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Abstract. Carbon (C) uptake rates in many forests are sustained, or decline only briefly,
following disturbances that partially defoliate the canopy. The mechanisms supporting such
functional resistance to moderate forest disturbance are largely unknown. We used a large-
scale experiment, in which .6700 Populus (aspen) and Betula (birch) trees were stem-girdled
within a 39-ha area, to identify mechanisms sustaining C uptake through partial canopy
defoliation. The Forest Accelerated Succession Experiment in northern Michigan, USA,
employs a suite of C-cycling measurements within paired treatment and control meteorolog-
ical flux tower footprints. We found that enhancement of canopy light-use efficiency and
maintenance of light absorption maintained net ecosystem production (NEP) and
aboveground wood net primary production (NPP) when leaf-area index (LAI) of the
treatment forest temporarily declined by nearly half its maximum value. In the year following
peak defoliation, redistribution of nitrogen (N) in the treatment forest from senescent early
successional aspen and birch to non-girdled later successional species facilitated the recovery
of total LAI to pre-disturbance levels. Sustained canopy physiological competency following
disturbance coincided with a downward shift in maximum canopy height, indicating that
compensatory photosynthetic C uptake by undisturbed, later successional subdominant and
subcanopy vegetation supported C-uptake resistance to disturbance. These findings have
implications for ecosystem management and modeling, demonstrating that forests may
tolerate considerable leaf-area losses without diminishing rates of C uptake. We conclude that
the resistance of C uptake to moderate disturbance depends not only on replacement of lost
leaf area, but also on rapid compensatory photosynthetic C uptake during defoliation by
emerging later successional species.

Key words: Betula; canopy defoliation; carbon cycling and sequestration; disturbance resistance;
ecosystem management and resilience; leaf-area index, LAI; light-use efficiency; net ecosystem production;
net primary production; northern Michigan, USA, forest; Populus; structure–function relationships.

INTRODUCTION

Disturbances that alter rates of forest C uptake are

principal determinants of global terrestrial carbon (C)

sink strength (Pan et al. 2011). Unlike severe stand-

replacing disturbances, moderate disturbances more

subtly alter forest structure, and therefore are expected

to have different consequences for ecosystem functions

including C uptake and storage (Nave et al. 2011).

Moderate disturbances that cause partial canopy defo-

liation, such as partial harvests, insect herbivory,

disease, and age-related senescence, have mixed effects

on trajectories of forest C uptake (Knohl et al. 2002,

Birdsey et al. 2006, Lindroth et al. 2009, Luo and Weng

2011). In many forests, rates of C uptake demonstrate

unexpected resistance to partial canopy defoliation (e.g.,

Amiro et al. 2010). The mechanisms sustaining C uptake

following moderate disturbances are largely unresolved,

however, with most studies emphasizing ecosystem

structural and functional implications of severe stand-

replacing disturbance (Reich et al. 2001, Kaye et al.

2005). Identifying the mechanisms that sustain forest C

uptake following moderate disturbance will inform

ecosystem managers and modelers concerned with

maintaining and forecasting C sink strength.

Leaf-area index (LAI) replacement and the compen-

satory growth of undisturbed vegetation comprise

important mechanisms facilitating C uptake resistance
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to disturbance (e.g., Law et al. 2001, Gough et al. 2007,

Zha et al. 2009, Edburg et al. 2011). Amiro et al. (2010)

tracked the annual net ecosystem production (NEP) of

several different forests following moderate disturbance,

reporting rapid recovery of C uptake to levels compa-

rable to, or in some cases higher than, pre-disturbance

rates as leaf area rebounded. Similarly, extensive canopy

defoliation from insect herbivory or wind reduced NEP

in temperate and subtropical forests, but with rapid

recovery of LAI supporting full resilience of C uptake

(Li et al. 2007, Amiro et al. 2010, Clark et al. 2010,

Hicke et al. 2012). In contrast, studies conducted in

managed forests offer examples of sustained C uptake

and wood production following the silvicultural thin-

ning of canopy dominant trees. For example, a twice-

thinned European beech (Fagus sylvatica) forest exhib-

ited no decline in NEP or gross primary production

(GPP) (Granier et al. 2008), and net primary production

(NPP) was unaffected by the thinning of coniferous

forests as subcanopy plant growth compensated for the

removal of canopy dominant trees (Kaye et al. 2005,

Campbell et al. 2009, Dore et al. 2010, Saunders et al.

2012).

