
Hardware Acceleration for Unstructured Big Data
and Natural Language Processing

by

Prateek Tandon

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2015

Doctoral Committee:

Associate Professor Thomas F. Wenisch, Chair
Assistant Professor Michael J. Cafarella
Professor Dennis M. Sylvester
Assistant Professor Linjia Tang

© Prateek Tandon 2015

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . iv

LIST OF TABLES . vi

LIST OF APPENDICES . vii

ABSTRACT . viii

CHAPTER

I. Introduction . 1

1.1 HAWK: Hardware Support for Unstructured Log Processing . 2
1.2 An Accelerator for Similarity Measurement in Natural Lan-

guage Processing . 4

II. HAWK: Hardware Support for Unstructured Log Processing 7

2.1 Introduction . 8
2.2 Problem Description . 12

2.2.1 Desiderata for a Log Processing System 13
2.2.2 Regular Expression Parsing 17
2.2.3 Conventional Solutions 17

2.3 Background . 18
2.4 HAWK in Principle . 21

2.4.1 Preliminaries . 22
2.4.2 Key Idea . 23
2.4.3 Design Overview . 25

2.5 HAWK Architecture . 26
2.5.1 Compiler . 27
2.5.2 Pattern Automata 29
2.5.3 Intermediate Match Unit 31
2.5.4 Field Alignment Unit 32

2.6 Experimental Results . 34

ii

2.6.1 Experimental Setup 34
2.6.2 Performance . 37
2.6.3 ASIC Area and Power 41
2.6.4 FPGA Prototype 43

2.7 Related Work . 44
2.8 Impact of Technology Trends on the HAWK Design 45
2.9 Conclusion . 47

III. A Software Implementation of HAWK’s Functionality 48

3.1 Introduction . 49
3.2 Design . 51

3.2.1 Compiler . 51
3.2.2 Pattern Matcher . 52

3.3 Experiments and Results . 54
3.3.1 Experiments . 54
3.3.2 Results . 55

3.4 Conclusion . 59

IV. A Hardware Accelerator for Similarity Measurement in Nat-
ural Language Processing . 61

4.1 Introduction . 62
4.2 Related Work . 64
4.3 Design . 65

4.3.1 Constructing a Semantic Search Index 65
4.3.2 Accelerator Architecture 67

4.4 Methodology . 70
4.4.1 Simulation . 70
4.4.2 Timing, Power, and Area Analysis 72

4.5 Results . 72
4.5.1 Performance . 73
4.5.2 Area and Energy 76

4.6 Conclusion . 77

V. Conclusion . 78

APPENDICES . 81

BIBLIOGRAPHY . 126

iii

LIST OF FIGURES

Figure

2.1 A sample log file . 13
2.2 An Aho-Corasick pattern matching automaton 19
2.3 Block diagram of the accelerator architecture 22
2.4 The multicharacter bit-split pattern matching automata compilation

algorithm . 27
2.5 Three-step compiler operation for a 4-wide accelerator and three

search terms (W=4, S=3) . 28
2.6 Operation of the major string matching subunits over three cycles . 30
2.7 Query performance for the single pattern search task on synthetic

data, across varying selectivities . 38
2.8 Query performance on real-world text data, for varying numbers of

search patterns . 39
2.9 Query performance for complex predicates task, across varying selec-

tivities . 40
2.10 Area requirements for various accelerator widths and configurations

(compared to a Xeon W5590 chip) 41
2.11 Power requirements for various accelerator widths and configurations

(compared to a Xeon W5590 chip) 42
3.1 Functionality of the software pattern matcher 52
3.2 Processing rates for W=1 . 55
3.3 Processing rates for W=2 . 56
3.4 Processing rates for W=4 . 56
3.5 Processing rates for W=2 (Line graph) 57
4.1 High-level description of semantic search index construction 66
4.2 Accelerator block diagram . 67
4.3 Speedup . 73
4.4 L2 and memory mus utilization . 74
A.1 Experimental configurations for characterizing the costs associated

with remote accesses . 88
A.2 Runtime breakdown on the Server and representative Reader for the

CPU-intensive microbenchmark . 90

iv

A.3 Runtime breakdown on the Server and representative Reader for the
I/O-intensive microbenchmark . 91

A.4 Random data placement in a Hadoop cluster 96
A.5 Partitioned data placement . 97
A.6 Selective replication of popular data blocks within partitions 97
A.7 Local access fraction as a function of cluster availability 102
A.8 Local access fraction versus number of replicas for 10% cluster avail-

ability . 102
A.9 E↵ect of selective replication of popular blocks on local access fraction103
A.10 Percentage of remote accesses as a function of data placement policy

on a real Hadoop cluster . 105
B.1 Memory and inter-cache bandwidth utilization for non-SPEC bench-

marks . 112
B.2 Memory and inter-cache bandwidth utilization for SPEC benchmarks 113
B.3 Average L1 miss latency for the non-SPEC benchmarks given sym-

metric memory read and write latencies 117
B.4 Average L1 miss latency for the SPEC benchmarks given symmetric

memory read and write latencies . 117
B.5 Percent change in average L1 miss latency for the non-SPEC bench-

marks under conditions of asymmetric memory read and write latencies118
B.6 Percent change in average L1 miss latency for the SPEC benchmarks

for asymmetric memory read and write latencies 119
B.7 Percent energy change when adding an L2 for the non-SPEC bench-

marks . 122
B.8 Percent energy change when adding an L2 for the SPEC benchmarks 123

v

LIST OF TABLES

Table

2.1 Notation associated with HAWK design 20
2.2 Provisioned storage — per bit-split state machine, and total 29
2.3 Server specifications . 34
2.4 Component area and power needs for 1-wide and 32-wide configurations 41
3.1 Notation associated with software implementation 51
4.1 Simulation parameters . 69
4.2 Statistics for Twitter and Wikipedia datasets 70
4.3 Synthesis results . 70
4.4 Power and area results . 76
A.1 Runtimes for various I/O configurations 89
B.1 Memory access latency inflection points 120

vi

LIST OF APPENDICES

Appendix

A. Minimizing Remote Accesses in MapReduce Clusters 82

B. PicoServer Revisited: On the Profitability of Eliminating Intermediate
Cache Levels . 107

vii

ABSTRACT

Hardware Acceleration for Unstructured Big Data and Natural Language Processing

by

Prateek Tandon

Chair: Thomas F. Wenisch

The confluence of the rapid growth in electronic data in recent years, and the re-

newed interest in domain-specific hardware accelerators presents exciting technical

opportunities. Traditional scale-out solutions for processing the vast amounts of text

data have been shown to be energy- and cost-ine�cient. In contrast, custom hardware

accelerators can provide higher throughputs, lower latencies, and significant energy

savings. In this thesis, we present a set of hardware accelerators for unstructured

big-data processing and natural language processing.

The first accelerator, called HAWK, targets unstructured log processing and fits

within the context of string search. HAWK consumes data at a fixed 32 GB/s, a

scan rate an order of magnitude higher than standard in-memory databases and text

processing tools. HAWK’s scan engine requires no control flow or caches; hence, the

hardware scan pipeline never stalls and can operate at a fixed 1 GHz frequency pro-

cessing 32 input characters per clock cycle. The accelerator’s design avoids the cache

misses, branch prediction misses, and other aspects of CPUs that make performance

unpredictable and require area-intensive hardware to mitigate. HAWK also leverages

viii

a novel formulation of the state machines that implement the scan operation, thereby

facilitating a hardware implementation that can process many characters concurrently

while keeping on-chip storage requirements relatively small. In the HAWK design, 32

consecutive characters are conceptually concatenated into a single symbol, allowing

a single state transition to process all 32 characters. Näıvely transforming the input

alphabet in this way leads to intractible state machines—the number of outgoing

edges from each state is too large to enable fixed-latency transitions. We leverage

the concept of bit-split state machines, wherein the original machine is replaced with

a vector of state machines that each process only a bit of input. As a result, each

per-bit state requires only two outgoing edges. Another novel feature of the HAWK

design is that the accelerator searches for strings and numbers in a manner that is ag-

nostic to the location of field and record delimiters in the input log file. The mapping

between matched strings/numbers and fields is done after-the-fact using a specialized

field alignment unit. In its pareto-optimal configuration, HAWK requires 45 mm2 in

45 nm technology and consumes 22 W during operation.

The second accelerator we propose targets similarity measurement in natural lan-

guage processing, and in contrast to HAWK, fits within the realm of semantic search.

This accelerator addresses one of the most data- and compute-intensive kernels that

arises in many NLP applications: calculating similarity measures between millions

(or even billions) of text fragments. We develop this accelerator in the context of

a motivating NLP application: constructing an index for semantic search (search

based on similarity of concepts rather than string matching) over massive text cor-

pora. Constructing the search index nominally requires a distance calculation (e.g.,

cosine similarity) between all document pairs, and is hence quadratic in the number

of documents; this distance calculation is the primary computational bottleneck of

the application. As an example, over half a billion new tweets are posted to Twitter

daily, implying roughly 1017 distance calculations per day. An optimized C implemen-

ix

tation of this distance calculation kernel running on Xeon-class cores, would require a

cluster of over 2000 servers, each with 32 cores, to compare one day’s tweets within a

24-hour turnaround time. Instead, our accelerator for similarity measurement can be

integrated alongside a multicore processor, connected to its last-level cache, to per-

form these distance calculations with extreme energy e�ciency at the bandwidth limit

of the cache interface. By leveraging the latency hiding concepts of multi-threading

and simple scheduling mechanisms, we maximize functional unit utilization. Our ac-

celerator provides 36×-42× speedup over optimized software running on server-class

cores, while requiring 56×-58× lower energy, and only 1.3% of the area.

x

CHAPTER I

Introduction

Electronic text data volumes have undergone explosive growth in recent years,

and this trend is expected to continue [89]. Every day, over 200 billion emails are

transmitted, and over 500 million tweets are published [85]. In 2010, Facebook was

generating of over 130 TB of log data per day; by 2012, this number had grown to 500

TB [100]. Most of these large data corpora are typically processed using scale-out

solutions (for example, using large clusters of servers running software frameworks

such as Hadoop). However, such scale-out processing solutions incur high energy and

hardware costs [59].

From a hardware perspective, domain-specific accelerators have been the focus

of renewed interest recently. Technology trends indicate that transistor dimensions

will likely continue to scale for several technology generations. However, the an-

ticipated end of CMOS voltage (a.k.a. Dennard) scaling has led experts to pre-

dict the advent of dark silicon; that is, that much of a chip must be powered o↵

at any time [22, 39, 86, 104]. This forecast has renewed interest in domain spe-

cific hardware accelerators that can create value from otherwise dark portions of

a chip. Several recent designs to accelerate aspects of data management have already

been proposed [55,112]. Further, recently-announced CPU chip designs include field-

programmable gate array (FPGA) elements [27]; these FPGA elements are designed

1

to act as programmable accelerator blocks for time-consuming tasks. The conflu-

ence of the aforementioned hardware technology developments makes domain-specific

hardware accelerators even more practical and promising.

1.1 HAWK: Hardware Support for Unstructured Log Pro-

cessing

Many forms of electronic text are inherently high-velocity. Examples of such high-

velocity data include unstructured electronic text log data, such as system logs, social

media updates, web documents, blog posts, and news article [89]. These textual logs

can hold useful information for time-sensitive domains, such as diagnosing distributed

system failures, online ad repricing, and financial intelligence. Queries on these high-

velocity text data are often ad hoc, highly-selective, and latency-intolerant. That

is, a system designed to answer such queries may not know the workload ahead of

time; the queries can usually ignore the vast majority of the overall corpus; and user

interactivity requires fast query answers that reflect up-to-the-second data.

Time constraints and the varied workloads in the high-velocity data space often

make index construction impractical. In such scenarios, an ad-hoc query system’s

performance directly depends on its ability to scan and select from the contents

of memory. When performing an in-memory scan-and-select on traditional modern

hardware, memory bandwidth is a crucial performance bottleneck as it sets an upper

bound on the speed of the scan. We find that existing systems and tools do not come

anywhere close to saturating available memory bandwidth. For example, a state-of-

the-art in-memory database can scan at best 2 GB/s of data, far short of the 17 GB/s

RAM-to-CPU DDR3 channel o↵ered by modern architectures. Non-database textual

tools, such as the grep and awk commands, perform even worse, sometimes by more

than an order of magnitude. The gap arises because all of these tools must execute,

2

on average, many instructions for each character of input they scan. Thus instruction

execution throughput, rather than memory bandwidth, becomes the performance

limiter. As memory bandwidths continue to improve (e.g., with the proliferation of

DDR4), the gap between instruction execute rate and available memory bandwidth

is likely to grow further.

In this context, we propose a combination of a custom hardware accelerator, which

we refer to as HAWK, and an accompanying software query compiler for performing

selections and scans over in-memory text data. HAWK is designed with an objective

of processing in-memory text at a fixed rate of 32 GB/s, faster than the data rate of

a single-channel DDR3-2133 system. HAWK’s scan engine requires no control flow

or caches; hence, the hardware scan pipeline never stalls and can operate at a fixed

1 GHz frequency processing 32 input characters per clock cycle. The accelerator’s

design avoids the cache misses, branch prediction misses, and other aspects of CPUs

that make performance unpredictable and require area-intensive hardware to mitigate.

HAWK also leverages a novel formulation of the state machines that implement the

scan operation, thereby facilitating a hardware implementation that can process many

characters concurrently while keeping on-chip storage requirements relatively small.

In the HAWK design, 32 consecutive characters are conceptually concatenated into a

single symbol, allowing a single state transition to process all 32 characters. Näıvely

transforming the input alphabet in this way leads to intractible state machines—

the number of outgoing edges from each state is too large to enable fixed-latency

transitions. So, we leverage the concept of bit-split state machines [101], wherein the

original machine is replaced with a vector of state machines that each processes only

a bit of input. As a result, each per-bit state requires only two outgoing transitions.

Matches are reported when the vector of machines have all recognized the same search

string. Another novel feature of the HAWK design is that the accelerator searches for

strings and numbers in a manner that is agnostic to the location of field and record

3

delimiters in the input log file. The mapping between matched strings/numbers and

fields is done after-the-fact using a specialized field alignment unit.

Through hardware simulation and real-world testing of software solutions, we

demonstrate that our proposed system can saturate modern memory bandwidths and

obtain scan rates that are an order of magnitude higher than standard in-memory

databases and tools. Indeed, our scan operations are fast enough that they are

competitive with software solutions that utilize pre-computed indices for many of

our target queries. HAWK, in its pareto-optimal configuration, requires 45 mm2 in

45 nm technology and consumes 22 W during operation. Both the power and area

figures of HAWK are well within the corresponding envelopes of a server-class chip.

1.2 An Accelerator for Similarity Measurement in Natural

Language Processing

The second target domain for accelerators in this thesis is natural language pro-

cessing (NLP). We propose and evaluate a hardware accelerator that addresses one

of the most data- and compute-intensive kernels that arises in many NLP appli-

cations: calculating similarity measures between millions (or even billions) of text

fragments [18, 26, 31, 91, 96]. We develop this accelerator in the context of a moti-

vating NLP application: constructing an index for semantic search (search based on

similarity of concepts rather than string matching) over massive text corpora such as

Twitter feeds, Wikipedia articles, logs, text messages, or medical records. The objec-

tive of this application is to construct an index where queries for one search term (e.g.,

“Ted Cruz”) can locate related content in documents that share no words in common

(e.g., documents containing “GOP candidate”). The intuition underlying semantic

search is that the relationship among documents can be discovered automatically by

clustering on words appearing in many documents (e.g., “GOP” frequently appearing

4

in documents also containing “Cruz”). Such a search index can be constructed by

generating a graph where nodes represent documents (such as tweets) and edges rep-

resent their pairwise similarity according to some distance measure (e.g., the number

of words in common) [38, 82]. A semantic search can then be performed by using

exact text matching to locate a node of interest in this graph, and, thereafter, using

breadth-first search, random walks, or clustering to navigate to related nodes.

Constructing the search graph nominally requires a distance calculation (e.g.,

cosine similarity) between all document pairs, and is hence quadratic in the number of

documents. This distance calculation is the primary computational bottleneck of the

application. As an example, over half a billion new tweets are posted to Twitter daily

[105], implying roughly 1017 distance calculations per day, and this rate continues

to grow. Clever pre-filtering can reduce the required number of comparisons by an

order of magnitude; nevertheless, achieving the required throughput on conventional

hardware remains expensive. For example, based on our measured results of an

optimized C implementation of this distance calculation kernel running on Xeon-

class cores, we estimate that a cluster of over 2000 servers, each with 32 cores is

required to compare one day’s tweets within a 24-hour turnaround time.

Instead, we develop an accelerator for similarity measurement can be integrated

alongside a multicore processor, connected to its last-level cache, to perform these dis-

tance calculations with extreme energy e�ciency at the bandwidth limit of the cache

interface. The accelerator performs only the distance calculation kernel; other algo-

rithm steps that grow linearly in the number of documents and are easily completed

in software. Our design leverages the latency hiding concepts of multi-threading and

simple scheduling mechanisms to maximize functional unit utilization.

We evaluate the design through a combination of cycle-accurate simulation in the

gem5 framework (performance analysis) and RTL-level synthesis (energy analysis).

For Twitter and Wikipedia datasets, our accelerator enables 36×-42× speedup over a

5

baseline software implementation of the distance measurement kernel on a Xeon-like

core, while requiring 56×-58× lower energy.

The remainder of this document is structured as follows: Chapter II describes

HAWK, the accelerator that supports ad-hoc queries on large datasets. Chapter III

describes a software implementation of HAWK’s functionality. Chapter IV describes

the design of the accelerator that supports calculating similarity measures. The

appendices describe work that, while not directly related, touches upon topics that

are relevant to the area of big data. Appendix A describes a study on improving

MapReduce performance by reducing the number of remote accesses. Appendix B

describes an investigation into the profitability of removing intermediate cache levels

given the advent of 3D-stacked memory; this study is performed in the context of

data-centric and scientific workloads.

6

CHAPTER II

HAWK: Hardware Support for Unstructured Log

Processing

Rapidly processing high-velocity text data is critical for many technical and busi-

ness applications. Traditional software-based tools for processing these large text cor-

pora use memory bandwidth ine�ciently due to software overheads and thus fall far

short of peak scan rates possible on modern memory systems. In this chapter, we

present HAWK, a custom hardware accelerator for ad hoc queries against large in-

memory logs. HAWK comprises a stall-free hardware pipeline that scans input data

at a constant rate, examining multiple input characters in parallel in a single accel-

erator clock cycle. We describe a 1 GHz 32-character-wide HAWK design targeting

ASIC implementation in 45 nm manufacturing technology that processes data at 32

GB/s—faster than most extant memory systems—which requires 42% of the area and

35% of the power budget of an Intel Xeon-class processor in the same technology.

This ASIC design outperforms software solutions by as much as two orders of magni-

tude. We further demonstrate a scaled-down FPGA proof-of-concept that operates at

50 MHz with 4-wide parallelism (200 MB/s). Even at this reduced rate, the prototype

outperforms software grep by 6.5× for large multi-pattern scans.

7

2.1 Introduction

High-velocity electronic text log data—such as system logs, social media updates,

web documents, blog posts, and news articles—have undergone explosive growth in

recent years [89]. These textual logs can hold useful information for time-sensitive

domains, such as diagnosing distributed system failures, online ad pricing, and finan-

cial intelligence. For example, a system administrator might want to find all HTTP

log entries that mention a certain URL. A financial intelligence application might

search for spikes in the number of Tweets that contain the phrase can’t find a job.

Queries on this high-velocity text data are often ad hoc, highly-selective, and latency-

intolerant. That is, the workload is not known ahead of time; the queries often ignore

the vast majority of the corpus; and query answers must be generated quickly and

reflect up-to-the-second data.

Memory-resident databases have recently become a popular architectural solution,

not simply for transactional [68,98] workloads but for analytical ones [72,95,97,115]

as well. Storing data in RAM admits extremely fast random seeks and fast scan

behavior, potentially making such databases good matches for ad hoc and latency-

intolerant log query systems. Although RAM storage costs are higher than other

technologies, they are falling over time and are likely already acceptable for many

datasets (e.g., Twitter’s own search engine now stores recent data in RAM [28]).

Because time constraints and varied workloads make index construction imprac-

tical, an ad hoc log query system’s performance will depend on its ability to scan and

select from the contents of memory. When performing an in-memory scan-and-select

on traditional modern hardware, memory bandwidth—the rate at which the architec-

ture supports transfers from RAM to the CPU for processing—sets an upper bound

on the speed of the scan.

Unfortunately, existing systems and tools do not come anywhere close to satu-

rating available memory bandwidth. For example, for a state-of-the-art in-memory

8

database, we measure a peak scan rate of 2 GB/s of data, far short of the 17 GB/s

RAM-to-CPU DDR3 channel o↵ered by modern architectures. Non-database textual

tools, such as grep and awk, perform even worse, sometimes by orders of magnitude.

The gap arises because all of these tools must execute many instructions, on aver-

age, for each character of input they scan. Thus instruction execution throughput,

rather than memory bandwidth, becomes the performance limiter. Nor is it clear that

growth in CPU cores can solve the problem, as memory bandwidths also continue to

improve (e.g., with the proliferation of DDR4).

System Goal — There are many questions to answer when building an in-memory

analytical database, but in this chapter we narrowly focus on just one: can we saturate

memory bandwidth when processing text log queries? 1 If so, the resulting system could

be used directly in grep- and awk -style tools, and integrated as a query processing

component in memory-resident relational systems.

We are interested in designs that include both software and hardware elements.

Although hardware accelerators have had a mixed history in data management sys-

tems, there is reason to be newly optimistic about their future. The anticipated

end of CMOS voltage scaling (a.k.a. Dennard scaling) has led experts to predict

the advent of chips with “dark silicon”; that is, chips that are designed to have

a substantial portion powered o↵ at any given time [22, 39, 86, 104]. This forecast

has renewed interest in domain specific hardware accelerators that can create value

from otherwise dark portions of a chip—accelerators powered only when especially

needed. Researchers have recently proposed several hardware designs tailored for

data management [55, 112]. Further, recently-announced chip designs include field

programmable gate array (FPGA) elements [27], making a domain-specific hardware

accelerator — implemented in FPGAs — even more practical and promising. There

1Note that although we are motivated primarily by text log processing, general streaming data
query processing has many of the same requirements.

9

has also been substantial recent interest in using FPGAs for database query process-

ing [48, 75, 106,109].

Technical Challenge — It is not surprising that current software systems on stan-

dard cores perform poorly. Most text processing systems use pattern matching state

machines as a central abstraction, and standard cores that implement these machines

in software can require tens of instructions per character of input. Further, there is

a central challenge in e�ciently representing state machines for large alphabets and

complex queries; the resulting transition matrices are sparse, large, and randomly

accessed, leading to poor hardware cache performance.

In this work, we set an objective of processing in-memory ASCII text at 32 giga-

characters per second (GC/s), corresponding to a 32 GB/s data rate from memory—a

convenient power of two expected to be within the typical capability of near-future

high-end servers incorporating several DDR3 or DDR4 memory channels. We inves-

tigate whether a custom hardware component can reach this performance level, and

how much power and silicon area it takes. Achieving this processing rate with conven-

tional multicore parallelism (e.g., by sharding the text log data into subsets, one per

core) is infeasible; our measurements of a state-of-the-art in-memory database suggest

that chips would require nearly 20× more cores than are currently commonplace in

order to reach the target level of performance.

Our Approach — We propose a combination of a custom hardware accelerator and

an accompanying software query compiler for performing selection queries over in-

memory text data. When the user’s query arrives, our compiler creates a pattern

matching finite state automaton that encodes the query and transmits it to the

custom hardware component; the hardware accelerator then executes it, recording

the memory addresses of all text elements that satisfy the query. This list of results

10

can then be used by the larger data management software to present results to the

user, or as intermediate results in a larger query plan.

We exploit two central observations to obtain fast processing while still using a

reasonable hardware resource budget. First, our accelerator is designed to operate at

a fixed scan rate: it always scans and selects text data at the same rate, regardless of

the data or the query, streaming data sequentially from memory at 32 GB/s. We can

achieve such performance predictability because the scan engine requires no control

flow or caches; hence, the hardware scan pipeline never stalls and can operate at a

fixed 1 GHz frequency, processing 32 input characters per clock cycle. Our approach

allows us to avoid the cache misses, branch mispredictions, and other aspects of

CPUs that make performance unpredictable and require area-intensive hardware to

mitigate.

Second, we use a novel formulation of the automata that implement the scan oper-

ation, thereby enabling a hardware implementation that can process many characters

concurrently while keeping on-chip storage requirements relatively small. We concep-

tually concatenate 32 consecutive characters into a single symbol, allowing a single

state transition to process all 32 characters. Näıvely transforming the input alphabet

in this way leads to intractable state machines—the number of outgoing edges from

each state is too large to enable fixed-latency transitions. So, we leverage the con-

cept of bit-split pattern matching automata [101], wherein the original automaton is

replaced with a vector of automata that each process only a bit of input. As a result,

each per-bit state requires only two outgoing transitions. Matches are reported when

the vector of automata have all recognized the same search pattern.

