer concentration, though the protein dynamics and the 

hydration dynamics stay strongly coupled to each other at all solvent compositions (evident 

from the correlation between τhydration and C(t = ∞) in Figure 4.2). To ensure the protein is 

not dehydrated by PEG, at least in the local region of the probe molecule, we use the 

vibrational lifetime, which we have shown to be a unique observable capable of reporting on 

local hydration levels.15 The lifetimes shown in Figure 4.4 exhibit decay times consistent with 

water-assisted relaxation at all PEG400 concentrations, ensuring that the local area of the 

probe remains fully hydrated. 

 

Figure 4.3 Comparison of interfacial water dynamics of HEWL-RC in solutions of glycerol and 
PEG400. While the magnitude of the hydration dynamics slowdown induced by each cosolvent is 
similar at high concentrations, the dynamic transition is observed only in the presence of the 
macromolecular crowding agent. 
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 These results are fundamentally different from previous observations made on 

HEWL-RC in D2O/glycerol solutions.14 In those experiments, we observed a gradual, 

uniform slowdown of the protein-hydration dynamics as a function of glycerol 

concentration, with no clear signs of a dynamical transition. Additionally, the slowdown in 

hydration dynamics was significantly more mild than what would be expected for the 

viscosity increase, demonstrating a weak coupling between interfacial water and the bulk 

solution. It is noteworthy that similar nonlinear scaling of interfacial water around liposomes 

has recently been observed using an NMR-based technique, Ovehauser dynamic nuclear 

polarization, which measures hydration water through the incorporation of a free-radical 

probe.37 For our current and previous results, a comparison of the interfacial water dynamics 

is shown in Figure 4.3. The influence of either glycerol or PEG400 on the hydration 

dynamics has similarities and differences. While the magnitude of the slowdown induced by 

high concentrations of either cosolvent is similar, and thus the coupling between the 

Figure 4.4 Interfacial water and protein dynamics of HEWL-RC in the presence of excess lysozyme. 
(a) FFCFs for HEWL-RC in self-crowding conditions, ranging from 20 to 160 mg/mL. (b) Hydration 
time scale, obtained by the initial decay of the correlation function, and the protein dynamics, 
estimated by the static offset of the correlation function, plotted as a function of solvent composition. 
A strong coupling is clear from the data, with both the hydration and protein dynamics slowing down 
as excess lysozyme is added to the system. Similar to the PEG400 crowding, a dynamical transition is 
observed at sufficient crowding, though this transition occurs at lower concentrations of HEWL 
because of the more significant constraining effect that HEWL has on surrounding waters. (c) 
Vibrational lifetimes estimated through the signal amplitude of the rephasing spectrum again show a 
consistently short lifetime, consistent with a lack of protein–protein interactions that would result in 
surface dehydration and increased lifetimes.1-64 
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interfacial water and bulk solvent remains weak,14,37 the presence of a dynamic transition is 

observed only with the macromolecular crowding agent. 

 

4.3  Self-Crowding 

 The presence of surface charges, site-specific interactions, and an intricate surface 

topology makes proteins a more complex and biologically relevant crowding agent than a 

simple polymer. Additionally, proteins have well-defined structures that are often not 

significantly perturbed by concentration, which is not necessarily the case for PEG400. Here, 

we use unlabeled lysozyme to serve as the crowding agent to determine if the presence of a 

critical crowding level could exist in cell-like environments. In addition to providing a more 

realistic crowding agent, the well-defined shape and structure of lysozyme allows for the 

protein–protein distances to be estimated for a given concentration of protein. 

 A starting solution of HEWL-RC was prepared at 20 mg/mL, then excess lysozyme 

was added to concentrations up to 160 mg/mL. As before, we use the vibrational lifetime 

(Figure 4.4c) to ensure that no protein–protein contacts alter the hydration of the protein 

surface. Similar to the PEG400 data, the vibrational lifetimes exhibit negligible lysozyme 

concentration dependence, suggesting that the protein remains fully hydrated. 

 The FFCFs and fit parameters are shown in Figure 4.4. As with PEG400, there is a 

clear dynamic transition. The transition occurs at a higher water composition (∼70%) than 

with the PEG400 crowding agent, which is attributed to the more significant constraining 

effect of HEWL on the surrounding waters. This view is supported by the fact that lysozyme 

is a highly charged (pI = 11) protein at neutral pH, and the dynamical constraints placed on 

the hydration water reduces the local dielectric, effectively extending the electrostatic 
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footprint of the protein.41 Assuming a homogeneous mixture42 and a spherical 

approximation to the volume (computed using the van der Waals surface) to approximate 

the size of lysozyme, we estimated the typical protein–protein distances (surface-to-surface) 

at each crowding concentration. This distance is only an idealized estimate assuming 

homogeneous protein solution, and should be viewed as an estimated upper limit.43 Plotting 

the protein-hydration dynamics in terms of our estimated protein–protein distance (Figure 

4.5) reveals that this transition occurs at distances around 30–40 Å, suggesting a dynamical 

influence of the hydration water extending upward of 15–20 Å extending from each surface. 

Figure 4.5 Hydration and protein dynamics of HEWL-RC in crowding conditions plotted as a 
function of protein–protein distance. (a) The protein–protein distance is defined as the average 
surface-to-surface distance between proteins using a spherical approximation, which can be 
estimated for each concentration. (b) Assuming a homogeneous mixture, the average surface-to-
surface distance between proteins can be estimated, revealing that the transition occurs at a protein–
protein distance of 30–40 Å. 
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4.4  Molecular Dynamics Simulations 

 The experimental results motivated efforts to simulate hydration dynamics of 

proteins under crowding conditions. In one case, two proteins are separated by a variable 

distance, and in the other case four proteins are arranged tetrahedrally, with surfaces 

separated by a variable distance (Figure 4.6a,b). Each configuration (two- and four-protein 

geometries) was replicated in six individual simulations with average surface-to-surface 

distances ranging from 5 to 30 Å (see the methods section for more details).43 The water 

Figure 4.6 Example of the simulation analysis where (a) two proteins are separated by a set distance d 
and the bridging water is selected for analysis and (b) four proteins are arranged tetrahedrally, all of 
which are separated by the same variable distance. The water that was selected for analysis is shown. 
(c) Hydrogen bond number of the crowded water as a function of protein–protein distance. In each 
case, there is no clear transition in the average hydrogen bonds per water molecule, suggesting no 
significant change in structure. A slight downward trend is observed as the interprotein distance is 
reduced, though this is the result of a higher relative contribution from the interfacial water, which has 
fewer hydrogen bonds than bulk water. (d) Hydrogen bond correlation times of the crowded water as 
a function of protein–protein distance. The occurrence of a dynamic transition is found between 10 
and 15 Å for two proteins and 20–25 Å for the four protein simulation. In each case, only a weak 
coupling is observed before and after the dynamic transition. The results not only demonstrate a 
percolation-like transition of water dynamics upon crowding, but also show that the distance of this 
transition is a function of the degree and geometry of crowding. 
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between the protein structures was selected for analysis of both the average hydrogen bond 

number (Figure 4.6c) as well as the hydrogen bond correlation time (Figure 4.6d). The 

hydrogen bond correlation time is reported as the 1/e time, alleviating complications of 

fitting a nonexponential relaxation. For the hydrogen bond number, there is a slight decrease 

at small interprotein distances reflecting the proportional increase in interfacial water, which 

exhibits reduced hydrogen bonding relative to bulk water. There is no observed threshold 

behavior in the extent of hydrogen bonding, suggesting a lack of significant structural 

changes of the water upon crowding. The dynamics of the water, however, show a very 

strong dependence on the crowding, including a dynamic transition that occurs at a critical 

protein–protein separation. In the two-protein simulation, this critical distance was found to 

be 10–15 Å, whereas in the four-protein simulation we observed this transition at 20–25 Å. 

This distance is consistent with what was observed experimentally (30–40 Å), though there is 

a clear dependence of the dynamic transition on the configuration and geometry of 

crowding. The decoupling of the dynamics from crowding above and below the dynamic 

transition observed experimentally is also evident in the simulations. 

 Surprisingly, the dynamic transition is accompanied by no significant net structural 

changes, as seen in the average hydrogen bonding number of the interfacial water remaining 

constant (Figure 4.6c). The lack of any clear structural signature accompanying the dynamical 

transition is similar to glassy44 and jammed systems.45 Our observations are the first examples 

of a purely dynamical transition induced by macromolecular crowding. The lack of a 

significant change in the degree of hydrogen bonding differs qualitatively from previous 

studies based largely on inelastic neutron scattering experiments. At hydration levels over an 

order of magnitude lower than what we consider here, there is clear evidence for a 

pronounced change in water structure.46-48 Using comparisons with simulation, several 

workers have identified percolation transitions, where at a threshold hydration level, there is 
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a significant increase in the size of the largest hydrogen bonded cluster solvating the 

protein.46 Such abrupt structural changes leading to hydrogen bonding networks that span 

large areas of the protein–water interface have been interpreted in terms of percolation 

theory. The new dynamical transition that we have identified here is distinct from these 

previous observations of hydrogen bond percolation.33 Most importantly, our highest protein 

concentration is 160 mg/mL, which corresponds to a hydration level (h = mass of 

D2O/mass of lysozyme) of h = 6. Neutron scattering experiments and accompanying 

simulations are carried out at hydration levels less than h = 1. These studies on hydrated 

protein powders represent an extreme case of crowding, while here the studies were 

performed on more dilute aqueous solutions. The dynamical transition that we observe 

occurs at comparably much larger values of protein hydration, highlighting the subtle nature 

of the collective hydration leading to a transition of the hydration water dynamics without 

significantly distorting its structure. 

 

4.5  Discussion on Hydrogen Bond Networks 

 Water is capable of forming extensive hydrogen bonding networks that reorganize in 

a collective manner through an angular jump mechanism.49,50 Furthermore, the barrier to 

hydrogen bond jumps is dominated by entropic contributions arising from the availability of 

hydrogen bonding accepting partners.51 Hydrogen bond exchange dynamics can be stifled by 

limiting the configuration space available for accepting waters, and thus larger hydrophobic 

molecules are capable of hindering hydrogen bond dynamics while small hydrophobes have 

a negligible effect.13 The collective nature of hydrogen bond motion can lead to spatially 

extended dynamic perturbations, inducing long-range coupling effects in crowded 

environments.26 Extended collective motion of water over distances of 30–40 Å has been 
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observed not only in crowded protein solutions,27 but also in water pools confined within 

reverse micelles.52 In each case, the transition to collective water motion is found to be 

abrupt. 

 The measured retardation factors of crowded water are roughly 5 and 10 for 

PEG400 and lysozyme, respectively, relative to bulk D2O. Given that the expected 

concentrations of macromolecules inside of cells is on the order of 300 mg/mL,53 the 

experimental results suggest that the majority of water within cells is involved in slow, 

collective hydration, with only trace amounts of “bulklike” water present, despite 50–70% 

water content by volume. The long-range disruption of water dynamics around 

macromolecules is likely to be a general property of compact proteins, and particular 

proteins, such as antifreeze proteins,27 may leverage the perturbation to carry out a function. 

 Since this study primarily investigates dynamics as sensed on the picosecond time 

scale, there is no straightforward link to biological function, which spans a vast range of time 

scales.54 However, recent work has suggested fast fluctuations of proteins have significant 

implications on longer time scale dynamics, such as conformational sampling55 and possibly 

enzyme activity.54 Due to the strong coupling between the low-frequency fluctuations of 

proteins and the hydration water,14,56-58 the observed jamming-like transition of the water is 

accompanied by a transition in the fast protein dynamics. In crowded environments, these 

low-frequency modes are significantly slowed from what they would be in solutions with 

excess water (Figures 2b and 4b). The collective hydration environment in crowded 

conditions effectively increases the viscosity felt by the protein, and thus, the protein 

undergoes pronounced slowing at a critical crowding concentration. Based on our estimated 

macromolecular crowder concentration threshold, it would appear that most, if not all, 

regions of the cell are “overcrowded.” 
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4.6  Conclusions 

 We carried out two parallel experiments measuring the protein-hydration dynamics 

of HEWL-RC in both solutions of D2O/PEG400 and solutions of excess lysozyme to act as 

crowding agents. From the experimental results we draw three conclusions. (1) Both PEG 

and protein crowders induce a dynamical transition, where the coupled protein-hydration 

dynamics exhibit a sharp slowdown above a critical degree of crowding indicative of an 

independent-to-collective hydration transition. It is observed that water in sufficiently 

crowded environments is roughly an order of magnitude slower than bulk water. (2) Using 

the results from self-crowding, we estimate that the distance between protein surfaces at 

which this transition occurs is 30–40 Å, which is a striking manifestation of the collective 

and coordinated behavior of strongly hydrogen bonding environments. (3) The 

macromolecular nature of the crowder is essential as demonstrated through comparisons 

between PEG400 crowding and previously reported glycerol/water solutions. While similar 

degrees of slowing are found at high concentrations of both, the presence of a dynamical 

transition is observed only in the PEG400 experiments. Simulation results confirm the 

experimental findings, while introducing an additional observation. In contrast to previous 

studies of protein hydration, where hydrogen bonding in the hydrating water is perturbed by 

the protein, our simulations indicate no significant changes in hydrogen bonding. Rather, the 

observed and simulated abrupt transition is purely dynamical in nature, and reflects the long-

range influence of protein surface-induced constraints on water’s orientational flexibility. 

 These results suggest that little to no “bulklike” water is present within cellular 

environments. Instead, biological macromolecules are hydrated by significantly constrained 

water that that in turn can strongly modulate the flexibility and dynamics of the 

biomolecules. Future work will be dedicated to studying the connection between the 
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picosecond dynamics of the hydration water, which we suggest to be the origin of dynamical 

crowding effects, on much longer processes, such as protein folding and catalytic activity. 

The partitioning of hydration dynamics into two apparent regimes suggests that large scale 

implicit solvent simulations of biomolecules may be able to produce realistic dynamics by 

adopting distance-dependent frictional damping. Based on our observations of distinct 

under- and overcrowded regimes, perhaps as few as two macromolecule-specific friction 

values are needed to capture the essential dynamical contrast between isolated and crowded 

macromolecules. Macromolecule-modified hydration dynamics has also been related to a 

change in the local dielectric constant,41,59 a quantity which enters both the generalized Born 

model of solvation60 as well as the accurate estimates of donor–acceptor distances in Förster 

resonant energy transfer experiments.61 In both cases, the distance dependent solvation 

dynamics may produce qualitative deviations from conventional models based on a 

homogeneous dielectric continuum. With new methods such as site-specific 2DIR and other 

techniques, it is becoming clear that the complexity of biomolecule hydration can be 

addressed experimentally and linked directly to simulation, likely providing insight into the 

active nature of water in mediating biological processes. 

 

4.7  Methods 

Protein Labeling 

 Hen egg white lysozyme (HEWL) was purchased from Sigma Aldirich (bioultra, 

>98%). No further purification steps were taken. HEWL (approximately 2 mg/mL) was 

then combined in a 1:1 ratio with tricarbonylchloro(glycinato)ruthenium(II) in D2O (Sigma) 

and stirred at room temperature for 1 h. The resulting labeled protein we refer to as HEWL-

RC. The resulting product was purified in a desalting column (GE Healthcare, PD-10 
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Disposable Desalting Column), which removes unreacted tricarbonylchloro(glycinato)-

ruthenium(II). The reaction was carried out on the morning of the experiments, and no 

HEWL-RC was stored to be used at a later date.34 

 

2DIR Spectroscopy 

 Mid-IR pulses are generated through two home-built dual stage optical parametric 

amplifiers (OPAs) coupled with difference frequency generation (DFGs) which are pumped 

with a regeneratively amplified Ti:Sapphire laser. The mid-IR pulses are then split into fields 

E1, E2, E3, and ELO with respective wavevectors k1, k2, k3, and kLO (75 fs, 150 cm–1 

bandwidth, 400 nJ/pulse), where the first three pulses are focused onto the sample in a box 

geometry to generate a third-order nonlinear signal, and the final pulse is used for 

heterodyne detection. We implement an upconversion detection technique that mixes a 

highly chirped pulse centered at 800 nm and fwhm = 160 ps with the mid-IR signal and local 

oscillator in a sum-frequency crystal (MgO doped LiNbO3) to allow for detection in the 

visible with a silicon CCD camera. The detection frequency of the 2DIR spectrum is 

provided by the spectrometer. The excitation frequency is measured by scanning the time 

delay between the first two pulses and then Fourier transforming over the generated 

coherence period. A series of 2D spectra are then acquired as a function of waiting time 

between the excitation pulse pair and the detection pulse, which is stepped from 0 to 12 ps. 

 

Molecular Dynamics Simulations 

 Simulations were designed using previously-shown methods.43 Protein crowding was 

simulated by analyzing the interstitial water of two protein configurations: two proteins near 

each other, and four proteins in a packed tetrahedral configuration. Six replicas of each 

configuration were made by varying the average separation between protein surfaces into a 
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gradient of distances: 5, 10, 15, 20, 25, and 30 Å. 

 Hydrogen-bond (HB) autocorrelation functions and the average number of HB 

partners per water were calculated for interstitial water. Cutoffs for HB partners were 

defined as acceptor–donor distances of less than 3.5 Å (O–O distance), and acceptor–donor-

hydrogen angles of less than 30° as outlined by Skinner et al.62 The center of each protein 

was calculated as the mean position of all protein atoms. For each protein in each replica, 

spheres of water each with a radius of 10 Å were selected around the protein atom closest to 

the overall center. Hydrogen-bond autocorrelation functions were calculated at 15 ps 

intervals using the g_hbond utility from GROMACS. These functions were averaged to 

obtain the mean 1/e time. The average number of hydrogen bonds per water were calculated 

for each saved frame using in-house MATLAB code and the cutoff criteria detailed 

previously. 
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Chapter 5 
 
Predicting pKa Shifts Using Constant pH 

Molecular Dynamics 
 
 
 
  The work presented in this chapter has been published in the following papers: 
 

1. E. J. Arthur, J. D. Yesselman, and C. L. Brooks, III, “Predicting extreme pKa 
shifts in staphylococcal nuclease mutants with constant pH molecular dynamics,” 
Proteins: Structure, Function, and Bioinformatics 79(12), 3276-3286 (2011). 

