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Abstract. While we frequently observe that increasing species richness within a trophic
level can increase the rates of predation or herbivory on lower trophic levels, the general
impacts of prey diversity on consumption rates by their predators or herbivores remains
unclear. Here we report the results of two field experiments that examined how subcanopy
sessile species richness affects rates of consumption by sea urchins. We crossed a natural
gradient of species richness in a benthic subtidal community of understory macroalgae and
sessile invertebrates against two experimental gradients of urchin density (0–50 and 0–14
individuals) in 0.5-m2 fenced plots. We found that the percent cover of macroalgae and
invertebrates consumed by urchins was greater at higher levels of sessile prey species richness.
However, this positive association between prey richness and sea urchin consumption was only
apparent at low urchin densities; at high urchin densities nearly all algal and invertebrate
biomass was consumed irrespective of sessile species richness. The positive relationship
between prey richness and urchin consumption was also stronger when the abundance of prey
species was more even (i.e., higher Simpson’s evenness). Collectively, our results show that the
consumptive impacts of urchins on kelp forest understory communities increases as a function
of species diversity (both prey richness and evenness), but that prey diversity becomes
irrelevant when urchins reach high densities.

Key words: giant kelp, Macrocystis pyrifera; grazer density; Mohawk Reef, Santa Barbara Channel,
California; prey diversity; purple sea urchin, Strongylocentrotus purpuratus.

INTRODUCTION

Over the past decade, there has been an explosion of

research examining how changes in biodiversity affect

the ecological function and stability of ecosystems (see

Hooper et al. [2005], Stachowicz et al. [2007], and

Cardinale et al. [2012] for reviews). Hundreds of

experiments have shown that changes in the richness

of species within a given trophic group can have strong

‘‘top-down’’ effects that increase the consumption of

resources by that trophic group (Balvanera et al. 2006,

Cardinale et al. 2006, 2011, Worm et al. 2006). In

contrast, the extent to which the diversity of prey acts as

a ‘‘bottom-up’’ effect controlling their consumption by

higher trophic levels is less well understood. In part, this

lack of understanding is due to the inconsistency in the

results of studies performed to date. Meta-analyses of

decomposition experiments manipulating the species

richness of dead organic matter (Srivastava et al. 2009)

and meta-analyses of herbivory experiments manipulat-

ing plant species richness (Cardinale et al. 2011) both

found a mixture of positive, negative, and neutral effects

of prey richness on consumption. In contrast, meta-

analyses by Hillebrand and Cardinale (2004) and

Edwards et al. (2010) found that consumer effects

tended to be smaller in magnitude in experiments with

higher prey species richness. The divergent results of

these two suites of meta-analyses illustrate that there is

considerable uncertainty regarding the extent to which

the diversity of prey alters their consumption by higher

trophic levels. A greater understanding of the mecha-

nisms that cause prey diversity to reduce or increase

consumption is needed to resolve this uncertainty.

There are several mechanisms that might cause prey

diversity to reduce consumption by higher trophic levels.

The first mechanism, which we call the inedible prey

sampling effect, occurs when diverse assemblages are

more likely to contain inedible species (Steiner 2001).

This mechanism can be particularly important if the

inedible prey item is also numerically dominant in the

prey community. Second, prey diversity can reduce

consumption by increasing consumer search time. This

mechanism is comparable to the ‘‘dilution effect’’ in

disease ecology: transmission rates are reduced in a

diverse community whenever the probability of contact

between a pathogen and preferred host is reduced

(Schmidt and Ostfeld 2001). Last, diversity may reduce

consumption if diverse assemblages are more likely to
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host toxic or harmful epibionts (Wahl and Hay 1995)

that prevent the consumption of other edible species

present, a facilitation effect.

There are also several mechanisms by which prey

diversity can enhance consumption. If highly edible or

preferred prey species are more abundant in species-rich

assemblages, then a positive relationship between prey

diversity and consumption pressure is expected. Diver-

sity can also enhance consumption if consumers require

a balanced diet, either to meet their varied nutritional

needs (Rapport 1971, Pennings et al. 1993, Wang et al.

2010), or to minimize the ingestion of toxic secondary

compounds (Freeland and Janzen 1974, Pennings et al.

1993, Marsh et al. 2006). For these two mechanisms,

consumption is expected to be higher when prey

assemblages have a more even distribution of biomass

among species (Illius et al. 1992, Pennings et al. 1993,

Rogosic et al. 2007).