Contributions and Outline — The core contributions of this chapter are as follows:

11

1. We describe a typical log processing query workload, describe known possible

solutions (that are unsuitable), and provide some background information about

conventional approaches (Sections 2.2 and 2.7).

2. We propose HAWK, a hardware accelerator design with a fixed scan-and-select

processing rate. HAWK employs automata sharding to break the user’s query

across many parallel processing elements. The design is orthogonal to standard

data sharding (i.e., breaking the dataset into independent parts for parallel

processing), and can be combined with that approach if desired (Sections 2.4

and 2.5).

3. We describe a 1 GHz 32-character-wide HAWK design targeting ASIC imple-

mentation in a 45 nm manufacturing technology. The accelerator requires 42%

of the area and 35% of the power budget of a contemporary server-class pro-

cessor. This design is capable of saturating near-future memory bandwidth,

outperforming current software solutions by orders of magnitude. Indeed, our

scan operations are fast enough that they are often competitive with software

solutions that utilize pre-computed indexes.

4. We validate our ASIC design with a scaled-down FPGA prototype. The FPGA

prototype is a 4-wide HAWK design and operates at 50 MHz. Even at this

greatly reduced processing rate, the FPGA design outperforms grep by 6.5x for

challenging multi-pattern scans.

We cover related work in Section 2.7 and conclude in Section 2.9.

2.2 Problem Description

We focus on the single problem of fast in-memory scans of textual and log-style

data, a crucial task for a range of data management tools, including in-memory

12

www.pbs.org/nature.html; 72; 06:32:09; opera; linux; 131.24.0.7; 13,789,432; 3125
www.pbs.org/frontline.html; 41; 07:14:15; safari; osx; 187.98.32.1; 762,989,123; 7412
www.pbs.org/peg+cat.html; 156; 08:47:45; firefox; osx; 243.56.171.53; 432,404; 6780
www.pbs.org/dinosaur_train.html; 23; 11:11:11; ie; windows; 54.12.87.10; 55,764; 904
www.pbs.org/nova.html; 32; 16:56:21; safari; osx; 212.63.75,31; 314,573; 510
 ...

Figure 2.1: A sample log file.

relational databases performing in-situ data processing and log processing tools such

as Splunk [10]. Figure 2.1 shows a brief example of such data.

We are particularly interested in settings where log data arrive quickly and must

be queried rapidly. Examples of such workloads include network security analytics,

debugging and performance analysis of distributed applications, online advertising

clickstreams, financial trading applications, and multiplayer online games. More

speculative applications could include news discovery and trend analysis from Twitter

or other text sources. The query workload is a mixture of standing queries that can

be precompiled, and ad hoc ones driven by humans or by automated responses to

previous query results. The actual queries involve primarily field-level tokenization

plus string equality tests.

In this section, we cover the user-facing desiderata of such a system, including the

data model and query language. Then, we consider traditional software solutions for

such queries and why hardware acceleration is desirable.

2.2.1 Desiderata for a Log Processing System

We now briefly describe the types of data and queries that our system aims to

manage.

Data Characteristics — The text to be queried is log-style information derived

from Web servers or other log output from server-style software. We imagine a single

textual dataset that represents a set of records, each consisting of a number of fields.

Delimiters specify the end of each record and each field; the number of fields per

record is variable. We believe that string equality tests will be su�cient for the vast

13

majority of these queries. Because the text arrives very rapidly in response to external

system activity, there is no premade indexing structure (e.g., a B+ Tree) available.

The logs are append-style, so records are sorted by arrival time.

The log may be the result of using a log consolidation system, such as Apache

Flume [1]. Such systems will collect log data from multiple servers in a deployed

system and deposit them into a single location for processing. However, consolidation

does not substantially change the core query processing challenge.

Standard sharing formats such as JSON are increasingly common but still create

non-trivial computational serialization and deserialization overhead when applied at

large scale. As a result, they are generally only used for relatively-rare “interface-

level” data communications, and are not standard for bulk logs. However, if the user

does want to process JSON with our proposed hardware, doing so is possible using

the filter-style deployment described in Section 2.2.2.

It some cases it might be possible to enable fast string-equality log queries by con-

structing an inverted index over the data. However, for high data rates, this approach

is likely to be insu�cient: inverted index construction on Wikipedia-scale datasets

takes hours. Incremental “near-real-time” indexing is possible, but is generally only

applied to modest text updates.

Query Language — The data processing system must answer selection and projec-

tion queries over the aforementioned data. Fields are simply referred to by their field

number. For example, for the data in Figure 2.1, we might want to ask:

SELECT $3, $5 WHERE $7 = 200 AND

($5="132.199.200.201" OR $5="100.202.444.1")

The system uses default field and record delimiters, but the user can specify them

explicitly if needed:

SELECT $3, $5 WHERE $7 = 200 AND

14

($5="132.199.200.201" OR $5="100.202.444.1")

FIELD_DELIM = ’/’

RECORD_DELIM = ’\n’

The system must support boolean predicates on numeric fields (=, <>, >, <,

<=, =<) and textual ones (equality and LIKE).

Query Workload — We assume queries that have four salient characteristics. First,

they are ad hoc, possibly written in response to ongoing shifts in the incoming log

data, such as in financial trading, social media intelligence, or network log analysis.

This changing workload means that even if we were to have the time to create an

index in advance, it would not be clear as to which indexes to construct.

Second, queries are time-sensitive: the user expects an answer as soon as possible,

perhaps so the user can exploit the quick-moving logged phenomenon that caused her

to write the query in the first place. This need for fast answers further undermines

the case for an index: the user cannot wait for the upfront indexing cost.

Third, queries are highly selective: the vast majority of the log data will be

irrelevant to the user. The user is primarily interested in a small number of very

relevant rows in the log. As a result, although our system o↵ers projections, it is not

designed primarily for the large aggregations that motivate columnar storage systems.

Fourth, queries may entail many equality tests: we believe that when querying logs,

it will be especially useful for query authors to test a field against a large number of

constants. For example, imagine the user wants to see all log entries from a list of

suspicious users:

SELECT $1, $2, $3 WHERE $3 = ’user1’ OR $3 = ’user2’

OR $3 = ’user3’ OR ...

or imagine a website administrator wants to examine latency statistics from a

handful of “problem URLs”:

15

SELECT $1, $4, WHERE $1 = ’/foo.html’

OR $1 = ’/bar.html’ OR ...

If we assume the list of string constants—the set of usernames or the set of

problematic URLs—is derived from a relation, these queries can be thought of as

implementing a semijoin between a column of data in the log and a notional relation

from elsewhere [35]. This use case is so common that we have explicit support for

it in both the query language and the execution runtime. For example, the user can

thus more compactly write:

SELECT $1, $4 WHERE $1 = {"problemurls.txt"}

for a query logically equivalent to the one above.

When integrating HAWK with the software stack and interacting with the user,

we envision at least two possible scenarios. The first usage scenario involves close

integration with a data management tool. When the database engine encounters an

ad hoc query, the query is handed o↵ to the accelerator for processing, potentially

freeing up the server cores for other processing tasks. Once the accelerator has

completed execution, it returns pointers in memory to the concrete results. The

database then retakes control and examines the results either for further processing

(such as aggregation) or to return to the user. This scenario can be generalized to

include non-database text processing software, such as grep and awk.

The second usage scenario involves a stand-alone deployment, in which a user

submits queries directly to the accelerator (via a minimal systems software interface)

and the accelerator returns responses directly to the user. In either case, the RDBMS

software and the user cannot interact entirely directly with the hardware. Rather,

they use the hardware-specific query compiler we describe in Section 2.5.1.

16

2.2.2 Regular Expression Parsing

Processing regular expressions is not a core goal: they are not required for many

log processing tasks, and our hardware-based approach does not lend itself to the

arbitrarily-deep stacks that regexp repetitions enable. The hardware natively sup-

ports exact string comparisons including an arbitrary number of single-character wild-

cards. However, it is possible to build a complete regular expression processing system

on top of our proposed mechanism. We first implement using Hawk all of the equal-

ity testing driven components of the regular expression. Any strings that pass this

“prefilter” are then examined with a more traditional software stack for full regular

expression processing.

2.2.3 Conventional Solutions

Today, scan operations like those we consider are typically processed entirely in

software. Simple text processing is often performed with command-line tools like

grep and awk, while more complex scan predicates are more e�ciently processed in

column-store relational databases, such as MonetDB [68] and Vertica [56]. Keyword

search is typically performed using specialized tools with pre-computed indexes, such

as Lucene [69] or the Yahoo S4 framework [76].

However, software-implemented scans fall well short of the theoretical peak mem-

ory bandwidth available on modern hardware because scan algorithms must execute

numerous instructions (typically tens, and sometimes hundreds) per byte scanned.

Furthermore, conventional text scanning algorithms require large state transition ta-

ble data structures that cause many cache misses. For our design goal of 32 GC/s, and

a target accelerator clock frequency of 1 GHz, our system must process 32 characters

each clock cycle. Given a conventional core’s typical processing rates of at most a

few instructions per cycle, and many stalls due to cache misses, we would potentially

require hundreds of cores to reach our desired level of performance.

17

Indexes are clearly e↵ective, but are also time-consuming and burdensome to com-

pute. Traditional index generation is prohibitive for time-sensitive, ad hoc queries.

Moreover, indexes rapidly become stale for high-velocity sources and are expensive

to update.

Hardware-based solutions have been marketed for related applications, for exam-

ple, IBM Netezza’s data analytics appliances, which make use of FPGAs alongside

traditional compute cores to speed up data analytics [48]. Our accelerator design

could be deployed on such an integrated FPGA system. Some data management sys-

tems have turned to graphics processing units (GPUs) to accelerate scans. However,

prior work has shown that GPUs are ill-suited for string matching problems [117], as

these algorithms do not map well to the single instruction multiple thread (SIMT)

parallelism o↵ered by GPUs. Rather than rely on SIMT parallelism, our accelerator,

instead, is designed to e�ciently implement the finite state automata that underlie

text scans; in particular, our accelerator incurs no stalls and avoids cache misses.

In short, existing software and hardware solutions are unlikely to reach our goal of

fully saturating memory bandwidths during scan—the most promising extant solution

is perhaps the FPGA-driven technique. Therefore, the main topic of this chapter is

how we can use dedicated hardware to support the aforementioned query language

at our target processing rate.

2.3 Background

We briefly describe the classical algorithm for scanning text corpora, on which

HAWK is based. The Aho-Corasick algorithm [15] is a widely used approach for

scanning a text corpus for multiple search terms or patterns (denoted by the set S).

Its asymptotic running time is linear in the sum of the searched text and pattern

lengths. The algorithm encodes all the search patterns in a finite automaton that

consumes the input text one character at a time.

18

0 1

3

2

4

6 7

8 9

5

h

s

e

i

h e

s

r s

Figure 2.2: An Aho-Corasick pattern matching automaton. Search patterns are he,
she, his, and hers. States 2, 5, 7, and 9 are accepting states.

The Aho-Corasick automaton M is a 5-tuple (Q,↵, �, q0, A) comprising:

1. A finite set of states Q: Each state q in the automaton represents the longest

prefix of patterns that match the recently consumed input characters.

2. A finite alphabet ↵.

3. A transition function (� : Q ⇥ ↵ ! Q): The automaton’s transition matrix

comprises two sets of edges, which, together, are closed over ↵. The goto

function g(q,↵
i

) encodes transition edges from state q for input characters ↵
i

,

thereby extending the length of the matching prefix. These edges form a trie

(prefix tree) of all patterns accepted by the automaton. The failure function

f(q,↵
i

) encodes transition edges for input characters that do not extend a

match.

4. A start state q0 2 Q, or the root node.

5. A set of accepting states A: A state is accepting if it consumes the last character

of a pattern. An output function output(q) associates matching patterns with

every state q. Note that an accepting state may emit multiple matches if several

patterns share a common su�x.

Figure 2.2 shows an example of an Aho-Corasick trie for the patterns ‘he’, ‘she’,

‘his’ and ‘hers’ (failure edges are not shown for simplicity).

19

Two challenges arise when seeking to use classical Aho-Corasick automata to

meet our performance objective: (1) achieving deterministic lookup time, and (2)

consuming input fast enough. To aid in our description of these challenges, we leverage

the notation in Table 2.1.

Parameter Symbol
Alphabet ↵

Set of search patterns S
Set of states in pattern matching automaton Q

Characters evaluated per cycle (accelerator width) W

Table 2.1: Notation associated with HAWK design.

Deterministic lookup time — A key challenge in implementing Aho-Corasick au-

tomata lies in the representation of the state transition functions, as various repre-

sentations trade o↵ space for time.

The transition functions can be compactly represented using various tree data

structures, resulting in lookup time logarithmic in the number of edges that do not

point to the root node (which do not need to be explicitly represented). Alternatively,

the entire transition matrix can be encoded in a hash table, achieving amortized

constant lookup time with a roughly constant space overhead relative to the most

compact tree.

However, recall that our objective is to process input characters at a constant rate,

without any possibility of stalls in the hardware pipeline. We require deterministic

time per state transition to allow multiple automata to operate in lockstep on the

same input stream. (As will become clear later, operating multiple automata in

lockstep on the same input is central to our design). Hence, neither logarithmic nor

amortized constant transition time are su�cient.

Deterministic transition time is easily achieved if the transition function for each

state is fully enumerated as a lookup table, provided the resulting lookup table is

small enough to be accessed with constant latency (e.g., by loading it into an on-

20

chip scratchpad memory). However, this representation results in an explosion in

the space requirement for the machine: the required memory grows with O(|↵| · |Q| ·

log(|Q|)). This storage requirement rapidly outstrips what is feasible in dedicated

on-chip storage. Storing transition tables in cacheable memory, as in a software

implementation, again leads to non-deterministic access time.

Consuming multiple characters — A second challenge arises in consuming input

characters fast enough to match our design target of 32 GC/s. If only one character

is processed per state transition, then the automaton must process state transitions

at 32 GHz. However, there is no feasible memory structure that can be randomly

accessed to determine the next state at this rate.

Instead, the automaton must consume multiple characters in a single transition.

The automaton can be reformulated to consume the input W characters at a time,

resulting in an input alphabet size of |↵|W . However, this larger alphabet size leads to

intractable hardware—storage requirements grow due to an increase in the number

of outgoing transitions per state on the order of O(|↵|W · log2 |Q|). Moreover, the

automaton must still accept patterns that are arbitrarily aligned with respect to the

window of W bytes consumed in each transition. Accounting for these alignments

leads to |Q| = O(|S| · W) states. Hence, storage scales exponentially with W as

O(|S| ·W · |↵|W · log2(|S| ·W)).

HAWK uses a representation of Aho-Corasick automata that addresses the afore-

mentioned challenges. In the next section, we discuss the principle of HAWK’s oper-

ation, and detail the corresponding hardware design.

2.4 HAWK in Principle

We now describe our proposed system for processing text log queries at rates that

meet or exceed memory bandwidth. We first describe the central ideas that underlie

21

Partial
Match Vectors

Bit-split Pattern Matching
State Machines

Output Field
Values

Input Stream
[W bytes per cycle]

Compiler

www.pbs.org/nature.html; 72
www.cbs.com/index.html; 31
www.nbc.com/news.html; 46
 ...

Intermediate
Match Vector

8W
Field 0:
 www.pbs.org/nature.html
Field 1:
 72

01 ... 1
10 ... 1

00 ... 1
...

|S| x W bits

M
ai

n
M

em
or

y

Pa
tte

rn
 A

ut
om

at
a

[W
*8

 u
ni

ts
]

In
te

rm
ed

ia
te

 M
at

ch

 U

ni
t

00 ... 1

Fi
el

d
Al

ig
nm

en
t

 U

ni
t

Po
st

-p
ro

ce
ss

in
g

So
ftw

ar
e

Sec 5.1

Se
c

5.
2

Se
c

5.
3

Se
c

5.
4

|S| x W bits

Figure 2.3: Block diagram of the accelerator architecture.

the HAWK architecture. We then step through the architecture at a high-level before

describing its core components: the query compiler, the pattern automaton units, the

intermediate match unit, and the field alignment unit.

2.4.1 Preliminaries

Recall that we propose a fixed scan rate system, meaning that the amount of

input processed is the same for each clock cycle: HAWK has no pipeline stalls or

other variable-time operations. Since semiconductor manufacturing technology will

limit our clock frequency (we target a 1 GHz clock), the only way to obtain arbitrary

scanning capacity with our design is to increase the number of characters that can be

processed at each clock cycle.

There are multiple possible deployment settings for our architecture: integrating

into existing server systems as an on-chip accelerator (like integrated GPUs), or as a

plug-in replacement for a CPU chip, or “programmed” into reconfigurable logic in a

CPU-FPGA hybrid [27]. The most appropriate packaging depends on workload and

manufacturing technology details that are outside the scope of this chapter.

An accelerator instance is a sub-system of on-chip components that processes a

compiled query on a single text stream. It is possible to build a system comprising

multiple accelerator instances to scale processing capability. We define an accelerator

instance’s width W as the number of characters processed per cycle. An accelerator

instance that processes one character per cycle is called 1-wide, and an instance that

22

processes 32 characters per cycle is called 32-wide. Thus, if our design target is 32

GB/s of scanning capacity, and the clock has a 1 GHz frequency, we could deploy

either a single 32-wide accelerator instance, or 32 1-wide accelerator instances. When

deploying HAWK, an architect must decide how many accelerator instances should

be manufactured, and of what width.

A common technique in data management systems is data sharding, in which the

target data (in this case, the log text we want to query) is split over many processing

elements and processed in parallel. Our architecture allows for data sharding—in

which each accelerator instance independently processes a separate shard of the log

text, sharing available memory bandwidth—but it is not the primary contribution of

our work. More interestingly, our architecture enables automata sharding, in which

the user’s query is split over multiple accelerator instances processing a single input

text stream in lockstep. Automata sharding enables HAWK to process queries of

increasing complexity (i.e., increasing numbers of distinct search patterns) despite

fixed hardware resources in each accelerator instance. HAWK is designed to make

automata sharding possible.

2.4.2 Key Idea

The key idea that enables HAWK to achieve wide, fixed-rate scanning is our

reformulation of the classic Aho-Corasick automaton to processW characters per step

with tractable storage. As previously explained, simply increasing the input alphabet

to |↵|W rapidly leads to intractable automata. Instead, we extend the concept of

bit-split pattern matching automata [101] to reduce total storage requirements and

partition large automata across multiple, small hardware units. Tan and Sherwood

propose splitting a byte-based (|↵| = 28 = 256) Aho-Corasick automaton into a

vector of eight automata that each process a single bit of the input character. Each

state in the original automaton thus corresponds to a vector of states in the bit-split

23

automata. Similarly, each bit-split state maps to a set of patterns accepted in that

state. When all eight automata accept the same pattern, a match is emitted.

Bit-split automata conserve storage in three ways. First, the number of transitions

per state is drastically reduced to 2, making it trivial to store the transition matrix in a

lookup table. Second, reduced fan-out from each state and skew in the input alphabet

(ASCII text has little variation in high-order bit positions) results in increased prefix

overlap. Third, the transition function of each automaton is distinct. Hence, the

automata can be partitioned in separate storage and state IDs can be reused across

automata, reducing the number of bits required to distinguish states.

Our contribution is to extend the bit-split automata to process W characters per

step. Instead of the eight automata that would be used in the bit-split setting (one

automaton per bit in a byte), our formulation requires W ⇥ 8 automata to process

W characters per step. Increasing W introduces the new challenge of addressing the

alignment of patterns with respect to the W -character window scanned at each step;

we cover this issue in detail in later sections.

Extending the bit-split approach to W > 1 results in exponential storage savings

relative to widening conventional byte-based automata. The number of states in a

single-bit machine is bounded in the length of the longest search term L
max

. Since the

automaton is a binary tree, the total number of nodes cannot exceed 2Lmax

+1�1. The

key observation we make is that the length of the longest search pattern is divided by

W , so each bit-split automaton sees a pattern no longer than L

max

W

+P , with P being

at most two characters added for alignment of the search term in the W -character

window. We find |Q| for a single bit machine scales as O(2[
L

max

W

+P+1]) = O(1) in

W . The storage in the bit-split automata grows as O(|S| · W) to overcome the

aforementioned alignment issue (reasons for this storage increase will become clear

in subsequent sections). With W ⇥ 8 bit-split machines, the total storage scales as

24

O(8 · |S| ·W 2), thereby e↵ecting exponential storage savings compared to the byte-

based automaton.

2.4.3 Design Overview

We now describe our proposed system in detail.

Figure 2.3 shows a high-level block diagram of our accelerator design. At query

time, the system compiles the user’s query and sends the compiled query description

to each accelerator instance. Each instance then scans the in-memory text log as a

stream, constantly outputting matches that should be sent to higher-level software

components for further processing (say, to display on the screen or to add to an

aggregate computation).

The major components of our design are:

• A compiler that transforms the user’s query into a form the hardware expects for

query processing—a set of bit-split pattern matching automata. These automata

reflect the predicates in the user’s query.

• Pattern automaton hardware units that maintain and advance the bit-split

automata. At each cycle, each pattern automaton unit consumes a single bit

of in-memory text input. Because each automaton consumes only one bit at a

time, it cannot tell by itself whether a pattern has matched. After consuming

a bit, each automaton emits a partial match vector (PMV) representing the set

of patterns that might have matched, based on the bit and the automaton’s

current state. For an accelerator instance of width W, there are W×8 pattern

automaton units. For a query of |S| patterns, the partial match vector requires

|S|×W bits.

• The intermediate match hardware unit consumes PMVs from the pattern au-

tomata processing each bit position to determine their intersection. At each

25

clock cycle, the intermediate match unit consumes W×8 PMVs, performing

a logical AND operation over the bit-vectors to produce a single intermediate

match vector (IMV) output. The IMV is the same length as the PMVs: |S|×W.

• Finally, the field alignment unit determines the field within which each match

indicated by the IMV is located. Pattern matching in all of the preceding steps

takes place without regard to delimiter locations, and therefore, of fields and

records in the input log file. This after-the-fact mapping of match locations

to fields, which is a novel feature of our design, allows us to avoid testing on

field identity during pattern matching, and thereby avoids the conditionals and

branch behavior that would undermine our fixed-rate scan design. If the field

alignment unit finds that the IMV indicates a match for a field number that the

user’s query requested, then it returns the resulting final match vector (FMV)

to the database software for post-processing. To simplify our design, we cap

the number of fields allowed in any record to 32—a number su�cient for most

real-world log datasets.

Note that each accelerator instance supports searching for 128 distinct patterns.

Therefore, a device that has 32 1-wide accelerator instances can process up to 32×128

patterns, a device with 16 2-wide instances can process up to 16×128 distinct patterns,

and a device with a single 32-wide instance can process up to 1×128 distinct patterns.

By varying the number of instances and their width, the designer can trade o↵ pattern

constraints, per-stream processing rate, and, as we shall see later, area and power

requirements (see Section 2.6.3).

2.5 HAWK Architecture

We now describe the four elements of HAWK highlighted in Figure 2.3 in detail.

26

Input: Query K and architecture width W
Output: Bit split automata set M .

1: S = shard(sort(
S

predicates(K)))
2: S’ = []
3: for each s 2 S do
4: for i = 1 to W do
5: S’.append(pad(s, i, W))

6:

7: Automata set M = {}
8: for each s 2 S0 do
9: for i = 0 to len(s) do
10: for bit b 2 s[i] do
11: M[i MOD W].addNode(b)

12:

13: for each m 2 M do
14: makeDFA(m)
15: for each q 2 M.states do
16: makePMV(q)

Figure 2.4: The multicharacter bit-split pattern matching automata compilation
algorithm.

2.5.1 Compiler

HAWK must first compile the user’s query into pattern-matching automata. Fig-

ure 2.5 conceptually depicts compilation for a 4-wide accelerator. Figure 2.4 provides

details of the compilation algorithm. The compiler’s input is a query in the form de-

scribed in Section 2.2. After parsing the query, the compiler determines the set of all

patterns S, which is the union of the patterns sought across all fields in the WHERE

clause. S is sorted lexicographically and then sharded across accelerator instances

(Line 1). Sharding S lexicographically maximizes prefix sharing within each bit-split

automaton, reducing their sizes.

Next, the compiler must transform S to account for all possible alignments of

each pattern within the W -character window processed each cycle. The compiler

forms a new set S 0 wherein each pattern in S is padded on the front and back with

wildcard characters to a length that is a multiple of W , forming W patterns for all

possible alignments with respect to the W -character window (Lines 2-5). Figure 2.5

27

Padded Search Terms
[|S| x W]

...