 

5.1  Introduction 

 Stability and function of many proteins and nucleic acids are dependent on the 

charge of titratable residues. Changes in the protonation state of these residues have the 

potential to trigger significant configurational variation. Some examples include the proton-

gradient in mitochondria, which enables the rotary motion of ATP synthetase for virtually all 

known metabolizing life forms.1,2 In addition, the catalytic mechanisms of numerous 

enzymes are driven by locally perturbed protonation equilibria at the active site.3 

Furthermore, amyloidogenic protein aggregation into oligomers is a pH driven process, 

demonstrating the role of ionization states in protein function.4,5 To study these biological 

mechanisms, it is crucial to understand how they are dependent on the ionization states of 
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their amino acid residues. 

 Understanding these phenomena requires a system that describes the complex 

coupling between structure, chemical composition, and proton affinities as a function of 

proton concentration (pH). Residue-specific pKa values provide a framework from which to 

begin to provide quantitative relationships among the above noted properties. However, the 

pKa of a particular site and its tendency to ionize or accept a proton is highly responsive to 

the surrounding solvent environment as well as to charge–dipole and charge–charge 

interactions.6-8 These in turn alter the specific tendency for that residue to change its 

ionization state, i.e., its pKa. For extreme cases, such as aspartic acid (ASP)-96 in 

bacteriorhodopsin, the measured perturbation is at least 8.0 pK units greater than that of the 

isolated amino acid in pure water.3 This creates a need for measuring the relative amino acid 

pKa perturbations in a folded protein. Determining these experimentally, however, is 

nontrivial, although possible through a range of techniques.9 

 Experimentally investigating pKa values involves titrating a species over a wide range 

of pH.9 Most biologically functional proteins, however, are natively folded only within a very 

narrow pH range. Outside of these native conditions they often adopt non-native, 

denatured, or unfolded conformations. Since the pKa values of an ionizable residue are 

highly dependent on its interactions with solvent and surrounding protein tertiary structures, 

titrating a protein to pH values outside of this range may not provide pKa values relevant to 

its natively folded configuration.7 To aid in both the calculation and interpretation of such 

experiments, theoretical tools have been developed to make pKa predictions based on 

knowledge of the native protein structure. For many proteins, a reliable method of 

experimentally determining residue-specific pKa values is either too cost prohibitive, or 

infeasible. Before such experimental methods become viable, computational tools are the 
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only means available for studying their pKa values.7,8 

 The theoretical framework and computational methods to predict pKa shifts in large 

molecules can be divided into three basic approaches: finite difference Poisson-Boltzmann 

based continuum electrostatics methods, empirical methods, and molecular dynamics (MD) 

coupled with explicit free energy estimates using explicit solvent or implicit solvent 

(generalized Born continuum electrostatics) methods. Empirical methods, such as 

PROPKA,10,11 are based upon empirical algorithms that relate structural metrics to pKa 

perturbation. Provided with sufficient relevant experimental data and an accurate structure 

of a protein, this method has been shown to yield predictions within 1 pKa unit root-mean-

squared deviation (RMSD) from experimental observation. This level of agreement with 

experimental pKa values shows that the corresponding link between structural metrics and 

pKa shifts is an important tool in understanding the electrostatic environments of proteins. 

Empirical methods, however, cannot be used to determine pKa values without both 

extensive experimental data and a high-resolution protein structure.11 Poisson-Boltzmann 

equation based methods, such as multi-conformation continuum electrostatics (MCCE)12,13 

and macroscopic electrostatics with atomic detail (MEAD),14,15 calculate the macroscopic 

electrostatic effects of ion–ion and ion–dipolar interactions, such as between a titrating site 

and polar solvent molecules given the dielectric response of the protein interior. Provided 

with a high-resolution crystal structure, they offer predictions within 1 pKa unit RMSD for 

residues with relatively high solvent exposure. Since the accuracy of this method is directly 

related to solvent interactions, it often leads to inaccurate predictions when the target 

titrating residue has little macroscopic solvent interaction, or if the target site's pKa is 

significantly altered by conformation.16 To explore poorly understood protein systems, 

relatively more brute-force methods using MD with simulated titration may be necessary. 
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 MD simulations can derive information from virtually any protein system as long as 

atomic interactions can be parameterized into a consistent force field and explicit 

coordinates can be defined.7,8 This provides the potential for MD based methods to estimate 

residue pKa values of lower resolution or even partially solved structures. Calculating pKa 

then relies upon parameterizing the solvent model. The effective Born radii of individual 

residues may be calculated from the shape of the protein's solvent exposure, and from that 

information ionization energies may be calculated. In comparative tests, MD based methods 

consistently provide more accurate pKa estimates over a wider variety of protein residues and 

environments than other computational methods.7,8 

 There are two dominant approaches available for the inclusion of titrating sites in 

MD-based pKa calculation methods: discrete and continuous. Discrete methods titrate 

residues using Monte Carlo (MC) sampling, which allow protons to be added and deleted 

from amino acids.17However, recurring instantaneous switches of protonation states by 

adding or deleting the protons result in discontinuities of energy and force calculations. In 

addition, only one proton addition or deletion move is made during a MC step, which 

contributes to slower convergence for systems with many ionizable groups.17Nevertheless, 

discrete protonation state methods coupled with MD have proven to be useful in exploring 

pKa values of proteins.18 

 Continuous methods by definition allow a gradual change in the “titration” 

coordinates during the MD simulation. This permits continuous energy and force 

calculations, yields greater sampling rates, and enables the titration of multiple sites 

simultaneously. The accuracy and efficiency of continuous dynamical methods make them as 

a useful methodology for studying many proteins.7,8,19 

 In this article, we utilize a recently developed continuous method called constant pH 
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molecular dynamics (CPHMD).6,20 It is a component of the CHARMM simulation and 

modeling package21 and employs a variant of the λ dynamics methodology in CHARMM22,23 

and the generalized Born with simple switching (GBSW) implicit solvent model to mimic the 

effects of the solvent environment24,25 with continuous atomic trajectories.26 The dynamics of 

the titration coordinates for ionizable residues is characterized by as many as two continuous 

coordinates for each ionizable amino acid in the form (λ, x). The variable λ corresponds to 

the protonation state of the residue and x controls of the interconversion between 

tautomeric states.6For single site titrations, such as the atom NZ in lysine, x is unnecessary 

since there are no tautomerers. Residues with multiple protonation sites such as ASP are 

defined with three states, (λ= 1) for the deprotonated, (λ = 0, x = 1) for the OD1-

protonated state, and (λ = 0, x = 0) for the OD2-protonated state. By simulating 

protonation in this manner, pKa predictions are made with both rapid convergence and 

accurate predictions to within 1.0 pK units.6,7,20 

 CPHMD has been successfully employed in the prediction of the pKa values of 

amino acids both in small peptides and in proteins. Recently Khandogin and coworkers 

demonstrated CPHMD's accuracy on turkey ovomucoid third domain and bovine pancreatic 

ribonuclease A, by predicting experimental pKa values within 0.6 to 1.0 pK units, 

respectively.6 Although their simulations verified CPHMD's ability to provide accurate pKa 

estimates of ionizable side chains, almost all protein residues included in this study had 

relatively small pKa perturbations of several pK units or less. Considering the earlier example 

of ASP-96 in bacteriorhodopsin, a perturbation of several units represents a narrow range of 

possible pKa values for protein residues. In pursuit of computational methods to address 

these highly perturbed electrostatic environments, the methods must be able to calculate the 

pKa of titrating amino acids regardless of the size of the perturbation. Therefore, it is
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Residue 

 

Experimental 

pKa27 

Predicted pKa 

 

Unsigned Error 

(CPHMD) 

Unsigned Error 

(Null Model) 

Asp-19 2.21 3.76 1.55 1.65 

Asp-21 6.54 5.43 1.11 2.68 

Asp-40 3.87 2.03 1.84 0.01 

Asp-77 <2.2 0.79 1.41 1.66 

Asp-83 <2.2 3.83 1.63 1.66 

Asp-95 2.16 3.44 1.28 1.70 

Glu-10 2.82 3.32 0.50 1.25 

Glu-43 4.32 3.76 0.56 0.25 

Glu-52 3.93 4.90 0.97 0.14 

Glu-57 3.49 4.42 0.93 0.58 

Glu-67 3.76 3.62 0.14 0.31 

Glu-73 3.31 2.41 0.90 0.76 

Glu-75 3.26 4.89 1.63 0.81 

Glu-101 3.81 3.51 0.30 0.26 

Glu-122 3.89 4.69 0.80 0.18 

Glu-129 3.75 4.43 0.68 0.32 

Glu-135 3.76 4.44 0.68 0.31 

 

Table 5.1 Observed versus calculated pKa values in ∆+PHS. pKa values for residues beyond 141 
were not reported here, because their coordinates are not solved in most of the crystal structures 
used during this study. This includes the 3BDC structure used to calculate the data for this table. 
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necessary to test CPHMD in predicting highly perturbed pKa values for biologically relevant 

systems. Staphylococcal nuclease (SNase) represents an ideal example of such a system, 

because it has both decades of folding and structural research and a variety of hyperstable 

mutants, including many with highly perturbed pKa values.28-31 

 SNase is a relatively small protein consisting of a single polypeptide chain of 149 

amino acids with no disulfide bonds. Its simple structure, prevalence in nature, and lack of 

chaperon-assisted folding to achieve its native fold have made it a model system for studying 

protein folding, point mutations, and the role of amino acids in protein function. Using site-

directed mutagenesis, the various roles of residues in SNase's stability and folding pathway 

have been discovered, leading to a thorough understanding of the protein.27,31-33 Putting 

theory into practice, this information was used to develop a hyperstable variant of SNase, 

known as Δ + PHS. This variant has five point mutations (G50F, V51N, P117G, H124L, 

and S128A) and a truncation (residues 44–49).31 It is extraordinary in its ability to remain in 

its native conformation both over a broad range of pH and temperature, and when subjected 

to additional point mutations.28,31 This resilience enables all its ionizing residues to be titrated 

experimentally, even with the introduction of hydrophilic residues into the protein's 

hydrophobic core.28,31 

 In previous work by Garcia-Moreno et al., the conformational role of aspartic and 

glutamic acids (GLU) in Δ+ PHS were studied in detail.31 All such residues were titrated for 

pKa calculations by measuring the pH dependence of the chemical shifts of Cγ or Cδ with 

two-dimensional HBHC(CBCG)CO experiments.31 These results are summarized in Table 

5.1 under “experimental pKa.” In addition, 27 point-mutation variants of Δ + PHS (two 

ASPs and 25 GLUs) were successfully created. Each variant was titrated to measure the pKa 

at the mutation site by analyzing the pH correlation with changes in Gibbs free energy of 
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PDB 

 

Mutation 

 

Experimental 

pKa
28 

Predicted 

pKa 

Unsigned Error 

(CPHMD) 

Unsigned Error 

(Null Model) 

RMSD (Å) 

 

3H6M V104E 9.4 7.58 1.8 5.33 1.3491 

1TR5 I92E 9.0 6.78 2.2 4.93 1.3903 

1TQO I92E 9.0 7.27 1.7 4.93 1.4413 

3EVQ L25E 7.5 8.36 0.9 3.43 1.2621 

3ERO I72E 7.3 6.78 0.5 3.23 1.1948 

3D4D Y91E 7.1 5.49 1.6 3.03 1.3142 

 
Table 5.2 Observed versus calculated pKa values for buried charge mutants of ∆+PHS with 
crystallographically determined structures. RMSD are in Angstroms. 
 

unfolding (ΔΔG°H2O) with GdnHCl as a denaturant. These results are given in Tables 5.2 

and 5.3 under “experimental pKa.”
28 These experiments provide a comprehensive 

quantification of the changes of internal energy within Δ + PHS in relation to introducing a 

hydrophilic residue into the hydrophobic core of the protein. The shielding effect of the 

surrounding hydrophobic amino acids greatly reduces solvent interactions with the glutamic 

and ASP mutations, and consequently increases their pKa values by as much as 5 pK units. 

The measured perturbation in pKa values for these systems provides an experimental basis 

for testing and comparing the accuracy of CPHMD simulations in the calculation of highly 

perturbed pKa values of these acidic side chains. 

 The calculations we present below provide a significant test of the robustness of 

CPHMD predictions of pKa. We consider four sets of calculations for GLU and ASP 
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Mutation 

 

Experimental 

pKa
28 

Predicted pKa 
Unsigned Error 

(CPHMD) 

Unsigned Error 

(Null Model) 

RMSD (Å) 

 

L125E 9.1 6.83 2.3 5.03 1.2716 

L103E 8.9 7.35 1.6 4.83 1.3857 

L36E 8.7 7.10 1.6 4.63 1.2542 

V66E 8.5 6.39 2.1 4.43 1.2862 

V99E 8.4 7.19 1.2 4.33 1.2762 

V39E 8.2 4.55 3.7 4.13 1.4638 

A109E 7.9 4.41 3.5 3.83 1.3753 

V74E 7.8 8.40 0.6 3.73 1.2469 

A58E 7.7 5.20 2.5 3.63 1.3959 

T62E 7.7 6.93 0.8 3.63 1.2945 

N100E 7.6 5.76 1.8 3.53 1.3650 

F34E 7.3 7.26 0.0 3.23 1.1966 

V23E 7.1 6.95 0.1 3.03 1.2704 

A132E 7.0 6.50 0.5 2.93 1.3416 

L38E 6.8 6.33 0.5 2.73 1.1974 

T41E 6.8 6.52 0.3 2.73 1.3341 

A90E 6.4 6.74 0.3 2.33 1.4063 

L37E 5.2 6.15 1.0 1.13 1.1912 

G20E 4.5 5.46 1.0 0.43 1.3533 

N118E 4.5 2.50 2.0 0.43 1.2462 

 

Table 5.3 Observed versus calculated pKa values for buried charge mutants of ∆+PHS with 
crystallographically determined structures. RMSD are in Angstroms. 
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residues in Δ + PHS: (1) predicting the pKa values for each GLU and ASP in the Δ + PHS 

structure, (2) the value of each point mutation for proteins with solved crystal structures, (3) 

those of each point mutation without crystallographically determined structures, and (4) 

calculating the pKa values of specific residues in systems similar to Δ + PHS. The first set of 

calculations confirms that our computational methods can accurately predict the pKa values 

for this protein. The second and third studies explore the accuracy of pKa calculations for 

proteins of less understood systems. The last set of calculations investigates the use of 

similar crystal structures to study a target system. Mutants without solved structures were 

built in CHARMM by mutating the Δ + PHS structure. The computational results are 

compared with NMR titrations to establish the overall quality and capability of CPHMD pKa 

predictions over a range of perturbed pKa systems. It should be noted that this protocol was 

not a blind study. The calculations within this article were carried out over the course of 2 

years, which both preceded and followed the release of the measured pKa values of SNase 

and Δ + PHS. This study represents an ongoing effort to assess the accuracy of the replica 

exchange (REX)-CPHMD process during its development. 

 

5.2  The REX-CPHMD Method 

 REX, or parallel tempering, is a method of increasing barrier crossing rates by 

simulating an ensemble of proteins distributed through temperature space.34 During a REX 

simulation a single protein structure is replicated and simulated in parallel over an 

exponentially spaced temperature range. After a defined time (replica cycle), the replicas are 

allowed to exchange atomic configurations with adjacent temperature windows based on the 

Metropolis criterion.34 This technique has shown success in modeling protein folding and 
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peptide dynamics34 and has been incorporated into numerous simulation environments.7,35,36 

As it concerns this study, it was used to enhance sampling of the protein conformational 

space around the vicinity of the native fold as well as the conformations of the tautomeric 

states of the titrating amino acids during CPHMD. 

 CPHMD is a methodology developed by Brooks and coworkers that assigns titration 

coordinates to ionizable hydrogen atoms, (λ, x), which are propagated simultaneously with 

atomic coordinates.6,20 These coordinates control a smooth turning on or off of van der 

Waals and electrostatic interactions of hydrogen atoms in these groups, which enables a 

direct coupling between conformation and protonation states.20 

 In the REX-CPHMD protocol, λ and x coordinates are recorded at the end of each 

replica cycle for all titrating residues as defined in Equation 1. 

  eq. 1 

 

As such, x defines the dominant tautomer during the cycle (x < 0.1; x > 0.9) and λ indicates 

whether that tautomer is protonated (λ < 0.1) or deprotonated (λ > 0.9). The non-physical 

regions of λ and x space that are not representative of protonated or deprotonated 

configurations enable a continuous transition between protonation states. Barriers are added 

to the energy functions for these coordinates to diminish the time spent in such states.6,20 

After completing all REX cycles, analysis was performed using the CPHMD tools within the 

MMTSB Tool Set (rexanalysis.pl) to collect all titration coordinates into the values Nprot and 

Nunprot.35 With enough REXs, the population of states converges to the probability of state 

(S) as defined in Equation 2. 

 

Nunprot = N (λ > 0.9; x < 0.1∨ x > 0.9)∑
N prot = N (λ < 0.1; x < 0.1∨ x > 0.9)∑



111	
  

  eq. 2 

 

Sunprot is the probability of a residue being unprotonated. ρunprot and ρprot are the probabilities 

associated with the unprotonated and protonated states. Sunprot is related to pKa in the 

Henderson-Hasselbalch (HH) equation given in Equation 3. 

 

  eq. 3 

 

In this equation, the Hill coefficient (n) and the pKa can be fit given a set of S and pH 

values. In this study, 10 to 15 (pH, S) points per titrating residue were found to give the 

optimal trade-off between accuracy and computational time. For residues titrating multiple 

protonation sites, such as aspartic and glutamic acids, pKa values for each site are calculated 

separately. These pKa values are combined into a total pKa via Equation 4.  

 

  eq. 4 

 

Here we arrive at an experimentally observable quantity. Now we review the system design 

and setup for comparing to other work. 

 

 

 

Sunprot =
ρunprot

ρunprot + ρ prot ≈
Nunprot

N unprot + N prot

Sunprot =
1

1+10n( pKa − pH )

pKa = log10 (10
pK1 +10 pK 2 )
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5.3  Simulation Setup 

Simulations 

 All REX-CPHMD simulations were run using the aarex.pl tool as part of the 

MMTSB Tool Set,35 which performs REX simulations using the PHMD6,20 and GBSW24 

modules within the CHARMM program environment.21 Simulations were performed using 

the CHARMM22 all-atom force field for proteins37 with CMAP38,39 and optimized GB input 

radii.38 This protocol was intended to follow closely to that performed by Khandogin and 

Brooks, and thus unprotonated fractions (S) of residues were calculated for pH values 

between pH = 2 and pH = 9 in all cases.7 For residues with highly perturbed pKa values, this 

range was extended by several pH units. 