Compensatory increases in growth and photosynthe-

sis following moderate disturbance may be stimulated by

the redistribution of limiting resources, sustaining C

uptake during periods of low LAI. Natural disturbances

and partial harvests that remove or kill only a fraction

of canopy trees redirect light, nutrients, and water to

undisturbed vegetation, rapidly improving the photo-

synthetic and growth performance of remaining vegeta-

tion in a variety of forest ecosystems (Mund et al. 2002,

Kaye et al. 2005, Kirschbaum et al. 2007, Li et al. 2007,

Martinez-Vilalta et al. 2007, Campbell et al. 2009, Dore

et al. 2010, 2012, Saunders et al. 2012). Moderate

disturbances that prompt spatially irregular mortality

and canopy die-off may additionally enhance canopy

structural heterogeneity and alter the distribution of leaf

area, with implications for light distribution and the use

of this resource to drive canopy photosynthesis (Cov-

ington and Aber 1980, Hardiman et al. 2011, 2013, Yang

et al. 2011). Structurally heterogeneous forest canopies

use light more efficiently to drive photosynthesis by

distributing light evenly throughout the canopy and

illuminating light-use efficient and often light-limited

subcanopy leaves (Walcroft et al. 2005, Duursma and

Makela 2007, Niinemets 2007, Pangle et al. 2009).

Improved or sustained canopy light-use efficiency

(LUE) following moderate disturbance thus may

compensate for temporary leaf-area losses and maintain

canopy physiological processes central to C uptake prior

to the rebuilding of lost LAI.

In the present investigation we build on prior work

conducted at the University of Michigan Biological

Station (Pellston, Michigan, USA) that centers on a

large-scale experimental manipulation designed to exam-

ine the mechanisms by which forest C uptake and storage

respond to disturbance and ongoing succession, and to

climate variation (Nave et al. 2011). In spring 2008, we

initiated the ‘‘forest accelerated-succession experiment’’
(FASET) in which .6700 early successional canopy trees

were stem-girdled within a 39-ha area, providing a
systematic manipulation of forest canopy structure.

Inventory and meteorologically based C-cycling measure-
ments were conducted in separate control and treatment
forests, permitting us to separate effects of disturbance

from those of interannual climate variability. Nave et al.
(2011), focusing on biogeochemical responses to moder-

ate disturbance at our site, found that senescence of early
successional species in the first two years following

disturbance prompted nitrogen (N) redistribution to the
canopies of later-successional species, consequently buff-

ering canopy LAI and NEP from declines. Here, we
emphasize canopy processes, with the primary objective

of identifying the canopy physiological mechanisms
sustaining four-year C uptake (i.e., wood NPP and

NEP) following moderate disturbance. We also discuss
how canopy structural shifts may have facilitated C

uptake resistance to moderate disturbance. Our findings
offer new insights for forest managers and modelers,

revealing how forest ecosystems may resist C uptake
declines following moderate disturbance.

MATERIALS AND METHODS

Study site

We conducted our study at the University of

Michigan Biological Station (UMBS), in northern
Michigan, USA (458350 N, 848430 W). The study area

is typical of maturing aspen-dominated forests in the
upper Great Lakes region that developed following

clearcutting and wildfires in the early 20th century
(Gough et al. 2007). Bigtooth aspen (Populus grandi-

dentata), now averaging 22 m tall and 90 years in age,
dominates the forest canopy. This relatively short-lived
early successional species is now in decline, along with

trembling aspen (Populus tremuloides) and white birch
(Betula papyrifera) (Gough et al. 2010). Longer-lived,

later-successional canopy species including red oak
(Quercus rubra), eastern white pine (Pinus strobus),

sugar maple (Acer saccharum), red maple (A. rubrum),
and American beech (Fagus grandifolia) are now

increasing in relative dominance as early-successional
species decline. Stem density of trees �8 cm dbh is 700–

800 individuals/ha, basal area is ;25 m2/ha, and leaf-
area index (LAI) averages 3.5. The mean annual

temperature is 5.58 C and mean annual precipitation is
817 mm (1942–2003).

In 2008 we initiated an ecosystem-scale manipulation
to identify how disturbance, succession, and ongoing

climate change constrain long-term trajectories of C
fluxes and storage in mixed temperate forests (see Nave

et al. 2011). The ‘‘forest accelerated-succession experi-
ment’’ (FASET), in which we stem-girdled .6700 early-
successional aspen and birch trees within a 39-ha area in

May 2008, is testing the overarching hypothesis that net
ecosystem production (NEP) will increase as the canopy
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becomes more biologically and structurally complex,

and as nitrogen (N) is redistributed from early- to later-

successional canopy dominants. The girdling treatment

is expediting mortality of aspen and birch, which

comprised 39% of the pretreatment basal area, promot-

ing development of a canopy that approximates

projected regional changes in forest composition and

structure (Nave et al. 2011). Surveys conducted in June

2011, three years following treatment, indicate 97% of

girdled trees were dead or partially defoliated; however,

we note that defoliation was heterogeneously distributed

within the treatment forest, with aspen and birch

comprising 14–48% of total LAI at the plot scale prior

to girdling. This experimental disturbance, including the

patchy distribution of mortality, is similar in severity

and extent to moderate disturbances from wind, insects,

and pathogens that result in partial canopy defoliation

(Amiro et al. 2010). Experimental defoliation from

girdling was compounded by patchy forest tent cater-

pillar (Malacosoma disstria) herbivory in 2010; this

disturbance affected the control forest as well as the

experimentally manipulated forest.