Here, we examine how the species richness of

understory sessile prey items within a giant kelp forest

affects their consumption by the purple sea urchin,

Strongylocentrotus purpuratus. Loss of giant kelp (the

urchins’ primary food source) after storms typically

leads to an increase in the diversity and abundance of

competitively inferior sessile species on the reef (Arkema

et al. 2009, Byrnes et al. 2011). In the absence of an

abundant supply of living kelp or kelp detritus, urchins

alter their behavior from passively feeding on drift-algae

to actively roaming and scraping the bottom for

attached algae and sessile invertebrates (Harrold and

Reed 1985). This behavioral switch can lead to

deforestation and the formation of what are commonly

called ‘‘urchin barrens’’ (Harrold and Pearse 1987). If

understory sessile species diversity affects urchin con-

sumption rates, then it may influence the probability of

urchin barren formation.

We examined the relationship between sessile prey

species richness and urchin consumption in two separate

field experiments in which we crossed a manipulated

gradient of urchin density against a natural gradient of

sessile species richness. Because we conducted these

experiments in the field using natural assemblages, our

experiments were also subjected to several biologically

important, but unmanipulated variables: most notably,

sessile species community composition and evenness.

Therefore, we incorporated these unmanipulated vari-

ables into additional statistical analyses to further

examine when species richness may influence consump-

tion. Our decision to perform experiments in a natural

setting with both controlled and uncontrolled sources of

variation was an intentional choice. There have now

been hundreds of studies (Cardinale et al. 2011) that

have manipulated species richness under highly con-

trolled, but contrived, conditions to examine how

biodiversity influences ecosystem function (Duffy

2009). Such studies have proven incredibly valuable for

suggesting potential mechanisms by which species

richness may influence different ecosystem functions.

While these mechanisms may be important in nature, the

artificial conditions of these previous experiments could
limit their usefulness in evaluating the consequences of

variation in prey species richness to the structure of
natural communities (Bracken et al. 2008, Duffy 2009,

Hillebrand and Matthiessen 2009). Such tightly con-
trolled experiments are essential for progress in biodi-

versity research, but they must now be complimented by
manipulations performed under more natural field
conditions to fully understand the consequences of

biodiversity change in nature. Because our experiments
involved natural variation in diversity rather than

experimentally manipulated levels we analyzed our data
using an information criteria approach to assess the

relative support of multiple a priori statistical models
(Burnham and Anderson 2002). These models are

subject to all of the same limitations in interpretation
as analyses involving purely correlative data. Neverthe-

less, our analyses show that the sea urchin grazing was
enhanced at high prey diversity, and that this relation-

ship was weakened at high sea urchin density and low
prey evenness. We show that variation in the effect of

species richness on consumption is modified predictably
by consumer pressure and prey community evenness.

METHODS

Experimental plots

Both of our field experiments were performed in the

summer of 2009 at ;8 m depth within a 503 50 m area
of Mohawk Reef in the Santa Barbara Channel

(3482303700 N, 11984304600 W). The experimental area
had all giant kelp (Macrocystis pyrifera) removed the

preceding winter as part of an ongoing experiment to
investigate the simulated effects of wave disturbance

(Byrnes et al. 2011). We specifically chose this area
because the removal of giant kelp led to an increase in

the richness of the benthic community (Byrnes et al.
2011) consistent with the potential future effects of

climate-induced changes in the frequency of intense
storms that remove giant kelp. We were then able to use

this gradient to test the effects of sessile species prey
richness on urchin consumption and link the observed

results to realistic shifts in diversity driven by climate
change. Each experiment involved manipulating sea
urchin abundance within fenced 0.5-m2 plots framed

with 2.5 cm diameter PVC pipe that was weighted with a
steel core. Fences were 75 cm tall and made from 4-cm

mesh plastic Grip-Rite (PrimeSource Building Product,
Irving, Texas, USA), They were fastened to the PVC

pipe to form a flexible enclosure for containing urchins
within the plots. The flexible nature of the fences

allowed them to bend freely in the current, which
dissuaded urchins from crawling over the top of the

fences. A mesh skirt attached to the PVC pipe was
anchored by 0.9 cm diameter chain to form a contoured

barrier to the bottom that deterred urchins from
crawling under the fence. Relatively few escapes were

observed (92% urchin retention after 2 weeks) and any
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escaped urchins were replaced halfway through each

experiment (correlation coefficient between initial and

final density over both experiments ¼ 0.98). The

dominant caging artifact observed was a tendency for

urchins at higher densities to climb the sides of cages if

drift algae became caught in the mesh, potentially

decreasing the grazing effects of urchins.