 During each simulation, the protein was replicated in 8–16 temperature windows 

spanning from 298 K to 400 K. This range of temperatures was chosen so that the exchange 

ratio was approximately 35–45%.7 All replicas were run simultaneously through exchange 

cycles: each cycle consisted of 500 dynamic steps (a total of 1 ps) followed by an exchange 

attempt. During an exchange attempt, adjacent temperature windows were allowed to 

exchange replica structures based on the Metropolis criterion.33 The total sampling time of 

each protein was 4 ns. Debye-Hückel screening24 of charge–charge interaction was used to 

represent the 150 mM salt concentration in the solvent.7 All simulations were included a 

Nosé-Hoover thermostat to maintain the desired temperature for each window.26 For the 

GB calculations, a smoothing length of 0.6Å at the dielectric boundary with 24 radial 

integration points up to 20Å and 38 angular integration points were used. The nonpolar 

solvation energy was computed using the surface tension coefficient of 0.03 kcal mol−1 Å−2.40 

The SHAKE algorithm allows a 2 fs time step when applied to hydrogen bonds, and a 22Å 
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distance cutoff was applied to truncate the non-bonded in non-bonded energy evaluations. 

 Structures of Δ + PHS were processed according to their availability, which led to a 

division into two groups for this study: those with solved protein structures, and those 

without. All solved structures, including Δ + PHS and many of its mutants, are listed in 5.2 

as their corresponding PDB codes. These structures were downloaded from the Protein 

Databank www.pdb.org.41 For those without solved structures, the Δ + PHS structure was 

computationally mutated as explained in the following section. 

 Each PDB file was processed to remove all non amino acid residues and to convert 

the PDB file into a CHARMM supported format with convpdb.pl from the MMTSB 

toolset.35 During this step, the ligand thymidine-3′,5′-diphosphate was removed to make the 

crystal structures match those used during the NMR analyses performed by Isom et al.28 

Structures were minimized for 500 steps with steepest descents and harmonic restraints (10 

× mass) on heavy atoms. All titrating residues were patched appropriately so that CPHMD 

could recognize them correctly. The GLU and ASP patches represent doubly protonated 

residues with the hydrogen atoms bound to the ionizing oxygen. 

 

Modeling Salt Effects 

 As has been shown in earlier calculations, the accurate recapitulation of 

experimentally measured pKa values depends on modeling both the aspects of the solvent 

environment and the influence of ionic strength correctly.7 To model solvent in our REX-

CPHMD calculations, we use the optimized GBSW model38 together with the simple Debye-

Hückel correction introduced into GB models by Case et al.42,43 
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Simulating Residue Point Mutations 

 For Δ + PHS mutants without a PDB structure, coordinates were generated 

computationally from the Δ + PHS PDB structure (3BDC) using mutate.pl from the 

MMTSB toolset.35 This protocol eliminates an amino acid at a user-specified location, and 

replaces it with the desired mutation. The structures were minimized using steepest descents 

for 500 steps with harmonic restraints (10 × mass) on all heavy atoms using 

minCHARMM.pl. Several mutants had significant atom clashes after running mutate.pl. 

These structures underwent 100 steps of steepest descents all-atom minimization using 

minCHARMM.pl to resolve the structural conflicts, followed the 500 step energy 

minimization with harmonic restraints on heavy atoms. 

 As a measure of confidence in the method, the average structure was calculated from 

each simulation trajectory and then compared with its original PDB of Δ + PHS by a 

backbone-based RMSD analysis of structural alignment. These values are given in Tables 5.2 

and 5.3. The low values suggest that the mutations are accommodated without requiring 

significant reorganization of the protein. 

 

5.4  Modeling Staphylococcal Nuclease’s Ionizable Residues 

Δ + PHS 

 The pKa values of all 17 carboxylic acids in Δ + PHS were determined from 3BDC, 

as shown in Table 5.1. There is a reasonable agreement between the observed and calculated 

pKa values, with an average unsigned error (AUE) of 0.99 pK units. Fifty-nine percent (59%) 

of the residues had an error of <1 pK unit. This suggests that our protocol is able to 

determine pKa values of diprotic residues for this protein, even if they are in a greatly 
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perturbed state. These findings are consistent with previous studies using CPHMD in that an 

AUE of 1 pK unit or less was achieved for proteins containing ionizable side chains in the 

core.7 

 Figure 5.1 shows that the titrated residues in our calculations sample a variety of 

solvent-exposed environments. GLU residues at α-helical locations (57, 67, 101, 122, 129, 

135) showed an average error of 0.5 pKa units, those in β-sheets (10, 73, 75) showed an error 

of 1.0 unit, and those in flexible side-chains (43, 52) showed an error of 0.8 units. ASP 

residues (19, 21, 40, 77, 83, 95) were all on flexible side-chains, and showed an AUE of 1.5 

units. 

 Of the titrating residues, seven had errors in calculated pKa values that were >1 pK 

unit from experimental values, six of these were ASP. Surprisingly, four of these six residues 

(Asp 19, Asp 21, Asp 40, and Asp 95) were in unstructured regions relatively far from the 

Figure 5.1 Locations of ionizable residues in Δ + PHS as displayed on the PDB crystal structure 
3BDC. The Δ + PHS variant of staphylococcal nuclease is shown here with all ionizing residues 
highlighted. Glutamic acid is cyan, and aspartic acid is orange. 
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center of the protein. Previous research suggested that when a titrating residue has a large 

surface area exposed to solvent its ionization state is well defined by the GBSW model, 

resulting in a better pKa prediction.7 This phenomenon will be explored further in the 

discussion section. 

 

Δ + PHS mutants with known structure 

 Of the 27 Δ + PHS mutants studied in this work, five (5) had solved coordinates. 

Figure 5.2 illustrates their similarity by overlapping their secondary structural representations. 

The RMSD between any two proteins was less than 0.35Å. Their six (6) corresponding PDB 

codes and calculated pKa values are shown in Table 5.2. We list only the pKa values of 

residues reported by the NMR titration experiments. There is good agreement between the 

observed and calculated ionization equilibria, with an AUE of 1.5 pK units. 

Figure 5.2 Apparent tertiary structure similarity between various solved crystal structures used in this 
study. Δ + PHS staphylococcal nuclease, its 6 solved PDB structures, and three structural homologues 
are all shown overlaid with one another. The mutated residues are shown in red. All mutants had an 
RMSD of <0.35Å, indicating that even with the introduction of hydrophilic residues into the protein's 
interior, the structure of Δ + PHS is not significantly distorted. 
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 The stability of proteins was monitored during the simulation by the RMSD between 

the initial and average structures of each simulation. The RMSD of all simulations averaged 

to 1.3Å (specific values are shown in Table 5.3). This indicates that the conformational 

changes and fluctuations that occurred during the simulations are relatively small, even when 

the proteins were subjugated to a wide range of pH conditions. This also indicates that such 

fluctuations are greater than the structural differences between different mutants. 

 

Δ + PHS compared with I92E mutants 

 The mutant GLU pKa values for two I92E structures were predicted (1TR5 and 

1TQO), which provides some insight into the sensitivity of CPHMD to conformational 

differences in the starting structures of the proteins. The two structures had an RMSD of 

0.85Å from each other, and an RMSD of 1.10Å when compared with Δ + PHS. This 

suggests that in the case of Δ + PHS, conformational rearrangements near the point of 

mutation are comparable with differences in multiple ground state configurations. These 

rearrangements can be explained as the energy cost of allowing Glu 92 access to solvent. 

 When comparing the ionization of all titrating residues between Δ + PHS and its 

I92E mutants, most aspartic and GLU residues titrated to values <1 pK unit from each 

other, as seen in Table 5.4. This falls within 1 pKa unit of error, as seen in previous research.7 

Residues outside of this margin include all residues on flexible regions of the protein, such as 

all ASP residues. These residues sample a wide range of fluctuations in the environment, 

which may require a longer time to converge to a correct pKa estimate. There was a 

consistent trend that corresponding residues yielded similar pKa predictions, which suggests 

that the conformational changes induced by point mutations do not destroy the overall 
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Residue 

 

Experimental 

pKa27 

Predicted pKa 

(3BDC) 

Predicted pKa 

(1TR5) 

Predicted pKa 

(1TQO) 

Averaged Deviation 

from Experimental 

Asp-19 2.21 3.76 1.55 3.58 0.445 

Asp-21 6.54 5.43 5.63 5.64 1.01 

Asp-40 3.87 2.03 2.54 2.48 1.585 

Asp-77 <2.2 0.79 1.25 0.52 1.18 

Asp-83 <2.2 3.83 4.3 3.63 1.865 

Asp-95 2.16 3.44 3.42 3.83 1.27 

Asp-143 3.86 -- -- 3.74 -- 

Glu-10 2.82 3.32 4.55 3.88 1.115 

Glu-43 4.32 3.76 3.4 3.60 0.74 

Glu-52 3.93 4.9 4.81 5.09 0.925 

Glu-57 3.49 4.42 4.5 4.59 0.97 

Glu-67 3.76 3.62 3.87 3.76 0.015 

Glu-73 3.31 2.41 3.21 3.20 0.5 

Glu-75 3.26 4.89 4.69 4.53 1.53 

Glu-92 -- -- 6.78 7.27 -- 

Glu-101 3.81 3.51 3.38 3.29 0.365 

Glu-122 3.89 4.69 5.16 4.94 1.035 

Glu-129 3.75 4.43 4.14 4.24 0.535 

Glu-135 3.76 4.44 4.54 4.56 0.73 

Glu-142 4.49 -- -- 4.41 -- 

 

Table 5.4 Comparison of Δ + PHS pKa values (all titrating residues) to its I92E mutant residues 
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accuracy of the calculation for other ionizing residues. This opens the possibility that when 

predicting pKa values, a solved structure may not be necessary; if an approximation of the 

secondary and tertiary structures can be found, pKa values might still be predicted using 

REX-CPHMD. The remaining calculations in this study are designed to explore this 

possibility. 

 

Δ + PHS mutants with modeled structure 

 Eighteen (18) of the reported pKa values from previous analyses did not have a 

corresponding solved structure in the PDB. Assuming that the solved structure of Δ + PHS 

is an adequate approximation of the system, models for these proteins were created by 

computationally mutating the Δ + PHS PDB file 3BDC. For these mutants, the results from 

our pKa calculations appear in Table 5.3. Changes in the amino acid sequence of Δ + PHS, 

and our modeling of them, could affect the quality of the calculated pKa values. However, 

these changes are apparently small enough to allow accurate predictions of the pKa values for 

the mutated proteins to within an AUE of 1.4 pKa units. This indicates that even in the 

absence of a crystallographically determined starting structure, the CPHMD methodology 

can yield accurate predictions of pKa shifts with an AUE similar to those calculated from 

solved crystal structures. A caveat here, is that this technique requires a near-match of crystal 

structure to model the chemistry of the target system. 

 

Calculation of a single residue 

 During this study, all residues were titrated simultaneously for every structure. This 

ensured that all cooperative protonation interactions between nearby titrating residues were 

considered. When the pKa of only a single titrating residue is desired, however, it may be 
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PDB Mutation 

Experimental 

pKa 

Predicted 

pKa 

Unsigned Error 

(CPHMD) 

Unsigned Error 

(Null Model) 

RMSD 

(Å) 

1U9R V66E28 8.9 8.15 0.8 4.83 1.1162 

2OXP V66D44 8.8 7.50 1.3 4.73 1.0719 

2OEO I92D45 7.5 7.47 0.0 3.43 1.4566 

 

Table 5.5 Calculated and experimental pKa values of Δ + PHS mutants modeled from nonexact 
matches of amino acid sequences. 
 

more efficient to titrate only the target residue. This was tested by calculating the pKa value 

of the GLU residue of the I92E (1TR5) mutant by allowing only the mutant residue to 

titrate. The calculation produced a value of 6.4 pK units, compared with 6.8 pK units when 

all ionizable residues were allowed to titrate. Since titrating residues don't significantly alter 

the ionization equilibria of distant parts of the system, these results suggests that the 

differences in accuracy by simulating the titration of one residue may be small enough to 

allow accurate pKa prediction. The caveat for performing only a single-site titration during a 

REX-CPHMD simulation is that it ignores any cooperative protonation chemistry and the 

subsequent dynamics influenced by it. This simplification can greatly reduce the 

computational cost of modeling pKa changes in large systems with many titrating residues by 

reducing time to reach convergence. 
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Calculation from similar PDB structures 

 In many cases, atomic coordinates are not available for a particular protein from 

crystallographic or NMR studies. This portion of the study investigates the accuracy of pKa 

predictions when using a PDB with a similar tertiary structure to the target one to determine 

pKa values. Three mutants of Δ + PHS were matched with three PDB files that had nearly 

identical conformations to Δ + PHS: 1U9R, 2OXP, and 2OEO. These pairings, including 

their experimental pKa values, appear in 5.5. To illustrate their similarity with Δ + PHS, all of 

these structures appear in Figure 5.2 overlaid with the other structures homologous to Δ + 

PHS. 

 The results from the pKa calculations were surprisingly accurate, especially 

considering that 2OEO (similar to Δ + PHS I92E), provided the most accurate result 

despite lacking five ionizable lysines from the Δ + PHS/I92D structure used in the 

experimental calculations. Since these residues only titrate at dissimilar pH values than GLU, 

it is unlikely these changes to the sequence had substantial effects on the target ASP-92 

mutation. These results suggest that REX-CPHMD can provide accurate pKa calculations 

from a similar structure even in the absence of an exact match of amino acid sequences. 

These also suggest that approximating the tertiary conformation of a protein may be 

sufficient to predict its pKa values accurately. 

 

V39E and A109E mutants 

 The two simulations that yielded the poorest outcome for calculated pKa values, 

V39E and A109E, were examined for structural exceptions that may have caused their 

unusually high deviation. In both cases, the mutant residue was on an unstructured region of 
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the protein, and both residues flipped their orientations outward in the averaged structures 

from their respective simulations. The conformational change then exposed the GLU 

residues to more solvent than had they remained in the interior of the protein, thereby 

lowering their calculated pKa values. This change is evident in both structures’ having 

relatively large RMSD values between the average structure and the initial structure. This 

conformational change may be due to the understabilization of local salt bridges that would 

otherwise pull the residues into the interior of the protein or have arisen from model 

preparation and equilibration protocols. The averaged structure of the V39E mutant appears 

to have a stable GLU39–LYS110 salt bridge that exposes the V39E mutation to more 

solvent (leading to a reduced pKa). During the calculation, however, the GLU39–ARG35 salt 

bridge may be the dominant orientation of the mutant site, which would draw the GLU into 

the interior of the protein (leading to an elevated pKa). The A109E mutant showed an 

average structure with a solvent-exposed LYS108–GLU109 salt bridge. This bridge may 

have been overstabilized relative to the ARG105–GLU109 salt bridge that would draw the 

mutant residue into the core of the protein. These residues could be exceptions to the 

current update of the GBSW force field.38 

 

Comparison with similar work 

 During the course of this study, a publication with many similar results to this article 

was published by Wallace et al.46 Although they calculated pKa values both in CHARMM and 

using an identical GBSW force field, their calculations yielded a somewhat lower AUE of 1.1 

pK units. This difference appears to have arisen from the linear fitting of the HH equation 

to single pH points. This technique involves calculating and averaging pKa values from 

several (or one as in their case) points where Sunprot is nearly 0.5, and assuming that the Hill 
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coefficient (n) is equal to unity. To test this, a single Sunprot fraction from this study was used  

  

to calculate each pKa value available. The results gave an AUE identical to that from the 

Wallace et al. article (1.1 pK units), and an average unsigned difference from the HH fit of 

less than 0.3 pK units per residue. When the pH values were chosen closest to this study's 

calculated pKa values, the calculations yielded an identical AUE as the HH-equation curve 

fitting method (1.3 pK units), and an average unsigned difference from the HH fit of less 

than 0.3 pK units per residue. This indicates that more accurate pKa values may be calculated 

with fewer points than fitting a complete HH equation curve, when the appropriate single 

pH value has been determined. The caveats of this method are that it may require manually 

choosing the data points used to solve the linear fit, and it is clearly not applicable when 

multiple sites are of interest. 

Figure 5.3 Calculated versus experimental pKa. All pKa values that had a corresponding experimental 
pKa value are presented in this graph. This includes all values from Tables 1-3, and 5. A perfect 
prediction would presumably place all points along a 45° incline from the origin. The ideal range of 
±1 pK unit error from this diagonal has been highlighted. The null model region is the horizontal 
range of ±1 pK unit error from unperturbed ASP and GLU pKa values of 3.86 and 4.07, respectively. 
As shown, CPHMD excels in discovering and mapping large perturbations in pKa. 
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5.5  Discussion 

 Making use of the REX enhanced sampling protocol and the improved 

parameterization of the GBSW implicit solvent model, we determined the pKa shifts of a 

large number of SNase buried charge mutants. Our study provides accurate calculations of 

the ionization properties of buried charge groups in proteins, and supports our REX-

CPHMD method as a useful tool for studying pKa shifts.47 In addition, the titrating groups in 

the mutants of this study have among the most-perturbed carboxylic acid pKa values 

observed.28 Being able to predict such titration shifts accurately suggests that CPHMD 

simulations and the GBSW implicit water model provide a robust methodology for 

exploring electrostatic environments of protein interiors. 

 When taking the perspective of a null model, where all GLU and ASP are assumed 

to have fixed pKa values of 4.07 and 3.86, respectively,48 the AUE of predicting pKa values is 

Figure 5.4 pKa values of GLU and ASP residues in 29 internal positions in staphylococcal nuclease. 
This is a list of mutations in order of increasing unsigned difference of experimental determination of 
apparent pKa value, and its calculated value using CPHMD. Approximately half (48%) of the 
calculated values had a difference of <1 pK unit. 
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similar to CPHMD when observing amino acids with a small perturbation. Results in Table 

5.1 show that the null model had an AUE of 0.85 pK units, while CPHMD had an AUE of 

0.99 units. The null model fails when large perturbations are being observed. The low-pKa 

bias for ASP residues in Δ + PHS, for instance, was consistently modeled better with 

CPHMD by several tenths of a pK unit. As Figure 5.3 illustrates, when the perturbation of 

the amino acid is more than one unit, CPHMD calculations are significantly better. When 

considering all pKa predictions within this experiment, the analogous result from the null 

model prediction has a mean AUE of 3.54 pK units, as compared with the AUE of 1.31 

units with CPHMD. A relative confidence level of CPHMD is shown in Figure 5.4 by listing 

the complete comparative statistics of this study. All calculated residues that had 

corresponding experimental data are listed by order of increasing error. 48% had an error 

below 1 pK unit. This margin contains 58% of Δ + PHS residues, 44% predictions from 

PDB files, and 50% of predictions from modeled structures. 