The experiment employs a suite of C and N cycling,

and climate measurements within large paired treatment

and unmanipulated control meteorological flux tower

footprints (Fig. 1). Ground-based measurements are

conducted in 81 and 22 permanent plots nested within

the footprints of separate, unreplicated control and

treatment meteorological towers, respectively, both of

which measure the net ecosystem exchange (NEE) of

CO2 between forest and atmosphere. The treatment

tower is positioned to the east (predominantly down-

wind) of the main 33-ha treatment area and the control

tower is in the un-manipulated forest 1.5 km to the west.

Each tower is surrounded by a circular, 1.1-ha

permanent plot of average landscape-level soil fertility,

aboveground biomass, and canopy composition. Small-

er plots (0.1 ha) are located at 100-m intervals along

transects that radiate from each meteorological tower.

Because this manuscript presents results from many

collaborative projects occurring within the larger frame-

work of the experimental manipulation, the number of

plots sampled for each measurement parameter varies.

We prioritized our ground-based measurements to

FIG. 1. The experimental layout of control and treatment forest plots and meteorological towers at the University of Michigan
Biological Station (USA). Control and treatment forests house separate meteorological towers within 1.1-ha circular plots (large
open circles) from which 0.1-ha plots (small solid circles) radiate along linear transects. The 39-ha treatment forest (stippled fill) is
composed of a 33-ha plot and three 2-ha plots in which all aspen and birch were girdled during spring 2008. On-the-ground
measurements occur at various frequencies and spatial extents within control and treatment plots, with eight paired control (solid
symbols) and treatment (open symbols) plots receiving priority because they encompass spatial variation in pretreatment aspen and
birch dominance and site productivity.
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include eight paired control and treatment plots with

common pre-disturbance tree communities and produc-

tivity levels and that encompass landscape-level varia-

tion in biotic and abiotic properties.

Leaf-area index

We estimated LAI within treatment and control

meteorological-tower footprints from measurements of

overstory leaf-litter mass in 15 control and 14

treatment plots encompassing all of the paired control

and treatment plots. Leaf litter was removed from three
litter traps (0.264 m2) per plot weekly during leaf fall

and monthly during other seasons, separated by

species, dried, and weighed. LAI was calculated from

species- and site-specific litterfall mass and specific leaf

area (SLA) values (Gough et al. 2010).

Canopy nitrogen mass

We profiled the green-leaf chemistry of canopy species

in four of the paired control and treatment plots to

calculate growing-season canopy N stocks. For green-

leaf chemistry, we used shotguns to collect three or more

sun leaves from two to three individuals of each

dominant canopy species within a plot during August
of each year. Leaves were dried at 608C, ground in a ball

mill, and assayed for percentage N on a Costech

Analytical CHN analyzer (Costech International, Va-

lencia, California, USA). We calculated species-level

canopy N stocks as the product of annual litterfall mass,

determined from litter traps, and species-specific foliar

percentage N values.

Aboveground wood net primary production

We estimated aboveground wood mass (Ma) annually

from 2007 through 2011 in each of 81 control and 22

treatment plots using allometric equations that relate

bole diameter at 1.37 m height (d ) to Ma by

Ma ¼ a 3 db

where a and b are species-specific coefficients developed

from data collected at UMBS or obtained from

published reports from the Great Lakes states and

eastern North America (Gough et al. 2008). We

measured d annually on subsets of trees in control (n ¼
700 of 8860 trees) and treatment (n¼ 383 of 2500 trees)

forests with d � 10 cm using band dendrometers. A site-

specific mean tissue-weighted fraction of C in bark, cork

cambium, sapwood, and heartwood of the five dominant

overstory species (0.49) was used to convert dry wood

mass to C mass. Annual aboveground wood NPP was

the incremental change in total aboveground wood mass
from one year to the next.

Net ecosystem CO2 exchange, gross primary production,
and ecosystem respiration

We used eddy covariance to quantify fluxes of CO2

between the atmosphere and the forest canopy in control
and treatment areas. Sensors were deployed at 34 and 46

m aboveground on the control tower and 32 m on the

treatment tower. Wind velocity and temperature fluctu-

ations were measured using three-dimensional sonic

anemometers (model CSAT3 [Campbell Scientific,

Logan, Utah, USA]); CO2 concentrations were sampled

at 10 Hz using closed-path infrared gas analyzers

(IRGAs; LI-COR models LI-6262 and LI-7000 [LI-

COR Biosciences, Lincoln, Nebraska, USA]) and

compiled into half-hour block averages of net fluxes

following the AmeriFlux protocol (Munger and Loesch-

er 2006). Temperature measurements were converted to

‘‘real’’ temperature to account for crosswind velocity

contamination (Kaimal and Gaynor 1991). CO2 con-

centrations were adjusted using the Webb, Pearman, and

Leuning correction in a modified form derived by Detto

and Katul (2007) as a correction for the 10-Hz time

series of the scalar. CO2 concentrations were further

adjusted for IRGA attenuation using the spectral

correction of Massman (2000).