Sampling sessile communities

Each experiment consisted of three spatial blocks of 15

caged plots chosen to represent a wide range in sessile

species richness. At the start of each experiment, we

measured the percent cover and number of sessile algal

and invertebrate species within each plot. We assessed

percent cover and species richness using a fixed grid of 24

uniformly distributed points.We noted the species identity

of all organisms encountered under each point. Using this

method, a species could be counted multiple times under a

single point, providing a more accurate estimate of the

biomass of species that formed layers (e.g., the understory

kelp Pterygophora californica). After surveying all 24

points, we recorded the number of species of macroalgae

and sessile invertebrates not encountered in the point

counts. We used these data and the identity of species

from point counts to obtain a plot-widemeasure of species

richness. Species that were present in the plots, but not in

contact with the grid of points, were assigned a percent

cover value in the plot of 0.5%.

Although purple sea urchins are generally considered

to be herbivores, they frequently consume sessile

invertebrates as well as algae (see extensive diet

references in Byrnes et al. [2011]). Invertebrates may

affect consumption rates by either providing associa-

tional defenses if they are unpalatable or toxic (Wahl

and Hay 1995, Levenbach 2008), diluting preferred prey

availability, or providing nutrients not found in algae

(Fernandez and Pergent 1998). Thus we included both

algae and sessile invertebrates in our measurements of

prey abundance and richness in order to consider the full

suite of potential effects of species richness on the

magnitude of damage to the benthic community caused

by urchin feeding.

Experimental design

The two experiments were similar in all aspects except

in the range of sea urchin density tested. In the first

experiment (hereafter referred to as the high-urchin-

density experiment) urchin abundance ranged from 0 to

50 individuals per plot; this range corresponds to the

natural range in urchin densities observed at Mohawk

Reef and eight other reefs in the region during the period

of 2001–2010 (data from the Santa Barbara Coastal

Long Term Ecological Research project, available

online).5 In particular, 50 urchins per plot (100

urchins/m2) corresponded to the high densities observed

when urchins first moved into an area and transformed

it into a barren. Results from this experiment suggested

that prey diversity was only important at lower urchin

densities (explained fully in Results). We therefore

repeated the experiment using a gradient of urchin

abundance ranging from 0 to 14 individuals per plot

(hereafter referred to as the low-urchin-density experi-

ment). This lower range of urchin abundance enabled us

to examine the relationship between prey diversity and

urchin consumption at low urchin densities with greater

resolution.

We examined the consequences of prey species

richness on urchin consumption in the field in each

experiment using a factorial design that crossed the

natural gradient in species richness against the full

gradient observed in urchin density. This was done by

grouping species richness and urchins into separate bins

by amount, and then using these binned values to assign

urchins to plots in a manner that created all possible

combinations of urchin density and prey richness (see

Appendix A for full design). Specifically, we grouped 15

levels of urchin density in each block of each experiment

(i.e., 0, 4, 7, 11, 14, 18, 21, 25, 29, 32, 26, 29, 43, 46, and

50 urchins per plot in the high-urchin-density experi-

ment and 0–14 urchins per plot in the low-urchin-

density experiment) into five groups of three densities

(e.g., 0, 4, and 7 urchins per plot; 11, 14, and 18; etc. in

the case of the high-urchin-density experiment). Each of

the 15 plots in each block was assigned to one of three

groups of sessile species richness based on our initial

surveys: low (10–16 species), medium (17–23), and high

(24–30). We then randomly assigned each of the three

members of an urchin density group to one of the three

levels of species richness (Appendix A). For example for

the lowest urchin density group in the high-urchin-

density experiment, we placed 0 urchins in a low richness

plot, 4 urchins in a high-richness plot, and 7 urchins in a

medium-richness plot; for the next density group, we

placed 11 urchins in a high-richness plot, 14 urchins in a

low-richness plot, and 18 in a medium-richness plot; etc.

This was repeated for each block of the experiment with

the added stricture that each urchin density level had to

be associated with at least one species richness group

through the entire experiment. See Appendix A for the

full treatment design. In both experiments, urchin test

diameter averaged 57.21 6 9.73 mm (mean 6 SD),

which is within the range observed in other ecological

studies of grazing by purple urchins (Behrens and

Lafferty 2004). The percent cover (i.e., total number of

points divided by 24) and richness of sessile species

within each plot was sampled as described above both

before and three weeks after introducing urchins to the

plots to assess the impact of richness and urchin

abundance on change in cover.