 We note that although pKa is defined by protein structure, no strong correlations 

were found between the error of the pKa prediction and large-scale structural phenomena 

within the scope of this study. These include conformational changes caused by the 

relaxation of the protein, changes in residue volume from the mutation, and proximity to the 

bound ligand thymidine-3′,5′-diphosphate present in the PDB structure . The R2 values of 

these trends were 0.29, 0.002, and 0.001, respectively. This indicates that the methodology 

may not be significantly improved by accommodating such conformational trends or 

exceptions. This provides insight into the robustness of CPHMD: our method repeatedly 

yields accurate predictions of pKa values almost irrespective to such phenomena. 

 The one trend consistent enough throughout this study was the under-prediction of 

pKa values, as seen in Figure 5.3. When calculating residue pKa values of Δ +PHS mutants, 
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23 of 29 values were underpredicted. This suggests that CPHMD may systematically 

overstabilize the ionized form of the residues studied, and indicates avenues of refinement in 

the updated GBSW-specific force field created in previous work.28 To refine the protocol 

significantly, adjustments may need to be made to the force field and titrating residue 

patches to increase the perceived perturbation of residue pKa values. 

 While refinements should be made to improve the accuracy of the CPHMD 

protocol, this study provides a modest benchmark of its capability to predict highly 

perturbed pKa values of buried charge residues in proteins. This promises to aid the 

evaluation and characterization of ionization in protein interiors, which could give valuable 

insight into the mechanism of pH-based biological activity. 
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Chapter 6 
 

Implementation of the GBSW Water 
Model on Modern Graphics Processors 

 
 
  The work presented in this chapter has been published in the following paper: 
 

1. E. J. Arthur, and C. L. Brooks, III, “Parallelization and Improvements of the 
Generalized Born Model with a Simple sWitching Function for Modern 
Graphics Processors,” in progress. 

 

6.1  Introduction 

 An accurate representation of solvent in molecular dynamics simulations plays a vital 

role in recapitulating molecular conformation and energetics. This is especially true for 

studying biological macromolecules such as nucleic acids and proteins, where the solvent 

environment can be a driving force of observed phenomena.1-5 Traditionally in biomolecular 

simulations, the solvent (generally water) is represented by atomically-detailed molecules and 

counterions that surround a solute molecule. While such explicitly-represented solvent 

models are often considered the most detailed approach to molecular simulations, they can 

be cost-prohibitive when used for long timescales and large systems.6 In order to reduce 

boundary-condition artifacts and to better describe experiments, a given system may 

comprise of as much as 95% water-related atoms.7,8 The computational load of accounting 
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for non-bonded pairwise interactions and the need to equilibrate configurations of water and 

counterions can make many systems prohibitively expensive to simulate.6 

 For purposes of exploring conformational equilibria of a large solute molecule, 

implicit solvent models can be used to mimic solvent effects without requiring the 

computational load of simulating a large bulk of solvent.9-13 Although implicit solvent omits 

atomic-level interactions between the solvent and solute, such as hydrogen bonding, such 

setups offer straightforward methods of calculating solvation free energy, salt effects, and 

continuous changes to pH.11,13-17 Additionally, continuum solvent obviates the need to 

maintain structural equilibria of water and counterions, so conformational changes of the 

solute often occur on shorter timescales. For instance Tsui and Case have shown that A-

form DNA converges into a more optimal B-form conformation within 20 ps as compared 

to 500 ps when using explicit solvent.7,12 Such enhanced dynamics have been useful in 

exploring protein folding mechanisms and protein-protein interactions.4,18  

 Many successful implicit solvent models are based on the assumption that a protein’s 

interior is a uniform, low dielectric region of space filled with partially-charged atoms, and 

that this protein is surrounded by a featureless high-dielectric solvent.19,20 The exact solution 

of this approximation is given by the numerical solution of the finite-difference Poisson-

Boltzmann (PB) equation. Although PB implicit solvation grants simulation speed gains by 

reducing the system size, its poor scalability has been a principle bottleneck in exploring the 

dynamics of large biological systems.21-23  

 In the pursuit of finding a more efficient method of solvating bio-macromolecules, 

the generalized Born (GB) implicit solvent model has been developed as a computationally 

cheaper approximation of PB solvent.13,19,20 This method of calculating a system’s 

electrostatic free energy relies upon the solute atom’s locations, atomic partial charges, and 
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the effective distance between an atom and the solvent-solute dielectric boundary, or Born 

radius. The most accurate GB formula for calculating the electrostatic free energy of 

solvation (ΔGelec
) was first proposed by Still et al., and follows the form20 

 

ΔGelec = − 1
2

τ qaqb
fab
GB

b
∑

a
∑    (eq. 1)

 

 

where 

 

  (eq. 2)

 
Here  represents the Born radius of atom , is the distance between atoms  and 

, and  is the partial charge of the atoms.  is the conversion factor that scales the Born 

energy by the difference in dielectric values at the dielectric boundary.  

 

   (eq. 3) 

 

Here  and  are the dielectric values of inside the solute molecule (such as a protein) and 

solvent respectively. Should a low concentration of salt be present in the simulation, the 

electrostatic energy can be modified by a Debye-Huckel screening parameter  as follows,17 

 

  (eq. 4) 
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BornRb
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q τ
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 The accuracy and speed of GB implicit solvent models depend heavily on the 

method used for calculating the Born radius, and those various methods are what distinguish 

each model. Some popular models include using an empirically-driven spatial symmetry 

function of atom placement such as in the Fast Analytical Continuum Treatment of 

Solvation (FACTS);24 atom-atom pairwise potentials as in Generalized Born Surface Area 

from Onufriev, Bashford, and Case (GBSA/OBC);11,25 and atomic volume exclusion such as 

in the Generalized Born with a Simple sWitching function (GBSW)13 and Generalized Born 

using Molecular Volume (GBMV).26 Atomic volume exclusion algorithms make few 

assumptions regarding the shape of molecules and the placement of atoms. As we will 

develop later in this study, these algorithms integrate energy contributions from groups of 

neighboring atoms, which is effective at capturing atomic overlap and buriedness. As such, 

they often excel at reproducing solvation free energies, but usually at a higher computational 

cost and lower scalability relative to other models.27 In this study we will look at improving 

the speed and scalability of the accurate GBSW model. 

 GBSW has over a decade of research and parameterization. Aside from gaining a 

well-characterized set of atomic and fitting parameters, its functionality has been extended to 

include pH, implicit membranes, and coarse-graining.4,13,14,28-32 Unfortunately GBSW scales 

poorly with system size, and systems larger than 1,000 atoms running on one central 

processing unit (CPU) core proceed at speeds of less than 1 nanosecond (ns) per day. Several 

methods of improving its speed include using more processing cores, improving the 

algorithm, or improving the hardware. With additional CPU cores modest speed 

improvements can be seen, and systems of up to 10,000 atoms can be simulated for single 

ns/day. When using additional cores, few speed increases are seen above about 20 cores. 

Additionally, systems with more than 8 cores today are expensive, and cost-limiting to many 
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research groups. Thus we focus on algorithmic improvements to allow GBSW to utilize 

more cores, and on hardware improvements to take advantage of newer and more affordable 

parallel processing hardware.  

 With the availability of graphics processing units (GPUs) carrying up to thousands of 

parallel processing cores and their newer ability to compute complex mathematical functions 

using C-like languages such as Open Computing Language (OpenCL) and Compute Unified 

Device Architecture (CUDA), a new frontier of GPU-powered ultra-parallel molecular 

dynamics software has come into being. Programs such as CHARMM,6 AMBER,33 

OpenMM,34 GROMACS,35 and NAMD36 all offer GPU-accelerated options for many types 

of simulations, all of which can replace the computational power of much larger computer 

networks with a single graphics card. Despite the fantastic improvements in molecular 

mechanics simulations afforded by GPUs, some algorithms remain challenging to parallelize. 

Notable among these are implicit solvent models, which either rely on recursive data 

processing or are inefficiently split into parallel functions. From the variety of implicit 

solvent methods for calculating solvation free energy, only those that use an uncoupled 

summation of Cramer-Truhlar-type atom-atom pairwise interactions,37 such as 

GBSA/OBC,11,25 have been implemented in GPU languages. Such implementations only 

required a retooled version of the neighboring atom interaction processes that were already 

developed for all-atom molecular mechanics.11,34-36 This study represents the first 

implementation of a parallel, atom-coupled volumetric integration approach to calculating 

solvation free energy using the GBSW algorithm. 

 Due to OpenMM’s achievements and effectiveness in harnessing GPUs, the 

CHARMM-OpenMM interface was developed to combine the capabilities of the two 

software packages. As such, the robust algorithms and range of methods supported in 
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CHARMM are used to design new simulation methods, and these methods are run using 

OpenMM’s efficient processes that have been developed and optimized for modern GPU 

architectures6,34 Additionally, the GBSA/OBC model already in place in OpenMM offers a 

GB framework that forms a basis for our new GBSW code. In this study we outline a highly-

parallelized version of the Generalized Born implicit solvent model with a Simple sWitching 

function within the CHARMM-OpenMM interface.14 First we present some of the 

underlying theory of how GBSW calculates the solvation free energy and Born radii. Then 

we delve into the implementation of the algorithm in its original Fortran90 format, and how 

functions were refactored for a parallel CUDA implementation in the OpenMM software 

package. Please refer to the original text of this chapter to explain why particular numerical 

cutoffs were chosen, and to describe the hardware setup used for benchmarking. Finally we 

review the speed improvements achieved by the new algorithm, its ability to fold chignolin a 

linear peptide chain, and future directions for developing the model. 

 

6.2  Effective Born Radii 

 Like many other GB solvent models, GBSW uses the atomic self-contribution of the 

Still equation (eq. 1) to calculate the Born radius from the electrostatic free energy. The self-

term for atom a  reduces eq. 1 to 

 

 (eq. 5) 

 

The self-energy is then approximated in two energy terms, the Coulomb field approximation 

term ΔGa
elec, 0 , and an empirical correction term , in the following relationship:26 

ΔGa
elec = −τ

2
qa
2

Ra
Born

ΔGelec, 1
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 (eq. 6) 

 

where and  are empirical fitting coefficients. By default, these coefficients are -0.1801 

and 1.81745 respectively.13 The first interaction term is derived from the Coulomb-field 

approximation for electric displacement, and it calculates the work function for removing 

the partial charge of an atom a  a distance from a dielectric boundary. This term is evaluated 

to 

 

ΔGa
elec, 0 = −τqa

2

8π
1

ra, r( )4
dV

solvent∫    (eq. 7) 

 

Here the integral is evaluated over all solvent volume V , and ra, r  is the radial distance 

between the point in space r  and atom . The Coulomb-field approximation from equation 

7 systematically underestimates the electrostatic solvation free energy as calculated by exact 

Poisson-Boltzmann methods, and consequently overestimates atomic Born radii.26 Lee et al. 

demonstrated that this underestimation could be greatly reduced by adding the Born energy 

correction term .26,38 The term is computed as follows.13 
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   (eq. 8) 

 

Finally we solve for the Born radius using eq. 5 – 8 and we arrive at 

ΔGa
elec ≈α 0ΔGa

elec, 0 +α1ΔGa
elec, 1

α 0 α1

a

ΔGelec, 1
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 (eq. 9) 

 

Thus we have the basic construction for evaluating Born radii. Next we explain the details of 

the switching function that define the dielectric boundary in GBSW. 

 

6.3  Switching Function 

 In GBSW, the solvent volume is defined as the region of space excluded by the van 

der Waals spheres of the solute molecule’s atoms. Rather than integrate over all space to 

infinity, we integrate the volume of the solute molecule and calculate the volume inclusive 

function  where  is a location in Cartesian space centered on atom . 

Then  becomes the solvent exclusion function, and we get the following 

Born radius equation. 

 

 (eq. 10) 

Here, is the radial distance between the point in space and atom . Being a 

function of all atoms of the solute,  can be expressed as a product of each 

atom’s volume as follows. 
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  (eq. 11) 

Here is the distance between atom  and the point in space , and is the 

atomic volume-inclusive function. This function determines whether a given point in space 

is inside (0), or outside (1) an atom. Since discontinuities in the dielectric boundary can cause 

numerical instability in calculations of solvation forces, we employ a simple switching 

function in from which GBSW gains its name. The switching function blurs the hard 

boundary with a cubic function, and continuously links the interior and exterior of an atom 

in the following relationship. 

 

Vsolute(r − ra ) = vb (rb, r−ra )
b

solute atoms

∏

rb, r−ra b r − ra vb

vb

Figure 6.1 A) The Born radius (black line) of an atom (yellow ball) is shown with respect to a Trp-
Cage miniprotein. Notice it is the approximate distance to the solvent. B) The same protein is 
shown with a partially-removed isosurface of atom density, which ranges from “solute” (dark blue) 
to “solvent” (white). The switching function exists in between (cyan), which makes the solute-
solvent transition continuous. 



141	
  

va (r) =

0
1
2
+ 3
4sw

r − Ra
atom( )− 3

4sw
3 r − Ra

atom( )3

1

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

_ r ≤ Ra
atom − sw

Ra
atom − sw < r < Ra

atom + sw

_ r ≥ Ra
atom − sw   (eq. 12a) 

 

The term  is a function of distance  from the center of atom . Ra
atom

 is the atomic 

radius of atom  that defines a dielectric boundary that is consistent with PB calculations, 

and  is the switching length that determines the thickness of the switching function. The 

default switching length in GBSW is 0.3 Å.13 One of the most notable benefits of the 

switching length is it fills small voids with atomic density, which in turn corrects for an 

underestimation on the Born radius when integrating over small crevices. Figure 6.1a 

illustrates the Born radius relative to an atom inside a molecule, and figure 6.1b shows a 

cross-section of the switching function. 

 Interestingly, when the atomic radii are optimized to recapitulate the exact Born 

energy from PB calculations, they differ from the van der Waals radius used for Lennard-

Jones potentials. Chen et al. have produced the latest such modifications to atomic radii for 

amino acid side chains, which include larger radii for methyl carbons and zero radii for 

hydrogens.29,39 

 In equation 12a we find a method for including the low-dielectric environment of an 

implicit membrane. Much like how the solvent volume exclusion functions (eq. 11 and 12a) 

simulate the low dielectric of a protein’s interior by removing atom-sized volumes from the 

solvent, the low dielectric environment inside of a membrane is simulated by removing a 

slab of solvent volume in the following manner:13,32 

 

va r a

a

sw
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Rmem − sw < r
z < Rmem + sw

_ r z ≥ Rmem + sw      

(eq. 12b) 

 

Here we see that if the absolute value of the z-coordinate of a point in space r z  is such that 

it is less than the membrane’s half-thickness, Rmem , then the membrane’s switching function 

applies to that point in space. This option enables a membrane-like low dielectric to interact 

with the solute molecule, which scales an atom’s Born radius by both its buriedness in a 

solute molecule, and by its buriedness in a membrane. This setup has been useful in 

predicting structures of transmembrane domains of G protein-coupled receptors.40 

 

6.4  Numerical Quadrature 

 Im et al.13 optimized a spherical quadrature method for calculating the Born radii as a 

means to sample the atomic density surrounding each atom, and rapidly calculate the volume 

exclusion functions . The setup involves placing points of integration 

(quadrature points) around each atom, determining the  values for each atom near those 

quadrature points, calculating the value of , and scaling the result of each 

point by a corresponding volumetric weight. Retooling equation 9 with quadrature points 

results in 

 

 (eq. 13) 
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Here  is the integration weight for a quadrature point, and is the placement of 

that quadrature point in space as projected from atom . Meanwhile, ra, rquad+ra  is the distance 

between atom and the quadrature point . The default quadrature point cloud is 

comprised of 1200 points that are determined by the combination of a 50-point Lebedev 

quadrature41  and two second-order Gaussian-Legendre quadratures.42 The angular Lebedev 

quadrature distributes 50 points on the surface of a unit sphere, and each radius of both 

Gaussian-Legendre quadratures scales a Lebedev quadrature to sample a volume. The 24 

radii are determined by a 5-radius Gaussian-Legendre quadrature from 0.5 Å to 1 Å, and 

another 19-radius quadrature from 1 Å to 20 Å. The result is 1200 points that sample a 

spherical volume around each atom, and 500 points within a 1 Å radius around each atom. 

In addition to offering a high sampling rate near each atomic center, the quadrature setup 

wquad rquad + ra

a

a rquad + ra

Figure 6.2 A) The original 1200 quadrature point cloud (red dots) around the R1 N atom of Trp-
Cage miniprotein. Each point samples its local atom density  as being 1 (dark blue; inside an 
atom), 0 (outside an atom), or in between (cyan), and offers a contribution to the atom’s Born 
radius. B) The modified 350 quadrature point cloud which retains the quadrature points that most 
contribute to the Born energy and Born force. Points near the atom’s center are assumed to have 

, and points far from the atom are assumed to have . The remaining points 
recapitulate greater than 99.5% of the original forces vectors and atom-wise energy. C) The 
modified 500 quadrature point cloud for hydrogen atoms, here around the R1 HT2 atom of Trp-
Cage. Similarly to the nitrogen atom’s quadrature scheme, points very close and very far from the 
atom’s center are unnecessary to calculate explicitly. Since hydrogen has a smaller atomic radius 
than nitrogen, fewer quadrature points near the atom’s center could be omitted. 
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also provides an integration process that is straightforward to parallelize: the integration 

value at each point can be performed independently from the others. Figure 6.2 illustrates 

the quadrature point cloud around each atom. In addition to offering a high sampling rate 

near each atomic center, the quadrature setup also provides an integration process that is 

straightforward to parallelize: the integration value at each point can be performed 

independently from the others. Figure 6.2 illustrates the quadrature point cloud around each 

atom. Notice that the 4π( )−1  from eq. 12 is included in the weights of the Levadev 

quadrature.  

 

6.5  Nonpolar Energy 

 The nonpolar contribution represents the energy used to cavitate a solvent 

around a solute. Although physically relevant, this component of the energy is not included 

in the GBSW model by default. Nevertheless, we discuss its implementation. 