Following Curtis et al. (2005), we defined three

seasons within each calendar year: dormant, early, and

late growing season. The 30-minute data within each

season were further divided into daytime and nighttime

observations, defined by above-canopy photosyntheti-

cally active radiation (PAR) measurements. Data were

filtered based on a seasonal frictional velocity (u*)

threshold criterion (Reichstein et al. 2005, Papale et al.

2006), with a prescribed maximum u* threshold of 0.35

m/s (Curtis et al. 2005). Respiration was calculated

using a site-specific empirical formula relating nighttime

NEE to soil temperature (Schmid et al. 2003), with an

added soil moisture coefficient in the growing season

when respiration rates showed sensitivity to drought

(Curtis et al. 2005). We used a bi-linear periodic method

to fill gaps in temperature, moisture, humidity, and

radiation observations, and assumed that CO2 fluxes

during nighttime in all seasons and during the daytime

in the dormant season were driven entirely by ecosystem

respiration (Re, the sum of autotrophic and heterotro-

phic respiration). We used the empirical respiration

equations to gap-fill NEE during all nights and

dormant-season days. Gaps in daytime GPP during

the growing seasons were filled using the mean of 100

neural network simulations (Papale and Valentini 2003).

Gap-filled gross primary production (GPP) was added

to respiration to provide gap-filled NEE. Since the

treatment tower sampled a footprint larger than the 33

ha of contiguous experimental girdling area, we used a

footprint model modified from Detto et al. (2006) and

the probabilistic flux footprint climatology (Chen et al.

2009) approach to scale our conclusions to fluxes

originating only from the girdled area.

We assessed treatment effects on NEP, the annual

sum of half-hourly NEE, by comparing fluxes measured

at 34 m on the control and 32 m on the treatment tower.

Despite the fact that measurements were done above the

canopy, measurements that are conducted within the

roughness sub-domain, which can extend as high as 4
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times the canopy height, can be biased by surface and

forest features near the measurement location (Bohrer et

al. 2009). Accordingly, our CO2 flux measurements at 32

and 34 m were consistently lower than at 46 m, causing

NEP reported in this manuscript to differ from

previously published values from the control tower

(e.g., Gough et al. 2008).

Principal drivers of interannual variability in NEP at

our site include photosynthetic photon flux density

(PPFD) and soil temperature (Ts). We measured PPFD

above the canopy using PPFD sensors (LI-190SZ, LI-

COR Biosciences). We only present PPFD above the

control-forest canopy because treatment PPFD sensors

malfunctioned in 2009 and 2010; however, because

control and treatment towers are ;1 km apart, mean

incoming above-canopy PPFD is similar between sites.

Soil temperature was measured at 7.5 cm depth in one

location during 2008 and 2009 and three locations

thereafter near the base of each meteorological tower

using type E thermocouples.

Canopy structure

We characterized canopy structural changes following

disturbance in each of the eight paired control and

treatment plots using a ground-based portable canopy

LiDAR (PCL) system. The design, operation, and

validation of this system is described in Parker et al.

(2004) and was used previously at our site to relate

canopy physical structure to wood NPP (Hardiman et

al. 2011). The PCL is based on an upward looking, near-

infrared pulsed laser operating at up to 2000 Hz (model

LD90-3100VHS-FLP, Riegl USA, Orlando, Florida,

USA). Our system was mounted on a frame worn by the

operator while walking along a transect that passed

through the center of each plot. We ground-verified the

operator’s location by manually embedding a code in

the LiDAR signal every 10 m along a pre-marked

transect. We binned the raw data horizontally and

vertically into 1-m2 grids for structural analysis. From

these data we derived two metrics of canopy structure:

maximum canopy height and clumping index. Mean

maximum canopy height was the average height across

each transect of the uppermost bins with .0 LiDAR

returns. We adapted the methods of Gonsamo et al.

(2010) to estimate foliage-clumping indices of 0 to 1 for

each plot. Values approaching 0 signify substantial

foliar clumping and those close to 1 indicate uniform

distribution of foliage.

Percentage of absorbed photosynthetic photon flux density

We inferred the percentage of PPFD absorbed by

control and treatment canopies (fAPAR) over time from

a site-specific relationship relating fAPAR to LAI.

Below-canopy PPFD was recorded continuously at 1

Hz for 1–2 weeks during peak LAI in 2011 in each of

nine control and three treatment plots using an array of

eight sensors (LI-190 Quantum Sensor [LI-COR Biosci-

ences] and SQ-110 Quantum Sensor [Apogee Instru-

ments, Logan, Utah USA]) evenly spaced along 26 m

spanning the diameter of each plot. Our sampling

strategy encompassed a broad range of LAIs, from 2.2

to 6.3. Within each plot, we averaged PPFD across

sensors and over time to minimize solar angle influence.