Analysis

We used an information-criterion-based model com-

parison approach (Burnham and Anderson 2002) to5 http://sbc.lternet.edu
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evaluate the association between sessile species richness

and consumption pressure by urchins, defined as percent

change in cover of the sessile community of algae and

invertebrates over the course of the experiment. We used

this model comparison approach rather than traditional

null hypothesis testing as we were not strictly manipu-

lating species richness, but rather used natural gradients

that were already present (Burnham and Anderson

2002). From our data, we wished to assess the relative

support for models that either did or did not incorporate

a richness effect on change in sessile species cover. To

assess the relative support for a richness effect, we fit five

models to explain the observed change in the percent

cover of sessile species over the duration of each

experiment. Each model included initial point count

cover as a covariate to control for its influence on the

calculation of change in percent cover. The predictors in

these models were (1) initial cover, (2) initial cover and

urchin abundance, (3) initial cover and sessile species

richness, (4) initial cover, sessile species richness, and

urchin abundance, and (5) initial cover, sessile species

richness, urchin abundance, and a richness 3 urchin

interaction. Models were fit using least squares multiple

linear regression, and diagnostics confirmed that models

satisfied its assumptions. We compared the relative

support for each model using model weights derived

from their finite sample corrected Akaike’s information

criterion for small sample sizes (AICc) values (Burnham

and Anderson 2002). For the low-urchin-density exper-

iment, we centered predictors (i.e., subtracted values

from their means) before calculating the interaction in

order to reduce variance inflation in reporting parameter

estimation error. We performed a second test to ensure

that our results were not due to a spurious negative

correlation between species richness and amount of

cover within a plot. To test this hypothesis, we fit a

generalized linear model with a Gamma error distribu-

tion and a log link (McCullagh and Nelder 1989) using

richness as a predictor of cover and compared it to a null

model using AICc weights. All analyses were done using

R version 2.13 (R Development Core Team 2011).

Analysis of uncontrolled sources of variation

Because of our use of natural variation in species

richness, we did not control for species composition or

community evenness. Composition, either via the

presence or absence of certain key species or functional

groups, has been shown to be important for ecosystem

function in many controlled manipulations of species

richness (Tilman et al. 1997, Hector et al. 2011).

Likewise, the evenness of species may influence the

effects of species richness (Hillebrand et al. 2008); this

may be particularly important when examining the

effect of prey evenness on consumption (Illius et al.

1992, Pennings et al. 1993, Rogosic et al. 2007). We

examined whether composition or evenness may have

driven or influenced the relationship between species

richness and change in percent cover in the low-urchin-

density experiment.
We first examined whether the relationship between

richness and cover was a result of either the cover of
sessile invertebrates as a group, as they may have been

less palatable than algae overall, or the cover of the four
most abundant species (55% of points in initial surveys)

found in plots: Pterygophora californica, Chondracan-
thus corymbiferus, Rhodymenia pacifica, and Muricea
californica. If the cover of invertebrates or any of these

species drove the relationship, they should also have a
positive relationship with initial species richness. We

therefore fit a generalized linear model with point count
of species or group as a predictor of initial species

richness using a Poisson error and a log link (see O’Hara
and Kotze [2010] for a detailed discussion of regression

with count data). We used point counts rather than
percent cover as they captured absolute abundance of

species or groups within a plot. We then examined the
relative support for the existence of a relationship by

comparing each fitted model to a null (i.e., cover of a
species or group was unrelated to initial species richness)

with AICc model weights.
Second, we examined whether community evenness

may have modified the effects of species richness on
change in percent cover. We began by calculating the

initial community evenness for each plot using Simp-
son’s index (Smith and Wilson 1996). We then fit four

alternative models to the data from the low-urchin-
density experiment based on our previously selected best
model. The predictor variables in these models were (1)

richness and urchin abundance, (2) evenness and urchin
abundance, (3) evenness, richness, and a richness 3

evenness interaction, and (4) urchin abundance, even-
ness, richness, and a richness3 evenness interaction. We

then compared them with AICc model weights as before.
To report coefficient estimates and estimation error, we

centered predictors before calculating interactions as
before.

RESULTS

High-urchin-density experiment

In the high-urchin-density experiment, we found a

negative relationship between species richness and
change in percent cover that attenuated at high urchin

abundance. This result was seen in the model with the
greatest support; of the models considered, 69% of the

AICc model weight support went to the model that
included species richness, urchin abundance, and an

interaction between the two (Table 1a, model R2¼0.54).
Models not including an interaction between species

richness and sea urchin abundance had little support
(Table 1a). The model that included richness alone with

no effect of urchins also had minimal support (AICc

weight ;0), which was unsurprising given the strong

grazing effect we observed.
The interaction effect between urchin abundance and

species richness was manifested as species richness being
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unrelated to change in percent cover at urchin abun-