 Schaefer and coworkers along with modifications from Jay Ponder calculated the 

nonpolar energy of solvation with the following relationship,34,43 

 

ΔGnp = ΔGa
np

a
∑ = 4πγ Ra

atom + Rprobe( )2 Ra
atom

Ra
Born

⎛
⎝⎜

⎞
⎠⎟a

∑
6

    (eq. 14) 

 

Here is a sum of nonpolar contributions from each atom , each of which is derived 

from a relationship among the atomic radii Ra
atom , Born radii , the phenomenological 

constant , and the “probe radius” , which corresponds to the radius of a water-

molecule-sized sphere. The original fraction had an exponent of 1 but unpublished work 

ΔGnp

ΔGnp a

Ra
Born
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from Ponder found that a higher-order exponent of 6 better captured the solute molecule’s 

solvent-accessible surface area. This equation establishes that the smaller the Born radius of 

an atom, the closer it is to the solvent, and thus it has a larger contribution to the surface 

area. Conversely an atom with a large Born radius is far from the solvent-accessible surface 

area, and thus gives a smaller surface area contribution. The higher exponent greatly 

enhances this relationship, and better removes the contributions to the surface area from 

buried atoms with larger Born radii. Again we note that the nonpolar contribution to 

solvation free energy is small, and ignored by default in GBSW. Should the nonpolar energy 

and forces be enabled during a simulation, we adopted the formalism already used in 

OpenMM to calculate it.34 

 

6.6  Calculating the Forces 

 Calculating the forces of implicit solvation becomes complicated because the 

effective Born radius of an atom is a function of all solute atoms in the system. Thus the 

force on any atom also depends on the placement of every other atom in the system. When 

we deconvolve the force with respect to atom-atom distances and Born radii, we arrive at, 

 

  (eq. 15) 

Here we find two terms. The first force component is centralized on atom , and is a 

Coulomb-like interaction between atom pairs. When expressed in greater detail, it becomes 

 

∂ΔGelec
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= τ
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qaqb 4 − exp −Dab( )⎡⎣ ⎤⎦
fab
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       (eq. 16a) 

where  

  (eq. 17) 

 

For systems with a low salt concentration, and a non-zero Debye-Huckel screening 

parameter we instead arrive at 
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      (eq. 16b) 

Here the  gives direction to the force vector. Meanwhile, the atomic charges, 

distances, and Born radii scale the force. We note that when  and  are equal, the force of 

this component is zero. The second component arises from the electric displacement of 

solute atoms in a continuous dielectric, and effectively is the interaction between an atom 

and the molecular surface. When interpreted in the context of GBSW’s quadrature, we see 

that it emerges as an atom-quadrature point interaction. The force is scaled first by deriving 

the Still equation (eq 3) with respect to the change in neighboring atoms’ Born radii: 
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2
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  (eq. 18a) 

For systems with a non-zero Debye-Huckel screening parameter we alternatively arrive at  
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The remaining component of the force computes the atom-molecular surface interaction as 

atom-quadrature point ∂Rb
Born / ∂ra  contributions. This becomes 

 

 (eq. 19) 

where 

 

 (eq. 20) 

        

 

The derivative of the volume exclusion function  is split between one part where 

quadrature points from an atom  mediate an interaction with atoms , and the inverse 

where atom  is interacting with a quadrature point of another atom . Notice that for 

quadrature points where  there will always be at least one switching 

function such that . Thus eq. 20 only receives contributions from quadrature 

points residing at the dielectric boundary where there is a nonzero slope of the volume 

exclusion function. We have arrived at the equations GBSW uses to generate both the 

solvation free energy, and its derivative force on all solute atoms. The most computationally-
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demanding portion of this algorithm is calculating the quadrature point contributions. The 

demand arises both from the great number of quadrature points in the system, and their 

potential interaction with any atom in the solute. Fortunately these challenges were met well 

by the nature of GPU architecture. Now we explore the framework used to perform this 

calculation both efficiently and in parallel. 

 

6.7  Function Design and Parallelization 

 The GPU languages CUDA and OpenCL are designed for massively-parallel 

processes, or kernels, that execute efficiently when a problem can be divided into many 

smaller parallel pieces. Due to their architecture, processing time is both related to the speed 

of each processing core as well as the number of processing cores. Graphics chips of today 

can have up to many tens of multiprocessors, each consisting of up to 64 discrete processing 

Figure 6.3 These are the approximate distributions of CPU time spent on two systems: A) 
myoglobin with 2459 atoms, and B) the eukaryotic nucleosome with 22481 atoms. Notice that the 
neighbor lookup table is the only kernel that doesn’t scale approximately with O(N) complexity. In 
larger systems the neighbor-atom force becomes the most expensive part of the forcefield 
calculation. 
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cores. Thus kernels at minimum must be split into thousands of parallel tasks to take full 

advantage of the parallel architecture of today’s GPUs. 

 The overall structure of a kernel running on a GPU is divided into blocks and 

threads, and data is stored in a hierarchical memory structure of increasing speed and 

decreasing capacity: global, shared, and local memory. Blocks are parallel processes that can 

ideally run in any order, and only communicate to each other on global memory. These 

processes are analogous to the multi-processor tasks in C++, Fortran, and other multi-

processor CPU languages. Unlike the CPU, however, each of these parallel tasks can be 

further subdivided into groups of related threads on a GPU. On graphics cards, each thread 

has its own local memory, and threads can communicate through a high-speed shared 

memory as they process a calculation. Additionally, threads can initiate, stop, and 

synchronize with other threads, allowing for a precise level of control over both data 

management and speed. For instance, this study covers a kernel used for quadrature 

integration that designates one block for each atom, and one thread for each quadrature 

point. Midway through the calculation, all threads in a block share Born radii calculation 

results and intermediate values to compute Born radius gradients. 

  Although a fast implementation of GBSW can be built directly from CUDA, a 

myriad of complexities arise if the code is to be robust on all computing systems. Depending 

on the year a GPU was manufactured, available memory, number of processors, and thread 

management capabilities are different. The OpenMM software toolkit developed by Eastman 

et al.34 addresses this complexity through a rapid update cycle, and an execution step that 

effectively redesigns kernels to suit the available hardware. Its accomplishments were notable 

enough to the CHARMM community that a CHARMM-OpenMM interface was developed 

so that CHARMM could take advantage of GPUs in an efficient manner. Simulations can 
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now be designed using CHARMM’s robust algorithms for processing macromolecules, and 

through the software interface, CHARMM controls OpenMM’s kernels to run the dynamics 

of a simulation. The GBSW algorithm was developed as a stand-alone solvent model within 

OpenMM, and as part of the CHARMM-OpenMM interface. This way the GBSW kernels 

are slightly tailored to different GPU hardware under the guidance of OpenMM, and 

effectively utilize a wide range of available hardware. 

 The GBSW calculation is broken up into a total of 8 kernels, 4 of which organize an 

atom-lookup table, and the other 4 calculate the Born energies and forces on each atom. The 

lookup table is a multidimensional array that facilitates the rapid calculation of the Born 

radii, and is the most memory-intensive part of the calculation. Meanwhile calculating the 

Born energy and forces are the most computationally-intensive. In the next few sections we 

discuss the details of those kernels, and overcoming the challenges associated with them. 

The approximate time spent per kernel is shown in Figure 6.3. 

 

6.8  Baseline of Error 

 As we explore the various alterations and assumptions made in this iteration of the 

GBSW algorithm, we must ensure that it accurately recapitulates the original algorithm. Since 

the quadrature points are fixed along Cartesian coordinates, they do not rotate with the 

system’s atoms. Consequently there is an inherent rotational variance in the energy and force 

vectors produced by the integration algorithms, as shown in Figure 6.4. Rotational variance 

was explored using a 4,107-atom system generated using the small ribosome subunit proteins 

S1, S2, and S3 from the PDB 4V88. The standard deviation in forces and angles caused by 

rotational variance provides a benchmark of accuracy for the CUDA-GBSW algorithm: 0.32 
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kcal/mol in magnitude of energy, 4.28 kcal/mol nm in magnitude of force, and 17.23 

degrees in the angle of force. 

 

6.9  Atom Lookup Table 

 An important assistant to calculating the Born radii is an atom-lookup table that 

returns the resident atoms at a given point in space. We found the most efficient memory 

structure is a voxelized representation of 3-dimensional Cartesian coordinates, where each 

XYZ grid coordinate contains an array of atoms residing at that gridpoint. An atom a  is 

identified as residing inside all voxels that meet the distance criteria 

 

ratom, voxel ≤ Ra
atom + sw + Lvoxel 3 / 2( )   (eq. 21) 

 

Figure 6.4 The rotational variance of the original GBSW forcefield was explored by randomly 
rotating a 4,107-atom system and observing the resulting changes in forces and energies of each 
atom. Shown here are the variations for one rotation in A) energy magnitudes and B) force 
magnitudes of individual atoms (small light blue dots). These data provided a minimum baseline of 
accuracy for GBSW as we altered the algorithm and made it suitable for parallel processing. 
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where the atom’s distance to a voxel ratom, voxel  is small enough that part of the atom (or its 

switching function) may reside inside a cubic voxel of side length . In the Fortran90 

implementation of GBSW, the lookup table was a 3D rectangular array with index locations, 

another 3D rectangular array containing the length of the atom list at a gridpoint, and a large 

1-dimensional (1D) array containing the concatenated atom lookup lists at each gridpoint. 

The two 3D grids provided the location of the local resident atom array within the large 1D 

array. Because the arrays were resized and reshaped with every timestep, this method gave a 

small footprint in computer memory. 

 Unfortunately, the dynamic rearrangement of data within a large 1D array is not 

efficiently parallelizable, and dynamically allocating memory is not possible inside of a GPU 

Lvoxel

Figure 6.5 The lookup table is a multidimensional array that tracks which atoms exist in what part 
of space by using a 3D grid. Each grid voxel is a cube with a side length of 1.5 Å. Shown here is a 
cutaway representation of the number of atoms at each gridpoint, ranging from white (0 atoms) to 
green (20+ atoms). The condition that determines whether or not an atom resides in a voxel is 
shown in eq. 20. 
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process. To solve these problems we allocate a large 4-dimensional array that holds a small 

1D array for every location in 3D space. By converting a point in space to a voxel in the first 

3 dimensions, the lookup array returns the small 1D array containing the number of resident 

atoms at that location, and the atom indices of those atoms. An isosurface representation of 

the 3D portion of the lookup table is shown in Figure 6.5. The caveat of this method of data 

storage is that it requires enough memory to contain all reasonable configurations of the 

system before any kernels are executed (dimensions X * dimensions Y * dimensions Z * 

number of voxels per gridpoint). Consequently, this lookup array is the single largest 

memory requirement for most, if not all, GPU simulations using the GBSW implicit water 

model. Thankfully, though, graphics memory is relatively cheap and seems to be more 

plentiful with each new generation of GPU’s. We find the parallelized 4D array requires 

about 11 times the memory footprint of the previous algorithm, but now each voxel can be 

processed in parallel. 

 A cubic voxel length of 1.5 Å is used for the lookup table, which allows for a 

rapid filling of the lookup table, a smaller 1D atom list in each voxel, and ultimately a smaller 

memory footprint of the array. Decreasing this length increases memory requirements 

exponentially, but decreases the time spent calculating the energies and forces. This value 

may change as memory on GPU chips becomes more abundant. Meanwhile, the length of 

the 1D atom list at each voxel was set to 25 atoms. This length was found to contain a 

sufficient number of atom indices for an accurate GBSW calculation as shown in Figure 6.5. 

Although some regions of space may contain more than 25 atoms, there is a diminishing 

influence on Born forces and Born energy when additional atoms are accounted for. We 

note that setting 23 as the maximum number of atoms still provides accurate calculations of 

Born forces and energies.  

Lvoxel
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 Adding a buffer or an extension to the radial parameter  can reduce the 

need to update the lookup table with every timestep. This change, however, not only 

increases the burden on memory allocation, but also increases the amount of time needed 

for the expensive Born radii calculation. Ultimately the GBSW algorithm is fastest when 

each voxel stores the shortest atom list possible. As a side note, the nearest-neighbor atom 

lookup tables used for Lennard-Jones and electrostatic force calculations can also be used to 

calculate a correct set of Born radii. This form of calculating GBSW requires that all 

quadrature points around an atom  need to check their distance from all neighboring 

atoms of atom . This arrangement would make the Born radius calculation prohibitively 

inefficient, and was only used to check the accuracy of the calculations.  

 The lookup table kernels run in O(N) time, where for 2 kernels N is the number of 

atoms, and for the other 2 N is the number of voxels in the system. Because there are 

volumetric components to this calculation, conformation can change the speed of creating 

the atom lookup table. Despite its complexity, this CUDA algorithm is approximately 90 

times faster than its previous CPU iteration, and it owes most of its speed increase to the 

fact that it now runs in parallel. A full description of the lookup table kernels follows in 

Table 6.1. 

 

 

 

 

 

 

Lvoxel ( 3 / 2)

a

a
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kernel no. blocks no. threads 
per block 

description 

System extrema 1 64 Calculate the maximum and minimum 
dimensions of the system, define the size and 
shape of the lookup table. When periodic 
boundaries are used, these calculations only 
need to be performed once and this kernel is 
ignored. 

Reset lookup 
table 

dimX * 
dimY * 
dimZ 

1 Each block attends one voxel, and the single 
thread in each block sets the number of atoms 
per voxel to 0. 

Fill lookup 
table 

number of 
atoms 

256 Each block attends one atom, and each thread 
attends one voxel near that atom. If the atom 
resides in this voxel (see eq. 28), then this 
atom’s index is recorded. 

Sort lookup 
table 

dimX * 
dimY * 
dimZ 

25 Each block sorts one voxel of space. Each 
thread sorts one atom in the 1D lookup list at 
the block’s voxel. Atoms are sorted by distance 

to the voxel’s center ratom, voxel  using a parallel 
bubble-sort. Although O(N2) operations take 
place during the sort, the parallel architecture 
allows it to run in O(N) time. Since the sorted 
array finds quadrature points inside atoms faster 
than unsorted arrays, it speeds up the Born 
radius calculation by about 40 % over using an 
unsorted lookup table. 

 
Table 6.1 Detailed description of the 4 lookup table kernels. 
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6.10  Born Radii, Forces, and Energy Calculation 

 The Born radii calculation consists of calculating the volume exclusion function 

 for each quadrature point in parallel, and then combining those values to integrate the 

Born radii using equations 11 through 13. When is portion of the work is combined with a 

well-designed and sorted lookup table, parallel graphics processing offers a speedup of more 

than an order of magnitude over the single-core iteration of the algorithm.  

 Although the Born radii calculation is the most parallelizable part of the GBSW 

algorithm, it still remains the most computationally expensive kernel as shown in Figure 6.3. 

The end goal of this study is to speed up GBSW as much as possible while preparing it for a 

future of parallel processors, so we set out to determine precisely how many of the 

quadrature points need to be calculated. The contribution to the Born energy and forces 

diminishes with  and  as shown in eq. 13. Additionally, the default coefficients 

and  indicate that the  term provides the greatest contribution to the calculation. 

Noting these aspects, we can explore reducing the maximum for quadrature radius 

by assuming that Vsolute(r) = 0  for various integration radii. Additionally, since many 

quadrature points are guaranteed to reside within atomic radii Ra
atom , quadrature points 

closest to the atom centers can be pre-integrated by assuming that Vsolute(r) = 1 .  

 We conclude that an accurate calculation of Born energies and forces only requires 

500 quadrature points for hydrogens and 350 points for heavier, non-hydrogen atoms. Not 

only do we reduce the total number of points needed for the algorithm, we also significantly 

reduce the number of threads required per block. When implemented on the GPU, this new 

integration setup is roughly 30 times faster than the previous single-core calculations of Born 

Vsolute

r−2 r−5 α 0

α1 r−5

ra,rquad+ra
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radii. For a visual reference, Figure 6.2b and 6.2c show these integration points around 

atoms. 

 After calculating the Born radii, neighboring-atom facilities already exist in OpenMM 

that efficiently calculate  and  from eq. 16 and eq. 

18, respectively, in a single kernel. Additionally, this same kernel calculates the free energy of 

solvation ΔGa
elec  for each atom, which greatly speeds the majority of the force calculation. 

These facilities vary greatly in efficiency depending on input parameters and system 

configuration, but in general marginalize the time requirements for neighboring-atom 

interactions for systems smaller than 20,000 atoms, as shown in Figure 6.3.  

 The final component of GBSW is calculating the Born radius gradient  

from eq. 19.  The original algorithm for GBSW was optimized for a minimum memory 

footprint, and consequently favored recalculating values over saving them to memory. As 

such the Born radius gradient was a stand-alone function that required a similar time as 

calculating the Born radii. In this iteration of GBSW we calculate the Born radius gradient at 

the same time as the Born radii, and then we save the resulting ∂Rb
Born / ∂ra  values in a 

vector array. As with the lookup table, this array was capped with a maximum number of 

gradient contributions per atom. Figure SI3 shows that a maximum of 196 quadrature 

interactions per atom does not significantly alter the force calculation, and so a generous cap 

of 256 interactions was used. The result is a rapid, parallel calculation of both the Born radii 

and their gradients from which we gain yet more speed improvement over the original 

algorithm. 

 

 

(∂ΔGelec / ∂r)(∂r / ∂r) (∂ΔGelec / ∂RBorn )

∂RBorn / ∂r
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kernel no. blocks no. threads 
per block 

description 

Calculate Born 
radii for 
hydrogens 

number of 
atoms 

500 Each block attends one hydrogen atom, each 
thread attends one quadrature point. The atom 

density  at each quadrature point is 
calculated. Then those densities are integrated to 

generate the Born radius  and the derivative 

 from eq. 14 and eq. 23 respectively.  

Calculate Born 
radii for heavy 
atoms 

number of 
atoms 

350 Each block attends one non-hydrogen atom, each 
thread attends one quadrature point. This kernel 
functions the same as the “Calculate Born radii for 

hydrogens” kernel and calculates , and the 

derivative  for heavier atoms. The 
differences lie in the integration offsets and 
number of threads used to accommodate the 
larger radii of heavier atoms.  

Calculate 
neighbor-atom 
force 

number of 
neighbor-
atom tiles 

256 Each block attends one atom-atom comparison 
tile of the OpenMM neighbor-atom list, and each 
thread attends one atom-atom pair in that tile. The 
atom-atom interactions of all atoms, their Born 
radii, and charges are combined to calculate

 and  
from eq. 20 and eq. 22 respectively. Additionally, 

the GBSW free energy of solvation  is 
calculated for the system. 