A BF2 sunshine sensor (Delta-T Devices, Cambridge,

UK) on the control meteorological tower measured

above-canopy total and diffuse radiation. We used

PPFD data to estimate fAPAR when the diffuse fraction

of total radiation was .85% to avoid inclusion of

sunflecks (e.g., Tobin and Reich 2009). We calculated

fAPAR by subtracting the quotient of mean below- and

above-canopy PPFD from 1. We used nonlinear

regression to relate fAPAR to LAI and then inferred

peak growing season fAPAR (2007–2011) from mean

control- and treatment-forest LAI measurements de-

scribed above in Leaf-area index.

Apparent quantum yield and maximum GPP

We used a rectangular hyperbola function to describe

the relationship between GPP and above-canopy PPFD

and to derive canopy physiological parameters for

control and treatment forests:

GPP ¼ aGPPmaxPPFD

GPPmax þ aPPFD

where a is apparent quantum yield and GPPmax is

potential maximum GPP. We included in our analysis

only non-gap-filled half-hourly GPP values from June

through August, excluding spring leaf emergence and

autumn leaf fall. Apparent quantum yield (a) is a metric

of LUE that indicates the responsiveness of GPP to

increases in above-canopy PPFD (Clark et al. 2010).

Statistical analyses

For all response parameters except C fluxes derived

from meteorological measurements, we compared treat-

ment means and derived confidence intervals using time-

series ANOVA in which control and treatment plots

nested within the meteorological tower footprints served

as replicates. To simplify the presentation of our results,

nonoverlapping 95% confidence intervals shown in

figures indicate significant differences among means at

a ¼ 0.05. Model parameters, a and GPPmax, derived

from a rectangular hyperbolic function relating GPP to

above-canopy PFFD were considered statistically dif-

ferent when their 95% confidence intervals were non-

overlapping. We additionally examined trends over time

in maximum canopy height using linear regression

analysis. We conducted statistical analyses using SAS

version 9.2 (SAS Institute 2009) and SigmaPlot 12

(SYSTAT 2011).

Confidence intervals for meteorological C fluxes were

calculated using the daily-differencing approach devel-

oped by Hollinger and Richardson (2005). We used a

conservative estimate of error by incorporating errors

associated with our gap-filling techniques for ecosystem

respiration (Re) and GPP. Errors of Re are pulled from
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the regression of our empirical Re formulas. Errors for

GPP were derived from the standard error of the 100
neural-network GPP simulations. A weighted average of

these three half-hourly random errors is used to
integrate yearly, seasonal, and process-specific random

errors.

RESULTS

Leaf-area index and canopy nitrogen
following disturbance

Stem-girdling of early successional canopy dominants

in the treatment forest together with unanticipated
insect herbivory prompted large interannual variation

in leaf-area index (LAI) quantity and composition.
Control-forest total LAI varied by 22% over five years

(Fig. 2A). Contrastingly, total LAI in the treatment
forest declined 44% from pretreatment levels three years

following the girdling disturbance, coincident with
patchy forest tent caterpillar (Malacosoma disstria)
infestations in control and treatment forests. We did

not separately quantify defoliation caused by stem-
girdling and herbivory; however, a 50% decline from

2009 to 2010 in non-girdled red oak LAI in the
treatment forest suggests that this favored host species

(Parry and Goyer 2004) experienced substantial herbiv-
ory. A smaller decline of 28% in red oak LAI occurred in

the control forest. LAI recovered to pretreatment levels
the following year as the leaf area of later successional

species replaced that of severely diminished aspen and
birch. Aspen and birch averaged 36% of total LAI in the

control forest, with little variation from one year to the
next. Aspen and birch in the treatment forest comprised

27% of total LAI prior to disturbance, declining to 1%
four growing seasons following girdling as oak, pine,

and maple dominance increased.
Interannual changes in LAI generally paralleled shifts

in canopy N mass, with leaf N redistribution in the
treatment forest from senescent early successional to

non-girdled later successional species supporting total
leaf-area recovery following defoliation (Fig. 2B).
Control-forest canopy N mass averaged 44 kg/ha over

four years, including 26% allocated to aspen and birch.
In the treatment forest, canopy N mass declined by .10

kg/ha in 2010 when LAI reached a minimum. Treat-
ment-forest recovery of total LAI to pre-disturbance

levels in 2011, four years following disturbance,
corresponded with the recovery and reinvestment of N

in newly proliferated foliage of later successional species.

Canopy structural shifts in response to disturbance

Rapid deterioration of aspen and birch crowns in the

treatment forest modified canopy structure by subtly
shifting canopy height downward and increasing large

spatial scale (i.e., inter-plot) canopy structural hetero-
geneity (Fig. 3). Canopy clumping indices (Gonsamo et
al. 2010) were relatively stable over time in both forests;

however, 95% confidence intervals, which express
variability among plots in clumping indices, increased

threefold over three years in the treatment forest,

indicating a broad spatial-scale increase in canopy

structural heterogeneity. The rise in heterogeneity of

clumping indices within the treatment forest may be

related to spatially irregular mortality, with some areas

of the canopy becoming more clumped as large clusters

of aspen and birch aspen die, and others less clumped

where mortality was diffuse. We also observed a

marginally significant (P ¼ 0.106) downward shift in

maximum canopy height in the treatment forest,

suggesting that aspen and birch decline exposed and

increased in prominence lower-stature canopy leaf area.