dances greater than ;16 urchins per plot (Fig. 1). We

observed substantial decreases in the percent cover of

algae and sessile invertebrates (;20–60%) that were

driven solely by sea urchins when urchin abundance was

greater than ;16 individuals per plot (Fig. 1). This effect

of urchin density overwhelmed any relationship between

species richness and change in cover, which can be seen

by calculating predicted values using the coefficients in

Table 2a. For example, this model produced a richness–

percent-cover relationship that was within 1 standard

error of 0 at .16 urchins, but always less than 0 at ,16

urchins. Only at these low urchin densities (,16) was

there any observed relationship to richness, with greater

reduction in cover in plots with higher species richness

(Fig. 1, Table 2a for coefficients). Our estimate of the

richness 3 urchin interaction had a large standard error

compared to its estimated effect size (Table 2a),

although there was some support for the estimate being

different from 0 (t ¼ 1.66, P ¼ 0.10). The variability of

this effect relative to its estimated size may have been

due to the lower sample size at the low range of urchin

densities (Appendix A) or other extrinsic factors

TABLE 1. Akaike information criterion for small sample sizes
(AICc) weight table for models examining the predictive
ability of richness, urchin abundance, and their interaction
on change in percent cover of sessile species over three weeks
of the experiment.

Model AICc DAICc

AICc

weight

a) High-urchin-density experiment

Cover 419.95 25.67 0
Urchins þ cover 397.27 2.99 0.15
Richness þ cover 419.87 25.59 0
Richness þ urchins þ cover 397.27 2.99 0.15
Richness 3 urchins þ cover 394.28 0 0.69

b) Low-urchin-density experiment

Cover 274.92 9.33 0.00
Urchins þ cover 271.81 6.23 0.02
Richness þ cover 269.97 4.39 0.05
Urchins þ richness þ cover 265.67 0.09 0.45
Richness 3 urchins þ cover 265.58 0.00 0.47

Notes: All models included initial cover of sessile species
(indicated as cover) as a covariate. Results are reported for the
(a) high-urchin-density experiment and (b) low-urchin-density
experiment.

FIG. 1. Change in cover plotted against initial species richness for the high urchin density experiment. Data are split into four
plots with each panel representing a subset of the data split evenly into four groups by urchin density (0–11, 14–21, 29–36, 39–50
urchins). Point size is proportional to the abundance of urchins in a plot. Linear models were fit separately for each panel for
visualization of the urchin abundance3 species-richness interaction effect. Gray fill represents one standard error around the fitted
line.

JARRETT E. K. BYRNES ET AL.1640 Ecology, Vol. 94, No. 7



influencing the coefficient estimate. Thus we conducted a

second experiment using only that lower range of sea
urchin abundances in order to estimate the effect of

richness at low urchin abundance. We also conducted
analyses that incorporated other unmanipulated sources

of variability in our plots (see Results: Uncontrolled
sources of variation) to clarify the results.

Low-urchin-density experiment

In the low-urchin-density experiment, we found a
negative relationship between sessile species richness and

change in percent cover (Fig. 2, Table 2b), validating the
richness 3 urchin interaction effect, that richness has a

negative effect on change in cover at low urchin
densities, in the high-urchin-density experiment. The

models predicting changes in sessile species cover that
included species richness þ urchins and species richness

3 urchins received equal support (roughly ;45% each
with R2¼ 0.40 for the additive model and R2¼ 0.38 for

the nonadditive model, thus capturing 92% of the model
weight support between them, Table 1b). In both

models, there was a negative relationship between
species richness and change in percent cover (�2.974 in
the model with an interaction vs.�2.500 in the additive

model). The difficulty in distinguishing between the two
models was due to the low estimated effect size and high

variability of the estimate of the interaction coefficient
such that the parameter estimate was within 1 SE of 0

(�0.065 6 0.238 [mean 6 SE]). Subsequent power
analysis showed that the clear detection of an interaction

effect using a range of 0–14 urchins with the full 45
samples was unlikely (power estimated as 0.2 from

simulation analysis using estimated parameters and
variances from the high-density experiment), despite

this model producing parameter estimates similar to
those from the high-density experiment (compare Table

1 and Table 2). Additionally, recreational fishing at the
site resulted in the removal of fences surrounding 14 of

the 45 plots in the low-urchin-density experiment
including two of the three 0 urchin control plots (i.e.,

hooks, lines, and other fishing gear were found attached

to cages several meters from their original location),

which further reduced power and increased residual

variance. Because the effects of richness and urchins

were not qualitatively different between the two models,

we used the results from the interaction model (Table

2b) in order to be consistent with the results from the

high-density experiment when exploring the effects of

evenness.

Broadly, our results in the low-urchin-density exper-

iment confirm our observations from the high-urchin-

density experiment. Species richness of sessile species

was negatively correlated with change in their percent

cover (Fig. 2, Table 2b, �2.736 6 1.106 [mean 6 SE]).