Born force 
gradient 

number of 
atoms 

256 Each block attends an atom, and each thread 

attends a contribution of ∂Rb
Born / ∂ra . The final 

value of  from eq. 
14 is calculated and added to the total force on 
each atom.  If the option for calculating the 
nonpolar contribution to the solvation free energy 
is requested, it is calculated in this kernel 
following eq. 13.  

 
Table 6.2 Detailed description of the 4 Born energy kernels. 
 

 

Vsolute

RBorn

∂RBorn / ∂r

RBorn

∂RBorn / ∂r

(∂ΔGelec / ∂r)(∂r / ∂r) (∂ΔGelec / ∂RBorn )

ΔGelec

(∂ΔGelec / ∂RBorn )(∂RBorn / ∂r)
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 With the exception of the neighbor-atom force kernel which runs in O(N) to O(N2) 

depending on the system configuration and input parameters, the GBSW Born radii and 

Born force calculations all operate on O(N) time where N is the number of atoms. As we 

will discuss in the next section, GBSW shows promise in scaling well with system size. For 

sufficiently large systems, GBSW emerges as one of the fastest solvent methods available at 

the time of this study. A full description of the Born radii kernels follows in Table 6.2. 

 

6.11  Accuracy and Speed Gains Exhibited by CUDA-GBSW 

 We have outlined the basic setup of a new parallel CUDA-GBSW algorithm that 

shows great speed increases over the original Fortran90 GBSW. Although the new algorithm 

shows the same size-dependent scaling as the original, the new algorithm maintains useful 

speeds of nanoseconds per day even when used to solvate systems greater than 100,000 

atoms. During this study we subdivided the GBSW algorithm into many thousands of 

parallel tasks, all of which would benefit well with the addition of more processing cores in 

future graphics chips. This new solvation method is expected to gain speed benefits until 

each quadrature point thread has its own core. In a smaller system of 1000 atoms with 500 

hydrogens, 250,000 parallel threads are used to calculate the Born radii of the hydrogen 

atoms. Such a system presumably would receive no speed improvements, only when more 

than a quarter-million cores exist on a single GPU. 

 We benchmarked the CUDA-GBSW algorithm and observed its ability to 

recapitulate the original GBSW algorithm in CHARMM as shown in Figure 6.6. For each 

point in Figure 6.6e a subselection of the small ribosomal subunit (PDB code 4V88) was 

used for the benchmark. Since these subselections were not necessarily as dense or compact  
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a system as a folded protein, there was an added cost of processing a large, empty atom 

lookup grid. With this in mind, the log plot benchmarks slightly underestimate the CUDA-

GBSW performance for more compact systems containing the same number of atoms.  

 We find that for smaller systems such as TRPcage (304 atoms), the CUDA-GBSW 

algorithm was only slightly faster than the 12-core multiprocessing GBSW, and less than 

one-third the speed of the CUDA-GBSA/OBC solvation method. However, CUDA-GBSW 

solvation scales mostly through O(N) scaling. It is an expensive calculation for each member 

N, but for large enough systems the better scaling compensates its complex algorithm. We 

Figure 6.6 Above in plots A-D are benchmarks for specific systems in nanoseconds per day, which 
include benchmarks for the original CHARMM algorithm with 1, 6, and 12 cores (purple, green and 
yellow respectively), a benchmark for the GBSA / OBC forcefield running in OpenMM (blue), and 
the CUDA-GBSW forcefield discussed in this study (red). Plot E shows a logarithmic benchmark 
for various system sizes, all of which are comprised of one or more proteins from the small 
eukaryotic ribosomal subunit. The result is a smooth curve highlighting what system sizes receive 
what speed gains for various systems. The square icons represent benchmarks for the specific 
systems in plots A-D. These systems were TRPcage, myoglobin, nucleosome, and the small 
eukaryotic ribosomal subunit, with PDB codes 1L2Y, 1BVC, 1AOI, and 4V88 respectively. Plots F 
and G show the accuracy of CUDA-GBSW in recapitulating the forces and energies of the original 
GBSW algorithm in CHARMM. 
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find that for systems greater than 22,000 atoms, CUDA-GBSW emerges as a more efficient 

implicit solvation method than GBSA/OBC, and over an order of magnitude faster than a 

multiprocessing Fortran90 GBSW solvation. When simulating large systems such as the 

small ribosomal subunit (116,329 atoms), CUDA-GBSW solvation is over 3 times faster 

than GBSA/OBC running on the same GPU. 

 We also reflect that CUDA-GBSW, despite its assumptions and simplifications, 

reproduces the original GBSW algorithm with less error than its inherent rotational 

variation. The differences between the two forcefields are 0.16 kcal/mol in magnitude of 

energy, 3.62 kcal/mol nm in magnitude of force, and 2.11 degrees in the angle of force. 

These amount to less than one percent difference between the two versions of GBSW. Thus 

we conclude that CUDA-GBSW accurately recapitulates the original algorithm of GBSW 

from CHARMM, and represents a good first iteration of the algorithm in modern parallel 

graphics processing languages.  

Figure 6.7 Chignolin was simulated in 8 replicas for 1 microsecond, and each trajectory was 
analyzed by RMSD to the PDB crystal structure 1UAO by backbone carbon atoms, and through an 
unbiased k-means clustering algorithm. A) shows a typical RMDS trajectory of comparing chignolin 
to the crystal structure, and B) overlays the dominant configurations from the k-means clustering 
(red) with the structure from 1UAO (white and transparent). 
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6.12  Folding Chignolin 

 Chignolin is a 10-residue peptide consisting of 137 atoms, and when solvated with 

CUDA-GBSW runs at 438 ns/day in our computer setup. We simulated chignolin starting 

from in a linear, unfolded state in 8 replicas, each for 1 microsecond. The simulations were 

run using the CHARMM22 forcefield44,45 using the Leapfrog Verlet integrator with an 

integration time step of 2 fs. These were NT simulations in an unbounded volume at a 

temperature of 298K using a Langevin heat bath. Atomic radii were optimized through work 

by Chen et al.29 These simulations tested both the numerical stability of CUDA-GBSW 

during long simulations, and whether the algorithm and force field could find a reasonable 

structure for the native peptide. We analyzed the trajectories using unbiased k-means 

clustering to find the dominant conformation, and compared the trajectories to the crystal 

structure PDB 1UAO through backbone-atom root mean squared deviation (RMSD). 

 We found that of the 8 replicas, all trajectories explored configurations that were 

within 0.5 Å RMSD from the crystal structure. Additionally, the k-means clustering reported 

that 6 out of 8 trajectories were dominated by a structure within 1.5 Å RMSD of the crystal 

structure. Two simulations reported structures within 0.7 Å RMSD of PDB 1UAO. Figure 

6.7 illustrates an RMSD trajectory, and a backbone-atom overlay of the k-means clustering 

results. 

 This exploration was designed only with testing the numerical stability of CUDA-

GBSW in mind, and was not optimized for efficiency or accuracy. Nevertheless, it shows 

that CUDA-GBSW solvation is comparably efficient to other GPU-based GB models in 

folding chignolin,46 and that GBSW running on GPUs remains appropriate for folding small 
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proteins when starting from a linear chain.47-49  Additionally, these data indicate that the 

algorithm remains appropriate for exploring the conformational equilibria of small 

proteins.47-49  

 

6.13  Future Directions 

 One of the greatest sources of accuracy and error of the GBSW algorithm lies in the 

placement of quadrature points around each atom. Through the better placement of each 

point, one may reduce the calculation time of the algorithm or enhance spatial sampling and 

reduce rotational variance. Each variation on quadrature point placement, though, carries the 

risk of requiring a full recalibration of the atomic radii and phenomenological constants. For 

instance, a variation of the Gaussian-Legendre quadrature was explored by using a single 

radial quadrature rather than two. This implementation, however, reduced sampling near the 

atomic centers and poorly recapitulated the PB free energies of solvation for each atom.  

 One possibility of increasing speed is by restricting the Lebedev quadrature only to 

integrate points away from neighboring atoms. Hydrogen atoms, for example, often lie 

inside the atomic radii of heavier atoms, and don’t require a complete quadrature point 

cloud. Another option is to scan the solute molecule before a simulation to determine an 

optimal quadrature point setup for each atom. Such an option could begin the radial 

Gaussian-Legendre integration at an atom’s switching function ( Ra
atom − sw ), rather than the 

arbitrary distance of 0.5 Å from an atomic center as currently implemented in GBSW. 

 Although many more variations and improvements upon GBSW remain to be 

explored, what has been established is a parallel version that will improve greatly with each 

new generation of graphics chips for many years to come. Finally, we note that another 
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highly accurate, volumetric integration-based generalized Born model, GBMV,26 has a similar 

algorithmic construction to the GBSW model we studied here. By applying similar GPU-

based approaches, such as the CUDA-GBSW lookup table kernels, to the GBMV model, 

there is potential for giving the algorithm significant speed improvements. This remains a 

topic for future explorations. 

  



165	
  

 

 

 

 

6.14  References 

1. S. M. Vaiana, M. Manno, A. Emanuele, M. B. Palma-Vittorelli, and M. U. Palma, 
"The Role of Solvent in Protein Folding and in Aggregation," J. Biol. Phys. 27(2-3), 
133-45, (2001). 

2. V. Martorana, D. Bulone, P. L. San Biagio, M. B. Palma-Vittorelli, and M. U. Palma, 
"Collective Properties of Hydration: Long Range and Specificity of Hydrophobic 
Interactions," Biophys. J. 73(1), 31-37, (1997). 

3. E. J. Arthur, J. T. King, K. J. Kubarych, and C. L. Brooks, III, "Heterogeneous 
Preferential Solvation of Water and Trifluoroethanol in Homologous Lysozymes," J. 
Phys. Chem. B 118(28), 8118-27, (2014). 

4. L. S. Ahlstrom, S. M. Law, A. Dickson, and C. L. Brooks, III, "Multiscale Modeling 
of a Conditionally Disordered Ph-Sensing Chaperone," J. Mol. Biol. 427(8), 1670-80, 
(2015). 

5. B. H. Morrow, P. H. Koenig, and J. K. Shen, "Atomistic Simulations of Ph-
Dependent Self-Assembly of Micelle and Bilayer from Fatty Acids," J. Chem. Phys. 
137(19), 194902, (2012). 

6. B. R. Brooks, C. L. Brooks, III, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, 
Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. 
Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, 
J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. 
Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. 
Karplus, "Charmm: The Biomolecular Simulation Program," J. Comput. Chem. 
30(10), 1545-614, (2009). 

7. I. T. E. Cheatham, and P. A. Kollma, "Observation of Thea-DNA Tob-DNA 
Transition During Unrestrained Molecular Dynamics in Aqueous Solution," J. Mol. 
Biol. 259(3), 434-44, (1996). 



166	
  

8. J. T. King, E. J. Arthur, C. L. Brooks, III, and K. J. Kubarych, "Crowding Induced 
Collective Hydration of Biological Macromolecules over Extended Distances," J. 
Am. Chem. Soc. 136(1), 188-94, (2014). 

9. B. N. Dominy, and C. L. Brooks, III, "Development of a Generalized Born Model 
Parametrization for Proteins and Nucleic Acids," J. Phys. Chem. B 103(18), 3765-73, 
(1999). 

10. D. Bashford, and D. A. Case, "Generalized Born Models of Macromolecular 
Solvation Effects," Annu. Rev. Phys. Chem. 51(1), 129-52, (2000). 

11. V. Tsui, and D. A. Case, "Theory and Applications of the Generalized Born 
Solvation Model in Macromolecular Simulations," Biopolymers 56(4), 275-91, (2000). 

12. V. Tsui, and D. A. Case, "Molecular Dynamics Simulations of Nucleic Acids with a 
Generalized Born Solvation Model," J. Am. Chem. Soc. 122(11), 2489-98, (2000). 

13. W. Im, M. S. Lee, and C. L. Brooks, III, "Generalized Born Model with a Simple 
Smoothing Function," J. Comput. Chem. 24(14), 1691-702, (2003). 

14. J. Khandogin, and C. L. Brooks, III, "Constant Ph Molecular Dynamics with Proton 
Tautomerism," Biophys. J. 89(1), 141-57, (2005). 

15. J. Khandogin, and C. L. Brooks, III, "Toward the Accurate First-Principles 
Prediction of Ionization Equilibria in Proteins," Biochemistry 45(31), 9363-73, 
(2006). 

16. M. S. Lee, F. R. Salsbury, and C. L. Brooks, III, "Constant-Ph Molecular Dynamics 
Using Continuous Titration Coordinates," Proteins: Struct., Funct., Bioinf. 56(4), 
738-52, (2004). 

17. J. Srinivasan, M. W. Trevathan, P. Beroza, and D. A. Case, "Application of a Pairwise 
Generalized Born Model to Proteins and Nucleic Acids: Inclusion of Salt Effects," 
Theor. Chem. Acc. 101(6), 426-34, (1999). 

18. W. Im, J. Chen, and C. L. Brooks, III. in Adv. Protein Chem. Vol. Vol. 72  (eds L. B. 
Robert, and B. David)  173-98 (Elsevier Academic Press, 2006). 



167	
  

19. R. Constanciel, and R. Contreras, "Self Consistent Field Theory of Solvent Effects 
Representation by Continuum Models: Introduction of Desolvation Contribution," 
Theoret. Chim. Acta 65(1), 1-11, (1984). 

20. W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, "Semianalytical 
Treatment of Solvation for Molecular Mechanics and Dynamics," J. Am. Chem. Soc. 
112(16), 6127-29, (1990). 

21. J. Warwicker, and H. C. Watson, "Calculation of the Electric Potential in the Active 
Site Cleft Due to Α-Helix Dipoles," J. Mol. Biol. 157(4), 671-79, (1982). 

22. I. Klapper, R. Hagstrom, R. Fine, K. Sharp, and B. Honig, "Focusing of Electric 
Fields in the Active Site of Cu-Zn Superoxide Dismutase: Effects of Ionic Strength 
and Amino-Acid Modification," Proteins: Struct., Funct., Bioinf. 1(1), 47-59, (1986). 

23. A. Nicholls, and B. Honig, "A Rapid Finite Difference Algorithm, Utilizing 
Successive over-Relaxation to Solve the Poisson–Boltzmann Equation," J. Comput. 
Chem. 12(4), 435-45, (1991). 

24. U. Haberthür, and A. Caflisch, "Facts: Fast Analytical Continuum Treatment of 
Solvation," J. Comput. Chem. 29(5), 701-15, (2008). 

25. A. Onufriev, D. Bashford, and D. A. Case, "Exploring Protein Native States and 
Large-Scale Conformational Changes with a Modified Generalized Born Model," 
Proteins: Struct., Funct., Bioinf. 55(2), 383-94, (2004). 

26. M. S. Lee, F. R. Salsbury, and C. L. Brooks, III, "Novel Generalized Born Methods," 
J. Chem. Phys. 116(24), 10606-14, (2002). 

27. J. L. Knight, and C. L. Brooks, III, "Surveying Implicit Solvent Models for 
Estimating Small Molecule Absolute Hydration Free Energies," J. Comput. Chem. 
32(13), 2909-23, (2011). 

28. J. Chen, "Effective Approximation of Molecular Volume Using Atom-Centered 
Dielectric Functions in Generalized Born Models," J. Chem. Theory Comput. 6(9), 
2790-803, (2010). 

29. J. H. Chen, W. P. Im, and C. L. Brooks, III, "Balancing Solvation and Intramolecular 
Interactions: Toward a Consistent Generalized Born Force Field," J. Am. Chem. Soc. 
128(11), 3728-36, (2006). 



168	
  

30. X. Zhu, P. Koenig, M. Hoffmann, A. Yethiraj, and Q. Cui, "Establishing Effective 
Simulation Protocols for Β- and Α/Β-Peptides. Iii. Molecular Mechanical Model 
for Acyclic Β-Amino Acids," J. Comput. Chem. 31(10), 2063-77, (2010). 

31. J. L. Knight, J. D. Yesselman, and C. L. Brooks, III, "Assessing the Quality of 
Absolute Hydration Free Energies among Charmm-Compatible Ligand 
Parameterization Schemes," J. Comput. Chem. 34(11), 893-903, (2013). 

32. W. Im, M. Feig, and C. L. Brooks, III, "An Implicit Membrane Generalized Born 
Theory for the Study of Structure, Stability, and Interactions of Membrane Proteins," 
Biophys. J. 85(5), 2900-18, (2003). 

33. D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. 
Onufriev, C. Simmerling, B. Wang, and R. J. Woods, "The Amber Biomolecular 
Simulation Programs," J. Comput. Chem. 26(16), 1668-88, (2005). 

34. P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns, J. P. Ku, K. 
A. Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich, C. 
Klein, M. R. Shirts, and V. S. Pande, "Openmm 4: A Reusable, Extensible, Hardware 
Independent Library for High Performance Molecular Simulation," J. Chem. Theory 
Comput. 9(1), 461-69, (2013). 

35. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, "Gromacs 4: Algorithms for 
Highly Efficient, Load-Balanced, and Scalable Molecular Simulation," J. Chem. 
Theory Comput. 4(3), 435-47, (2008). 

36. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. 
D. Skeel, L. Kalé, and K. Schulten, "Scalable Molecular Dynamics with Namd," J. 
Comput. Chem. 26(16), 1781-802, (2005). 

37. G. D. Hawkins, C. J. Cramer, and D. G. Truhlar, "Parametrized Models of Aqueous 
Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges 
from a Dielectric Medium," J. Phys. Chem. 100(51), 19824-39, (1996). 

38. M. S. Lee, M. Feig, F. R. Salsbury, and C. L. Brooks, III, "New Analytic 
Approximation to the Standard Molecular Volume Definition and Its Application to 
Generalized Born Calculations," J. Comput. Chem. 24(11), 1348-56, (2003). 



169	
  

39. M. Nina, D. Beglov, and B. Roux, "Atomic Radii for Continuum Electrostatics 
Calculations Based on Molecular Dynamics Free Energy Simulations," J. Phys. 
Chem. B 101(26), 5239-48, (1997). 

40. M. Michino, J. Chen, R. C. Stevens, and C. L. Brooks, III, "Foldgpcr: Structure 
Prediction Protocol for the Transmembrane Domain of G Protein-Coupled 
Receptors from Class A," Proteins: Struct., Funct., Bioinf. 78(10), 2189-201, (2010). 