Canopy light absorption and physiology

following disturbance

The fraction of photosynthetically active radiation

absorbed (fAPAR) by forest canopies varied minimally

across a broad range of leaf-area indices, suggesting that

partial defoliation of the treatment canopy had small

effects on light absorption (Fig. 4, inset). Control and

treatment forest plots with leaf-area indices of 2 to 6.5

spanned a relatively narrow fAPAR range of 0.85 to

0.98. Using the relationship between fAPAR and LAI,

FIG. 2. (A) Leaf-area indices (LAI) of control and
treatment forests, 2007–2011, and (B) the canopy leaf nitrogen
(N) mass of control and treatment forests, 2008–2011. Values
shown are means and 95% CI. Gray-shaded areas illustrate
aspen and birch contributions to treatment forest total LAI and
canopy leaf N mass following moderate disturbance. The
vertical dashed line indicates time of girdling in the treatment
forest, and nonoverlapping 95% confidence intervals illustrate
significant differences among means at a¼ 0.05.
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we estimated that LAI declines of 44% in the treatment

forest corresponded with a reduction in inferred fAPAR

from 0.97 to 0.91 during peak defoliation in 2010 (Fig.

4). Inferred control forest fAPAR varied by 2% over the

same five-year period, averaging 0.97.

Canopy physiological performance was sustained

following disturbance to the treatment forest, even

during peak defoliation. Canopy light-use efficiency

(LUE), expressed as apparent quantum yield of the

canopy, was significantly greater in the treatment forest

during three of four years following experimental

disturbance (Fig. 5A). Treatment differences in LUE

were not observed during 2010, when defoliation peaked

in the disturbed forest. Higher LUE in the treatment

forest indicates greater sensitivity of mean hourly GPP

to rising PPFD in the light-limited region of the light-

response curve (Fig. 6). Conversely, potential canopy

GPPmax tended to be higher in the control forest, though

this difference existed prior to the girdling treatment and

was only significant one year (2011) following distur-

bance (Fig. 5B).

Net primary and ecosystem production, ecosystem

respiration, and gross primary production

Net primary production (NPP) and net ecosystem

production (NEP) did not differ significantly between

treatments following moderate disturbance, as sustained

canopy physiology and light absorption during peak

defoliation and, subsequently, rapid LAI recovery

maintained rates of C uptake and storage in above-

ground wood mass. Aboveground wood NPP declined

similarly in control and treatment forests to ;1.1 Mg

C�ha�1�yr�1 during 2010, recovering to a pre-disturbance

level the following year (Fig. 7). Annual NEP in the

control forest varied over 4 years from 1.71 to 3.38 Mg

FIG. 3. (A) Control- and treatment-forest maximum
canopy height and (B) clumping indices, 2008/9–2011, follow-
ing girdling of aspen and birch in 2008. Values shown are means
and 95% CI. Nonoverlapping 95% confidence intervals indicate
significant differences among means at a¼ 0.05.

FIG. 4. The inferred fraction of absorbed photosynthetically active radiation (fAPAR) by control- and treatment-forest
canopies, 2007–2011. Values shown are means and 95% CI. The fAPAR was measured directly in 2011 and inferred for all other
years from the inset relationship between fAPAR and leaf-area index (LAI); see inset. The vertical dashed line indicates time of
girdling in the treatment forest. Nonoverlapping 95% confidence intervals indicate significant differences among means at a¼ 0.05.
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C�ha�1�yr�1, with a slightly compressed range of 2.28 to

3.35 Mg C�ha�1�yr�1 in the treatment forest (Fig. 8). As

with NPP, comparable NEP minima occurred in both

treatments during 2010, coincident with peak defoliation

in the treatment forest; however, parallel declines in

treatment and control forest C uptake rates together

with relative LAI stability in the control forest suggest

interannual climate variability, rather than disturbance-

prompted defoliation, caused this period of low C

uptake. Annual Re (ecosystem respiration) was relatively

high and GPP low in both treatments during 2010, with

mean annual temperatures correspondingly high and

growing season PPFD low.