This result was not spuriously driven by low species

richness occurring primarily in plots with high cover of

sessile species. Rather, we observed a positive relation-

ship between initial cover and initial species richness

(AICc weight ¼ 0.842, coefficient ¼ 0.039 6 0.016)

indicating that the negative effect of species richness on

TABLE 2. Coefficient estimates and their standard error for the selected model in the (a) high-
urchin-density experiment and (b) low-urchin-density experiment.

Coefficient Estimate SE t P

a) High-urchin-density experiment

Intercept 53.011 23.787 2.229 0.032
Richness �1.857 1.404 �1.322 0.194
Urchin abundance �2.173 0.704 �3.085 0.004
Initial cover �0.783 0.209 �3.745 0.001
Richness 3 urchin 0.069 0.042 1.657 0.105

b) Low-urchin-density experiment

Intercept 60.396 19.071 3.167 0.004
Richness �2.501 1.046 �2.390 0.024
Urchin abundance �1.737 0.881 �1.971 0.059
Initial cover �0.527 0.230 �2.290 0.030
Richness 3 urchin 0.065 0.238 0.275 0.786

Note: Coefficients in the low-density experiment come from a model where richness and urchin
abundance were centered before calculating the interaction effect to reduce variance inflation.

FIG. 2. Change in cover plotted against initial species
richness for the low urchin density experiment. Point size is
proportional to the number of urchins in a plot. Gray fill
represents one standard error around the fitted line.
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decrease in percent cover was independent of the percent

cover of sessile species at the start of the experiment.

This result is the opposite of that expected if a negative

correlation caused the observed richness effect. We note

that urchins did appear to have an effect on cover (P ¼
0.059, Table 2). This was consistent with observations of

grazing scars and excised areas on fleshy algae and

invertebrate colonies in all experimental plots.

Uncontrolled sources of variation

While we were not able to detect an effect of prey

species composition (abundance of common species or

abundance of invertebrates) on our results, species

evenness appeared to affect the relationship between

richness and change in percent cover; the negative
relationship was stronger in more even assemblages.

Models that examined whether the richness-cover

relationship was driven by the abundance of sessile

invertebrates or the cover of the four of the most

prevalent species in the experiment had less support than

a null model (AICc weight ,0.5 in all cases, Table 3).

Comparison of models incorporating species evenness

showed that the vast majority of model weight

supported models with an interaction between richness

and evenness (99.6% of model weight support for

models including a richness 3 evenness interaction,

Table 4). In these models the interaction between

richness and evenness resulted in species richness having

a stronger relationship with change in percent cover at

higher levels of evenness (Table 5, Fig. 3). The model
with an evenness3 richness3urchin interaction received

the most support (78%), although, interactions involving

urchins were not detectably different from 0 even after

centering predictors before calculating interaction ef-

fects (P . 0.23 for all, Table 5). Again, this was likely

due to power limitations at this lower range of urchin

abundances.

DISCUSSION

To fully understand the consequences of changes in

prey biodiversity, we need to know when, where, and

how prey diversity loss will influence consumption by

higher trophic levels. The results of experiments

examining the effects of prey diversity on consumption

have thus far been mixed. On one hand, many individual

experiments have shown that prey diversity can reduce

consumption (e.g., Steiner 2001, Hughes and Stachowicz

2004, Duffy et al. 2005, Gamfeldt et al. 2005, Wyckmans

et al. 2007, Bruno et al. 2008, Parker et al. 2010). Other

experiments have shown little or no effect of prey

diversity on consumption rates (Pfisterer et al. 2003, Fox

2004, Scherber et al. 2006). As a result, meta-analyses

that have examined the extant data regarding the impact

of prey/resource diversity on herbivory/detritivory have

shown no net effect (Srivastava et al. 2009, Cardinale et

al. 2011). However, these meta-analyses have seldom

controlled for confounding effects of other ecological

drivers. Our results show that prey diversity can have

different consequences depending on consumer pressure

and prey community evenness. The lack of a clear

answer thus far could be due to additional unexamined

variation between experiments. The results of our

experiments demonstrate how the effects of prey

diversity on consumption can be altered predictably by

additional ecological factors.

In our experiments, the diversity of sessile benthic

prey was associated with an increase in loss of prey

abundance when urchin density, and thus net consumer

pressure, was low. At low urchin densities, our fitted

models show that an increase in approximately five prey

species reduced prey cover by up to 15% (Fig. 2). At

high densities, generalist urchins appeared to consume

as much as possible and prey species diversity was

unimportant, much like results demonstrating the

decrease in facilitation effects of anemones for algal

turfs at high urchin densities (Levenbach 2008). This

conclusion is strengthened by the fact that we observed

this phenomenon in two independent experiments. Our

findings did not appear to result from the abundance of

any particular common species or less palatable sessile

invertebrates. However, we did find that the effect of

richness on loss of cover was stronger in more evenly

mixed assemblages, which suggests that the impacts of

prey richness on change in prey abundance are

influenced by both urchin density and prey evenness.