41. V. I. Lebedev, and D. N. Laikov, "A Quadrature Formula for the Sphere of the 131st 
Algebraic Order of Accuracy," Doklady Mathematics 59(3), 477-81, (1999). 

42. M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions with Formulas, 
Graphs, and Mathematical Tables (Dover, New York, 1965), "Chapter 25.4, Integration". 

43. M. Schaefer, C. Bartels, and M. Karplus, "Solution Conformations and 
Thermodynamics of Structured Peptides: Molecular Dynamics Simulation with an 
Implicit Solvation Model," J. Mol. Biol. 284(3), 835-48, (1998). 

44. A. D. MacKerell, M. Feig, and C. L. Brooks, III, "Extending the Treatment of 
Backbone Energetics in Protein Force Fields: Limitations of Gas-Phase Quantum 
Mechanics in Reproducing Protein Conformational Distributions in Molecular 
Dynamics Simulations," J. Comput. Chem. 25(11), 1400-15, (2004). 

45. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. 
Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. 
Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, 
W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, 
J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, "All-Atom Empirical Potential for 
Molecular Modeling and Dynamics Studies of Proteins," J. Phys. Chem. B 102(18), 
3586-616, (1998). 

46. H. Nguyen, J. Maier, H. Huang, V. Perrone, and C. Simmerling, "Folding 
Simulations for Proteins with Diverse Topologies Are Accessible in Days with a 
Physics-Based Force Field and Implicit Solvent," J. Am. Chem. Soc. 136(40), 13959-
62, (2014). 

47. J. Chen, and C. L. Brooks, III, "Can Molecular Dynamics Simulations Provide High-
Resolution Refinement of Protein Structure?," Proteins: Struct., Funct., Bioinf. 67(4), 
922-30, (2007). 



170	
  

48. J. Chen, and C. L. Brooks, III, "Implicit Modeling of Nonpolar Solvation for 
Simulating Protein Folding and Conformational Transitions," Phys. Chem. Chem. 
Phys. 10(4), 471-81, (2008). 

49. W. Im, J. Chen, and C. L. Brooks, III. in Adv. Protein Chem. Vol. Volume 72    173-98 
(Academic Press, 2005). 

 
 
 



171	
  

 

 

 

 

Chapter 7 
 

Refactoring the Constant pH Molecular 
Dynamics Method for Modern Graphics 

Processors 
 
  The work presented in this chapter has been published in the following paper: 
 

1. E. J. Arthur, and C. L. Brooks, III, “Efficient Implementation of the Constant 
pH with Molecular Dynamics Method on Modern Graphics Processors,” in 
progress. 

 

7.1  Introduction 

 Proteins typically maintain their native structure and optimal functionality under a 

narrow range of pH.1-3 Consequently, many biological systems tightly control local solvent 

pH to tune the effectiveness of enzymes, or to promote a useful protein conformation.1,4,5 

Mitochondrial ATP synthase utilizes a trans-membrane proton gradient to power its rotary 

catalysis mechanism,6-8 and the departure from a normal pH range is known to be a driving 

force in forming the amyloid fibrils associated with Alzheimer’s disease.9,10 Additional 

examples of pH driven processes include the proton-activated gate mechanism of the KcsA 

potassium channel,11 and the catalytic pathway of dihydrofolate reductase.12 Finally, a notable 

survey by Aguilar et al. showed that about 60% of the protein-ligand complexes indicated 
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that at least one titratable residue of the protein assumed a different protonation state 

between bound and unbound states.13 Although important to many biological processes, pH-

dependence in biomacromolecule simulations remains a nonstandard tool that awaits both 

wider acceptance, and finer tuning of its models. 

 Typical molecular dynamics (MD) simulations fix all amino acid protonation states to 

those of isolated residues in a neutral pH environment. While this pH-insensitive approach is 

sufficient to fold some proteins and observe their conformational equilibria,14 it arguably fails 

to capture phenomena dependent on local ionization effects of side-chains or perturbations 

to a residue’s pKa.
15,16 This failure is particularly problematic for histidine residues, in that 

they have two hydrogens that titrate with near-neutral pKa values. This ionizability indicates 

that at biologically-relevant pH environments histidine’s protonation state and tautomeric 

configuration are often unclear.17 In recent decades a series of models of varying complexity 

and accuracy promise to bring accurate pH responsiveness to MD simulations. 

 Protonation-state modeling of amino acids in MD simulations is based on setting up 

a pH-sensitive extended Hamiltonian that modifies the forcefield parameters and structure 

of a given molecule. This began by discretely-titrating protons, and progressing a simulation 

using instantaneous switches between protonated and unprotonated states. Mertz and Pettitt 

used an open system Hamiltonian to model the titration of acetic acid,18 and Sham et al. 

applied a linear response approximation through the protein-dipoles Langevin-dipoles model 

to calculate lysozyme residue pKa values.19 Additional work has been done where Monte 

Carlo (MC) sampling guides the protonation state of an otherwise classical MD simulation. 

Baptista et al. used explicitly-represented solvent molecules with an implicit solvent Poisson-

Boltzmann (PB) function to determine protonation states.20,21 Meanwhile, Mongan et al. 

utilized generalized Born (GB) implicit solvation both for the solute, and to add a solvation 
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free energy component protonation function.22 While all these discrete models can predict 

pKa values for individual amino acids to within one pK unit, they are computationally 

expensive. Whether the expense stems from the need to relax numerical instabilities caused 

by instantaneous protonation / deprotonation events, or from the MC algorithms’ ability to 

titrate only one hydrogen at a time, such methods may require an unreasonable amount of 

time to study large systems with many titratable groups.  

 One possible solution to the inefficiencies inherent with discrete titration methods is 

to use continuous titration of hydrogen atoms. Lee et al. developed one such method called 

constant pH molecular dynamics (CPHMD), which uses λ -dynamics coupled to transitions 

between protonation states.23,24 This method uses the Generalized Born implicit water model 

with a Simple sWitching function (GBSW) model,25 or the related Generalized Born with 

Molecular Volume (GBMV) model,24 to efficiently couple the protonation state to the 

solvation free energy of the molecule. The following year, Khandogin and Brooks 

introduced proton tautomerism capabilities to the method, which allows multi-site titrating 

residues, such as histidines, to be modeled accurately.26 Since the method is continuous, 

there are no instantaneous protonation/deprotonation events, and multiple residues can 

titrate simultaneously. Additionally, such continuous titration methods allow for the efficient 

coupling of protonation states among neighboring residues. The result is a pH simulation 

method that can calculate pKa values of protein structures to within 1 pK unit,16 and can 

resolve the dominant folding pathway of the pH-sensitive HdeA homodimers.15 

 CPHMD’s efficiency, however, is bound by the rate-limited component of the 

calculation: the GBSW solvent model. As such, when running on a single-core central 

processing unit (CPU), CPHMD achieves 1 nanosecond (ns) of simulation time per day 

when simulating a solute system of about 1,000 atoms. Since typical uses of CPHMD, such 
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as predicting pKa shifts of protein residues, may require many nanoseconds of simulation 

time,16 even smaller proteins, such as lysozymes, may require about a week to converge on 

useful results. Larger systems, such as asymmetric viral capsid subunits with tens of 

thousands of atoms, may require unreasonably long simulation times if captured in full 

atomic detail. Fortunately, the GBSW solvent model has recently been rewritten to function 

on new, parallel graphics processing unit (GPU) hardware, and is now between 1 and 2 

orders of magnitude faster than its CPU counterpart.16 By incorporating the CPHMD model 

into the GPU-GBSW algorithm, there holds the promise of speeding up pH simulations 

substantially. 

 This study represents an increment in the ongoing adaptation of efficient and useful 

algorithms onto parallel-processing GPUs. Such chipsets can contain thousands of 

processing cores, and are able to process C-like languages such as Open Computing 

Language (OpenCL) and Compute Unified Device Architecture (CUDA). This combination 

of features has opened up a new frontier of parallel processing where expensive computer 

clusters can be replaced with single, affordable graphics cards. Simulation packages such as 

CHARMM,27 AMBER,28 OpenMM,29 GROMACS,30 and NAMD31 all offer GPU-accelerated 

options for many types of studies, and most of those options receive speed increases of 

greater than an order of magnitude over their CPU counterparts.  

 Due to OpenMM’s effectiveness in harnessing the capabilities of GPUs with a wide 

variety of hardware, a CHARMM-OpenMM interface was developed to combine the 

strengths of both simulation packages.27,29 CHARMM’s robust algorithms can be used to 

design and parameterize a simulation, and OpenMM’s efficient programming can be used to 

propagate dynamics.27,29 Now with the recent incorporation of the GBSW solvent model into 

the CHARMM-OpenMM interface, many of CHARMM’s algorithms parameterized for use 
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with GBSW, such as CPHMD, can be adapted for parallel processing on GPUs as well. In 

this study we take advantage of the recent incorporation of GBSW onto GPUs, and discuss 

the adaptation of CPHMD onto this new parallel architecture. First we explain the 

underlying theory behind λ -dynamics, and how the λ  coordinate is propagated. Then we 

delve into how it was originally implemented for CHARMM, and examine fitting CPHMD 

into the GBSW algorithm. Here we discuss the algorithmic improvements, and show how 

much of the forces on λ  are calculated alongside the free energy of solvation. Finally we 

review the speed improvements achieved by the new algorithm, and future directions for pH 

simulations.  

 

Figure 7.1 Shown are cartoons of the protonated and unprotonated states of A) histidine and B) 

lysine. Also noted are the reference pKa values of each transition, as well as the  values at each 
state. 
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7.2  The underlying energy function for single-site titration 

 For clarity in following discussions, we present the underlying theory of CPHMD. 

We start by setting up the framework for a single residue with one titrating hydrogen. The 

rudimentary picture of titration events is an equilibrium association/disassociation reaction 

of a model compound A(aq)  in aqueous solution from a titrating hydrogen. 

 

AH (aq) ↔ A(aq)
− + H (aq)

+

   (eq. 1) 

 

Here, the protonation free energy is defined by  

 

ΔGexp model( ) = −kBT ln 10 pKa
exp − pH( )   (eq. 2) 

 

kB  is Boltzmann’s constant, and T  is the temperature. We can approximate the above 

equations through classical simulations by interpreting the protonation interaction as a 

change in free energies: 

 

ΔGexp protein( )− ΔGpH model( ) = ΔGclassical (protein)− ΔGmodel model( )   (eq. 3) 

 

This relationship then leads to the estimate of experimental free energy of protonation for a 

single titrating site: 

 

ΔGexp protein( ) = ΔGclassical (protein)− ΔGclassical model( ) + ΔGpH model( )   (eq. 4) 
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From this perspective, we infer that titratable groups have an intrinsic free energy of 

protonation that is perturbed by the protein environment mainly through nonbonded 

interactions. We model this perturbation by extending the system’s Hamiltonian with a non-

geometric dimension of λ . As mentioned in the introduction, the CPHMD model uses a 

series of λ  coordinates are applied to a system where each λ  value tracks the progress of 

protonation-deprotonation events. For a particular residue i , these coordinates are 

generated from 

 

λi = sin
2 θi( )    (eq. 5) 

 

where i  is the residue being titrated. In this form the θ  variable is bound to all real 

numbers, and λ  is bound to the continuous range 0 ≤ λi ≤1 . The sine-squared function 

then favors λ  values near the boundary protonated (1) and unprotonated (0) states. Because 

λ  is only physically relevant as it nears these boundary states, we impose cutoffs on 

interpreting λ . In CPHMD an unprotonated state is λi ≤ 0.1 , a protonated state is λi ≥ 0.9

, and a mixed state is 0.1< λi < 0.9 . Figure 7.1 illustrates the protonation states and their 

corresponding λ  values. Potentials and their derivative forces on λ  are then interpreted as 

potentials and forces on θ .  

 The potential energy that governs protonation states contains five λ -dependent 

components. We start with the pH dependence of the deprotonation free energy as follows 

from ΔGpH
. This potential is experimentally-verifiable, and connects λ  to the pKa of a 
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residue: 

 

U pH λi( ) = λi pKa (i)− pH( ) kBT ln 10( )  (eq. 6) 

 

Here pKa (i)  is the pKa of titrating group i . Next we have the potential of mean force 

(PMF) along the λ  coordinate from ΔGmodel
. This term corresponds to the negative of free 

energy needed to deprotonate a model residue: 

 

Umodel λi( ) = Ai λi − Bi( )2   (eq. 7) 

 

Equation 7 is a quadratic fit to the thermodynamic work potential of deprotonating a model 

compound, and it splits the protonation state into two low-energy wells that represent the 

protonation states. Then a barrier potential is added that disfavors mixed states of λ : 

 

Ubarrier λi( ) = 4βi λi −1/ 2( )2   (eq. 8) 

 

The barrier scaling parameter βi  is an empirical coefficient designed to tune the propensity 

for a λ  value to remain in either protonated or unprotonated states, and in the current 

iteration of CPHMD assumes a value of 2.5 or 1.75 kcal/mol. Finally, we arrive at the two 

charge-dependent potentials: the Coulombic and generalized Born. The classical Coulombic 

potential is  
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U elec λi( ) = Kelec qa, i λi( ) qb
rabb

∑
a, i
∑

   (eq. 9) 

 

Here Kelec
 is Coulomb’s constant, qa and qb  are the partial charges of atoms a  and b  

respectively, and is the distance between those atoms. Note that this potential for residue 

i  includes the interactions between all atoms a  in residue i  to all other atoms in the system. 

Meanwhile, qa λi( )  is a λ -dependent charge of atoms a , which follows the form 

 

qa, i λi( ) = λi qa, i
unprot + 1− λi( )qa, iprot    eq. 10 

 

where charges on titrating atom a  can be in protonated (qa, i
prot

 ) and unprotonated (qa, i
unprot

 )  

states. Here we note that in an effective charge model of pH, titrating residues are allowed to 

interact. As such, any atom b  from a titrating residue j  interacting with residue i  has its 

own qb, j
prot

 and qb, j
unprot

. Thus the partial charge qb follows one of two possibilities: 

 

 

qb =
qb
λ j qb, j

unprot + 1− λ j( )qa, jprot

⎧
⎨
⎪

⎩⎪

non − titrating
titrating

   eq. 11 

 

That is if atom b  lies in a non-titrating residue, that atom’s partial charge is simply from the 

standard partial charge from that residue’s forcefield. If atom b  lies in a titrating residue j  

rab
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and its charge is affected by the protonation state of j , then its partial charge is derived 

from the same λ -dependent relationship from Equation 10. Since atoms near a titrating site 

can have their partial charges affected by titration states, many more than the titrating 

hydrogens can possess a λ -dependent charge state. We also note that at times j = i . The 

final λ -dependent potential is that from the GB solvent model as expressed in the Still 

equation:32 

 

U GB λi( ) = τ
qa, i λi( ) qb

fab
GB

b
∑

a, i
∑

   eq. 12 

 

where 

 

fab
GB = rab

2 + Ra
BornRb

Born exp −rab
2 / 4Ra

BornRb
Born( )( )⎡

⎣
⎤
⎦
1/2

   eq. 13 

 

Here, qa λi( )  and qb follow the same form as in eq. 10 and 11 respectively, rab  is the 

distance between atoms a  and b , τ  is the factor that scales the Born energy by the 

difference in dielectric values at the dielectric boundary, and the values Ra
Born

 and Rb
Born

 

represent the Born radii of atoms a  and b  respectively. The Born radii are the effective 

distance between an atom and the solute-solvent dielectric boundary, and they are calculated 

through volumetric integration following the GBSW implicit solvent model.25  

 If we pull together the complete potential for a titrating residue i  from equations 6 

through 13, then we arrive at the form 
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Ui
total λi( ) =Ui

pH λi( ) +Ui
model λi( ) +Ui

barrier λi( ) +Ui
elec λi( ) +Ui

GB λi( )
+Ui

VDW +Ui
internal

   eq. 14 

 

The so-called “internal energy” term (Uinternal
) corresponds to the bond, angle, and torsional 

energy terms of a classical energy forcefield. In this model, the titration state is dynamically 

independent of this potential. Although several models of CPHMD include a λ -dependent 

van der Waals term (UVDW
),26,33,34 during this study it was found that at most it contributes to 

less than 0.05 kcal/mol of a given residue’s force on λ , while it nearly doubles the 

calculation time of CPHMD. With the observation that there is an average rotational 

variance of 4.8 kcal/mol Å in the force on λ  due to the GBSW solvent model’s integration 

algorithm, the force contribution from the potential UVDW
 was considered negligible. 

Additionally, the default random force of Langevin dynamics has a standard deviation of 

14.5 kcal/mol at 298K, which further marginalizes vdW forces on λ . Thus in the interest of 

speeding up the original algorithm, vdW force calculations were ignored in this 

implementation of CPHMD.  

 Although we now have the proper setup for addressing residues with a single 

titration site, such as in lysine, we need to address how CPHMD handles tautomerization in 

residues, such as in aspartic acid and histidine. 
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7.3  Proton Tautomerism 

 Similar to how one λ  variable is used to track the progress of titration states of a 

residue, Khandogin and Brooks incorporated tautomeric behavior into CPHMD by 

providing residues with a second λ  variable, called x , to track the progress of tautomeric 

states.26 This arrangement is illustrated in Figure 7.1a with histidine. Just as in λ  dynamics 

for titration states, tautomeric states are linearly interpolated between using the x  variable. 

What results are the potentials become bivariate to both λ  and x , and each tautomeric 

residue has four charge states: tautomer A in protonated and unprotonated states, and 

tautomer B in protonated and unprotonated states. What we shall see later is that residues 

can have equivalent states in this setup. Histidine’s protonated state, for example, is a residue 

saturated with protons. As such tautomers A and B of the protonated state are equivalent. 

We now review the influence of including two λ  parameters for a tautomeric titrating 

residue. 

 The pH dependent potential becomes  

 

U pH λi , xi( ) = λi xi pKa
A(i)− pH( ) + 1− xi( ) pKa

B(i)− pH( )⎡⎣ ⎤⎦ kBT ln 10( )
  eq. 15 

 

where the pKa values of tautomers A and B are pKa
A

 and pKa
B

 respectively. While these 

pKa values for aspartic acid and glutamic acid are equivalent, in residues with asymmetric 

titrating sites such as histidine they are not. The PMF for protonation becomes a bivariate 

polynomial from Equation 7, which expands into the general form 
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Umodel λi , xi( ) = a0λi2xi2 + a1λi2xi + a2λi xi2 + a3λi xi
+ a4λi

2 + a5xi
2 + a6λi + a7xi + a8   eq. 16 

 

The barrier potential is simply a summation of terms that disfavor the mixed states of both 

λ  and x , and follows the form 

 

Ubarrier λi , xi( ) = 4βi
λ λi −1/ 2( )2 + 4βi

x xi −1/ 2( )2   eq. 17 

 

Note that there are two barrier scaling parameters βi
λ

 and βi
x

 for λ  and x . Although 

different biases for tautomeric and protonation transitions are possible in this equation, in 

the discussed CPHMD model they are identical for all titrating residues. 