Sort search terms
alphabetically
and create padded search
terms

bit
byte
nibble

bit?
?bit
??bit???
???bit??
byte
?byte???
??byte??
???byte?
nibble??
?nibble?
??nibble
???nibble???

Search Terms
[S]

Bit-split State
Machines [W x 8]

Create bit-split machines.
Assign each bit in
padded search terms to
corresponding bit-split
machine using Aho-
Corasick

Mach. Wx8 - 1

0 1 1 0 1 1 1 0

0 1 1 ... 1 0
PMV [|S| x W bits]

Assign a PMV to each
state in every bit-split
machine. If state is
accepting for a search
term, set corresponding
bit value to 1, else set to 0

Mach. 0

W=4; S=3

Figure 2.5: Three-step compiler operation for a 4-wide accelerator and three search
terms (W=4, S=3).

shows an example of this padding for S={bit, byte, nibble} and W=4. For a machine

where W=1, there is just one possible pattern alignment in the window; no padding

is required.

The compiler then generates bit-split automata for the padded search patterns

in S 0. We generate these bit-split automata according to the algorithm proposed

by Tan and Sherwood [101] (summarized in Lines 7-11). A total of W×8 such

automata are generated, one per input stream bit processed each cycle. Each state

in these automata has only two outgoing edges, hence, the transition matrix is easy

to represent in hardware. Automata are encoded as transition tables indexed by the

28

state number. Each entry is a 3-tuple comprising the next state for inputs bits of

zero and one and the PMV for the state.

Each state’s PMV represents the set of padded patterns in S 0 that are accepted by

that automaton in that state. The compiler assigns each alignment of each pattern a

distinct bit position in the PMV (Line 16). It is important to note that the hardware

does not store S 0 directly. Rather, patterns are represented solely as bits in the PMV.

Accelerator Width (W) 1 2 4 8 16 32
Per Bit-split Machine Storage (KB) 74.8 69.6 33.5 16.5 16.4 32.8

Total Storage (MB) 0.6 1.11 1.07 1.06 2.1 8.4

Table 2.2: Provisioned storage. Per bit-split state machine, and total.

2.5.2 Pattern Automata

The pattern automata, shown in the first panel of Figure 2.6, each process a single

bit-split automaton. Each cycle, they each consume one bit from the input stream,

determine the next state, and output one PMV indicating possible matches at that

bit position.

Consider the pattern automaton responsible for bit 0 of the W×8-bit input stream

(from Figure 2.6). In cycle 0, the automaton’s current state is 0. The combination

of the current state and the incoming bit value indicates a lookup table entry; in

this case, the incoming bit value is 0, so the lookup table indicates a next state of 1.

The pattern automaton advances to this state and emits its associated PMV to the

intermediate match unit for processing in the next cycle.

The transition table and PMV associated with each state are held in dedicated

on-chip storage. We use dedicated storage to ensure each pattern automaton can de-

termine its next state and output PMV in constant time. (Accesses may be pipelined

over several clock cycles, but, our implementation requires only a single cycle at 1

GHz frequency.).

29

Pattern Automata

bit0 = 0

Input
Stream

bitW*8-1

curState = 0

...

curState=0
curState=1
curState=2
curState=3

00...1...01... 0
10...1...10...1
01...0...11...0

5 2
6 4
6 4

1 3 11...1...01...1

...

Intermediate Match Unit

...

...

Field Alignment Unit

Delimiter Detector

char0 ∈ field0
...

char4 ∈ field1
...

charW-1 ∈ field1

IMV

...

...
charW-1
demux

FMV for field0

Next
state

bit0 = 0

Next
state

bit0 = 1
Output PMV
[S*W bits]

PMV0 =
11...1...01...1

[W*8]

PMVW*8-1

Cycle 0

PMV0

PMVW*8-1

IMV

Cycle 1

Cycle 2

PMVs output
based on current
state and input bit

IMV = PMV0 &
PMV1 & ... &
PMVW*8-1

Values mapped
to fields.

E.g., char0 maps
to FMV for field0

...

...

...

FMV for field1

FMV for field31

char0
demux

...1 011 11

...1 000 10

...1 111 10

...1 000 10

... ...

...1 000 10

Patterns ending
at char0

Patterns ending
at charW-1

...1 000 00

...0 000 10

...0 000 00

Figure 2.6: Operation of the major string matching subunits over three cycles.

We determine storage requirements for pattern automata empirically. We select

128 search terms at random from an English dictionary and observe the number of

30

states generated per automaton. We then round the maximum number of states re-

quired by any automaton to the next power of 2, and provision this storage for all

automata. (Note that if the query workload were to systematically include longer

strings, such as e-commerce URLs, then storage requirements would be correspond-

ingly higher.)

Table 2.2 shows the per-automaton and total storage allocation for a range of

accelerator widths. The storage requirement per pattern automaton is comparable to

a first-level data cache of a conventional CPU. We observe a few interesting trends.

First, the per-automaton-storage is minimal for W=8 and W=16. Whereas the

number of patterns grows withW (a consequence of our padding scheme), the number

of states in each automaton shrinks due to an e↵ective reduction in pattern length

(a consequence of processing multiple characters simultaneously). At the same time,

as the number of patterns grows, the PMV width increases. The reduction in states

dominates the larger PMV widths until W=16. Beyond that point, the impact of

increased PMV widths starts to dominate.

Note that we conservatively provision the same storage for all automata, despite

the fact that ASCII is highly skewed and results in far more prefix sharing in high-

order bit positions. This decision allows our accelerator to support non-ASCII repre-

sentations and ensures symmetry in the hardware, which facilitates layout.

2.5.3 Intermediate Match Unit

The intermediate match unit (the middle panel of Figure 2.6) calculates the in-

tersection of the PMVs. A pattern is present at a particular location in the input

stream only if it is reported in the PMVs of all pattern automata. The intermediate

match unit is a wide and deep network of AND gates that computes the conjunction

of the W×8 |S|⇥W -bit PMVs. The result of this operation is the |S|⇥W -bit wide

intermediate match vector, which is sent to the next processing stage. As with the

31

pattern automata, the intermediate match unit’s execution can be pipelined over an

arbitrary number of clock cycles without impacting the throughput of the accelerator

instance, but our 32-wide ASIC implementation requires only a single cycle. In our

FPGA prototype, we integrate the pattern automata and intermediate match unit

and pipeline them over 32 cycles, which simplifies delay balancing across pipeline

stages.

Figure 2.6 shows that the PMVs generated by the pattern automata in cycle 0

are visible to the intermediate match unit in cycle 1. The intermediate match unit

performs a bitwise AND operation on all W×8 |S|⇥W -bit PMVs and yields an IMV.

In our example, the second and last bits of all PMVs are set, indicating that the

padded patterns corresponding to these entries have been matched by all bit-split

automata (i.e., true matches). The intermediate match unit, therefore, outputs an

IMV with these bits set.

2.5.4 Field Alignment Unit

HAWK’s operation so far has ignored the locations of matches between the log

text and the user’s query; it can detect a match, but cannot tell whether the match is

in the correct tuple field. The field alignment unit (the bottom panel of Figure 2.6)

reconstructs the association between pattern matches and fields. The output of the

field alignment unit is an array of field match vectors (FMVs), one per field. Each

vector has a bit per padded search pattern (|S| ⇥ W bits); this allows the user to

determine the exact location of the matching pattern within the input stream. Bit

i in FMV j indicates whether pattern i matched field j and the pattern’s location

within the input stream.

The field alignment unit receives two inputs. The first input is the |S| ⇥ W -bit

IMV output from the intermediate match unit. This vector represents the patterns

identified as true matches.

32

The second input comes from a specialized delimiter detector that is preloaded

with user-specified delimiter characters. (The hardware design for the delimiter

detector is straightforward and is not detailed here for brevity. It is essentially a simple

single-character version of pattern matching.) Each cycle, the delimiter detector emits

a field ID for every character in the W -character window corresponding to the current

IMV (overall, W field IDs).

Search patterns that end at a particular character location belong to the field

indicated by the delimiter detector. Recall that bit positions in the PMVs (and

hence, the IMV) identify the end-location of each padded search pattern within the

currentW -character window (see Section 2.5.1). Thus for every end-location, the field

alignment unit maps corresponding IMV bits to the correct field ID, and the respective

FMV. The operation of the field alignment unit is a demultiplexing operation (see

Figure 2.6).

In cycle 2, the field alignment unit evaluates the window processed by the pattern

automata in cycle 0, and by the intermediate match unit in cycle 1. In our example,

the IMV’s second and last bits are set, indicating that the corresponding patterns

ending at character0 and character
W � 1 have matched in some fields. The delimiter

detector indicates that character0 is in field0, and character
W � 1 is in field1. Thus,

the patterns ending at character0 are mapped to the FMV for field0, and the patterns

ending at character
W � 1 are mapped to the FMV for field1. The mapped FMVs are

subsequently sent to the post-processing software.

The field alignment unit hardware entails 32 AND operations for each bit of the

IMV. Compared to the pattern matching automata, area and power overheads are

minor.

33

Processor Dual socket Intel E5630
16 threads @ 2.53 GHz

Caches 256 KB L1, 1 MB L2, 12 MB L3
Memory Capacity 128 GB
Memory Type Dual-channel DDR3-800

Max. Mem. Bandwidth 12.8 GB/s

Table 2.3: Server specifications.

2.6 Experimental Results

We have three metrics of success when evaluating HAWK. The most straightfor-

ward is query processing performance when compared to conventional solutions on

a modern server. The remaining metrics describe HAWK’s area and power require-

ments, the two hardware resource constraints that matter most to chip designers. We

will show that when given hardware resources that are a fraction of those used by

a Xeon chip, an ASIC HAWK can reach its goal of 32 GC/s and can comfortably

beat conventional query processing times, sometimes by multiple orders of magnitude.

Furthermore, we validate the HAWK design through proof-of-concept implementation

in an FPGA prototype with scaled down frequency and width and demonstrate that

even this drastically down-scaled design still can outperform software.

2.6.1 Experimental Setup

We compare HAWK’s performance against four traditional text querying tools:

awk, grep, MonetDB [68], and Lucene [69]. We run all conventional software on

a Xeon-class server, with specs described in Table 2.3. We preload datasets into

memory, running an initial throwaway experiment to ensure data is hot. We repeat

all experiments five times and report average performance.

We design a HAWK ASIC in the Verilog hardware description language. Fab-

ricating an actual ASIC is beyond the scope of this thesis; instead, we estimate

performance, area, and power of an ASIC design using Synopsys’ DesignWare IP

suite [99], which includes tools that give timing, area, and power estimates. (Syn-

34

thesis estimates of area and power from such tools are part of conventional practice

when testing novel hardware designs.)

Synthesizing an ASIC design entails choosing a target manufacturing technology

for the device. We target a commercial 45 nm manufacturing technology with a

nominal operating voltage of 0.72 V, and design for a clock frequency of 1 GHz.

The details are less important than the observation that this technology is somewhat

out of date; it is two generations behind the manufacturing technology used in the

state-of-the-art Xeon chip for our conventional software performance measurements.

However, the 45 nm technology is the newest ASIC process to which we have access.

Since power and area scale with the manufacturing technology, we compare HAWK’s

power and area against a prior-generation Intel processor manufactured in the same

technology.

The FPGA HAWK prototype is tested on an Altera Arria V ST platform. Due to

FPGA resource constraints, we build a single 4-wide HAWK accelerator instance. We

use the block RAMs available on the FPGA to store the state transition tables and

PMVs of the pattern matching automata. In the aggregate, the automata use roughly

half of these RAMs; there are insu�cient RAMs for an 8-wide accelerator instance.

Because of global wiring required to operate the distributed RAMs, we restrict clock

frequency to 50 MHz. Thus, the prototype achieves a scan rate of 200 MB/sec.

Because of limited memory capacity and overheads in accessing o↵-chip memory

on our FPGA platform, we instead generate synthetic log files directly on the FPGA.

Our log generator produces a random byte-stream (via a linear feedback shift register)

and periodically inserts a randomly selected search term from a lookup table. We

validate that the accelerator correctly locates all matches.

The HAWK compiler is written in C. For the large memory-resident datasets we

expect to process, query compilation time is negligible relative to the runtime. Since

the primary focus of this chapter is on string pattern matching, our compiler software

35

does not currently handle numeric fields automatically; we compile numeric queries

by hand. However, extending it to handle numeric predicates is straightforward.

Our evaluation considers three example use cases for HAWK that stress various

aspects of its functionality. In each case, we compare to the relevant software alter-

natives.

2.6.1.1 Single Pattern Search

We first consider the simplest possible task: a scan through the input text for

a single, fixed string. We generate a synthetic 64 GB dataset comprising 100-byte

lines. We use the text log synthesis method described by Pavlo et al., for a similar

experiment [78]. We formulate the synthetic data to include target strings that match

a notional user query with selectivities of 10%, 1%, 0.1%, 0.01%, and 0.001%. We

time the queries needed to search for each of these strings and report matching lines.

We compare HAWK against a relational column-store database (MonetDB) and the

UNIX grep tool. For MonetDB, we load the data into the database prior to query

execution.

2.6.1.2 Multiple Pattern Search

Next, we consider a semijoin-like task, wherein HAWK searches for multiple pat-

terns in a real-world dataset, namely, the Wikipedia data dump (49 GB). We select

patterns at random from an English dictionary; we vary their number from one to

128. We compare against an inverted text index query processor (Lucene) and again

grep. For Lucene, we create the inverted index prior to query execution; indexing time

is not included in the performance comparison. Lucene and grep handle certain small

tokenization issues di↵erently; to ensure they yield exactly the same search results,

we make some small formatting changes to the input Wikipedia text. We execute

36

grep with the -Fw option, which optimizes its execution for patterns that contain no

wildcards.

2.6.1.3 Complex Predicates

Finally, we consider queries on a webserver-like log of the form <Source IP,

Destination URL, Date, Ad Revenue, User Agent, Country, Language, Search Word,

Duration>. This dataset is also based on a format proposed by Pavlo and co-

authors [78]. A complex query has selection criteria for multiple columns in the log.

It takes the following form2:

SELECT COUNT(*) FROM dataset WHERE (

(Date in specified range)

AND (Ad Revenue within range)

AND (User Agent LIKE value2 OR User Agent LIKE ...)

AND (Country LIKE value4 OR Country LIKE ...)

AND (Language LIKE value6 OR Language LIKE ...)

AND (Search Word LIKE value8 OR Search Word LIKE ...)

AND (Duration within range)).

We tune the various query parameters to achieve selectivities of 10%, 1%, 0.1%,

0.01%, and 0.001%. We compare against equivalent queries executed with the rela-

tional column-store (MonetDB) and the UNIX tool awk.

2.6.2 Performance

We contrast the performance of HAWK to various software tools in GC/s. By

design, the HAWK ASIC always achieves a performance of 32 GC/s, and there is

no sensitivity to query selectivity or the number of patterns (provided the query fits

2We add the COUNT element to the query so that MonetDB does not incur extra overhead in
actually returning the concrete result tuples, but rather incurs only trivial aggregation costs.

37

Figure 2.7: Query performance for the single pattern search task on synthetic data,
across varying selectivities.

within the available automaton state and PMV capacity). In contrast, the software

tools show sensitivity to both these parameters, so we vary them in our experiments.

2.6.2.1 Single Pattern Search

Figure 2.7 compares HAWK’s single pattern search performance againstMonetDB

and grep. We find that HAWK’s constant 32 GC/s performance is over an order of

magnitude better than either software tool, and neither comes close to saturating

memory bandwidth. MonetDB ’s performance su↵ers somewhat when selectivity is

high (above 1%), but neither grep nor MonetDB exhibit much sensitivity at lower

selectivities.

2.6.2.2 Multiple Pattern Search

Figure 2.8 compares HAWK against Lucene and grep when searching for multiple

randomly-chosen words in the Wikipedia dataset. For Lucene, we explore query

formulations that search for multiple patterns in a single query or execute separate

queries in parallel and report the best result.

38

Figure 2.8: Query performance on real-world text data, for varying numbers of
search patterns.

Grep’s performance is poor: its already poor performance for single-pattern search

(1 GC/s) drops precipitously as the number of patterns increases, to as little as 20

megacharacters/s in the 128-word case. Unsurprisingly, because it uses an index and

does not actually scan the input text, Lucene provides the highest performance. We

report its performance by dividing query execution time by the size of the data set

to obtain an equivalent GC/s scan rate. Note that this equivalent scan rate exceeds

available memory bandwidth in many cases (i.e., no scan-based approach can reach

this performance).

Remarkably, however, our results show that, when the number of patterns is large,

a HAWK ASIC is competitive with Lucene even though HAWK does not have access

to a precomputed inverted index. In the 128-pattern case, Lucene’s performance

of 30.4 GC/s falls short of the 32 GC/s performance of HAWK. At best, Lucene

outperforms HAWK by a factor of two for this data set size (its advantage may grow

for larger data sets, since HAWK’s runtime is linear in the dataset size). Of course,

these measurements do not include the 30 minutes of pre-query processing time that

Lucene requires to build the index. (As a point of comparison, our automata compile

39

Figure 2.9: Query performance for complex predicates task, across varying selectiv-
ities.

times are on the order of seconds for all tested scenarios. We used cached query plans

for all MonetDB queries.) As a result, even though Lucene’s query processing times

are faster when the set of patterns is small, HAWK is a better fit in our target ad

hoc scenario, in which the text corpus is changing rapidly enough to make indexing

impractical.

2.6.2.3 Complex Predicates

Figure 2.9 compares HAWK,MonetDB, and awk on the complex queries described

in Section 2.6.1.3. MonetDB performance spans a 45× range as selectivity changes

from 10% to 0.001%. When selectivity is low, MonetDB can order the evaluation

of the query predicates to rapidly rule out most tuples, avoiding the need to access

most data in the database. For 0.001% selectivity, it outperforms HAWK by 3×.

However, for queries that admit more tuples in the answer, where MonetDB must

more frequently examine large text fields, HAWK provides superior performance,

with more than 10× advantage at 10% selectivity. The performance of awk is not

competitive.

40

(a) Single-Unit (b) Multi-Unit, 32GC/s

Figure 2.10: Area requirements for various accelerator widths and configurations
(compared to a Xeon W5590 chip).

2.6.3 ASIC Area and Power

We report a breakdown of an ASIC HAWK instance’s per-sub-component area

and power estimates for two extreme design points, 1-wide and 32-wide, in Table 2.4.

For both designs, the pattern automata account for the vast majority of area and

power consumption. Pattern automata area and power are dominated by the large

storage structures required for the state transition matrix and PMVs. We can see

here the impact that state machine size has on the implementation. Even with the

drastic savings a↵orded by the bit-split technique, the automata storage requirements

are still large; without the technique, they would render the accelerator impractical.

1-wide 32-wide
Unit Area (mm2) Power (mW) Area (mm2) Power (mW)

Pattern Automata 5.7 2602 86 44,563
Intermediate Match Unit < 0.1 < 1 < 1 35
Field Alignment Unit < 1 14 1 448
Delimiter Detector 1.1 < 1 < 1 < 1
Numeric Units < 0.1 1 < 1 39

Other Control Logic 0.2 26 1 146
Total 7.1 2644 89 45,231

Table 2.4: Component area and power needs for 1-wide and 32-wide configurations.

41

(a) Single Unit (b) Multi-Unit 32GC/s

Figure 2.11: Power requirements for various accelerator widths and configurations
(compared to a Xeon W5590 chip).

Figures 2.10 and 2.11 compare the area and power requirements of ASIC HAWK

to an Intel Xeon W5590 chip [7]. That chip uses the same generation of 45 nm

manufacturing technology as our synthesized design. We find that a 1-wide HAWK

instance requires only 3% of the area and 2% of the power of the Xeon chip. A 32-

wide HAWK requires 42% of the area and 35% of the power of the Xeon processor.

Although these values are high, they would improve when using more modern manu-

facturing technology; a 32-wide HAWK instance might occupy roughly one-sixth the

area of a modern server-class chip.

Figures 2.10 and 2.11 also reveal an interesting trend. The 8-wide (4×8) and

16-wide (2×16) HAWK configurations utilize resources more e�ciently (better per-

formance per area or watt) than other configurations. This saddle point arises due to

two opposing trends. Initially, as width W increases from 1, the maximum padded

pattern length (L
max

) per bit-split automaton decreases rapidly. Since each bit-split

automaton is a binary tree, lower L
max

yields a shallower tree (i.e., fewer states) with

more prefix sharing across patterns. Overall, the reduced number of states translates

into reduced storage costs.

42

However, as W continues to grow, L
max

saturates at a minimum while the set

of padded patterns, S 0, grows proportionally to |S| ⇥ W . Each pattern requires a

distinct bit in the PMV, which increases the storage cost per state. Above W = 16,

the increased area and power requirements of the wide match vectors outweigh the

savings from reduced L
max

, and total resource requirements increase.

Overall, the 8-wide and 16-wide configurations strike the best balance between

these opposing phenomena. It is more e�cient to replace one 32-wide accelerator

with four 8-wide accelerators or two 16-wide accelerators. We find that the 4×8

configuration, which exhibits the lowest area and power costs, requires approximately

0.5× area and 0.48× power compared to the 32-wide accelerator, while maintaining

the same performance. Compared to the W5590, the 4×8 configuration occupies

about 0.21× the area and requires 0.17× the power. From a deployment perspective,

we recommend using four 8-wide accelerators (4×8) to obtain the best performance-

e�ciency trade-o↵.

2.6.4 FPGA Prototype

We validate the HAWK hardware design through our FPGA prototype. As pre-

viously noted, the prototype is restricted to 4-wide accelerator instance operating

at a 50 MHz clock frequency, providing a fixed scan rate of 200 MB/sec. As with

the ASIC design, the storage requirements of pattern automata dominate resource

requirements on the FPGA.

We program the accelerator instance to search for the same 64 search terms

as in the multiple pattern search task described in Section 2.6.1.2. Although it is

160× slower than our ASIC design, the FPGA prototype nevertheless remains faster

than grep for this search task by 6.5×, as grep slows drastically when searching for

multiple patterns. Whereas grep achieves nearly a 1 GB/s scan rate for a single

pattern, it slows to 30 MB/s when searching for 64 search terms. (Note that this is

43

still faster than searching for the terms sequentially in multiple passes, but only by a

small factor). With better provisioning of on-chip block RAMs, both the width and

clock frequency of the FPGA prototype could be improved, increasing its advantage

over scanning in software.

2.7 Related Work

There are several areas of work relevant to HAWK.

String Matching — Multiple hardware-based designs have been proposed to ac-

complish multicharacter Aho-Corasick processing. Chen and Wang [29] propose

a multicharacter transition Aho-Corasick string matching architecture using non-

deterministic finite automata (NFA). Pao and co-authors [77] propose a memory-

e�cient pipelined implementation of the Aho-Corasick algorithm. However, neither

work aims to meet or exceed available memory bandwidth.

Some elements of our approach have been used in the past. Hua et al. [47] present

a string matching algorithm that operates on variable-stride blocks instead of single

bytes; their work is inspired in part by how humans read text as patterns instead of

single characters. van Lunteren et al. [66] use transition rules stored using balanced

routing tables; this technique provides a fast hash lookup to determine next states.

Taking a di↵erent approach, Bremler-Barr and co-authors [25], encode states such that

all transitions to a specific state can be represented by a single prefix that defines a

set of current states. However, we are not aware of any previous work that uses our

approach of combining bit-split automata with multiple-character-width processing.

Processing Logs—Processing text logs is an important workload that has dedicated

commercial data tools [10] and is a common use case for distributed data platforms

such as Hadoop [2] and Spark [115]. In-memory data management systems have also

become quite popular [68, 95, 98,115].

44

Databases and FPGAs — A large amount of research has focused on using FPGAs

to improve database and text processing. Mueller et al. explore general query compi-

lation and processing with FPGAs [75]. Teubner et al. propose skeleton automata for

avoiding expensive FPGA compilation costs [106]. The project with goals most simi-

lar to our own is probably that of Woods et al. [109], who examine the use of FPGAs

for detecting network events at gigabit speeds. Although this project also focuses on

the problem of string matching, it has a lower performance target, does not have our

fixed-processing rate design goal, and is technically distinct. IBM Netezza [48] is the

best-known commercial project in this area.

2.8 Impact of Technology Trends on the HAWK Design

We now discuss the impact of future technology trends on the HAWK design. In

general, we expect that future technology trends will drive the demand for domain-

specific accelerators such as HAWK. We also expect that the learnings from the

HAWK design can be applied to other domain-specific accelerators. The algorithmic

and design contributions will continue to hold true in the face of newer technologies;

however, the design tradeo↵s may change to some extent.

First, we consider the e↵ect of new memory technologies. The falling prices of

DRAM along with higher memory densities have spurred the rise of applications that

work on large in-memory datasets [3]. Recall that HAWK is also targeted towards

processing in-memory logs. Technologies like 3D-stacked memories (see Appendix B)

and Intel’s 3D XPoint memories [6] o↵er the promise of significantly higher band-

widths and lower latencies. Such improvements in memory technology will provide

further impetus for domain-specific accelerators like HAWK. As noted earlier, tradi-

tional software solutions demonstrate large gaps between the available and utilized

memory bandwidths; with the aforementioned newer memory solutions, these gaps

45

are likely to grow even larger. Therefore, accelerators such as HAWK can serve a

valuable role in processing in-memory data.