TABLE 3. The AICc weights of alternative hypotheses for the
observed effects of urchin consumption in which the cover of
individual species or groups influenced initial species
richness.

Model AICc

DAICc relative
to null

Model weight
relative to null

All invertebrates 172.53 1.78 0.29
Pterygophora 171.30 0.55 0.43
Chondracanthus 172.98 2.23 0.25
Rhodymenia 172.89 2.14 0.26
Muricea 172.81 2.06 0.26

Note: All weights are presented relative to the null model
that initial species richness was unrelated to the cover of any
species or species group.

TABLE 4. AICc weight table for models examining the
predictive ability of sessile species richness, sessile species
evenness, urchin abundance, and the interaction between all
three on change in percent cover in the sessile benthic biota
following three weeks of urchin grazing in the low-urchin-
density experiment.

Model AICc DAICc

AICc

weight

Richness þ urchins þ cover 265.67 11.01 0.00
Evenness þ urchins þ cover 269.93 15.27 0.00
Evenness 3 richness þ cover 262.28 7.61 0.02
Evenness 3 richness þ urchins
þ cover

257.36 2.70 0.20

Evenness 3 richness 3 urchins
þ cover

254.67 0.00 0.78

Note: All models included initial cover (point counts) as a
covariate.
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Perhaps the clearest result of our work is that when

consumer density was extremely high, prey diversity had

no effect on the amount of the prey assemblage

consumed. Given the large potential impact of high

densities of sea urchins on the benthic community

(Harrold and Reed 1985, Harrold and Pearse 1987) and

their generalist diet (Byrnes et al. 2011), we find this

result unsurprising. Prey community properties should

only affect total consumption if consumers are able to at

least meet their basal metabolic demands or toxicity is

high enough to stymie consumption. Based on our

results, we suggest that negative effects of prey diversity

on consumption may be more prevalent when consum-

ers are not limited by the amount of available prey.

Similarly, the diversity–consumption relationship might

change in magnitude or sign at higher consumer

abundance as variation in prey quality becomes less

important and extreme toxicity becomes more impor-

tant. Future experiments should consider the effects of

consumer pressure in their design and analysis; future

meta-analyses might wish to consider some measure of

relative consumer pressure as well.

Our results also show that evenness can affect the

outcome of prey diversity experiments. This effect should

not be an issue for most diversity manipulations, as they

are conducted at high evenness levels by virtue of using a

replacement series design. Evenness does become a

relevant issue when considering diversity change outside

TABLE 5. Coefficient estimates and their standard error for the urchin abundance 3 richness 3
evenness model of change in sessile species percent cover in the low-urchin-density experiment.

Coefficient Estimate SE t P

Intercept 0.752 3.244 0.232 0.819
Evenness �69.409 69.390 �1.000 0.328
Richness �1.890 1.192 �1.585 0.127
Urchin abundance �2.217 0.933 �2.378 0.027
Initial cover �1.003 0.377 �2.662 0.014
Evenness 3 richness �44.959 14.911 �3.015 0.006
Evenness 3 urchin abundance �1.937 13.995 �0.138 0.891
Richness 3 urchin abundance 0.067 0.271 0.247 0.807
Evenness 3 richness 3 urchin abundance 5.462 4.480 1.219 0.236

Note: Richness, evenness, and urchin abundance were centered before calculating the interaction
effects to reduce variance inflation.

FIG. 3. Change in cover plotted against initial species richness for the low urchin density experiment. Data are split into four
plots with each panel representing a subset of the data split evenly into four groups by sessile species evenness. Point size is
proportion to sessile species evenness. Linear models were fit separately for each panel for visualization of the evenness 3 species
richness interaction effect. Gray fill represents one standard error around the fitted line.
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of a controlled laboratory or mesocosm setting. We know

that nonrandom species assemblages skewed in evenness

by natural (or human-caused) processes can influence

diversity’s effect on a variety of ecosystem functions

(Bracken et al. 2008, 2011). Therefore, in order to

translate predictions from controlled experiments exam-

ining the consequences of diversity loss into predictions of

real change in nature, we need to understand how the

drivers of global change will alter evenness and how

dependent the effects of diversity are on the equitable

distribution of biomass among species in a community.