 The charge-dependent potentials in Equations 9 and 12 are only modified in that 

charges for atoms can now be dependent on the new x  coordinate. The Coulombic and 

generalized Born potentials then follow the forms 

U elec λi , xi( ) = Kelec qa, i λi , xi( ) qb
rabb

∑
a, i
∑

   eq. 18 

 

and 

U GB λi , xi( ) = τ
qa, i λi , xi( ) qb

fab
GB

b
∑

a, i
∑

    eq. 19 

 

respectively. The bivariate charge qa, i λi , xi( )  then follows the form  
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qa, i λi , xi( ) = λi xi qa, i
A, unprot + 1− xi( )qa, iB, unprot⎡⎣ ⎤⎦

+ 1− λi( ) xi qa, i
A, prot + 1− xi( )qa, iB, prot⎡⎣ ⎤⎦   eq. 20 

 

Where charges on titrating atom a  are derived from the protonated and unprotonated 

variants of both A and B tautomers, qa, i
A, prot

, qa, i
A, unprot

, qa, i
B, prot

, and qa, i
B, unprot

. Similarly, the 

charge on atom b  emerges as 

 

qb =

qb
λ j x j qb, j

A, unprot + 1− x j( )qb, jB, unprot⎡⎣ ⎤⎦

+ 1− λ j( ) x j qb, j
A, prot + 1− x j( )qb, jB, prot⎡⎣ ⎤⎦

⎧

⎨
⎪
⎪

⎩
⎪
⎪

non − titrating

titrating

  eq. 21 

 

We now arrive at a general-purpose setup for evaluating the underlying potential for 

continuous transitions among various charge states of a particular residue. Deriving the 

forces with respect to λ  and x , while important, serves little purpose for illuminating the 

topics explored in the remainder of this study. With the framework above, we now can 

discuss the construction of the original algorithm, and the changes made to refactor it for 

efficient parallel processing on GPUs. 
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7.4  Refactoring CPHMD 

 The original CPHMD model was built with mathematical precision and function 

portability in mind. It is a stand-alone function that can be applied to both implicit and 

explicit solvent systems, and except for atom coordinate and Born radii updates, it receives 

no input from other functions during a simulation. During the course of a timestep, each 

titrating coordinate λi is scanned to identify the residue type (such as whether the residue 

has one or two titrating hydrogens), and then an appropriate functional is applied to 

calculate its pH (eq. 6 and 15), model (eq. 7 and 16), and barrier (eq. 8 and 18) potentials. 

Next, neighboring atom-atom interactions are scanned for whether one or both atoms reside 

in titrating groups. If a titrating atom-atom pair is found, then contributions to the 

electrostatic (eq. 9 and 18) and GB (eq. 2 and 19) potentials are integrated. Neighboring 

atom-atom pairs are then scanned again to calculate the VDW potential (ignored in this new 

Figure 7.2 Shown are the approximate distributions of CPU time spent on running simulations 
components of ∆+PHS staphylococcal nuclease molecule. This protein contains 2132 atoms and 37 
titrating residues. A) run on using the original algorithm using a single processing core in 
CHARMM. B) run using the newly refactored CUDA-CPHMD algorithm. 
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iteration of CPHMD). Finally, the force on θ  is calculated, and λ  via θ is advanced a 

timestep using Langevin dynamics.35 In this setup there are several opportunities presented 

to us for improving the algorithm both in the efficiency of its execution in parallel, and by 

weaving portions of the calculation into existent functions elsewhere in the simulation.  

 We first note that the majority of clock cycles used for calculating λ  dynamics are 

spent on neighboring atom-atom interactions when accumulating the electrostatic and GB 

potentials. While the calculations required for each atom pair are computationally cheap, the 

large number of interatomic interactions in a protein containing thousands of atoms can 

make this multitude of cheap calculations altogether expensive. As show in Figure 7.2a, 

about 12% of a 2000-atom simulation is spent only on this calculation. 

 Both CPHMD and the GBSW solvent model require calculating the Still equation 

(eq. 12 and 13) to address part of the neighboring atom potential, so a significant speed 

improvement can be made by placing all of CPHMD’s atom-atom processes inside the 

neighboring atom process of the GBSW solvent model. This way, as GBSW produces the 

solute molecule’s electrostatic solvation free energy and its derivative force on atoms, 

CPHMD processes neighboring atom potentials on λ  simultaneously. Thus the large 

number of redundant atom-atom distance calculations can be reduced significantly during a 

simulation. This setup gains additional speedup through GBSW by using OpenMM’s 

efficient parallel possessing of neighboring-atom interactions. As shown in 7.2, by 

combining the CPHMD and GBSW algorithms we see that pH modeling with CPHMD 

accounts for a much smaller fraction of the overall simulation time.  

 Due to the nature of parallel processing, bottlenecks are often created from the 

longest portions of non-parallel code. While a single-core process can be sped up 

dramatically by creating a case-by-case set of calculations, navigating through the additional 
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overhead to make the situation-specific decision can slow parallel processes down. Regarding 

the equations described earlier, a titrating residue with one tautomer requires fewer 

calculations than a titrating residue with two. As we place each residue’s force calculations in 

parallel processes, however, the speed of the code is improved by regarding all titrating 

residues as possessing two tautomeric states. In this new implementation of CPHMD, 

single-titration residues, such as lysine, are given a meaningless x  coordinates. Lysine then 

uses the longer barrier potential from eq. 16, where the x -coupled coefficients a0, a1, a2, a3, 

and a5 are set to a value of 0.0. Without the overhead for residue identification, the longest 

calculation required, that is calculating the force on θ for a residue with two tautomeric 

states, is shortened. What results is a speed improvement when calculating all components of 

the total potential on λ  coordinates. As shown in Figure 7.2b, using the parallel CUDA-

CPHMD algorithm for a small system impacts the processing time by approximately 6%, as 

opposed to 15% for the original algorithm. 

 

7.5  Benchmarking CUDA-CPHMD 

 We finally reach an efficient setup where using the CPHMD model results in little 

slowdown of the overall simulation time. We chose several systems to benchmark the new 

algorithm, and explore the speed benefits it offers. We chose the naja atra snake cardiotoxin 

(PDB: 1CVO),36 the ∆+PHS hyperstable variant of staphylococcal nuclease (PDB: 3BDC),37 

and the asymmetric subunit of the bacteriophage HK97 head capsule (PDB: 2FT1).38 This 

trio provided a range of system sizes and residue configurations. To add additional statistics, 

the 7 proteins of the HK97 head capsule were assembled into 6 additional subsystems, all of 

which appear in Figure 7.3 to show for a range of system sizes the speed dependence on 
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system size. All simulations were using the CHARMM22 forcefield39,40 using the Langevin 

integrator with a timestep of 2 femtoseconds. These were NT simulations at 298K in 

unbounded volumes using the CUDA-GBSW solvent model, and CUDA-CPHMD to 

model titration states and advance λ  coordinates. Atomic radii for the GBSW solvent 

model were provided through work by Chen et al.41 We found speed improvements of 

between 1 and 3 orders of magnitude in the CUDA-CPHMD algorithm over its CPU 

counterpart. 

Figure 7.3 Shown are the benchmarks for the new CUDA-CPHMD algorithm. The individual 
systems tested were A) the naja atra snake cardiotoxin (PDB: 1CVO); B) the ∆+PHS hyperstable 
variant of staphylococcal nuclease (PDB: 3BDC); and C) the asymmetric subunit of the 
bacteriophage HK97 head capsule (PDB: 2FT1). As shown, the new algorithm is substantially faster 
than the original CPU algorithm by up to 3 orders of magnitude. In D) the same benchmarks from 
earlier are shown (squares) alongside subsystems from the 7 proteins of the bacteriophage subunit 
(circles). Notice that the CUDA algorithm scales more linearly with system size than its CPU-based 
counterpart. E) compares the force on  as calculated on all 595  coordinates from both 
CPHMD algorithms. There is less than a 0.23 (kcal/mol Å) AUE between the two algorithms. 



189	
  

 As we combine the improved efficiency and parallel execution of both GBSW and 

CPHMD (shown in Figure 7.3a to 7.3d), substantial speed gains are found in this new 

version of pH modeling over its predecessor. For smaller 1,000-atom systems, we see a 

speed improvement of over 20-fold when comparing a 12-threaded CPHMD simulation to 

the new CUDA-CPHMD, and an improvement of over 150-fold when compared to the 

single-core algorithm (shown in Figure 7.3a). For larger 29,000 atom systems, we see speed 

improvement of over 1,000-fold (shown in Figure 7.3c). Since the neighboring-atom 

component doesn’t scale linearly with system size, larger systems experience a greater 

calculation penalty than smaller ones. Fortunately, simple changes such as using nonbonded 

cutoffs can mitigate such problems. For instance, a nonbonded cutoff of 14 Å sped up the 

large viral capsid simulation to 6.7 ns/day (a 270% speed increase). 

 

7.6  Accuracy of the CUDA-CPHMD algorithm 

 Speed gains in implementing CPHMD are an important goal both for increasing the 

algorithm’s applicability to a wider range of system sizes, and for its ability to converge on 

useful results more rapidly. It’s accuracy, however, must not be compromised as we 

reconfigure the execution of the algorithm. In Figure 7.3e we show that there is little 

difference between the original CPHMD and CUDA-CPHMD algorithms when calculating 

the force on λ . We maintain an average unsigned error (AUE) of less than 0.23 kcal / mol 

Å in this force, which is much less than the AUE of 4.8 kcal/mol Å caused by the rotational 

variance from the GBSW solvent model. We also note that 99.9% of the AUE between the 

two CPHMD methods is from the slight differences in Born radii calculated from the 
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original and CUDA implementations of GBSW. Thus, we conclude that CUDA-CPHMD 

accurately reproduces the original algorithm’s force on λ . 

 While CUDA-CPHMD may be able to produce the force on λ  coordinates, we ran 

an additional test to see whether or not residue protonation states are also reproduced. Due 

to each residue’s pH-dependent biasing potential, a single residue alone in solution 

presumably should find an optimal protonation state depending on the environmental pH. 

At pH environments below a residue’s pKa the residue should favor a protonated state 

λi ≤ 0.1( ) , and conversely a residue exposed to a pH above its pKa should favor an 

unprotonated state λi ≥ 0.9( ) . By calculating the fraction of protonated to unprotonated 

states of residues at various pH values and fitting the results to the Henderson-Hallelbalch 

Figure 7.4 Above are the pKa calculations for 4 single residues: aspartic acid, glutamic acid, 
histidine, and lysine. The protonation state (dots) were calculated from a fraction of  values in 
pure unprotonated and protonated states. The point of inflection (boxes) of Henderson 
HasselBalch equation fits (lines) indicates the calculated pKa values. Even without optimizing for 
efficiency, convergence of data, or simulation parameters, we find the calculated pKa values match 
those from the forcefield to within 0.5 pK units. 
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equation of states, we expect the point of inflection to reproduce the pKa of that residue.  

 We ran simulations of aspartic acid, glutamic acid, histidine, and lysine to calculate 

their protonation states, as shown in Figure 7.4. These residues were simulated using the 

same setup from the benchmarking section as NT simulations in an unbound volume, and 

CUDA-CPHMD was used both to model titration states and advance λ  coordinates. The 

backbone atom ends were capped with the ACE and CT2 hydrogens. Each dot in Figure 7.4 

represents 200 ps of simulation time, and the residues ran at an average speed of 470 ns/day. 

 We find that without optimizing the simulations for speed, accuracy, or convergence 

of protonation states, that the pKa values could be captured to within 0.5 pK units. 

Interestingly, all states reported a small, systematic overestimation of the pKa, and the exact 

source of this discrepancy remains unclear. The CUDA-GBSW solvent model overestimates 

solvation energy by an average of approximately 0.16 kcal/mol. However, this 

overestimation of energy should bias deprotonation events to occur slightly more often, and 

thus lower the calculated pKa. What is clear from these data, though, is that like its 

predecessor, the CUDA-CPHMD algorithm models the pH dependence of titration well. 

 

7.7  Discussion and Future Directions 

 In this study we present a significantly faster version of the CPHMD algorithm 

adapted for parallel processing in the CHARMM-OpenMM interface. While algorithmically 

the new CUDA-CPHMD algorithm represents little change over its earlier version, the 

speed improvements are so great that previously-unreasonable simulations are now 

straightforward to perform. For instance, what may have been a year-long simulation of the 

HK97 head capsule can now be performed in about 160 minutes. With this newfound speed 
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is an opportunity to fine-tune the CPHMD titration model for a variety of protein systems, 

and to explore the impact of pH environments on side-chain dynamics both at the 

microsecond timescale and with all-atom detail.  

 Similarly to GBSW, the CPHMD model carries with it over a decade of research and 

parameterization. One model of particular interest is pH replica exchange (REX),42 which 

has been shown to predict pKa values of protein structures within single nanoseconds of 

simulation time. Coupled with the improved speed of CPHMD, adapting REX would enable 

a useful and rapid method for characterizing the chemical environment of protein interiors. 
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Chapter 8 
 

Discussion and Final Remarks 
 

 

 

8.1  Final Thoughts on the Protein-Solvent Interface 

 From the work presented in the first half of this thesis (Chapters 2-4) we develop 

several observations pertaining to protein-water interactions. Most prominently we see that 

hydration dynamics are slowed down near protein surfaces on both nanometer and angstrom 

distances. Since proteins are not isotropic solutes, these dynamics are not homogeneously 

distributed. On the angstrom scale, we see a consistent volume of space surrounding protein 

surfaces where water molecules reside for long periods of time, and this volume shows little 

perturbance in the presence of small concentrations of salts or a trifluoroethanol cosolvent 

(below 10% v/v for lysozyme). We also found that when lysozyme was placed in solution 

with sufficient cosolvent to denature it in experiments, simulations showed that the 

trifluoroethanol replaced more than half of the water hot spots. Whether we interpret water 

at these hot spots as a structural component of lysozyme proteins, or as locations where the 

first hydration layer directly stabilizes the protein, we find evidence that water hot spots are 
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necessary for lysozyme’s maintaining a native conformation.  

 Interestingly, predicting the location of such water hot spots shows little correlation 

with the relative hydrophobicity of individual residues, and seems to be a result of 

cooperative interactions from groups of residues. While the extent of this cooperativity is yet 

unresolved, it seems to be longer-reaching than individual water molecules. We find evidence 

of this by comparing water distributions on the two homologous lysozymes we studied; even 

the conserved alpha helix (residues 105-109) showed substantial variation in average water 

interactions. Regardless of its origin of solvent hot spots, we characterize water molecules in 

these hot spots through experiment and simulation to have low exchange rates with bulk 

water, slower orientational dynamics, and longer average lifetimes of hydrogen bonds.  

 As we observe longer nanometer-ranged changes in water dynamics, like other 

studies on the subject,1-3 we find that there is an interstitial layer of solvent with slower 

dynamics between the protein surface and bulk water. This local hydration layer has faster 

diffusion rates and shorter hydrogen bond lifetimes than the water hot spots on protein 

surfaces, but significantly slower dynamics than bulk water. Interestingly, we find that the 

cutoff between local and bulk hydration dynamics is rather sharp. Our experiments report 

this cutoff to reside at distances of 30-40 Å from surfaces of lysozymes, and our simulations 

report the distance to be either at 10-15 Å or 20-25 Å from lysozymes surfaces depending on 

the relative number of proteins interacting with each other. Keeping in mind the high 

concentration of non-water components in the intracellular medium,4,5 even using the lowest 

cutoff estimate suggests that there is little to no bulk-like water present within cellular 

environments. Instead, biological macromolecules are hydrated by significantly constrained 

water that in turn can strongly modulate the flexibility and dynamics of the biomolecules. 

 We hope that this new set of findings can add both to the significance of crowding 
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in biological systems, and to the effects of using differently-sized crowding agents. The work 

laid out, then, is determining which crowding molecules would be appropriate when, and 

characterizing the effects of such molecules for simulations. Whether the effects are present 

at atomically-represented cosolvent molecules, or a distance-dependent frictional dampening 

parameter, simulating such crowding effects may greatly enhance the accuracy of simulating 

water-mediated biological processes.  

 

8.2  Expanding the Scope of Modeling Titration 

 In the second half of this thesis (Chapters 5-7) the most prominent result is simply 

that a long future of parallel processing has been brought to a series of accurate solvation 

methods. In creating the CUDA-GBSW algorithm, we mark the first implementation of 

accurate, volume-exclusion implicit solvation on graphics processing units. With that 

implementation we enable a relatively straightforward method of bringing models dependent 

on accurate calculations of solvation free energy to a fast parallel computing environment. 

Among those models is CPHMD, which allows for efficient simulations of pH-dependent 

titration states. The crowning success of this achievement, though, is not only are the 

algorithms faster, but they that were designed to receive speed gains from future advances in 

GPU technology until GPU chips have with millions of processing cores. Already, 

previously-unreasonable simulations are now trivial to perform, and a new set of time scales 

are accessible to interested scientists. For instance, the time requirements for simulating the 

∆+PHS protein in microsecond-long trajectories used to take years, and now it can be 

performed in days. These timescales have enabled unprecedented capacity to test and 

improve the solvent models. 
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 Although the algorithms of CUDA-GBSW and CUDA-CPHMD are robust and 

stable, improvements are recommended. The integration methods used in GBSW remain as 

the most computationally expensive portion of a simulation. A better placement of the 

integration points offers significant benefits to both speed and accuracy, but carries the risk 

of requiring a new set of atomic radii and optimal parameters. Fortunately, testing the 

accuracy or long-term stability of a simulation is far more accessible with the faster GPU 

version of the algorithm. The more important development, though, is in validating and 

improving pH dependence in a simulation. Although biology regularly utilizes altered 

titration states of amino acids both to regulate structure and function of proteins,6-12 

modeling pH remains a non-standard model. Aside from observing pH-dependent effects 

on conformational equilibria, what awaits the future is a deeper understanding in the 

significance of buried titrating residues.  
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