DISCUSSION

Mechanisms sustaining C uptake

following moderate disturbance

Our results suggest that forest C uptake resistance to

decline following moderate disturbance was supported

by the maintenance of canopy light-use efficiency (LUE)

and light absorption during defoliation (years 1–3 post-

treatment) and, subsequently, by the rapid replacement

of lost leaf area (year 4). Our observation of net

ecosystem production (NEP) resistance to moderate

disturbance is consistent with that following the

thinning of a deciduous forest (Granier et al. 2008),

and comparable to studies showing only brief, tempo-

rary declines in leaf area and C uptake rates following

insect herbivory, severe weather, or thinning (Amiro et

al. 2010, Clark et al. 2010, Edburg et al. 2011, Goetz et

al. 2012, Hicke et al. 2012). In our study, aboveground

wood net primary production (NPP) and net ecosystem

production (NEP) tracked one another in the control

and treatment forests during the first three years

following disturbance, indicating that interannual vari-

ation in C uptake was principally caused by year-to-year

variability in climate parameters known to constrain

gross primary production (GPP) and ecosystem respi-

ration (Re) at our site (Gough et al. 2008) rather than by

disturbance. Low aboveground wood NPP and NEP in

control and treatment forests three years following the

girdling treatment, though coincident with peak defoli-

ation in the moderately disturbed forest, corresponded

with similarly low GPP and high Re in both forests. We

FIG. 5. (A) Apparent quantum yield of the canopy and (B)
potential canopy maximum gross primary production (GPPmax)
for control and treatment forests, 2007–2011. Values shown are
means and 95% CI. The vertical dashed line indicates time of
girdling in the treatment forest, and nonoverlapping 95%
confidence intervals indicate significant differences among
means at a¼ 0.05.

FIG. 6. Gross primary production (GPP) in relation to
above-canopy photosynthetic photon flux density (PPFD) (A)
from 0 to 2000 lmol�m�2�s�1 and (B) from 0 to 500
lmol�m�2�s�1 for control (2007) and treatment (2007–2011)
forests. Trend lines were derived and their parameter coeffi-
cients (shown in Fig. 5) compared statistically by fitting
observations to a rectangular hyperbola function. For illustra-
tive clarity, only the 2007 trend line is shown for the control
forest; no significant differences were observed among trend
lines of different years in the control forest.
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cannot rule out that the forest tent caterpillar outbreak

in 2010 contributed to low C uptake in both treatment

and control forests because our analysis did not quantify

the degree to which interannual variation in NEP was

influenced by this unanticipated insect outbreak; how-

ever, leaf-area index (LAI) declines in the control forest

were not significant, suggesting that insect defoliation

played at most a secondary role in limiting C uptake and

wood NPP during 2010. In the fourth year following

disturbance, annual GPP of the treatment forest was

slightly lower than that of the control forest, paralleling

treatment differences in canopy GPPmax. Moderate

disturbance temporarily reduced GPP in other forests

(Misson et al. 2005, Li et al. 2007, Amiro et al. 2010,

Clark et al. 2010, Dore et al. 2010, Edburg et al. 2011,

Heliasz et al. 2011, Hicke et al. 2012). Notably, without

the control forest for comparison, declining NEP in the

first three years following treatment may have been

erroneously attributed to disturbance, reinforcing the

value of large-scale experiments with controls in

partitioning the causes of interannual variability in C

uptake.

A principal mechanism sustaining forest C uptake

following moderate disturbance was the maintenance of

canopy light absorption during peak defoliation. In-

ferred treatment-forest fAPAR (fraction of absorbed

photosynthetically active radiation) suggests minor

sensitivity to substantial leaf-area losses of 44% as aspen

and birch declined in response to the girdling treatment.

Multi-layered canopies with vertically stacked leaves

generally maintain high rates of light absorption across

a broad range of leaf-area indices (Niinemets et al. 1998,

Niinemets 2007), suggesting that partial canopy defoli-

ation minimally compromises fAPAR when LAI is

sufficiently high prior to disturbance. Rising broad-scale

canopy structural heterogeneity in the treatment forest

may have provided an additional buffer against steep

declines in fAPAR during peak defoliation. We ob-

served a steady increase in the spatial variability of

treatment-forest clumping indices, a shift that likely

reflects differences in the extent and distribution of tree

mortality within the large treatment-forest footprint.

Structurally heterogeneous canopies absorb more light

than structurally simple, uniform canopies (Chen 1996,

Yang et al. 2006) and, consequently, may sustain high

rates of C uptake through disturbance (Ahl et al. 2004,

Ishii et al. 2004, Martin and Jokela 2004, O’Hara and

Nagel 2006, Duursma and Makela 2007, Sprintsin et al.

2012). Our results thus elicit the hypothesis that forest

canopies made structurally heterogeneous by moderate

disturbance more effectively resist C uptake declines

during peak defoliation by maintaining higher levels of

light absorption than more structurally simple forests.

An additional primary mechanism supporting C

uptake resistance to moderate disturbance was enhanced

canopy LUE during defoliation. Apparent quantum

yield of the canopy, a metric of LUE, was significantly

greater in the treatment forest following moderate

disturbance, though it declined and approached that of

the control forest during the height of leaf-area loss in

2010. Moderate defoliation of other forest canopies

improved or had no effect on LUE (Campbell et al.

2009, Clark et al. 2010). Our findings, and those of Clark

et al. (2010), empirically demonstrate that moderate

disturbance may increase canopy quantum yield while

reducing GPPmax. Modeling studies additionally suggest

that more structurally heterogeneous forest canopies,

such as those that emerge following moderate distur-

bance, are more responsive to improved light availability

under light-limited conditions (Walcroft et al. 2005,

Duursma and Makela 2007, Hudiburg et al. 2009,

Amiro et al. 2010). Though the exact reason for

increased LUE following moderate disturbance is

uncertain, partial defoliation of the upper canopy may

illuminate more light-use-efficient foliage previously

restricted to the canopy interior (Niinemets 2007).