Next, we consider the impact of technology scaling. As shown in Table 2.4,

HAWK’s pattern automata units dominate the area and power requirements, with

the pattern automata being dominated by memory elements. A limitation of our

methodology is that in the absence of access to an industrial memory compiler, we

use flip-flops to represent these memory elements. Based on anecdotal evidence,

we believe that our area and power estimates would be about 8× lower if we were

to use SRAMs instead of flip-flop-based memories. We expect that with the use

of SRAMs, the pareto-optimal design which currently occupies an area of 45 mm2,

will, in fact, take up about 6 mm2. Scaling down to current process nodes will o↵er

further advantages. We estimate that in 14 nm, the area of the aforementioned con-

figuration will be about 1-2 mm2. We also expect that the power requirement of the

pareto-optimal configuration will be approximately 1 W. Therefore, with appropriate

memory elements, and access to newer process libraries, HAWK would move from

being a plug-in replacement for a server chip, to an accelerator in the dark silicon

domain3. Moving into the dark silicon domain will provide an additional advantage

for HAWK—multiple instances of HAWK can be placed without much overhead, and

these instances can then, in the aggregate, saturate memory bandwidth. These mul-

tiple instances of HAWK can operate by evaluating separate sets of search terms, or

separate chunks of the input stream, or a combination of the two.

Finally, we consider improvements in the CPU design space that may make soft-

ware solutions running on CPUs competitive with HAWK. A recent trend in CPU

technology is the availability of wider SIMD units and registers. In the context of

3Technology trends indicate that transistor dimensions will continue to scale for several technology
generations. However, the anticipated end of CMOS voltage scaling has led to predictions of the
advent of “dark silicon”—i.e., much of a chip must be powered o↵ at any time to stay within power
budgets. This forecast has sparked interest in domain specific hardware accelerators that drastically
improve the energy-e�ciency of compute intensive tasks to create value from otherwise dark portions
of a chip.

46

software-based pattern matching using multi-character bit-split automata, the wider

SIMD units can allow for larger PMVs to be supported, and, therefore, larger numbers

of search terms and/or larger accelerator widths. However, pattern automata updates

will still need to be performed using traditional hardware units, and these automata

updates will su↵er from performance degradation due to larger automata (more cache

misses and stalls). Therefore, it is unlikely that the improvements in CPU-SIMD

technology will make software solutions as proposed in Chapter III competitive with

HAWK. That said, GPUs may o↵er ample SIMT parallelism and latency-hiding to

merit the implementation of multi-character bit-split pattern matching automata as

described in Chapter III.

2.9 Conclusion

High-velocity text log data have undergone explosive growth in recent years. Data

management systems that rely on index-driven approaches cannot apply to this work-

load, and conventional scan-based mechanisms do not come close to exploiting the

full capacity of modern hardware architectures. We have shown that our HAWK

accelerator can process data at a constant rate of 32 GB/s. We have also shown that

HAWK is often better than state-of-the-art software solutions for text processing.

47

CHAPTER III

A Software Implementation of HAWK’s

Functionality

In Chapter II we explore HAWK, an accelerator for unstructured log processing.

In the same chapter, we note that grep’s performance for exact pattern matching

degrades drastically as the number of search patterns increases. For example, grep

demonstrates processing rates of almost 1 GC/s for one or two search terms, but

this processing rate drops to 20 MC/s for 128 search terms. Grep’s behavior can be

attributed to the underlying mechanism it uses for pattern matching. Grep makes use

of the Boyer-Moore/Commentz-Walter algorithms, and for a small number of search

terms, is able to skip over large portions of the input stream. However, as the number

of search patterns increases, grep is unable to skip over large portions of the input

stream, and must do more comparisons. In this context, we leverage the techniques

and learnings from the HAWK design to explore a software implementation of HAWK

that overcomes grep’s deficiencies. We compare our software’s performance against

grep to identify performance inflection points beyond which our design exceeds grep’s

performance. We demonstrate that for a large number of search terms (i.e., 16 or

above), our software implementation provides processing rates of over 90 MC/s; in

comparison, grep achieves processing rates of under 30 MC/s. However, for fewer

than 16 search terms, grep provides far better performance than our design. We also

48

find that traditional Aho-Corasick automata provide superior performance compared

to bit-split automata. In other words, the costs of implementing bit-split automata

outweigh the benefits.

3.1 Introduction

HAWK, as described in Chapter II, is an application-specific integrated circuit

(ASIC). However, ASIC design is expensive, and due to its application specific nature,

limited in terms of usage. An alternative avenue for implementing HAWK is using a

field-programmable gate array (FPGA) platform. We do, in fact, implement HAWK

on an FPGA as a proof-of-concept. However, FPGA boards can often be expensive

and di�cult to use.

In light of the above drawbacks of a hardware-based solution, investigating a

software-based implementation can be valuable. The typical method of searching

for strings in software is using grep. However, as previously shown in Section 2.6,

grep shows poor memory bandwidth utilization when searching for large numbers of

search terms (i.e., over 16). For example, when searching for one or two patterns, grep

demonstrates a scan rate of about 1 GC/s; however, when searching for 128 patterns,

the scan rate drops to 20 MB/s. Grep’s performance degradation can be attributed

to its underlying algorithm for exact pattern matching, the Boyer-Moore/Commentz-

Walter algorithms [12,24,32]. These algorithms leverage characteristics of the search

patterns to skip over potentially multi-character windows of the input stream where

a match cannot possibly be found. Since a smaller number of search terms allows for

larger skip windows, only a small portion of the input stream needs to be evaluated.

As the number of search terms grows, increasingly larger portions of the input stream

have to be examined for potential matches, and at the same time, an increased number

of comparisons needs to be made.

49

To study whether memory bandwidth can be more e↵ectively utilized using the

techniques of Aho-Corasick [15] and bit-split machines [101], in conjunction with

processing multiple characters per step, we implement key aspects of the HAWK

design in software. Our software implementation makes use of the Aho-Corasick

algorithm which, in contrast to Boyer-Moore/Commentz-Walter, generates a pattern

matching state machine for all the search terms, and evaluates all input characters in a

manner agnostic to the characteristics of the search patterns. Further, Aho-Corasick

only needs to make one state machine transition per input character. Therefore,

we expect that for a large number of search terms, Aho-Corasick, and hence our

implementation, should demonstrate at least similar performance compared to grep.

Further, as shown in Chapter II, bit-split pattern matching automata provide stor-

age benefits over traditional byte-based Aho-Corasick pattern matching automata. In

a software context, smaller pattern automata can contribute towards improved cache

locality. We also evaluate whether the bit-split technique provides any advantages,

and investigate the potential benefits of evaluating multiple characters of the input

stream within each processing step.

The major goals of our investigation into a software implementation are:

• Identify inflection points beyond which our software implementation demon-

strates higher performance compared to grep.

• Evaluate the performance of bit-split designs and various accelerator widths.

Overall, we make the following contributions in this chapter. We demonstrate the

design of a software-based compiler and pattern matcher that leverage the techniques

of Aho-Corasick and bit-split automata. Our design exhibits a processing rate of

over 90 MC/s for 16 or more randomly selected search terms; in comparison, grep

demonstrates processing rates of under 30 MC/s. However, for 8 or fewer search

terms, grep is significantly superior to our solution. Additionally, we find that the

50

costs of implementing bit-split pattern automata outweigh the associated benefits. In

other words, traditional Aho-Corasick style byte-based pattern automata o↵er higher

performance in software.

The remainder of the chapter is structured as follows. Section 3.2 describes the

details of the software implementation, Section 3.3 discusses results, and Section 3.4

concludes.

3.2 Design

Parameter Symbol
Characters evaluated per processing step (accelerator width) W

Set of search patterns S
Number of bits each automaton is responsible for |B|

Table 3.1: Notation associated with software implementation.

The software implementation of HAWK’s functionality consists of two aspects—a

compiler and a pattern matcher. The compiler, as previously described, takes as input

a set of user-defined search terms. The compiler then converts the search terms into a

set of bit-split pattern matching automata. The pattern matching automata are then

utilized by the pattern matcher during the pattern matching process. We restrict our

software implementation to single-threaded code since we consider a single instance

of grep as our baseline for comparison. Further, since we restrict ourselves to exact

pattern matching without introducing the notion of fields, we do not implement stages

of the HAWK pipeline such as the field alignment unit. Table 3.1 lists the notation

used in this chapter.

3.2.1 Compiler

We implement the compiler described in Figure 2.4 and Figure 2.5 using C. The

compiler takes in a user query and generates pattern matching state machines. In the

context of the software implementation, we limit the user queries to searches for exact

51

Input: Bit split automata set M , input stream S
Output: Match vector v.

1: readAutomata(M)
2: for each character window w 2 S do
3: bitset b = splitIntoBits(w)
4: v.setAllBits()
5: for each automaton m 2 M do
6: transitionRule t = m[currentState]
7: m.nextState = t.nextState[b[m]]
8: v = v & t.pmv

9: if (v > 0) recordMatch()

Figure 3.1: Functionality of the software pattern matcher.

patterns. The compiler first sorts the search terms alphabetically and creates padded

search terms if needed. Next, the compiler generates bit-split automata using the

Aho-Corasick algorithm. Finally, each state in every bit-split automaton is assigned

a partial match vector (PMV); the PMV represents the search terms that the said

state accepts.

3.2.2 Pattern Matcher

The pattern matcher implements the functionality of HAWK’s pattern automata

and intermediate match unit; Figure 3.1 illustrates the functionality at a high level.

The pattern matcher first reads in the compiled pattern matching automata into its

internal data structures (line 1). Each pattern automaton is represented as an array

of transition rules. Each transition rule is addressable by the automaton’s current

state, and consists of an array of all the possible next states that the automaton can

transition to given an input value. Every transition rule also has associated with it, a

partial match vector (PMV) that specifies the search patterns that the current state

accepts. Section 2.4 provides more details on the format of the transition rules.

During each processing step, the pattern matcher reads in, and processes, char-

acters from the input stream in increments of the accelerator width, W (line 2). For

example, for W = 2, the pattern matcher reads and processes two characters at a

52

time. The matcher supports bit-split pattern matching automata that can be respon-

sible for a variable number of bits—either single bits, or a set of bits (up to 8 bits).

For example, for |B| = 1 each automaton is responsible for one bit in the bit repre-

sentation of the W character window, and for |B| = 8 each automaton is responsible

for eight bits in the bit representation of the W character window. Note that the

W = 1, |B| = 8 configuration corresponds to byte-based Aho-Corasick. Once the

required characters have been read in from the input stream, the character window is

parsed, and the relevant bits are sent to each pattern matching automaton (line 3).

Subsequently, each automaton selects a transition rule corresponding to its current

state (line 6), and selects its next state from the transition rule based on the input

bit(s) (line 7). Finally, the automaton ANDs the PMV contained in the current

transition rule with the PMV generated by the previously evaluated automaton (line

8). The match vector that is generated after all the automata have been evaluated

represents the search terms that all the pattern automata agree upon as having

matched (line 9).

A major distinction between the operation of HAWK and the software imple-

mentation is that HAWK’s operation is inherently parallel, whereas the software is

inherently sequential. More specifically, HAWK evaluates all automata in parallel

and then ANDs together all the PMVs generated. The software, on the other hand,

evaluates each automaton separately and performs an AND between two PMVs in

every step; this evaluation and ANDing is repeated until all automata have been

processed.

Since multiple pattern automata are updated sequentially in the software im-

plementation, optimizing portions of the code becomes imperative. To aid in fast

matching, we represent the partial match vectors (PMVs) using 128-bit MMX reg-

isters; these 128-bit registers provide fast AND operations using SSE instructions

(mm and si128). During the phase when the pattern automata are being read into

53

the matcher, we utilize the mm loadu si128 instruction to load the PMVs. The width

of the MMX registers, however, places an upper bound on the number of search terms,

|S|, and the accelerator width, W, that can be implemented. Use of 256- and 512-bit

registers available on more modern architectures can allow for larger values of |S|

and W . Finally, to reduce overheads associated with reading the input stream, we

leverage memory-mapped file I/O (mmap).

3.3 Experiments and Results

We now present the results of the performance comparison between our software

implementation and grep. Recall that the main goals of our investigation into a

software implementation are to identify inflection points beyond which the software

implementation demonstrates higher performance than grep, and to evaluate the per-

formance of various bit-split configurations and accelerator widths. We vary various

design parameters and report the performance of our software implementation and

grep in megacharacters per second or MC/s.

3.3.1 Experiments

While comparing the performance of our software solution against grep, we vary

the following parameters as powers of two:

• Accelerator width (W = 1 to 4)

• Number of search terms (|S| = 1 to 128)

• Bits each individual automaton is responsible for (|B| = 1 to 8, with 8 rep-

resenting an automaton responsible for an entire character, i.e., equivalent to

Aho-Corasick for W = 1)

Since we utilize 128-bit MMX registers, we restrict the number of search terms,

|S|, to a maximum of 64 for an accelerator width of two (W = 2), and to 32 for an

54

accelerator width of four (W = 4). The search terms themselves are picked randomly

from the English dictionary. We ensure that the same search terms are used while

evaluating our software implementation, and for grep.

Note that for grep, we only vary the number of search terms, |S|. Further, to

ensure that the outputs of the software and grep are equivalent, we run grep with

‘-Fo’ and pipe the results to word count (wc). The input stream we use is the same

49 GB Wikipedia data dump utilized in Section 2.6. We repeat all experiments five

times and report average performance.

3.3.2 Results

We find that the best performance a↵orded by our accelerator is for W = 2

and |B| = 8; this configuration strikes a balance between the number of characters

read from the input stream, and the number of next state updates and PMV ANDs

performed in sequence during each processing step. For W = 1, the overhead of

reading the input stream dominates, whereas for W = 4, the costs associated with

updating a minimum of four automata and ANDing together their associated PMVs

dominate.

Figure 3.2: Processing rates for W=1.

55

Figure 3.3: Processing rates for W=2.

Figure 3.4: Processing rates for W=4.

Figure 3.2, Figure 3.3, and Figure 3.4 show the processing rates, in MC/s, of

our software solution and grep. In general, for a smaller number of search terms

(i.e., under 16) randomly picked from the English dictionary, grep shows superior

performance compared to our software solution. This phenomenon can be explained

by the fact that grep utilizes the Boyer-Moore/Commentz-Walter algorithms [24,32]

for exact string matching [12], with Commentz-Walter being used when searching for

56

Figure 3.5: Processing rates for W=2 (Line graph).

more than one pattern. These algorithms leverage characteristics of the search terms

to skip over portions of the input stream where a match cannot possibly be found.

A smaller number of search terms allows for larger skips; typically, only a small

fraction of the input stream needs to be evaluated. However, for more numerous

search terms, larger portions of the input stream have to be examined for potential

matches, and more comparisons need to be made. Further, in practical scenarios,

Aho-Corasick has been demonstrated to be faster than Commentz-Walter [11, 36].

Our software implementation, on the other hand, evaluates each character in the

input stream independent of the characteristics of, and the number of, search terms.

For large numbers of search terms (i.e., 16 and over), our software implementation

demonstrates better performance compared to grep.

Figure 3.5 shows the processing rates for our software implementation and grep

for W = 2 as a line graph. Figure 3.5 also illustrates the performance of grep when

all characters in the input stream are evaluated; the associated points on the graph

are marked “grep (no skip)”. To force grep to evaluate every input character, we

search for a variable number of single character patterns. We vary the number of

57

unique single characters we search for from one to 64 as powers of two. We find that

grep’s performance when evaluating all characters in the input stream is drastically

worse than when searching for the same number of randomly selected English words.

We attribute the di↵erence in grep’s performance to a higher likelihood of single

characters being matched, and therefore, more post-processing operations (since each

character is being searched for independently, a larger |S| implies that the sum of

the associated matches goes up). We further find that when searching for a single

pattern, the processing rate achieved is between that of the 8 randomly-selected

English pattern scenario and the 16 randomly-selected English pattern scenario; this

gives credence to the conclusion that, typically, beyond |S| = 16, all characters in

the input stream are being evaluated by grep. (Note: For the single pattern case,

we report results for the character ‘z’ which accounts for 0.16% characters in the

input stream. We pick ‘z’ because it has one of the lowest character frequencies in

English [4], and therefore, post-processing in grep due to matches is minimized, while

still maintaining a non-zero probability of a match in the input stream).

In general, the best performance for our software implementation is seen for 8

bits per automaton, i.e., for |B| = 8. Recall that compared to HAWK, our software

implementation is sequential. In other words, the next states for all automata are

evaluated sequentially (in contrast, HAWK evaluates each automaton in parallel) and

the associated PMVs are also ANDed in a sequential manner. For |B| = 1 andW = 1,

eight di↵erent automata are evaluated and eight PMVs are ANDed sequentially in

every step; however, for |B| = 8, only one automaton needs to be evaluated, and no

AND operations need to be performed; this lower number of operations contributes

to improved performance. The overall conclusion from the aforementioned graphs

is that Aho-Corasick is, in fact, superior to the bit-split approach in software. In

other words, the costs of implementing bit-split automata in software overcome the

associated benefits. Note that for W > 1 and |B| = 8, each automaton is responsible

58

for one character in the input stream. In other words, instead of näıvely extending

the alphabet for W > 1, we save on storage by making each automaton responsible

for one character. Overall, however, for small numbers of search terms, grep is a more

feasible solution than our software implementation.

We also observe that as the number of search terms increases, the performance

of the software implementation degrades (the trend is most visible in Figure 3.3

and Figure 3.4). This performance degradation can be attributed to two factors.

First, the number of matches increases with larger |S|, thereby requiring more post-

processing. For example, for |S| = 4, there are approximately 63,000 matches in

the Wikipedia input stream; however, for |S| = 64, the number of matches increases

to almost 7.3 million. Second, the pattern matching automata increase in size with

increased numbers of search terms. The larger automata entail more cache misses

and a correspondingly higher percentage of cycles stalled on data. For example, for

W = 2 and |S| = 4, only 6% of cycles are stalled on data. But for W = 2 and

|S| = 64, over 30% of cycles are stalled.

As stated above, the W = 2 and |B| = 8 configuration provides the best overall

performance. However, we note that the peak performance improvement for W = 2

over W = 1, when considering a large number of strings, is about 20%. However, as

|S| increases, the performance advantage decreases to only about 2% for 64 search

terms. Moving to W = 4, in fact, hurts performance due to the costs associated with

evaluating a higher number of automata, and the larger sizes of these automata. In

fact, for W = 4, the performance drop between |B| = 4 and |B| = 8 for |S| > 8 is a

direct consequence of the increased automaton sizes.

3.4 Conclusion

In conclusion, we demonstrate a software implementation of HAWK. When run

on a Xeon-class core, for a large number of search terms (i.e., 16 or above), we demon-

59

strate processing rates of over 90 MC/s; in comparison, grep demonstrates processing

rates of under 30 MC/s. However, for fewer than 16 search terms, grep provides

far better performance compared to our design. We also find that traditional Aho-

Corasick automata provide superior performance compared to bit-split automata. In

other words, the costs of implementing bit-split automata outweigh the benefits.

60

CHAPTER IV

A Hardware Accelerator for Similarity

Measurement in Natural Language Processing

The continuation of Moore’s law scaling, but in the absence of Dennard scal-

ing, motivates an emphasis on energy-e�cient accelerator-based designs for future

applications. In natural language processing, the conventional approach to automat-

ically analyze vast text collections—using scale-out processing—incurs high energy

and hardware costs since the central compute-intensive step of similarity measure-

ment often entails pair-wise, all-to-all comparisons. In this chapter, we describe a

custom hardware accelerator for similarity measures that leverages data streaming,

memory latency hiding, and parallel computation across variable-length threads. We

evaluate our design through a combination of architectural simulation and RTL syn-

thesis. When executing the dominant kernel in a semantic indexing application for

documents, we demonstrate throughput gains of up to 42× and 58× lower energy

per similarity-computation compared to an optimized software implementation, while

requiring less than 1.3% of the area of a conventional core.

61

4.1 Introduction

Whereas technology trends indicate that transistor dimensions will likely continue

to scale for several technology generations, the anticipated end of CMOS voltage

(a.k.a. Dennard) scaling has led many researchers and industry observers to predict

the advent of “dark silicon”; that is, that much of a chip must be powered o↵ at any

time [22, 39, 86, 104]. This forecast has renewed interest in domain specific hardware

accelerators that drastically improve the energy-e�ciency of compute intensive tasks

to create value from otherwise dark portions of a chip.

One target domain for such accelerators is natural language processing (NLP).

With the explosive growth in electronic text, such as emails, tweets, logs, news

articles, and web documents, there is a growing need for e�cient automatic text

processing (e.g., summarization, indexing, and semantic search). The conventional

approach to analyze vast text collections—scale-out processing on large clusters with

frameworks such as Hadoop—incurs high costs in energy and hardware [59]. We

propose and evaluate a hardware accelerator that addresses one of the most data- and

compute-intensive kernels that arises in many NLP applications: calculating similarity

measures between millions (or even billions) of text fragments [18, 26, 31, 91,96].

We develop this accelerator in the context of a motivating NLP application: con-

structing an index for semantic search (search based on similarity of concepts rather

than string matching) over massive text corpora such as Twitter feeds, Wikipedia

articles, logs, text messages, or medical records. The objective of this application

is to construct an index where queries for one search term (e.g., “Ted Cruz”) can

locate related content in documents that share no words in common (e.g., documents

containing “GOP candidate”). The intuition underlying semantic search is that the

relationship among documents can be discovered automatically by clustering on words

appearing in many documents (e.g., “GOP” frequently appearing in documents also

containing “Cruz”). Such a search index can be constructed by generating a graph

62

where nodes represent documents (such as tweets) and edges represent their pairwise

similarity according to some distance measure (e.g., the number of words in com-

mon) [38,82]. A semantic search can then be performed by using exact text matching

to locate a node of interest in this graph, and, thereafter, using breadth-first search,

random walks, or clustering to navigate to related nodes.

Constructing the search graph nominally requires a distance calculation (e.g.,

cosine similarity) between all document pairs, and is hence quadratic in the number of

documents. This distance calculation is the primary computational bottleneck of the

application. As an example, over half a billion new tweets are posted to Twitter daily

[105], implying roughly 1017 distance calculations per day, and this rate continues

to grow. Clever pre-filtering can reduce the required number of comparisons by an

order of magnitude; nevertheless, achieving the required throughput on conventional

hardware remains expensive. For example, based on our measured results of an

optimized C implementation of this distance calculation kernel running on Xeon-

class cores, we estimate that a cluster of over 2000 servers, each with 32 cores is

required to compare one day’s tweets within a 24-hour turnaround time.

Instead, we develop an accelerator that can be integrated alongside a multicore

processor, connected to its last-level cache, to perform these distance calculations

with extreme energy e�ciency at the bandwidth limit of the cache interface. The

accelerator performs only the distance calculation kernel; other algorithm steps, such

as tokenization, sorting, and pre-filtering, have runtimes that grow linearly in the

number of documents and are easily completed in software. Our design is inspired by

the latency hiding concepts of multi-threading and simple scheduling mechanisms

to maximize functional unit utilization. The accelerator comprises a window of

active threads (each corresponding to a single document pair), a simple round-robin

functional unit scheduler, and three kinds of functional units: intersection detectors

(XDs), which identify matching tokens (words) in documents; floating point multiply-

63

accumulate units (MACs), which perform distance calculations; and floating point

multiply-divide units (MDIVs), which normalize the distance measure before it is

written back to memory. We evaluate the design through a combination of cycle-

accurate simulation in the gem5 framework (performance analysis) and RTL-level

synthesis (energy analysis). For Twitter and Wikipedia datasets, our accelerator

enables 36×-42× speedup over a baseline software implementation of the distance

measurement kernel on a Xeon-like core, while requiring 56×-58× lower energy.

4.2 Related Work

Hardware accelerators for text processing, clustering, semantic search, and database

applications have been the focus of extensive research in the architecture commu-

nity. Tan and Sherwood present a specialized, high-throughput string matching ar-

chitecture for intrusion detection and prevention [101]. Chen and Chien investigate

low-power and flexible hardware architectures for k-means clustering [30]. Fushimi

and Kitsuregawa describe a co-processor with hardware sorters for database appli-

cations [42], and Moscola et al. implement reconfigurable hardware that extracts

semantic information from volumes of data in real-time [73]. Roy et al. present an

algorithm for frequent item counting that leverages SIMD instructions [90].