This translation of results of small-scale, mesocosm-

style manipulations to examinations of the effects of

changes in biodiversity on ecosystem function in the

natural world is one of the great challenges of

biodiversity–ecosystem-function research (Cardinale et

al. 2012). Our study is one attempt to cross this divide,

with some potential limitations. We recognize the

limitation of our study’s design: the manipulation of

urchin abundance in cages crossed against a naturally

occurring gradient of species richness without control-

ling for species evenness. The lack of a completely

orthogonal mesocosm-style design circumscribes our

ability to clearly assign a mechanism behind the patterns

we observed in the field. However, we view this as a

necessary compromise to examine the real consequences

of diversity change in a field setting in response to an

environmental perturbation, in this case, the conse-

quences of increases in sessile species diversity when the

foundation species giant kelp is removed (Byrnes et al.

2011). The information criteria approach used here

provides a framework for examining the relative support

for different hypotheses regarding the effect of diversity

under these more uncontrolled conditions as well as a

means to incorporate other sources of biologically

important natural variation. While this approach was

not able to definitively identify the underlying mecha-

nism for the effects of diversity in our experiment, we

were able to use it to rule out the effects of any single

species or functional group.

Did richness alter the impact of grazing urchins in our

experiment or was its effect on change in the cover of

sessile biota independent of urchins? We find the latter

option unlikely over the short period of time during

which we conducted our trials (i.e., not enough time for

competitive exclusion) and the weight of evidence from

all of our analyses. Also, most of the loss in cover was

due to decreases in red and brown algae, consistent with

grazing damage by sea urchins (Appendix B). Based on

our results regarding evenness, we find that our results

are consistent with some of the possible mechanisms that

are suggested by kelp forest natural history. We

acknowledge that our power was low to detect

interaction effects (both richness 3 urchin and richness

3 urchin 3 evenness) in the low-urchin-abundance

experiment due to the unplanned destruction of several

cages in combination with the already less than optimal

power of detection of an effect in that range of urchin

densities. However, only a controlled experiment (done

in the laboratory or in a contrived natural setting)

testing the effects of a richness3 evenness interaction on

urchin grazing in the absence of Macrocystis, urchins’

preferred food, can yield a definitive answer.

Given our results and the natural history of purple

urchins and their prey, the balanced diet hypothesis, the

toxin minimization hypothesis, or some combination of

the two are plausible explanations for our observed

results with respect to species evenness. Previous work

provides some support for the balanced diet hypothesis.

Purple urchins have been shown to display highly

selective feeding in the laboratory, maximizing their

fitness (Vadas 1977). The prey that purple urchins

encounter in nature vary greatly in their carbon, nitrogen,

and phosphorous content (Atkinson and Smith 1983) and

concentrations of specific fatty acids and minerals

(Khotimchenko et al. 2002). Indeed, many other species

of urchins grow faster and put on more gonad weight

when fed mixed diets of some sort (Larson et al. 1980,

Fernandez and Boudouresque 1998, Fernandez and

Pergent 1998, Vadas et al. 2000, Kennedy et al. 2007).

At the same time, toxin minimization may still play a

role. Many algae and sessile invertebrates in the

Northeast Pacific contain chemical deterrents to grazing

(Hall et al. 1973, Crews and Kho-Wiseman 1977, Estes

and Steinberg 1988, Iken and Dubois 2006). Deterrent

compounds are relatively low in concentration in the

brown algae that form the bulk of the diet of sea urchins

found in the Northeast Pacific (Estes and Steinberg 1988).

Therefore, the chemical defenses in other sessile species

may have played a role in observed patterns of urchin

consumption. Whether the two mechanisms acted sepa-

rately, together, or in concert with some other mechanism

we have not here considered, cannot be directly

ascertained from this series of field experiments alone.

In general, our results suggest a need to understand

the larger context of factors altering both prey diversity

and the local environment, as the two likely interact.

This dependence of strong consumer pressure on

additional factors is particularly strong in urchin-

dominated systems (Bulleri et al. 2011). We have shown

that in a system where prey diversity is enhanced by the

same mechanisms that could lead to increases in the

active foraging of generalist consumers, storms that

remove giant kelp (Harrold and Reed 1985, Byrnes et al.

2011), diversity could reduce resistance to consumption.

Our results also suggest that the effects of prey species

richness can change due to shifts in community

evenness, a potentially more common outcome of the

ecological effects of global change. Last, if global change

leads to intense consumer outbreaks, changes in

diversity may prove relatively unimportant in the face

of extreme consumer densities. These variable effects of

prey diversity on consumption pressure are all predict-

able, but require a coupling of ecological theory with

natural history to make valuable decisions for the future

of ecosystem management.
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