Our accelerator relies on a fast set intersection detector, a topic of much prior

work. Wu and co-authors demonstrate a GPU-based solution for set intersection

detection on the CUDA platform [111]. Schlegel et al. propose an algorithm for

sorted set intersection computation that speculatively executes comparisons between

sets using SIMD instructions available on modern processors [93]. Ding and Konig

develop linear space data structures to represent sets such that their intersection can

be computed in a worst-case e�cient way and within memory [34]. In contrast to these

works, we propose custom hardware to perform set intersection that is particularly

suited to the NLP domain.

64

Perera and Li have done extensive work in the area of hardware support for

distance measurement computation [79,80]. Their work targets FPGAs and smaller,

fixed length vectors. Our proposed design, however, overcomes the drawbacks of

FPGAs, and targets variable vector lengths, which is important when dealing with

documents larger than a few words.

4.3 Design

We briefly describe the overall problem of constructing a semantic search index

and then focus on the dominant kernel, distance calculation between documents, and

how our hardware accelerates this operation.

4.3.1 Constructing a Semantic Search Index

The motivating context for our accelerator is the problem of constructing a se-

mantic search index over snippets of text. We implement an algorithm based on the

text similarity quantification work of Erkan and Radev [38]. The full application is

described in informal psuedo-code in 4.1. In the first step, the textual documents

are transformed into a vector representation to reduce their memory footprint. Each

word in a document is replaced with a tuple comprising a token id and a weight

that represents the information content of the word (based, e.g., on the word’s a pri-

ori appearance frequency in English text). We then sort the tokens so that the set

intersection of two documents can easily be determined with a merge join.

The similarity calculation step nominally must compare all documents pairs, how-

ever, documents that share no word in common have a similarity score of zero. The

total number of comparisons can be reduced by an order of magnitude by first buck-

etizing documents (step 2), i.e., adding a pointer to the document into a bucket

corresponding to each token in the document. Hence, each bucket contains only

documents sharing at least one word in common.

65

1: [Step 1: Build vocabulary, tokenize, and sort]
2: 1. For all documents:
3: 2. Split into sub-strings at whitespace and punctuation
4: 3. Replace each sub-string with token id, IDF weight; add new tokens as needed
5: 4. Sort tokens in ascending order; replace duplicates with count
6: 5. Write out documents as sorted vectors of {token, weight = count * IDF}

7: [Step 2: Pre-filter and bucketize]
8: 1. For all documents:
9: 2. For all tokens in document:
10: 3. Insert pointer to document into a bucket corresponding to the token

11: [Step 3: Similarity calculation]
12: 1. For all buckets:
13: 2. For all document pairs d1, d2 in bucket:
14: 3. while d1 or d2 has more tokens:
15: 4. if d1.token == d2.token: //XD
16: 5. numerator = numerator + d1.weight * d2.weight //MAC
17: 6. pop front token from d1 and d2
18: 7. else:
19: 8. pop front token with lower token id
20: 9. similarity[d1,d2] = numerator / (||d1||×||d2||) //MDIV

21: [Step 4: Build similarity graph]
22: 1. Construct graph with node for each document and edges connecting documents

with similarity >threshold
23: 2. Traverse graph (e.g., via random walk) to discover related documents and build

index

Figure 4.1: High-level description of semantic search index construction.

The similarity calculation step then processes each bucket, calculating the similar-

ity of each document pair via a merge join. Our hardware design accelerates this step.

Following common practice [38,82], we use cosine similarity (the normalized dot prod-

uct of the two weight vectors) as the distance measure, but our hardware architecture

could easily implement other distance measures by replacing the multiply-accumulate

operation with an appropriate alternative.

Once the complete similarity matrix of all document pairs has been calculated,

the final step is to construct a graph where nodes correspond to documents, and edges

connect together documents with similarity scores above some fixed threshold. Then,

a conventional search index, mapping search terms to nodes for documents containing

66

those words, is constructed. Starting from these exact-word-match nodes, additional

related documents can be discovered through traversal of the graph (e.g., via random

walk).

Whereas GPUs are often used for problems that exhibit large-scale parallelism,

they are not well-suited to calculating distance measures using the method described

in 4.1. Because input documents vary in length, the merge-join set intersection oper-

ation does not lend itself to SIMT parallelism, since loop bounds for each document-

pair depend on document length. It is unclear how to stage the input data to avoid

substantial thread divergence and many idle GPU threads. It is also unclear how to

lay out data in memory to enable coalesced accesses, which are crucial to high GPU

performance.

4.3.2 Accelerator Architecture

Requests to L2 Data from L2

Writes to
Memory

Distance
Measurement

Unit

Distance
Measurement

Unit

Distance
Measurement

Unit

Distance
Measurement

Unit
Intersection

Detector (XD)

Distance
Measurement

Unit

Distance
Measurement

Unit

Multiply-
Accumulate
Unit (MAC)

Distance
Measurement

Unit

Distance
Measurement

Unit

Distance
Measurement

Unit

Multiply-
Divide Unit

(MDIV)

[Token,
Weight]

[Token,
Weight]

[Token,
Weight]

[Token,
Weight]

Document1: Cacheline Buffer

Document1: Cacheline Buffer

Document1:
Next Fetch Addr

Document1:
Remaining

Scan

Numerator
Thread

1 Thread State

Thread
2 Thread State

Thread
3 Thread State

Thread
N Thread State

Thread
Controller

&
Scheduler

1

2

3 4 5

[Token,
Weight]

[Token,
Weight]

[Token,
Weight]

[Token,
Weight]

Document2: Cacheline Buffer

Document2: Cacheline Buffer

Document2:
Remaining

Document2:
Next Fetch Addr

Scan

Dest Addr Ready? Done?

Figure 4.2: Accelerator block diagram.

Our accelerator implements step three of 4.1 entirely in hardware. Figure 4.2

shows a block diagram of our accelerator. The accelerator is connected to the L2

bus and reads from the system’s L2 cache. Since the accelerator never reads its own

output, it writes memory, via the L2 bus, with non-cacheable transactions that bypass

L2. The CPU controls the accelerator by preparing a region of memory with an array

of document-pair descriptors. Each descriptor contains the address of the vector

67

representing each document and a destination address for the similarity calculation

result. The accelerator is activated through programmed I/Os that provide the

start address and length of the descriptor array. The CPU can then sleep until

an interprocessor interrupt from the accelerator is delivered to indicate completion.

The accelerator is architected much like an in-order core and has six major archi-

tectural blocks: a memory read interface, a thread controller/scheduler, intersection

detectors (XDs), multiply-accumulate units (MACs), multiply-divide units (MDIVs),

and finally, a memory write interface. As most NLP algorithms represent concepts

like document similarity with floating-point values, we use floating-point functional

units. We describe the operation of the accelerator by walking through a simple

example. Numerical labels in Figure 4.2 correspond to the steps described below.

(1) Fill thread window. The thread controller maintains a window of active

threads (each thread corresponding to a document pair specified in a descriptor),

and schedules threads to functional units using a simple round-robin scheduler. Each

thread window entry comprises thread status information (addresses for the next data

fetches, destination address, remaining indices to be scanned, partial sum) and several

cacheline-sized data blocks for each input document. If any thread window entry is

empty, the controller fills it with the next descriptor in the input array. The controller

then iterates over all active threads and issues requests to L2 to fill all available bu↵er

space for each document. While our simulations ignore virtual memory, in a practical

implementation, virtual addresses must be translated by either a dedicated TLB or

by the TLB of a core neighboring the accelerator.

(2) Token data arrives. Once document data arrive for a particular thread,

processing can begin. Each document is represented as an array of {token, weight}

tuples. Each cycle, a ready thread arbitrates for an XD unit which will compare the

next two tokens sent to it.

68

Parameter Range
Number of XDs 1-32
Number of MACs 1-32
Number of MDIVs 1-32
Thread Window Size 1-64

XD Delay 1 cycle
MAC Delay 3 cycles
MDIV Delay 7 cycles

Table 4.1: Simulation parameters.

(3) XD comparison. The operation of the XD units is conceptually similar to a

sort-merge join. In a particular cycle, the XD unit compares the token ids of the next

tokens from each document. Recall that tokens in each document have been sorted.

Hence, if the token ids do not match, the head pointer for the document with the

smaller token is advanced and updated tokens are compared again in the next cycle.

If the tokens match, the thread is marked and will arbitrate for a MAC unit in the

next cycle.

(4) MAC calculation. When an XD unit reports a match, the MAC unit

performs the floating-point multiply-accumulate to calculate an updated numerator

for the document similarity computation. The input weight values from the two

documents are multiplied and summed with the current numerator, and the result is

stored back into the active thread entry.

(5) Normalization. When the end of either input document is reached, the

merge-join set-intersection operation is complete. The thread then arbitrates for an

MDIV unit to normalize the accumulated numerator by the product of the magnitudes

of the input documents, and then arbitrates for the store interface unit to write its

output value to the destination address in memory. The thread window entry is then

freed.

69

Statistic Twitter Wikipedia
Number of documents in dataset 10,000,000 100,000

Number of documents in bucket of interest 2,500,000 15,000
Average document length (tokens) 9.3 511.5
Minimum document length (tokens) 2 24
Maximum document length (tokens) 39 4,107
Average number of intersections 1.01 200.9

Table 4.2: Statistics for Twitter and Wikipedia datasets.

Unit Area (µm2) Delay (ns) Power (mW)
XD 1,143 0.5 0.5
MAC 14,232 1.5 4.93
MDIV 18,216 3.5 3.95

Controller+Thread Window 293,878 0.5 69.4

Table 4.3: Synthesis results.

4.4 Methodology

We use a two-pronged approach to evaluate our design relative to an optimized

software baseline. We measure performance of both the pure software implementation

and hardware-accelerated kernel using the gem5 architectural simulator [20]. To

investigate energy savings and area overheads, we implement our design in Verilog

and synthesize using industrial 45 nm standard cells.

4.4.1 Simulation

To compare the performance of our accelerator to a CPU baseline, we extend the

gem5 simulator with a device model for our accelerator. The accelerator connects

to the L2 interface. It can read and write 64-byte cache blocks from L2 and is

controlled via programmed I/O to special memory locations. We vary the hardware

parameters of our design (number of threads, XDs, MACs, and MDIVs) to determine

the minimum hardware needed to saturate L2 and/or main memory bandwidth, which

ultimately limits the performance of the accelerator. Table 4.1 shows the various

parameters of the design space we explore. We determine functional unit delays from

synthesized timing results targeting a 2 GHz clock.

70

We contrast our hardware design with a SSE-accelerated C implementation of

the cosine similarity kernel compiled with gcc -O3. We model a 4-wide out-of-order

processor running at 2 GHz with 64 KB L1 caches and an 8 MB L2. As operating

system interactions and I/O do not contribute significantly to the runtime of this

workload, we use gem5’s syscall emulation mode. Note that this simulation mode does

not model virtual memory; nevertheless, because of the high data locality, TLB misses

are unlikely to significantly a↵ect the runtime of the baseline or hardware-accelerated

execution. We validate that the CPU runtimes reported by gem5 are, on average,

within 6% of the runtimes observed on a comparable 8-core Xeon-class server. For

consistent energy comparisons between the CPU baseline and our hardware design,

we report the gem5 results.

We construct benchmarks for Twitter and Wikipedia from databases of 10 million

tweets and 100,000 articles respectively. Table 4.2 shows various statistics for the

datasets we use. The software pre-processing steps of the semantic index construction

algorithm (tokenization, sorting, and bucketizing) are performed o✏ine in advance;

our measurements focus only on the dominant distance calculation step. From the

Twitter database, we select the most frequently occurring token (corresponding to the

string “RT”) and construct a bucket of all tweets containing this token (2.5 million

entries, requiring 6.25 trillion distance calculations). As it is impossible to process this

vast dataset in simulation, we simulate only the first 5 million tweet-pair comparisons

and use the first 1 million tweet-pairs for warm-up. We follow a similar bucketization

process for the Wikipedia data, and simulate 50,000 article-pair comparisons with the

first 2000 pairs used for warm-up.

When processing the entire data set, the document-pair comparisons are blocked

to maximize L2 locality. Thus, the computation will alternate between one phase

where a large fraction of document accesses miss to main memory and a much longer

phase where a block of documents is resident in L2 and there are no main memory

71

accesses. The relative time spent in each phase depends on the relative size of the

document bucket and the L2 cache. To ensure that our accelerator design hides

latency and saturates available L2/memory bandwidth in both phases, we construct

two test cases: Fit, wherein all documents are L2-resident, and Spill, wherein the L2

is empty and documents must be retrieved from memory. We report speedup of the

accelerator relative to the CPU baseline for both phases. To avoid L2 cache pollution,

and since the accelerator never reads its own output, outputs are written directly to

main memory using uncacheable writes.

4.4.2 Timing, Power, and Area Analysis

We implement the accelerator in Verilog and synthesize using an industrial 45 nm

standard cell library to obtain delay, area, and power results assuming a 0.72 V supply

voltage. Table 4.3 shows the post-synthesis delays and areas for each of the sub-units

of the accelerator (the thread window size is 6, the configuration we use in our final

design). We use these synthesized delay results to set functional unit latencies within

the gem5 model. Our floating-point multiply, multiply-accumulate, and divide units

are from the Synopsys DesignWare IP suite [99]. The delays reported in the table are

rounded up to the next 0.5 ns clock edge. We use system configuration and functional

unit activity results from gem5 to generate estimates of CPU core and cache power

using McPAT [61].

4.5 Results

The following subsections outline the performance and energy improvements af-

forded by our design.

72

Figure 4.3: Speedup. Normalized to 1-core CPU (Spill) case.

4.5.1 Performance

We first contrast the performance and performance scalability of the accelerator

relative to the baseline cosine similarity software kernel running on conventional out-

of-order CPU cores. Figure 4.3 shows the speedup provided by the accelerator for

the Twitter and Wikipedia datasets for both the Fit and Spill scenarios normalized

to each single-core Spill CPU baseline. On the horizontal axis, we vary the amount

of hardware dedicated to the accelerator. To simplify presentation of the results, in

this experiment, we vary the number of XD, MAC, MDIV units together, from 1

to 8. Each configuration has double the number of thread slots as XD units. These

configurations all overprovision MAC and MDIV units relative to XD units; we further

optimize the functional unit mix in subsequent experiments.

Through a combination of simulation, and experiments on a Xeon-class server, we

verify that the baseline CPU performance scales roughly linearly with the number of

CPU cores, up to about an 8.5× speedup with 8 cores for the Twitter (Fit) scenario

over the single-core Twitter (Spill) case. CPU performance is limited because of the

overheads of instruction execution (memory addressing, loop flow control, etc.).

73

(a) Percent Accelerator-L2 Bus Utilization

(b) Percent L2-Memory Bus Utilization

Figure 4.4: L2 and memory bus utilization. (a) L2 bus saturates for both Spill sce-
narios and the Twitter (Spill) case. (b) Memory bus is a bottleneck for the Spill

configurations.

74

The accelerator enables substantial speedups. Even with only one of each func-

tional unit, the accelerator can achieve speedups of 8× and 14× in the Twitter (Spill)

and Wikipedia (Spill) scenarios respectively. In general, three XD units are required

to achieve peak speedup. The accelerator improves performance because it eliminates

all software overheads; e.g., in the Twitter (Fit) case, each XD unit can process a

tweet-pair roughly every 24 clock cycles, while a CPU core on average requires 353

cycles to execute 469 instructions per tweet-pair.

Performance generally saturates beyond three XDs since the accelerator fully uti-

lizes either the L2 bus for Twitter (Fit and Spill) and Wikipedia (Fit) scenarios, or

main memory bandwidth for both Spill scenarios. We show the relevant bus utiliza-

tion results in Figure 4.4. Twitter (Spill) is L2- or memory-bandwidth bound depend-

ing on the number of processing units deployed; this configuration also demonstrates

decreased performance with more than three processing units due to destructive in-

terference e↵ects. Wikipedia (Fit) shows little memory tra�c since the number of

writes to memory is negligible, and all reads are serviced by the L2. As a point of

comparison, for the CPU case, even with 8 cores, the L2 and memory bus utilizations

peak at 8.5% for Wikipedia (Fit) and at 19% for Twitter (Spill) respectively.

We find that the pareto-optimal design, when considering performance, energy,

and area in conjunction, consists of three XD units, two MAC units, one MDIV unit,

and six thread slots. The Wikipedia dataset tends to favor slightly more functional

units compared to the Twitter dataset due to its larger document size. Further,

larger thread windows are favored in the Spill scenarios since they must maintain

more outstanding accesses to the memory system to hide the long delay to access

main memory.

75

Accelerator Configuration
[XDs, MACs, MDIVs] [3, 2, 1]

Issue Window 6

Area
Core 24.88 mm2

Accelerator 0.31 mm2

Power
Core 6 W

Uncore 14.8 W
Accelerator 0.43 W

Fit Energy & Performance – CPU 1-core Baseline
Twitter Wikipedia

Core Energy/Document-Pair 1.18 µJ 96.5 µJ
Chip Energy/Document-Pair 4.09 µJ 339.4 µJ

Fit Energy & Performance – Accelerator
Twitter Wikipedia

Accelerator Energy/Document-Pair 2.12 nJ 170.9 nJ
Chip Energy/Document-Pair 72.7 nJ 5.8 µJ

Chip Energy Ratio (Core:Accelerator) 56.3:1 58.5:1

Table 4.4: Power and area results.

4.5.2 Area and Energy

Table 4.4 shows the area overhead and energy savings when using our accelerator

in the [3 XD, 2 MAC, 1 MDIV] configuration with a thread window size of six. Note

that, we assume that the accelerator is power-gated when cores are active and vice-

versa. The accelerator only imposes an area overhead of 0.31 mm2, less than 1.3%

of the area of a core. Because of its simple microarchitecture and lack of instruction

fetch/decode bottlenecks, the accelerator’s power requirements are much lower than

that of a core. The power savings translate to an even larger energy-e�ciency gain,

since the accelerator can also process document-pairs much faster (and hence incur

less leakage overhead per processed document-pair). Overall, the accelerator improves

energy e�ciency by approximately two orders of magnitude relative to the CPU

baseline.

76

4.6 Conclusion

The conventional approach of using scale-out methods to automatically analyze

vast text collections incurs high energy and hardware costs since the central compute-

intensive step of similarity measurement often entails pair-wise, all-to-all comparisons.

We propose a custom hardware accelerator for similarity measures that leverages data

streaming and parallel computation, and, due to its low-power requirements, utilizes

dark silicon areas of the chip that would otherwise have to be powered down. Archi-

tectural simulations and RTL synthesis demonstrate throughput gains of up to 42×

and 58× lower energy consumption compared to an optimized software implementa-

tion of cosine similarity calculation, while incurring minimal area overheads.

77

CHAPTER V

Conclusion

The confluence of the rapid growth in electronic data in recent years, and the

renewed interest in domain-specific hardware accelerators presents exciting technical

opportunities. Traditional scale-out solutions for processing the vast amounts of

text data have been shown to be energy- and cost-ine�cient. In contrast, custom

hardware accelerators can provide higher throughputs, lower latencies, and significant

energy savings. In this thesis, we have presented a set of hardware accelerators for

unstructured big-data processing and natural language processing.

The first, an accelerator called HAWK, is targeted towards unstructured log pro-

cessing. HAWK scans data at a fixed 32 GB/s, an order of magnitude higher than

standard in-memory databases and tools. HAWK’s scan engine requires no control

flow or caches; hence, the hardware scan pipeline never stalls and can operate at a

fixed 1 GHz frequency processing 32 input characters per clock cycle. The acceler-

ator’s design avoids the cache misses, branch prediction misses, and other aspects

of CPUs that make performance unpredictable and require area-intensive hardware

to mitigate. HAWK leverages a novel formulation of the state machines that imple-

ment the scan operation, thereby facilitating a hardware implementation that can

process many characters concurrently while keeping on-chip storage requirements

relatively small. In the HAWK design, 32 consecutive characters are conceptually

78

concatenated into a single symbol, allowing a single state transition to process all 32

characters. Näıvely transforming the input alphabet in this way leads to intractible

state machines—the number of outgoing edges from each state is too large to enable

fixed-latency transitions. We leverage the concept of bit-split state machines, wherein

the original machine is replaced with a vector of state machines that each process only

a bit of input. As a result, each per-bit state requires only two outgoing edges. An-

other novel feature of the HAWK design is that the accelerator searches for strings

and numbers in a manner that is agnostic to the location of field and record delimiters

in the input log file. The mapping between matched strings/numbers and fields is

done after-the-fact using a specialized field matcher unit. In its pareto-optimal con-

figuration, HAWK requires 45 mm2 in 45 nm technology and consumes 22 W during

operation.

The second accelerator targets similarity measurement in natural language pro-

cessing. This accelerator addresses one of the most data- and compute-intensive

kernels that arises in many NLP applications: calculating similarity measures be-

tween millions (or even billions) of text fragments. We develop this accelerator in the

context of a motivating NLP application: constructing an index for semantic search

(search based on similarity of concepts rather than string matching) over massive

text corpora. Constructing the search index nominally requires a distance calculation

(e.g., cosine similarity) between all document pairs, and is hence quadratic in the

number of documents; this distance calculation is the primary computational bottle-

neck of the application. As an example, over half a billion new tweets are posted to

Twitter daily, implying roughly 1017 distance calculations per day. An optimized C

implementation of this distance calculation kernel running on Xeon-class cores, would

require a cluster of over 2000 servers, each with 32 cores, to compare one day’s tweets

within a 24-hour turnaround time. Instead, our accelerator for similarity measure-

ment can be integrated alongside a multicore processor, connected to its last-level

79

cache, to perform these distance calculations with extreme energy e�ciency at the

bandwidth limit of the cache interface. By leveraging the latency hiding concepts

of multi-threading and simple scheduling mechanisms, we maximize functional unit

utilization. Our accelerator provides 36×-42× speedup over optimized software run-

ning on server-class cores, while requiring 56×-58× lower energy, and only 1.3% of

the area.

80

APPENDICES

81

APPENDIX A

Minimizing Remote Accesses in MapReduce

Clusters

MapReduce, in particular Hadoop, is a popular framework for the distributed pro-

cessing of large datasets on clusters of relatively inexpensive servers. Although Hadoop

clusters are highly scalable and ensure data availability in the face of server failures,

their e�ciency is poor. We study data placement as a potential source of ine�ciency.

Despite networking improvements that have narrowed the performance gap between

map tasks that access local or remote data, we find that nodes servicing remote HDFS

requests see significant slowdowns of collocated map tasks due to interference e↵ects,

whereas nodes making these requests do not experience proportionate slowdowns. To

reduce remote accesses, and thus avoid their destructive performance interference, we

investigate an intelligent data placement policy we call ‘partitioned data placement’.

We find that, in an unconstrained cluster where a job’s map tasks may be scheduled

dynamically on any node over time, Hadoop’s default random data placement is ef-

fective in avoiding remote accesses. However, when task placement is restricted by

long-running jobs or other reservations, partitioned data placement substantially re-

duces remote access rates (e.g., by as much as 86% over random placement for a job

allocated only one-third of a cluster).

82

A.1 Introduction

MapReduce [33] is a popular framework for the distributed processing of large

datasets. One of the most popular implementations of the MapReduce programming

model is Hadoop [2], an open-source Java implementation. Hadoop’s design centers

on a↵ording scalability and availability of data. Hadoop provides scalability by

making data management transparent to cluster administrators; this transparent data

management allows the framework to support thousands of machines and petabytes of

data. Hadoop ensures data availability (and scalability) by distributing three replicas

of all data blocks that constitute a file randomly among distinct nodes. Whenever

possible, Hadoop moves computation to data, as opposed to the more expensive

option of moving data to computation. However, Hadoop’s storage layer, the Hadoop

Distributed File System or HDFS [23], facilitates remote data accesses when moving

computation is not possible.

Until recently, network bandwidth has been a relatively scarce resource, and hence,

conventional wisdom has held that remote data accesses should be minimized [33].

However, network performance improvements continue to outpace disk, which has

led some researchers to argue that disk locality will soon be irrelevant in datacenter

computing [17]. Indeed, we corroborate that this hypothesis holds even today when

communicating over an unsaturated 1 Gb network—the performance gap between

CPU-bound map tasks that access local and remote data (served from an idle node)

is as little as 1.6%. Interestingly, however, we find that servicing remote HDFS

requests disproportionally slows map tasks located on the same node, particularly

under Linux’s default “deadline” I/O scheduler (which biases scheduling to improve

I/O performance; the fair I/O scheduler shrinks performance disparities at the cost

of worse overall performance). For CPU-intensive map tasks, we find that Reader

nodes, which access data from a remote node but serve no remote requests themselves,

su↵er only a 2% slowdown relative to local accesses. However, a Server node, which

83

services remote requests while also executing map tasks, su↵ers a 13% slowdown.

Slowdowns are much larger for I/O-bound map tasks. Hence, we conclude that,

unless MapReduce clusters use dedicated storage nodes, remote accesses must still be

minimized.

Based on these observations, we investigate intelligent data placement as a po-

tential avenue to reduce remote accesses. We focus our investigation on the “map”

phase of MapReduce jobs as initial data placement is immaterial thereafter. Hadoop’s

scheduler is designed to assign map tasks to nodes such that they access data locally

whenever possible. When a computation resource is assigned to a job, the scheduler

scans the list of incomplete map tasks for that job to find any tasks that can access

locally available data. Only if no such tasks are available will it schedule a task that

must perform remote accesses. Hence, jobs with dedicated access to the entire cluster

rarely incur remote accesses (remote accesses only arise at the end of the map phase,

when few map tasks remain, or under substantial load imbalance, for example, due

to server heterogeneity [14]). However, restrictions on task assignment, because of

long-running tasks, prioritization among competing jobs, dedicated allocations, or

other factors, can rapidly increase the number of remote accesses.

We contrast Hadoop’s default random data placement policy against an extreme

alternative, partitioned data placement, wherein a cluster is divided into partitions,

each of which contains one replica of each data block. (Note that, since the num-

ber of replicas is unchanged and placement remains random within each partition,

availability is, to first-order, unchanged). By segregating replicas, due simply to com-

binatorial e↵ects, we increase the probability that a large fraction of distinct data

blocks is available even within relatively small, randomly selected allocations of the

cluster. We further consider the utility of adding additional replicas for frequently

accessed blocks, to increase the probability that these blocks will be available locally

in a busy cluster.

84

Our evaluation, through a combination of simulation of the Hadoop scheduling

algorithm and validation on a small-scale test cluster, leads to mixed conclusions:

• When scheduling is unconstrained and task lengths are well-chosen to balance

load and avoid long-running tasks, Hadoop’s scheduler is highly e↵ective in

avoiding remote accesses regardless of data placement, as the job can migrate

across nodes over time to process data blocks locally. Under an “Unconstrained”

allocation scenario, Hadoop can achieve 98% local accesses.

• However, when task allocation is constrained to a subset of the cluster (e.g., be-

cause of long-running tasks, reserved nodes, restrictions arising from job priori-

ties, power management [59], or other node allocation constraints), partitioned

data placement substantially reduces remote data accesses. For example, under

a “Restricted” allocation scenario where a job may execute on only one-third of

nodes (selected at random), partitioned data placement reduces remote accesses

by 86% over random data placement.

• We demonstrate that selective replication of frequently accessed blocks can

further reduce remote accesses in restricted allocation scenarios.

This chapter is organized as follows: Section A.2 provides relevant background.

Section A.3 delves into why reducing remote accesses is important even under un-

saturated networks. Section A.4 explores the data placement policies considered in

this research. Section A.5 provides experimental results for the performance of the

data placement policies under di↵erent job scheduling scenarios, and Section A.6

concludes.

A.2 Related Work

Data replication is widely used in distributed systems to improve performance

when a system needs to scale in numbers and/or geographical area [102]. Replication

85

can increase data availability, and helps achieve load balancing in the presence of

scaling. For geographically dispersed systems, replication can reduce communication

latencies. Hadoop leverages replication to provide both availability and scalability.

Further, Hadoop places two replicas of a data block on the same rack to save inter-rack

bandwidth.

Caching is a special form of replication where a copy of the data under consid-

eration is placed close to the client that is accessing the data. Caching has been

used e↵ectively in distributed file systems such as the Andrew File System (AFS) and

Coda to minimize network tra�c [46, 92]. Gwertzman and Seltzer have proposed a

technique of server-initiated caching called push caching [44]. Under this technique,

a server places temporary replicas of data closer to geographical regions from which

large fractions of requests are arriving. Since replication and caching imply multiple

copies of a data resource, modification of one copy creates consistency issues. Much

research in the distributed systems field has been devoted to e�cient consistency

maintenance [74,102]. However, since Hadoop follows a write-once, read-many model

for data (i.e., data files are immutable), maintaining consistency is not a concern.

In systems with distributed data replicas, achieving locality while maintaining

fairness is a challenge. Isard and co-authors propose Quincy, a framework for schedul-

ing concurrent distributed jobs with fine-grain resource sharing [49]. Quincy defines

fairness in terms of disk-locality and can evict tasks to ensure fair distribution of disk-

locality across jobs. Overall, the system improves both fairness and locality, achieving

a 3.9x reduction in the amount of data transferred and a throughput increase of up

to 40%.

Zaharia et al. create a fair-scheduler that maintains task locality and achieves

almost 99% local accesses via delay scheduling [114]. Under delay scheduling, when

a job that should be scheduled next under fair-scheduling cannot launch a data-local

task, it stalls a small amount of time while allowing tasks from other jobs to be

86

scheduled. However, delay scheduling performs poorly in the presence of long tasks

(nodes do not free up frequently enough for jobs to achieve locality) and hotspots

(certain nodes are of interest to many jobs; for example, such nodes might contain

a data block that many jobs require). The authors suggest long-task-balancing and

hotspot replication as potential solutions, but do not implement either. In contrast

to the authors’ approach, we focus on how intelligent data placement can be used to

maximize MapReduce e�ciency in scenarios where node allocations are restricted.

Eltabakh and co-authors present CoHadoop [37], a lightweight extension of Hadoop

that allows applications to control where data are stored. Applications give hints to

CoHadoop that certain files are related and may be processed jointly; CoHadoop

then tries to co-locate these files for improved e�ciency. Ferguson and Fonseca [40]

highlight the non-uniformity in data placement within Hadoop clusters, which can

lead to performance degradation. They propose placing data on nodes in a round-

robin fashion instead of Hadoop’s default data placement, and demonstrate an 11.5%

speedup for the sort benchmark.

Ahmad et al. [14] observe that MapReduce’s built-in load balancing results in

excessive and bursty network tra�c, and that heterogeneity amplifies load imbalances.

In response, the authors develop Tarazu, a set of optimizations to improve MapReduce

performance on heterogeneous clusters. Xie et al. [113] study the e↵ect of data

placement in clusters of heterogeneous machines, and suggest placing more data

on faster nodes to improve the percentage of local accesses. Zaharia et al. [116]

also investigate MapReduce performance in heterogenous environments. The authors

design a scheduling algorithm called Longest Approximate Time to End (LATE), that

is robust to heterogeneity and can improve Hadoop response times by a factor of two.

Ananthanarayanan et al. [16] observe that MapReduce frameworks use filesystems

that replicate data uniformly to improve data availability and resilience. However,

job logs from large production clusters show a wide disparity in data popularity. The

87

authors observe that machines and racks storing popular content become bottlenecks,

thereby increasing the completion times of jobs accessing these data even when there

are machines with spare cycles in the cluster. To address this problem, the authors

propose a system called Scarlett. Scarlett accurately predicts file popularity using

learned trends, and then selectively replicates blocks based on their popularity. In

trace driven simulations and experiments on Hadoop and Dryad clusters, Scarlett

alleviates hotspots and speeds up jobs by up to 20.2%. We explore the utility of

selective replication in combination with partitioned data placement in subsequent

sections.

Prior work has also shown that well-designed data placement might allow MapRe-

duce clusters to be dynamically resized in response to load, in an e↵ort to increase

energy e�ciency without compromising data availability [57, 59].

Finally, recent research demonstrates that application demands in production dat-

acenters can generally be met by a network that is slightly oversubscribed [51]. How-

ever, as we show subsequently, even under unsaturated network conditions, remote

accesses impose significant performance penalties on nodes that service these remote

requests.

A.3 The Cost of Remote Accesses

Node 0

Node 2 Node 1

(a) Local

Node 0

Node 2 Node 1

(b) Remote

Node 0:
Server

Node 2:
Reader

Node 1:
Reader

(c) Asymmetric

Figure A.1: Experimental configurations for characterizing the costs associated with
remote accesses. Arrows indicate read requests.

88

Microbenchmark Local Remote
Asymmetric
Reader Server

CPU-intensive 1.0 1.1 1.02 1.13
I/O-intensive 1.0 1.3 2.65 3.14

Table A.1: Runtimes for various I/O configurations.
(Normalized to Local for each microbenchmark)

It is clear that remote accesses add to network tra�c. When the network in a

cluster is near saturation, each extra remote access contributes to longer latencies

and even higher network tra�c. Until recently, network bandwidth has been small

compared to the combined disk bandwidth in a cluster; hence, relatively few simul-

taneous remote accesses can potentially constrain a network. It is therefore evident

that remote accesses are best minimized under busy networks.

Perhaps more surprising, however, is our finding that remote accesses can cause

performance penalties even in a low-latency network that is far from saturation (a

scenario likely to become more prevalent as data center network topologies improve).

As we will show, these performance penalties do not arise due to higher latency

from retrieving data over the network. Indeed, to the contrary, we find that a map

task accessing data locally or remotely experiences little di↵erence in performance.

Instead, we find the interference e↵ect of servicing remote HDFS requests leads to a

significant degradation of collocated map tasks. Hence, if all I/O can be performed

locally, the peak throughput of a MapReduce cluster improves.

To study remote access overheads under unsaturated network conditions, we set

up a small Hadoop cluster. We use Hadoop v0.21 on low-end servers representative

of the low-cost systems often used for throughput computing clusters. Each server

has eight 1.86 GHz Intel Xeon cores, and 16 GB of RAM running stock Ubuntu

10.10. This Linux release enables the “deadline” I/O scheduler (described later) by

default. The inexpensive hard disks in these systems provide 50 MB/s sustained read

89

(a) Server

(b) Reader

Figure A.2: Runtime breakdown on the Server and representative Reader for the
CPU-intensive microbenchmark. (a) As the number of readers increases, the CPU
on the Server spends more time in I/O wait. (b) I/O wait associated with the read
request is e↵ectively masked on the Reader.

bandwidth over HDFS. The servers are connected via a dedicated gigabit Ethernet

switch.

90

(a) Server

(b) Reader

Figure A.3: Runtime breakdown on the Server and representative Reader for the
I/O-intensive microbenchmark. (a) As the number of readers increases, the Server
spends more time in I/O wait. (b) I/O wait associated with the read request is not
e↵ectively masked on the Reader, and is seen as increased idle time.

We demonstrate the cost of remote accesses using a minimal Hadoop cluster of

only three datanodes and a fourth dedicated namenode. While this configuration is

not representative of typical MapReduce clusters, it allows us to isolate and easily

91

measure I/O performance e↵ects. We use two microbenchmarks, CPU-intensive and

I/O-intensive, respectively. The CPU-intensive microbenchmark runs the map task of

the WordCount benchmark included with the Hadoop distribution. The I/O-intensive

microbenchmark runs an empty map task. Note that since initial data placement does

not matter beyond the map phase, we limit this experiment to only the map phase.

The input file for both workloads is a 9.5 GB text file with 64 MB data blocks. Each

datanode contains a complete copy of the file with the block replication factor set to

one. We repeat experiments ten times and report averages; all reported results have

95% confidence intervals of 0.5% or better. We verify that network bandwidth never

approaches saturation in any experiment. Further, to isolate the costs associated with

remote accesses, we disable 7 of the 8 cores on the servers.

First, we perform a simple test contrasting the perfomance of map tasks that access

local data against map tasks that access remote data served from an otherwise-idle

node. This simple test isolates the impact of the network on map task performance.

As predicted in recent literature [17], because the available network bandwidth ex-

ceeds the bandwidth of the disk and the data blocks transferred for each map task are

large (64 MB), there is a negligble performance di↵erence between local and remote

accesses: the remote accesses incur only a 1.6% slowdown. Hence, one might conclude

that remote accesses (and hence data placement) have no impact on performance.

However, this simple test neglects the interference e↵ects of serving HDFS requests

while concurrently running map tasks. We study these interference e↵ects through

three data access scenarios that are illustrated in Figure A.1. In the first scenario

(Local), each datanode runs only map tasks that access local data; we normalize

runtimes to this baseline. In the second scenario (Remote), each datanode runs only

map tasks that access remote data from the node with the next higher ID (modulo

the number of nodes); hence, all nodes act concurrently as both readers and servers.

In the final scenario (Asymmetric), two datanodes (the Readers) access data located

92

on the third (the Server), which additionally runs its own map tasks that access data

locally. In all scenarios, each map task accesses distinct files, and file system caches

are initially empty.

Table A.1 shows the normalized runtimes for each combination of I/O scenario and

microbenchmark. Runtimes are normalized to the Local case for each microbench-

mark. For the CPU-intensive microbenchmark, we see in the Remote scenario that

remote access results in a 10% performance penalty, considerably larger than the 1.6%

penalty of traversing the network to access an idle HDFS server. In the Asymmet-

ric scenario, we see a further interesting e↵ect: the slowdown on the Reader nodes

(which serve no remote HDFS requests) shrinks to only the network-traversal penalty,

while the server node sees a disproportionate slowdown of 13%. For the I/O-intensive

microbenchmark, the penalties are magnified. In the Remote scenario, the slowdown

grows to 30%. The Asymmetric scenario sees even larger slowdowns. Overall, we

observe that map tasks running on the Server node see a disproportionate slowdown

(i.e., they are not receiving a fair share of disk bandwidth).

To explain the behavior observed above, we configure four nodes in the Asym-

metric mode, and vary the number of nodes reading from the Server node from one

to four (one of these readers is always present on the Server). Figure A.2 and Fig-

ure A.3 show the breakdown of runtime spent in various CPU states on the Server

and a Reader for the CPU-intensive and I/O-intensive microbenchmarks respectively.

As the number of readers accessing the Server’s disk goes up, the Server spends in-

creasing amounts of time in the CPU I/O-wait state. In other words, the CPU is

stalled on I/O and starved for data to process. (To verify that the Server’s CPU

is stalled on I/O and does not have any other tasks to process, we run a separate

CPU-intensive task on the Server and observe that the I/O wait gets transformed

into user time.)

93

The increased runtime and I/O wait on the Server stems from inherent ine�cien-

cies in HDFS. The HDFS client implementation is highly serialized for data reads [94].

In the absence of pipelining to overlap computation with I/O, the application waits for

data transfer to complete before processing commences. Additionally, each datanode

(the Server in this case) spawns one thread per client to manage disk access and net-

work communication, with all threads accessing the disk concurrently; these threads

consume valuable resources. Shafer et al. [94] observe that as the number of con-

current readers in HDFS increases from one to four, the aggregate read bandwidth

reduces by 21% with UFS2, and by 42% with ext4. Further, the average run-length-

before-seeking drops from over 4MB to well under 200kB. Since most I/O schedulers

are designed for general-purpose workloads and attempt to provide fairness at a fine-

grained granularity of a few hundred kilobytes, the disk is forced to switch between

distinct data streams in the presence of multiple concurrent readers, thereby lowering

aggregate bandwidth.

Our experimental observations show that for the CPU-intensive microbenchmark,

the Server node experiences almost an 8x increase in disk-queue size when going

from 2 readers to 4 readers—from 0.42 to 3.12. Further, the period between request

issue and data reception on the Server quadruples—from 2.2ms to 8.9ms, thereby

accounting for the I/O wait observed. Disk utilization is also observed to increase

from 31% to 94%.

For the I/O-intensive microbenchmark, the Server experiences over a 2x increase

in disk-queue size when going from 2 readers to 4 readers—from 2.2 to 4.8. As

with the CPU-intensive microbenchmark, the period between request issue and data

reception quadruples—from 2.2ms to 8.9ms. Disk utilization is seen to increase from

about 92% to about 98%.

We note from Figure A.2 and Figure A.3 that the I/O wait seen on Server does

not translate into an equivalent amount of idle time on the Readers. For the CPU-

94

intensive microbenchmark, a majority of the delay associated with I/O wait on the

Server node is masked by computation on the Readers. However, this masking is

not observed on the Readers for the I/O-intensive microbenchmark, and is translated

into CPU-idle time. As a consequence, for the I/O-intensive microbenchmark, the

Readers see large increases in runtime. Overall, we note that the slowdown in the

Remote scenario can primarily be attributed to I/O stalls accounting for a larger

fraction of the runtime. And the even larger slowdowns in the Asymmetric case can

further be attributed to the saturation of the available bandwidth on the (single) disk

serving all three nodes.

The central conclusion from these results is that serving remote HDFS requests

disproportionately delays locally-running map tasks. The eventual source of this per-

formance phenomenon can be traced to the interaction of the threading model of

HDFS and the default I/O scheduler in recent versions of Linux, the “deadline”

scheduler [8]. The deadline scheduler imposes a deadline on all I/O operations to

ensure that no request gets starved, and aggressively reorders requests to ensure im-

provement in I/O performance. Because of these deadlines, a sleeping HDFS thread

that receives an I/O completion (either a new request arriving over the network or

data being returned from the disk) will preempt a map task nearly immediately to

finish the I/O. In contrast, map tasks that issue an I/O request, block on the I/O,

thereby freeing a core to allow HDFS to execute without disturbing other map tasks.

We can eliminate the unfairness caused by the deadline scheduler by instead

switching Linux to use a completely fair scheduler [5]. However, we find that, when

doing so, overall performance su↵ers: in the 4-reader case, while running the CPU-

intensive microbenchmark, the Server node slows down by an additional 6%, while

the Reader nodes slow down by 16%, to only about 6% faster than the Server. The

di↵erence in runtimes between the Server and the Readers with the completely fair

scheduler is consistent with the extra resources the Server has to sacrifice in order

95

Figure A.4: Random data placement in a Hadoop cluster. Each block is replicated
three times across the cluster. Each disk represents a node in the cluster.

to service the remote requests. We also note that with the completely fair scheduler,

each Reader sees an increase in idle time that is consistent with the I/O wait time

seen on the Server.

The aforementioned experiments demonstrate that nodes servicing remote read

requests are slowed down more significantly than nodes making these requests. Over-

all, our observations indicate that reducing remote accesses can improve performance

even in scenarios where the network is far from saturated, and not just in highly

loaded clusters with multi-job loads, busy networks, and file fragmentation associ-

ated with multiple simultaneous writers. In the next sections, we explore intelligent

data placement as one avenue to reduce remote accesses.

A.4 Data Placement

In this section, we propose partitioned data placement as an approach to reduce

remote accesses. We first describe Hadoop’s default random data placement as a

baseline for comparison.

96

Figure A.5: Partitioned data placement. The cluster is partitioned into three sub-
clusters (the vertical lines demarcate the partitions). Each partition contains one
replica of each data block. Overall, the cluster still contains three replicas of each
block.

Figure A.6: Selective replication of popular data blocks within partitions. Block D
is a popular block and is replicated twice within each partition. Non-popular blocks
are replicated once per partition.

A.4.1 Random Data Placement

Under random data placement, blocks are randomly distributed across nodes.

Figure A.4 illustrates this data placement policy. Random data placement is a sim-

97

plication of Hadoop’s default data placement scheme (Hadoop’s default locality opti-

mization seeks to collocate two of three data replicas within a single rack; rack locality

is irrelevant when network distance has no performance impact, as in the scenarios we

study). Although random data placement maintains data availability in the presence

of disk failures, it can be ine�cient from a performance perspective, especially when

a job is restricted from executing on some machines within a cluster.

The drawbacks of random data placement under restricted task scheduling are

illustrated using Figure A.4. Consider a cluster wherein only the three leftmost nodes

may service a job (e.g., because other nodes are reserved). We define the allocated

cluster fraction as the fraction of the cluster available to a job. In the example in the

figure, the allocated cluster fraction is 3/9 or 33%. Under this scenario, it is clear

that blocks D and H are not locally accessible within the available nodes, and hence

must incur remote accesses.

A.4.2 Partitioned Data Placement

To reduce remote accesses when a job is restricted to a subset of the cluster,

we propose partitioned data placement. In partitioned data placement, a cluster is

divided into N partitions, with N being equal to the replication factor. Each partition

contains exactly one replica of every data block; overall, the entire cluster contains

N replicas of each block. Blocks are randomly assigned to nodes within a particular

partition. Figure A.5 shows an example of this data placement policy for a cluster

with three partitions.

When a job can be assigned an entire partition (or more), all data can be accessed

locally. Hence, if the number of active jobs is less than the number of partitions,

remote accesses will be rare (arising only due to load imbalance at the tail of the

job). However, as subsequently demonstrated, partitioned data placement reduces

remote accesses even for jobs that execute on a smaller number of nodes. The data

98

placement restrictions implied by partitioning reduce the probability of duplicate data

blocks in a randomly selected subset of nodes, thus increasing the diversity of blocks

available locally. To first order, partitioning does not sacrifice data availability since

the overall number of replicas remains unchanged.

A.4.3 Replication

In addition to data placement, creating more replicas of a block can improve the

probability the block will be available locally within a random subset of the clus-

ter. But, adding extra replicas comes at a high storage cost (e.g., one extra replica

per block implies a 33% storage increase). With knowledge of block access patterns,

only the most popular (frequently accessed) blocks can be replicated, reducing repli-

cation costs while maintaining much of the benefit [16]. We explore the impact of

selective replication similar to that proposed by Ananthanarayanan and co-authors

in combination with partitioned placement. Figure A.6 illustrates the concept of se-

lective replication in partitioned clusters; a popular block (in the example, block D),

is replicated at a higher replication factor within each partition.

A.5 Results

We contrast random and partitioned data placement through a combination of

simulation of the Hadoop scheduling algorithm and validation experiments on a small

scale cluster. We use simulation to allow rapid exploration of the impacts of data

placement policies on clusters much larger than the real clusters to which we have

access.

We contrast random and partitioned data placement policies under two scenarios:

unconstrained and restricted allocation. Under unconstrained allocation, the tasks

that constitute a job may be scheduled on any node in the cluster. A job is granted

an allocation that limits the maximum number of simultaneously executing tasks;

99

however, there is no restriction on the nodes that run these tasks. When multiple

jobs execute concurrently, with a suitable scheduling discipline (e.g., round robin),

over time, a job’s tasks will visit a time-varying subset of nodes. Because the job

migrates across the cluster over time, a large fraction of data blocks can be accessed

locally at some point during the job’s execution, even when the job is granted a small

(simultaneous) allocation.

Under restricted allocation, we assign a job to execute within only a fixed (but

randomly selected) subset of nodes. The restricted allocation scenario is representa-

tive of a variety of reasons that Hadoop jobs might be precluded from executing on

some nodes. The simplest example is when nodes are explicitly reserved for certain

jobs or users; however, restricted allocation might also arise because nodes are ren-

dered unavailable due to long-running tasks, job priorities, power managment, or the

job scheduling discipline.

A.5.1 Simulation Methodology

We model large-scale Hadoop clusters by extending the BigHouse data center

simulation framework [70,71]. BigHouse is a parallel, stochastic discrete time simula-

tion framework that represents datacenters via generalized queuing models driven by

empirically-observed arrival and service distributions. Our simulation assigns MapRe-

duce tasks lengths drawn from a service time distribution and assigns tasks to nodes

in a manner similar to Hadoop’s scheduler. When a task slot becomes available on a

node, the scheduler checks to see if a local block required by the job is available on

that node. If so, the newly created task is assigned this local block. If there are no

local blocks that are awaiting processing, the scheduler picks a pending block from

the closest remote node and assigns it to the new task.

We simulate a 60 node cluster that stores 10 files with up to 1200 blocks each.

Block popularity is drawn from a Zipf distribution. Task execution times are drawn

100

either from an exponential distribution with rate parameter �=1, or a gamma distri-

bution with shape parameter k=2 and scale parameter ✓=3. The baseline replication

factor for both random and partitioned data placement is set to Hadoop’s default of

three. For partitioned data placement, we assume three partitions, i.e., one replica

per partition.

A.5.1.1 Unconstrained Allocation

We first consider unconstrained allocation, wherein a task may be assigned to

any node. Under this scenario, provided job lengths are reasonably balanced, the

tasks constituting a job will be able to migrate across the cluster over time to visit

each data block such that they can access it locally. We assume that jobs are sliced

into tasks at the granularity of disk blocks; finer granularity can result in higher

overhead from task startup and shutdown [94], while coarser granularity may restrict

task scheduling flexibility. Recent research has suggested that relatively large data

block sizes improve performance [78].

Under unconstrained allocation, both partitioned and random data placement

perform similarly: approximately 98% of data blocks can be accessed locally (98.2%

local accesses for partitioned, and 97.9% for random). On average, a job incurs its

first remote access only after over 85% of tasks have been processed, i.e., towards

the tail end of the job. Since tasks are scheduled on a per block basis, a job gets

the opportunity to visit multiple nodes through the cluster, thereby increasing the

likelihood that tasks will be scheduled on nodes that contain locally accessible blocks.

The key take-away is that data placement has little impact when it is possible for

a job to traverse the cluster and visit nearly all nodes over time. Even under a

naive round-robin scheduler across competing jobs, almost 98% of accesses can be

completed locally. Hence, under these circumstances, neither partitioned placement,

nor other techniques (e.g., delay scheduling) are necessary.

101

Figure A.7: Local access fraction as a function of cluster availability. Partitioned data
placement dominates random data placement, especially for low cluster allocations.

Figure A.8: Local access fraction versus number of replicas for 10% cluster avail-
ability. Adding more replicas increases the number of local accesses.

A.5.1.2 Restricted Allocation

Under restricted allocation scenarios, partitioned data placement can be e↵ective

in reducing remote accesses. Figure A.7 shows the fraction of blocks accessed locally

for both random and partitioned data placement as a function of the fraction of the

cluster allocated to a job (i.e., the fraction of nodes the job may visit), which we

102

Figure A.9: E↵ect of selective replication of popular blocks on local access fraction.
Selectively replicating popular blocks increases the number of local accesses with low
storage overhead.

vary from 10% to 90%. Under random data placement, a job must be allocated

nearly 80% of the cluster to avoid remote accesses. Stated another way, if more

than 20% of a cluster is reserved and may not be used by a job, then the job

will su↵er an increased rate of remote data accesses. Hence, even relatively small

allocations of much less than half the cluster can substantially impact local versus

remote access rates under Hadoop’s default placement scheme. Partitioned data

placement substantially improves the fraction of local accesses for cluster allocations

from 10% to 80%. Once the allocation fraction is larger than a partition (33% for the

3-partition cluster in this experiment), the local access fraction rapidly approaches

100%.

A.5.1.3 Replication

Next we study the e↵ect of adding more replicas on local access rates under

restricted allocations. We first consider the simple case where all blocks are replicated,

ignoring popularity. Figure A.8 shows a graph of the local access fraction as a function

103

of the replication factor for 10% cluster allocation, sweeping the number of replicas

from one (no replication) to ten. For the partitioned scheme, the number of replicas

also corresponds to the number of partitions. As the number of replicas increases,

the advantage of partitioned data placement over random data placement grows.

We next consider only selective replication of blocks that exceed a popularity

threshold. To model this scenario, we increase the popularity of two files (corre-

sponding to 22% of all blocks) by a factor drawn from a Zipf distribution relative to

the remaining blocks. We provision twice as many replicas of blocks in the popular

files. These additional replicas are again distributed across the partitions, such that

there are now two replicas of the popular blocks per partition. Figure A.9 shows the

e↵ect of such selective replication, relative to a baseline of only a single replica per

partition for all blocks. Selective replication increases the rate of local accesses by

10-20% over the relevant range of cluster allocations (above 40% allocation, nearly all

accesses are local without additional replicas). Of course, selective replication results

in a far lower storage overhead than naive replication of all blocks.

A.5.2 Validation on a Real Hadoop Cluster

We validate our simulation results via a small-scale test on a 10-node Hadoop

cluster (nine datanodes and one dedicated namenode). We contrast Hadoop’s de-

fault random data placement against partitioned data placement. In both cases, we

distribute a 9.5 GB file across nodes in 64 MB blocks with a replication factor of

three. We emulate restricted allocation by marking six randomly selected nodes as

unavailable to execute tasks, corresponding to a 33% cluster allocation. We report

the fraction of map tasks that access remote data.

Figure A.10 shows the percentage of remote accesses for each data placement pol-

icy. Over a series of ten trials, random data placement requires a maximum of 48.7%

of map tasks to access remote data. On average, random data placement results in

104

Figure A.10: Percentage of remote accesses as a function of data placement policy
on a real Hadoop cluster. On average, partitioned data placement reduces the
number of remote accesses by over 86% for a 33% cluster allocation.

19.2% remote accesses. Partitioned data placement reduces the average number of

remote accesses to 2.6%, an 86% reduction compared to random data placement. In

summary, our results show that the partitioned data placement policy reduces remote

accessess relative to random data placement under restricted allocation scenarios. Ad-

ditionally, increasing replication factors can further reduce remote accesses, especially

for small allocations.

A.6 Conclusion

MapReduce, in particular Hadoop, is a popular framework for the distributed

processing of large datasets on clusters of networked and relatively inexpensive servers.

Whereas Hadoop clusters are highly scalable and ensure data availability in the face of

server failures, their e�ciency is poor. We demonstrate that remote accesses can cause

significant performance degradation, even under unsaturated network conditions, due

105

to the disproportionate interference e↵ects on nodes servicing remote HDFS requests.

We study an intelligent data placement policy we call partitioned data placement

as an avenue to reduce the number of remote data accesses, and the associated

performance degradation, when task placement is restricted due to reasons such as

long-running jobs or other reservations. During the course of our investigation, we

find that partitioned data placement can reduce the number of remote data accesses

by as much as 86% when a job is restricted to execute on only one-third of the nodes

in a cluster.

106

APPENDIX B

PicoServer Revisited: On the Profitability of

Eliminating Intermediate Cache Levels

The confluence of 3D stacking, emerging dense memory technologies, and low-

voltage throughput-oriented many-core processors has sparked interest in single-chip

servers as building blocks for scalable data-centric system design. These chips encap-

sulate an entire memory hierarchy within a 3D-stacked multi-die package. Stacking

alters key assumptions of conventional hierarchy design, drastically increasing cross-

layer bandwidth and reducing the latency ratio between successive layers. Hence, prior

work, specifically PicoServer, suggests flattening the hierarchy, eliding intermediate

caches that otherwise lengthen the critical path between L1 and stacked memory.

Although PicoServer argues for a flattened memory hierarchy for web serving work-

loads, it remains unclear if its conclusions hold more generally—particularly when

considering metrics besides access latency—and more recent studies have often in-

cluded intermediate caches. In this chapter, we investigate the bandwidth, latency,

and energy filtering a↵orded by an L2 cache. For data-centric scientific and server

applications, we conclude: (1) 3D stacking provides copious bandwidth, hence L2 band-

width filtering is moot; (2) although a flat hierarchy is optimal for access patterns with

poor temporal locality, some workloads benefit from access latency reduction a↵orded

107

by L2, an e↵ect magnified by latency-intolerant in-order cores and for memory tech-

nologies with asymmetric read and write latencies; and (3) intermediate caches are

rarely desirable from an energy perspective, and only if the cache is optimized for low

leakage.

B.1 Introduction

The confluence of 3D stacking of logic and memory, emerging dense memory tech-

nologies, and low-voltage throughput-oriented many-core processors has sparked in-

terest in single-chip servers as building blocks for scalable data-centric system de-

sign [87]. These single-chip servers encapsulate an entire memory hierarchy within a

3D-stacked multi-die package. However, 3D stacking alters key assumptions of con-

ventional memory hierarchy design. For example, cross-layer bandwidth is drastically

increased, and the latency ratio between successive layers is reduced [63]. In light of

these inflections, prior work has suggested flattening the memory hierarchy, eliding

intermediate caches that otherwise lengthen the critical path between L1 and stacked

memory. For example, PicoServer proposes removing the L2 and re-allocating the

area to additional cores on the chip [52].

Although the PicoServer study demonstrates both performance and energy advan-

tages of a flattened memory hierarchy for web serving workloads, many recent studies

of 3D stacked systems nevertheless have included intermediate cache levels between

L1 and a stacked memory [21,81,108] or stacked last-level-cache [63,64]. The lack of

clarity regarding the utility of intermediate caches stems partially from uncertainty

about the ultimate performance and energy characteristics of 3D stacked devices. For

example, Loh describes how the physical design of DRAM can substantially alter its

performance [63]. Liu and co-authors describe alternative 3D stacked DRAM-based

design configurations that have up to a 2x di↵erence in performance [62]. Similar

uncertainty exists with other potential memory technologies; a survey by Lee and

108

co-authors indicates that published phase-change memory (PCM) performance esti-

mates vary by up to 1.45x [58]. As another example of this uncertainty, the latency

values cited by Li and co-authors [60] and Venkataraman and co-authors [107] vary

by up to 2.5x for PCM.

In this chapter, we revisit the conclusions of the PicoServer study to identify

the inflection points where an intermediate cache level becomes profitable. Whereas

PicoServer focuses primarily on the latency impact of intermediate caches versus a flat

hierarchy, it has also been observed that caches can act as bandwidth filters [43], and,

more recently, as energy filters [54,103] for lower hierarchy levels. Hence, we consider

the utility of an intermediate cache from all three perspectives, bandwidth, latency,

and energy filtering. In addition, we investigate design tradeo↵s when memory read

and write latencies are asymmetric, as is common for emerging memory technologies.

We find memory parameter inflection points for a suite of eight applications, four

from the SPEC CPU2006 suite (two each with good and poor relative temporal

locality), and four from emerging data-centric workloads that motivate single-chip

server design [87].

We make the following contributions:

• We characterize the bandwidth requirements of our workload suite, both with

and without an L2 cache, and demonstrate that bandwidth filtering is moot

given the large bandwidth provided by 3D-stacked memories. For these bench-

marks, the highest bandwidth requirement without an L2 is approximately 29

GB/s with eight high-end cores, a requirement easily fulfilled by two DDR3

channels, and at least 5x below the projected bandwidth capability of 3D stacked

memory.

• We show that although a flat hierarchy is optimal for access patterns with

poor temporal locality, some scientific and data-centric workloads benefit from

access latency reduction provided by intermediate cache levels, an e↵ect that

109

is magnified by latency-intolerant in-order cores. We show that half the data-

centric workloads do not require an L2 unless the stacked memory access latency

is well over 12x the L2 access latency.

• We find that an L2 cache is rarely desirable from an energy perspective for

data-centric workloads, even when the ratio of main memory to L2 dynamic

access energy is high. Importantly, we find that it is critical for the L2 to have

low leakage power for it to provide any energy gain, as L2 leakage can rapidly

o↵set any energy savings achieved from conserving dynamic power.

The remainder of this chapter is organized as follows: Section B.2 discusses related

work, and Section B.3 describes our experimental methodology. We consider the

bandwidth, latency, and energy filtering impact of intermediate caches in Section B.4,

Section B.5, and Section B.6 respectively. In Section B.7, we conclude.

B.2 Related Work

Our study is inspired by the disparity between the recommendation of PicoServer

[52] to flatten the memory hierarchy and other more recent studies of 3D stacked

memory hierarchies [21, 63, 64, 81, 108] which retain intermediate caches. PicoServer

proposes an architecture where multiple simple, throughput-optimized, in-order pro-

cessing cores are 3D-stacked with multiple DRAM dies that comprise main memory.

PicoServer flattens the memory hierarchy by removing the L2 and re-allocating the

area for additional cores. For the web-tier applications studied, the L2 provides little

benefit, and the throughput advantage of re-allocating the area for additional cores

is greater.

The PicoServer study focuses primarily on the latency impact of an L2 cache,

observing that it slows the critical access path to the main memory. Bandwidth and

energy filtering have been suggested as further motivations beyond latency hiding for

110

intermediate cache levels. These e↵ects were not a focus of the PicoServer study. In

this study, we consider whether these concerns might change the answer on whether

or not to flatten the hierarcy. We consider data-centric and scientific workloads

with larger memory footprints than the more network-centric benchmarks for which

PicoServer was designed (the higher percentage of DMA and I/O accesses in web

serving reduces L2 e↵ectiveness). Additionally, we consider the impact of asymmetric

read and write latencies, a characteristic of many non-volaltile memories like PCM

[83,84] and STT-RAM [88].

Our intent is to provide guidance on memory hierarchy design for single-chip

servers, such as the Nanostores [87] proposal by HP Labs. Nanostores are single-chip

servers with 3D (or 2.5D) stacked logic and dense non-volatile memory. Nanostores

are further distinguished by their use of low-voltage throughput-oriented many-core

processors. Overall, Nanostores have been proposed as viable building blocks for

scalable data-centric systems.

Since the advent of 3D stacking with through-silicon vias (TSVs), there have

been a number of studies to examine 3D stacked memory system design. Loh [63]

describes a 3D memory organization that increases “memory level parallelism through

a streamlined arrangement of L2 cache banks, MSHRs, memory controllers and the

memory arrays themselves”. His work improves page-level parallelism by increasing

row bu↵er cache capacity, thereby allowing for a larger set of open memory pages.

Loh also uses a data structure called the Vector Bloom Filter to reduce the number

of probings required to determine hits and misses in the L2. Loh and Hill [64]

explore e�cient on-chip DRAM-based caching using conventional cacheline sizes.

Their technique schedules tag and data accesses as compound accesses such that the

data accesses are always row bu↵er hits, thereby making hits faster than just storing

tags in the DRAM. Their technique also makes misses faster by using MissMaps to

reduce stacked-DRAM accesses on misses. Woo et al. [108] propose SMART-3D, a

111

(a) Main Memory Bandwidth (b) Inter-cache Bandwidth

Figure B.1: Memory and inter-cache bandwidth utilization for non-SPEC bench-
marks. (a) Bandwidth between the L2 and main memory for the non-SPEC bench-
marks: The highest bandwidth requirement is under 2,500 MB/s. (b) Bandwidth
between the L1 and L2 caches for the non-SPEC benchmarks: This is the bandwidth
between the L1 and main memory in the absence of an L2. The highest bandwidth
requirement is about 29,000 MB/s.

new 3D-stacked memory architecture with a vertical L2 fetch and writeback network

using a large array of TSVs. SMART-3D leverages TSV bandwidth to hide latency

behind very large data transfers. All of these designs include an intermediate cache

level between the L1 and stacked memory hierarchy level, and do not explore flattening

the memory hierarchy in the 3D-stacked context.

Several groups have created prototypes of 3D stacked memory systems [41,53,110].

Most academic prototypes have omitted intermediate caches, largely due to area

constraints rather than specific design optimization objectives.

Recent work on single-chip servers draws inspiration from earlier work on the

RAMpage memory hierarchy proposed by Machanick and Salverda [67]. The RAM-

page memory hierarchy uses DRAM as a paging device, and moves main memory

up one level to the lowest level of SRAM. The main motivation for the RAMpage

hierarchy is to reduce the cost of DRAM references. While RAMpage does not elim-

inate the L2, it realizes a memory hierarchy that provides similar trade-o↵s to that

proposed in PicoServer.

112

(a) Main Memory Bandwidth (b) Inter-cache Bandwidth

Figure B.2: Memory and inter-cache bandwidth utilization for SPEC benchmarks.
(a) Bandwidth between the L2 and main memory for the SPEC benchmarks: The
highest bandwidth requirement is under 2,600 MB/s. (b) Bandwidth between the L1
and L2 caches for the SPEC benchmarks: This is the bandwidth between the L1 and
main memory in the absence of an L2. The highest bandwidth requirement is about
9,500 MB/s.

B.3 Methodology

We follow a trace-based methodology to evaluate the profiltability of eliminating

intermediate cache levels; this methodology allows us to rapidly study workloads with

large footprints. We collect memory traces with PIN [65] on a server system with eight

1.9 GHz Intel Xeon cores, 32 kB private L1 caches, an 8 MB 16-way set-associative

shared L2 cache, and 16 GB of main memory. The traces contain information on

the address, program counter, size, and type (read or write) of each memory access,

and the number of non-memory instructions between consecutive memory accesses.

We leverage performance counters to measure the peak L2 and memory bandwidth

requirements of each workload on this server system using the Linux Perf performance

analysis tool for use in our bandwidth filtering study.

To assess the impact of various memory subsystem designs, we replay L1 access

traces through the gem5 architectural simulator [20]. The trace replay emulates 1

GHz single-issue in-order cores. We replay one billion memory accesses per core. We

collect statistics for the number of accesses to the L2 and stacked main memory;

these statistics allow us to calculate the average L1 miss latency and L2/memory

113

energies under various assumptions. When the L2 is enabled, we simulate an 8 MB

16-way associative shared L2 (i.e., the same L2 cache organization as in our actual

x86 server).

As our goal is to identify technology inflection points, we do not select specific

latency or static/dynamic energy-per-access values to represent particular memory

technologies. Rather, we fix L2 accesses at 10 cycles and 1 nJ per access (which

are in the typical range for current technology), and then vary the ratio of stacked

memory read latency, write latency, and dynamic energy relative to these values. We

also explore a wide range of L2 leakage assumptions.

We focus our study on a suite of four scientific and data-centric server applications.

We include Canneal and Fluidanimate from the PARSEC Benchmark Suite [19] (using

the native inputs), Integer Sort (IntSort) from the NAS Parallel Benchmark Suite,

and Graph500. For comparison, we also study four SPEC CPU2006 benchmarks

with di↵ering (but known) locality characteristics. From SPEC, we include: h264

and sjeng, which have comparitively small working sets, and milc and soplex, which

have large working sets [9]. The SPEC applications are single-threaded and hence

are recorded and replayed using only one core.

B.4 Bandwidth Filtering

Nearly three decades ago, Goodman first pointed out that caches can be used as

bandwidth filters [43]. We first consider whether application bandwidth needs create a

requirement for an intermediate cache between L1 and stacked memory. Using Perf,

we assess the L2 and memory bandwidth requirements of each of our applications

on an 8-core x86 server at one-second granularity. The L2 bandwidth consumption

measured on our test system would correspond to the load o↵ered to a stacked main

memory if the L2 were elided.

114

Figure B.1 and Figure B.2 show the bandwidth utilization between the L2 cache

and main memory, and between the L1 and L2 caches for the non-SPEC and SPEC

benchmarks respectively. The SPEC results reflect the demands of a single Xeon-class

core, while the non-SPEC results show the aggregate bandwidth demand of eight

cores. As shown in the figures, the bandwidth between the L2 and main memory

in the presence of an L2 is under 2,600 MB/s for all benchmarks. Without an L2

cache, the bandwidth required for all benchmarks aside from IntSort is under the

peak bandwidth of 17 GB/s that one channel of DDR3 can provide [13]. IntSort

requires a peak bandwidth of approximately 29 GB/s, which can be satisfied by two

DDR3 channels. More importantly, this bandwidth requirement is several factors

below the projected 192 GB/s available with 3D-stacked memory as projected by

Woo et al. [108].

The Xeon cores used in our experiment are much more aggressive than those

envisioned for Nanostores. Nevertheless, even for aggressive cores, it is clear that

3D-stacked memory provides ample bandwidth, and bandwidth filtering is moot for

performance. Hence, we find that PicoServer’s recommendation to flatten the hierar-

chy is viable from a bandwidth perspective. Note however, that bandwidth filtering

may be valuable when stacking non-DRAM memory technologies like PCM that may

su↵er from limited endurance [58, 84]. As seen from Figure B.1, eliding the L2 can

increase tra�c to the stacked memory by up to 20x.

B.5 Latency

We next consider the latency impact of intermediate caches. We evaluate two

scenarios. In the first scenario, we assume that the memory read and write latencies

are equal, representing stacked DRAM. In the second scenario, we consider the impact

of scaling write latency relative to read latency, as slower writes are common in

emerging memory technologies. In each scenario, we contrast systems with and

115

without an L2. When enabled, we fix the L2 latency at 10 cycles and assume that

L2 and memory are accessed in series. We vary the ratio of stacked memory to L2

access latency. We use average L1 miss latency as our evaluation metric.

B.5.1 Symmetric Read and Write Latencies

Figure B.3 and Figure B.4 show the average L1 miss latency for non-SPEC and

SPEC benchmarks, respectively. The x-axes on the graphs represent the memory

access latency normalized to the L2 access latency. The solid black line on each graph

with a slope of one displays the average L1 miss latency in the absence of an L2, in

which case all L1 misses incur a main memory access (note that latency is therefore

the same for all benchmarks). The remaining lines show the L1 miss latency for

each benchmark; their origin and slope depends on the hit rate achieved by the 8MB

L2. The dotted vertical line indicates the latency ratio assumed in the PicoServer

study. Of particular interest is the point where each workload’s line intersects the

“No L2” line; this latency ratio represents the inflection point where an L2 becomes

profitable. That is, for stacked memory latencies greater than this inflection point,

the time saved on L2 hits outweighs the time lost on misses. This inflection point can

be calculated directly given an L2 miss rate using the well-known average memory

access latency formulas described by Hennessey and Patterson [45].

Among the non-SPEC benchmarks, only IntSort has a su�cient L2 hit rate to

warrant an intermediate 8MB L2 for the likely range of stacked DRAM access latency

ratios (in the vicinity of the PicoServer assumption of 1.6x). It breaks even at a ratio

of 1.4x. Fluidanimate might derive some benefit if the stacked DRAM is quite distant

from the L2, for example, if it is implemented with a slower memory technology.

Canneal and Graph500 have exceedingly poor temporal locality in the L2, and hardly

benefit even when stacked memory has an access latency similar to o↵-chip DRAM.

116

(a) Average L1 Miss Latency (b) Average L1 Miss Latency

Figure B.3: Average L1 miss latency for the non-SPEC benchmarks given symmetric
memory read and write latencies. Memory latency is normalized to L2 access
latency. As memory latency increases, IntSort and Fluidanimate benefit from an L2
for relatively memory low latencies. Performance of both Canneal and Graph500 is
similar with and without an L2 (a) IntSort and Fluidanimate benefit from having an
L2 beyond a memory latency of 1.4x and 3.1x respectively. Canneal and Graph500

only show improvement beyond a memory latency of 12.7x and 13.4x respectively. (b)
Zoomed in graph to show detail.

(a) Average L1 Miss Latency (b) Average L1 Miss Latency

Figure B.4: Average L1 miss latency for the SPEC benchmarks given symmetric
memory read and write latencies. Memory latency is normalized to L2 access
latency. sjeng, h264, and soplex benefit from an L2. (a) sjeng and soplex benefit
from having an L2 beyond a memory latency of 1.3x and 1.8x respectively. h264

always benefits from an L2. milc does not benefit from an L2. (b) Zoomed in graph
to show detail.

Our conclusion is that the PicoServer recommendation to flatten the hierarchy will

typically hold for this application class.

We notice a di↵erent behavior with the SPEC applications. As the majority of

SPEC applications have much smaller footprints and working sets than our data-

117

centric workloads, they tend to benefit from a stacked L2 even at relatively low

memory latency ratios. Three of our four selected apps (h264, sjeng, and soplex)

likely benefit from an L2, only milc is better o↵ without. Note that we selected soplex

because it has one of the largest working sets among the SPEC applications, yet it still

rarely spills out of the L2 compared to the data-centric workloads. Because they are

designed to stress CPU rather than memory system performance, SPEC applications

do not place significant pressure on the caches. A memory system optimized to run

SPEC may perform poorly for scientific and data-centric applications.

B.5.2 Asymmetric Read and Write Latencies

Figure B.5 and Figure B.6 show the percent change in average L1 miss latency

when adding an L2 for the eight benchmarks assuming asymmetric memory read

and write latencies (we only consider cases where the write latency is equal to or

higher than the read latency). We normalize the memory read and write latencies

to the L2 access latency. This experiment models the read-write latency asymmetry

that is anticipated in emerging memory technologies, and examines the performance

impact of coalescing L1 write-back tra�c within the L2. The figures also indicate

the approximate write-to-read latency ratio for a few emerging memory technologies

[50, 83, 88]. Points above the dotted horizontal line (y=0) on each graph indicate a

reduction in average L1 miss latency when eliminating the L2, while points below the

dotted line indicate a reduction in average L1 miss latency with the inclusion of an

L2. In other words, points above the dotted horizontal line favor exclusion of an L2,

while points below the line favor inclusion of an L2.

In all but one case of the SPEC workloads, slower writes degrade performance

when the L2 is elided (milc sees no di↵erence because the L2 is ine↵ective for this work-

load). However, among the non-SPEC applications, with the exception of IntSort,

the performance gap is small. Hence, we conclude that for data-centric workloads, an

118

(a) Average L1 Miss Latency: IntSort (b) Average L1 Miss Latency: Fluidanimate

(c) Average L1 Miss Latency: Canneal (d) Average L1 Miss Latency: Graph500

Figure B.5: Percent change in average L1 miss latency for the non-SPEC bench-
marks under conditions of asymmetric memory read and write latencies. Mem-
ory read and write latency are normalized to L2 the access latency. Points below the
dotted line (y=0) favor inclusion of an L2, while points above the dotted line favor
exclusion of the L2. In general, an L2 is not beneficial except for IntSort. Fluidanimate

finds an L2 beneficial only when read and write latencies are over 4x the L2 access
latency.

119

(a) Average L1 Miss Latency: sjeng (b) Average L1 Miss Latency: h264

(c) Average L1 Miss Latency: milc (d) Average L1 Miss Latency: soplex
Figure B.6: Percent change in average L1 miss latency for the SPEC benchmarks

for asymmetric memory read and write latencies. Points below the dotted line
(y=0) favor inclusion of an L2, while points above the dotted line favor exclusion
of the L2. When memory writes are significantly slower than memory reads, an L2
improves performance for all benchmarks except milc.

120

intermediate cache is not warranted even if stacked memory writes are substantially

slower than reads. Again, we see a markedly di↵erent behavior in SPEC apps, which

have substantial L1 writeback tra�c, and benefit from write coalescing in L2.

Benchmark Latency
IntSort 1.4x

Fluidanimate 3.1x
Canneal 12.7x
Graph500 13.4x

sjeng 1.3x
h264 1.0x
milc 178.5x
soplex 1.8x

Table B.1: Memory access latency inflection points.

B.6 Energy Filtering

Finally, we consider the impact of an intermediate cache as an energy filter. To

simplify our analysis, we select the stacked memory access latency on a per workload

basis. The memory latency value is normalized to the L2 access latency such that the

application runtime is equal with and without an L2. At this point, due to the equal

runtimes, the leakage energy of the stacked memory is the same with and without an

L2. Hence, we can neglect the stacked memory leakage in our analysis. Table B.1

lists the memory latency values used for each workload.

We hold the L2 dynamic energy fixed at 1 nJ per access (a typical value for an 8MB

L2 in current technology), and vary the stacked memory energy-per-access relative

to this fixed value. The ratio of main memory to L2 dynamic energy is reflected on

the x-axis in Figure B.7 and Figure B.8. We also vary the L2 static energy over a

wide range, from 1 mW (1x leakage) to 1W (1000x leakage). We sweep leakage power

over this large range because L2 leakage can vary by orders of magnitude due to two

e↵ects. First, leakage can vary relative to dynamic energy by a factor of ten based on

the activity factor of the L2 cache. Second, leakage can vary by nearly 100x based on

121

the particular circuit implementation selected for the cache (e.g., low-operating-power

vs. high performance cells).

(a) Energy: IntSort (b) Energy: Fluidanimate

(c) Energy: Canneal (d) Energy: Graph500

Figure B.7: Percent energy change when adding an L2 for the non-SPEC bench-
marks. Memory access energy is normalized to L2 access energy. L2 leakage is swept
from a baseline of 1x (1 mW) up to 1000x (1W). Points below the dotted line (y=0)
favor inclusion of an L2, while points above the dotted line favor exclusion of the L2.
(a) IntSort benefits from having an L2 beyond a memory access latency of 4x over the
baseline, regardless of leakage. (b) Fluidanimate benefits from having an L2 beyond
a memory access latency of 12x over the baseline, regardless of leakage. For lower
memory access energy, and higher leakage, Fluidanimate does not require an L2. (c)
and (d) Canneal and Graph500 do not require an L2 in general.

Figure B.7 and Figure B.8 show the percent energy change when adding an L2

for the non-SPEC and SPEC benchmarks, respectively. Points above the dotted

horizontal line (y=0) on each graph indicate energy savings when eliminating the L2,

while points below the dotted line indicate lower energy with inclusion of an L2.

122

(a) Energy: sjeng (b) Energy: h264

(c) Energy: milc (d) Energy: soplex
Figure B.8: Percent energy change when adding an L2 for the SPEC benchmarks.

Memory access energy is normalized to L2 access energy. L2 leakage is swept from a
baseline of 1x (1 mW) up to 1000x (1W). Points below the dotted line (y=0) favor
inclusion of an L2, while points above the dotted line favor exclusion of the L2. (a)
and (b) sjeng and h264 benefit from having an L2 beyond a memory access latency of
3x over the baseline, regardless of leakage. (c) milc never benefits from the inclusion
of an L2. (d) soplex benefits from having an L2 when the memory access latency
exceeds the baseline by over 5x.

123

Because DRAM accesses require relatively little dynamic energy, it is likely that

the memory-to-L2 access energy ratio will be quite low (below 1.5) for stacked DRAM

(stacked DRAM accesses are projected to require 1 to 1.5 nJ, similar to the dynamic

energy of an access to an 8MB SRAM). At this ratio, none of the applications benefit

from an L2 from an energy filtering perspective. Even if stacked memory dynamic

energy-per-access turns out to be substantially worse than expected (e.g., greater than

4x the L2 dynamic energy-per-access), L2 will still only be profitable if L2 leakage

energy is low. For example, for the data centric applications, L2 leakage must be

below 100 mW to provide a substantial energy benefit for any application except

IntSort. Hence, we conclude that, from an energy perspective, an intermediate cache

is unlikely to provide an energy advantage; the intermediate cache conserves energy

only if (1) the L2 hit rate is high, (2) the stacked memory requires at least 4x the

energy per access of the L2, and (3) the L2 leakage energy is low (well below 100mW).

Given the good energy characteristics projected for stacked DRAM, we find it unlikely

that all three of these conditions will typically hold.

B.7 Conclusion

Recent years have witnessed the emergence of 3D die stacking which has made

single-chip server designs feasible. Moreover, memory technology is poised to undergo

a transformation with the advent of non-volatile memories. 3D stacking alters key

assumptions of conventional memory hierarchy design by drastically increasing cross-

layer bandwidth and reducing the latency ratio between successive layers. In light of

these technology trends, the PicoServer study has suggested flattening the memory

hierarchy and eliminating caches that lengthen the critical path between the L1 and

stacked memory.

In this chapter, we revisit the conclusions made by PicoServer. By considering

various design factors like the latency and energy ratios between the L2 and main

124

memory, along with various L2 leakage values, we identify inflection points where

an L2 becomes profitable. We guide our investigation by analyzing intermediate

caches from three perspectives: bandwidth, latency, and energy filtering. We focus

our study on data-centric and scientific workloads and draw contrasts with the SPEC

applications that are frequently used in computer architecture studies.

We conclude that bandwidth filtering is moot given the plentiful bandwidth pro-

vided by 3D stacking. From a performance (latency) perspective, although a flat

hierarchy is optimal for access patterns with poor temporal locality, some workloads

benefit from the access latency reduction a↵orded by an L2. This e↵ect is more

prominent when memory write and read latencies are asymmetric, a characteristic

of memory technologies like PCM and STT-RAM. Finally, from an energy perspec-

tive, we find that for scientific and data-centric workloads with large footprints, an

L2 cache is unlikely to be beneficial from an energy perspective. In particular, we

find that low L2 leakage power is critical. SPEC applications tend to have good

hit rates in an 8MB cache and hence favor inclusion of an L2; we conclude that

these benchmarks should be used with caution when designing memory hierarchies

for data-centric applications.

In summary, we find that the conclusions drawn in the PicoServer study hold

true for the data-centric and scientific workloads. For these benchmarks, having

an L2 is only profitable under the following situations: (1) when the L2 leakage is

small, (2) when main memory is relatively distant compared to the L2, and (3) for

write-intensive workloads when memory write latency exceeds memory read latency.

125

BIBLIOGRAPHY

126

BIBLIOGRAPHY

[1] Apache Flume.
http://flume.apache.org.

[2] Apache Hadoop.
http://hadoop.apache.org.

[3] Deloitte University Press: In-Memory Revolution.
http://dupress.com/articles/2014-tech-trends-in-memory-revolution/.

[4] English Letter Frequency.
http://www.math.cornell.edu/ mec/2003-2004/cryptography/subs/frequencies.html.

[5] IBM: Inside the Linux 2.6 Completely Fair Scheduler.
http://www.ibm.com/developerworks/linux/library/l-completely-fair-
scheduler.

[6] Intel Corp.: 3D XPoint Unveiled-The Next Breakthrough in Memory Technol-
ogy.
http://www.intel.com/content/www/us/en/architecture-and-technology/3d-
xpoint-unveiled-video.html.

[7] Intel W5590 Processor Specifications.
http://ark.intel.com/products/41643/Intel-Xeon-Processor-W5590.

[8] Red Hat Corporation: Choosing an I/O Scheduler for Red Hat Enterprise Linux
4 and the 2.6 Kernel.
http://www.redhat.com/magazine/008jun05/features/schedulers.

[9] SPEC CPU2006 Memory Characterization.
http://www.jaleels.org/ajaleel/workload.

[10] Splunk.
http://http://www.splunk.com.

[11] Use Aho-Corasick Algorithm to Search Multiple Fixed Words.
https://lists.gnu.org/archive/html/bug-grep/2005-08/msg00006.html.

[12] Why GNU grep is Fast.
https://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html.

127

[13] Samsung Electronics: Samsung High-performance SDRAM for Main Memory.
2007.

[14] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar. Tarazu:
Optimizing MapReduce on Heterogeneous Clusters. In Proceedings of the Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, 2012.

[15] A. V. Aho and M. J. Corasick. E�cient String Matching: An Aid to Biblio-
graphic Search. Commun. ACM, 18(6), June 1975.

[16] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Har-
lan, and E. Harris. Scarlett: Coping with Skewed Content Popularity in MapRe-
duce Clusters. In Proceedings of the European Conference on Computer Sys-
tems, 2011.

[17] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Disk-Locality in
Datacenter Computing Considered Irrelevant. In Proceedings of the Workshop
on Hot Topics in Operating Systems, 2011.

[18] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling Up All Pairs Similarity Search. In
Proceedings of the 16th International Conference on World Wide Web, WWW
’07, pages 131–140, 2007.

[19] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Uni-
versity, 2011.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood. The gem5 Simulator. SIGARCH Com-
puter Architecture News, 39(2).

[21] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh,
D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, et al. Die Stacking (3D)
Microarchitecture. In Proc. 39th Annual Intnl. Symp. on Microarchitecture,
2006.

[22] S. Borkar and A. A. Chien. The Future of Microprocessors. Commun. ACM,
54(5):67–77, May 2011.

[23] D. Borthakur. The Hadoop Distributed File System. Apache Software Founda-
tion, 2007.

[24] R. S. Boyer and J. S. Moore. A Fast String Searching Algorithm. Commun.
ACM, 1977.

[25] A. Bremler-Barr, D. Hay, and Y. Koral. CompactDFA: Generic State Machine
Compression for Scalable Pattern Matching. In INFOCOM, 2010 Proceedings
IEEE, 2010.

128

[26] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic Clus-
tering of the Web. Comput. Netw. ISDN Syst., 29(8-13), 1997.

[27] D. Bryant. Disrupting the Data Center to Create the Digital Services Economy.
Intel Corporation, 2014.

[28] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin. Earlybird:
Real-Time Search at Twitter. In Proceedings of the 2012 IEEE 28th Interna-
tional Conference on Data Engineering, 2012.

[29] C.-C. Chen and S.-D. Wang. An E�cient Multicharacter Transition String-
matching Engine Based on the Aho-corasick Algorithm. ACM Transactions on
Architecture and Code Optimization, 2013.

[30] T.-W. Chen and S.-Y. Chien. Flexible Hardware Architecture of Hierarchical
K-Means Clustering for Large Cluster Number. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 19(8), 2011.

[31] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding Replicated Web Col-
lections. SIGMOD Rec., 29(2):355–366, May 2000.

[32] B. Commentz-Walter. A String Matching Algorithm Fast on the Average. Intl.
Coll. on Automata, Languages, and Programming, 1979.

[33] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Commun. ACM, 51(1), 2008.

[34] B. Ding and A. C. König. Fast Set Intersection in Memory. Proc. VLDB
Endow., 4(4):255–266, Jan. 2011.

[35] N. Doshi. Using File Contents as Input for Search. Splunk Blogs, 2009.

[36] J. V. L. (ed.). Handbook of Theoretical Computer Science, Volume A: Algo-
rithms and Complexity. MIT Press/Elsevier, 1990.

[37] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and J. McPher-
son. CoHadoop: Flexible Data Placement and its Exploitation in Hadoop. In
Proceedings of the VLDB Endowment, 2011.

[38] G. Erkan and D. R. Radev. LexRank: Graph-Based Lexical Centrality as
Salience in Text Summarization. J. Artif. Int. Res., 22(1), Dec. 2004.

[39] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and D. Burger.
Dark Silicon and the End of Multicore Scaling. In Computer Architecture
(ISCA), 2011 38th Annual Intl. Symposium on, 2011.

[40] A. D. Ferguson and R. Fonseca. Understanding Filesystem Imbalance in
Hadoop. In Proceedings of the USENIX Annual Technical Conference, 2010.

129

[41] D. Fick, R. G. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik, S. Satpathy,
Y. Lee, D. Kim, N. Liu, et al. Centip3De: A 3930DMIPS/W Configurable
Near-threshold 3D Stacked System with 64 ARM Cortex-M3 Cores. In Intnl.
Solid-State Circuits Conf., 2012.

[42] S. Fushimi and M. Kitsuregawa. GREO: A Commercial Database Processor
Based on a Pipelined Hardware Sorter. In Proceedings of the 1993 ACM SIG-
MOD international conference on Management of data, SIGMOD ’93, pages
449–452, 1993.

[43] J. R. Goodman. Using Cache Memory to Reduce Processor-Memory Tra�c.
In Proc. 10th Ann. Intnl. Symp. on Computer Architecture, 1983.

[44] J. S. Gwertzman and M. Seltzer. The Case for Geographical Push-Caching. In
Workshop on Hot Topics in Operating Systems, 1995.

[45] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2006.

[46] J. H. Howard. An Overview of the Andrew File System. In USENIX Winter
Technical Conference, 1988.

[47] N. Hua, H. Song, and T. Lakshman. Variable-Stride Multi-Pattern Matching
For Scalable Deep Packet Inspection. In INFOCOM 2009, IEEE, 2009.

[48] IBM Corporation. IBM PureData System for Analytics Architecture: A Plat-
form for High Performance Data Warehousing and Analytics. IBM Corpora-
tion, 2010.

[49] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg.
Quincy: Fair Scheduling for Distributed Computing Clusters. In Proceedings of
the ACM SIGOPS Symposium on Operating Systems Principles, 2009.

[50] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers. Improving Write
Operations in MLC Phase Change Memory. In Proc. 18th Intnl. Symp. on High
Performance Computer Architecture, 2012.

[51] S. Kandula, J. Padhye, and P. Bahl. Flyways To De-Congest Data Center
Networks. In Proceedings of the Workshop on Hot Topics in Networks, 2009.

[52] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski, T. Mudge, S. Reinhardt,
and K. Flautner. PicoServer: Using 3D Stacking Technology To Enable A
Compact Energy E�cient Chip Multiprocessor. In Proc. 12th Intnl. Conf. on
Architectural Support for Programming Languages and Operating Systems, 2006.

[53] D. H. Kim, K. Athikulwongse, M. Healy, M. Hossain, M. Jung, I. Khorosh,
G. Kumar, Y.-J. Lee, D. Lewis, T.-W. Lin, et al. 3D-MAPS: 3D Massively
Parallel Processor with Stacked Memory. In Proc. Intnl. Solid-State Circuits
Conf., 2012.

130

[54] J. Kin, M. Gupta, and W. Mangione-Smith. The Filter Cache: An Energy E�-
cient Memory Structure. In Proc. 30th Ann. Intnl. Symp. on Microarchitecture,
1997.

[55] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ranganathan.
Meet the Walkers: Accelerating Index Traversals for In-memory Databases.
In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, 2013.

[56] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and
C. Bear. The Vertica Analytic Database: C-store 7 Years Later. Proc. VLDB
Endow., 2012.

[57] W. Lang and J. M. Patel. Energy Management for MapReduce Clusters. In
Proceedings of the VLDB Endowment, 2010.

[58] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change
Memory As a Scalable DRAM Alternative. In Proc. 36th Ann. Intnl. Symp. on
Computer Architecture, 2009.

[59] J. Leverich and C. Kozyrakis. On the Energy (In)e�ciency of Hadoop Clusters.
SIGOPS Operating Systems Review, 44(1), 2010.

[60] D. Li, J. Vetter, G. Marin, C. McCurdy, C. Cira, Z. Liu, and W. Yu. Identifying
Opportunities for Byte-Addressable Non-Volatile Memory in Extreme-Scale Sci-
entific Applications. In Proc. Intnl. Parallel and Distributed Processing Symp.,
2012.

[61] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi. McPAT:
An Integrated Power, Area, and Timing Modeling Framework for Multicore and
Manycore Architectures. In Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, 2009.

[62] C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari. Bridging the Processor-
Memory Performance Gap with 3D IC Technology. IEEE Design Test of Com-
puters, 22(6), 2005.

[63] G. H. Loh. 3D-Stacked Memory Architectures for Multi-core Processors. In
Proc. 35th Ann. Intnl. Symp. on Computer Architecture, 2008.

[64] G. H. Loh and M. D. Hill. E�ciently Enabling Conventional Block Sizes for
Very Large Die-stacked DRAM Caches. In Proc. 44th Ann. Intnl. Symp. on
Microarchitecture, 2011.

[65] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Janapa, and R. K. Hazelwood. Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation. In Programming Language Design and
Implementation, 2005.

131

[66] J. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and K. Atasu. De-
signing a Programmable Wire-Speed Regular-Expression Matching Accelerator.
In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM International
Symposium on, 2012.

[67] P. Machanick and P. Salverda. Preliminary Investigation of the RAMpage
Memory Hierarchy. South African Computer Journal, (21):16 –25, August 1998.

[68] S. Manegold, M. L. Kersten, and P. Boncz. Database Architecture Evolution:
Mammals Flourished Long Before Dinosaurs Became Extinct. Proceedings of
the VLDB Endowment, 2009.

[69] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in Action. Manning
Publications, 2010.

[70] D. Meisner and T. F. Wenisch. Stochastic Queuing Simulation for Data Cen-
ter Workloads. In Proceedings of the Workshop on Exascale Evaluation and
Research Techniques, 2010.

[71] D. Meisner, J. Wu, and T. F. Wenisch. BigHouse: A Simulation Infrastructure
for Data Center Systems. In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems Software, 2012.

[72] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and
T. Vassilakis. Dremel: Interactive Analysis of Web-Scale Datasets. In Proc. of
the 36th Int’l Conf on Very Large Data Bases, 2010.

[73] J. Moscola, Y. Cho, and J. Lockwood. Hardware-Accelerated Parser for Ex-
traction of Metadata in Semantic Network Content. In Aerospace Conference,
2007 IEEE, pages 1–8, March 2007.

[74] S. Mullender(ed.). Distributed Systems. ACM Press, 1989.

[75] R. Müller, J. Teubner, and G. Alonso. Data Processing on FPGAs. PVLDB,
2(1):910–921, 2009.

[76] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed Stream
Computing Platform. In International Conf. on Data Mining Workshops, 2010.

[77] D. Pao, W. Lin, and B. Liu. A Memory-e�cient Pipelined Implementation of
the Aho-corasick String-matching Algorithm. ACM Transactions on Architec-
ture and Code Optimization, 2010.

[78] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker. A Comparison of Approaches to Large-Scale Data Analysis.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data, 2009.

132

[79] D. Perera and K. F. Li. On-Chip Hardware Support for Similarity Measures. In
Communications, Computers and Signal Processing, 2007. PacRim 2007. IEEE
Pacific Rim Conference on, pages 354–358, 2007.

[80] D. Perera and K. F. Li. Hardware Acceleration for Similarity Computations of
Feature Vectors. Electrical and Computer Engineering, Canadian Journal of,
33(1):21–30, 2008.

[81] K. Puttaswamy and G. Loh. 3D-Integrated SRAM Components for High-
Performance Microprocessors. IEEE Trans. Computers, 58(10), 2009.

[82] V. Qazvinian and D. R. Radev. Scientific Paper Summarization Using Citation
Summary Networks. In Proceedings of the 22nd International Conference on
Computational Linguistics, COLING ’08, 2008.

[83] M. Qureshi, M. Franceschini, and L. Lastras-Montano. Improving Read Perfor-
mance of Phase Change Memories Via Write Cancellation and Write Pausing.
In Proc. 16th Intnl. Symp. on High Performance Computer Architecture, 2010.

[84] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable High Performance
Main Memory System Using Phase-change Memory Technology. In Proc. 36th
Ann. Intnl. Symp. on Computer Architecture, 2009.

[85] S. Radicati. Email Statistics Report, 2014-2018. Sara Radicati, 2014.

[86] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe,
T. Wenisch, and M. Martin. Computational Sprinting. In High Performance
Computer Architecture (HPCA), 2012 IEEE 18th International Symposium on,
pages 1–12, 2012.

[87] P. Ranganathan. From Microprocessors to Nanostores: Rethinking Data-
Centric Systems. Computer, 44(1):39 –48, January 2011.

[88] M. Rasquinha, D. Choudhary, S. Chatterjee, S. Mukhopadhyay, and S. Yala-
manchili. An Energy E�cient Cache Design Using Spin Torque Transfer (STT)
RAM. In Intnl. Symp. on Low-Power Electronics and Design, 2010.

[89] M. E. Richard L. Villars, Carl W. Olofson. Big Data: What It Is and Why You
Should Care. IDC, 2011.

[90] P. Roy, J. Teubner, and G. Alonso. E�cient Frequent Item Counting in Multi-
Core Hardware. In Proceedings of the 18th ACM SIGKDD International Con-
ference on Knowledge discovery and data mining, KDD ’12, pages 1451–1459,
2012.

[91] M. Sahami and T. D. Heilman. A Web-Based Kernel Function for Measuring
the Similarity of Short Text Snippets. In Proceedings of the 15th International
conference on World Wide Web, WWW ’06, 2006.

133

[92] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel,
and D. C. Steere. Coda: A Highly Available File System for a Distributed
Workstation Environment. IEEE Trans. Comput., 39(4), Apr. 1990.

[93] B. Schlegel, T. Willhalm, and W. Lehner. Fast Sorted-Set Intersection using
SIMD Instructions. ADMS Workshop 2011, 2011.

[94] J. Shafer, S. Rixner, and A. Cox. The Hadoop Distributed Filesystem: Bal-
ancing Portability and Performance. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems Software, 2010.

[95] V. Sikka, F. Färber, A. K. Goel, and W. Lehner. SAP HANA: The Evolution
from a Modern Main-Memory Data Platform to an Enterprise Application
Platform. PVLDB, 6(11):1184–1185, 2013.

[96] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating Similarity Mea-
sures: A Large-Scale Study in the Orkut Social Network. In Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining, KDD ’05, pages 678–684, 2005.

[97] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 Requirements of Real-
time Stream Processing. ACM SIGMOD Record, 2005.

[98] M. Stonebraker and A. Weisberg. The VoltDB Main Memory DBMS. In Bul-
letin of the IEEE Computer Society Technical Committee on Data Engineering,
2013.

[99] Synopsys. DesignWare Building Blocks. Synopsys Inc., 2011.

[100] D. Tam. Facebook Processes More Than 500 TB of Data Daily. CNET, 2012.

[101] L. Tan and T. Sherwood. A High Throughput String Matching Architecture
for Intrusion Detection and Prevention. In Computer Architecture, 2005. ISCA
’05. Proceedings. 32nd International Symposium on, 2005.

[102] A. S. Tanenbaum and M. V. Steen. Distributed Systems: Principles and
Paradigms. Prentice-Hall, 2002.

[103] W. Tang, R. Gupta, and A. Nicolau. Design of a Predictive Filter Cache for
Energy Savings in High Performance Processor Architectures. In Intnl. Conf.
on Computer Design, 2001.

[104] M. Taylor. Is Dark Silicon Useful? Harnessing the Four Horsemen of the
Coming Dark Silicon Apocalypse. In Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE, pages 1131–1136, 2012.

[105] D. Terdiman. CNET: Twitter Hits Half a Billion Tweets a Day.
http://news.cnet.com/8301-1023 3-57541566-93/report-twitter-hits-half-a-
billion-tweets-a-day/.

134

[106] J. Teubner, L. Woods, and C. Nie. Skeleton automata for FPGAs: reconfiguring
without reconstructing. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 229–240, 2012.

[107] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell. Consistent
and Durable Data Structures for Non-Volatile Byte-Addressable Memory. In
Proc. 9th USENIX Conf. on File and Storage Technologies, 2011.

[108] D. H. Woo, N. H. Seong, D. Lewis, and H.-H. Lee. An Optimized 3D-stacked
Memory Architecture by Exploiting Excessive, High-density TSV Bandwidth.
In 16th Intnl. Symp. on High Performance Computer Architecture, 2010.

[109] L. Woods, J. Teubner, and G. Alonso. Complex Event Detection at Wire Speed
with FPGAs. PVLDB, 3(1):660–669, 2010.

[110] M. Wordeman, J. Silberman, G. Maier, and M. Scheuermann. A 3D Sys-
tem Prototype of an eDRAM Cache Stacked over Processor-like Logic Using
Through-Silicon Vias. In Intnl. Solid-State Circuits Conf., 2012.

[111] D. Wu, F. Zhang, N. Ao, F. Wang, J. Liu, and G. Wang. A Batched GPU
Algorithm for Set Intersection. In Pervasive Systems, Algorithms, and Networks
(ISPAN), 2009 10th International Symposium on, 2009.

[112] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross. Q100: The
Architecture and Design of a Database Processing Unit. In Proceedings of
the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, 2014.

[113] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, and
X. Qin. Improving MapReduce Performance Through Data Placement in Het-
erogeneous Hadoop Clusters. In Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, 2010.

[114] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Sto-
ica. Delay Scheduling: A Simple Technique for Achieving Locality and Fairness
in Cluster Scheduling. In Proceedings of the European Conference on Computer
Systems, 2010.

[115] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Computing. In 9th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 12), 2012.

[116] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving
MapReduce Performance in Heterogeneous Environments. In Proceedings of the
USENIX Conference on Operating Systems Design and Implementation, 2008.

[117] X. Zha and S. Sahni. GPU-to-GPU and Host-to-Host Multipattern String
Matching on a GPU. Computers, IEEE Transactions on, 2013.

135