Stability of canopy processes central to sustaining

rates of C uptake following moderate disturbance,

including fAPAR and LUE, suggests a critical shift in

structure–function relationships occurred in which the

photosynthetic contribution of undisturbed subdomi-

nant and subcanopy vegetation increased to compensate

for defoliation of canopy dominant trees. Moderate

upper-canopy defoliation increases light penetration

into the canopy and more evenly distributes light

between upper and lower canopy layers (Walcroft et

al. 2005, Ueyama et al. 2006, Duursma and Makela

2007, Campbell et al. 2009, Hudiburg et al. 2009). As

aspen and birch declined in the treatment forest,

maintenance of fAPAR and LUE together with a

general downward trend in canopy height indicate that

enhanced light absorption by undisturbed subdominant

and subcanopy vegetation boosted their photosynthetic

contributions to GPP. Subdominant canopy plants are

important contributors to C uptake and storage in

forests, including those recently subjected to upper-

canopy defoliation (Kaye et al. 2005, Ueyama et al.

FIG. 7. Aboveground wood net primary production (NPP)
of control and treatment forests, 2007–2011. Values shown are
means and 95% CI. The vertical dashed line indicates time of
girdling in the treatment forest, and nonoverlapping 95%
confidence intervals indicate significant differences among
means at a¼ 0.05.
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2006, Gough et al. 2007, Misson et al. 2007, Campbell et

al. 2009, Dore et al. 2010).

In the year following the 2010 peak defoliation, leaf

area and canopy N content in the treatment forest

recovered to pre-disturbance levels as N reinvested in

newly produced foliage of later successional canopy

species offset N lost from senescent aspen and birch

foliage. Rapid leaf-area recovery, as early as one year

following disturbance, is an important mechanism

supporting NEP resistance and resilience to moderate

canopy defoliation in other forests (Li et al. 2007, Amiro

et al. 2010, Clark et al. 2010, Hicke et al. 2012), with

canopy N redistribution to undisturbed vegetation

essential to rebuilding LAI lost to disturbance. At our

site, Nave et al. (2011) reported initiation of foliar N

redistribution in the treatment forest from girdled aspen

to untreated maple canopy trees during the two years

following disturbance, finding that cessation of N

uptake by senescing aspen and birch enhanced available

N. We observed a complete redistribution of N from

senescent to residual canopy trees four years following

moderate disturbance in the same experimentally

disturbed forest. The time required for newly available

N to become fully reinvested in new leaf area depends on

disturbance severity and the extent of N leaching (Clark

et al. 2010), rates of plant senescence following

disturbance (Zeller et al. 2008), and root-class-depen-

dent rates of N mineralization, with larger roots

decomposing and releasing inorganic N more slowly

FIG. 8. (A) Net ecosystem production (NEP), (B) ecosystem respiration (Re), (C) gross primary production (GPP), (D) mean
annual soil temperature at 7.5 cm depth (Ts), and (E) mean June–August above-canopy photosynthetic photon flux density (PPFD)
for control and treatment forests, 2008–2011. Values shown are means and 95% CI. Only control-forest PPFD is shown because the
treatment-forest sensor malfunctioned in 2009. Nonoverlapping 95% confidence intervals indicate significant differences among
means at a¼ 0.05.
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(Attiwill and Adams 1993, King et al. 1997, Smith et al.

2000, Silver and Miya 2001).

Application

Our findings support new forest-management para-

digms that broadly emerging middle successional forests

offer an array of important ecosystem services, while

sustaining wood production at rates comparable to

those of conventionally managed early successional

forests (McGee et al. 1999, Lindenmayer et al. 2000).

In our emerging middle-successional forest, above-

ground wood NPP, a traditionally managed C flux,

and net C uptake or NEP, an ecosystem service of

increasing priority, were resistant to moderate distur-

bance as broad-scale canopy structural heterogeneity

increased with the decline of early successional canopy-

dominant species. These findings are particularly rele-

vant because future terrestrial C-sink strength is highly

uncertain as many North American forests, clear-cut

harvested over a century ago, approach a successional

transition in which early successional species are rapidly

declining (Birdsey et al. 2006). Our results also

contribute to a growing ecological foundation that

suggests management practices cultivating greater,

rather than less, forest structural heterogeneity could

diversify and strengthen ecosystem services by enhanc-

ing structural features that may serve to sustain C

uptake and encourage biological diversity (Crow et al.

2002, Schulte et al. 2007, Dyer et al. 2010). Likewise,

management practices permitting, rather than actively

preventing, moderate disturbances to emerging middle-

successional forests may generate desired structural

heterogeneity without compromising forest C uptake

and storage (Dyer et al. 2010). This conclusion departs

from previous recommendations that management

broadly mitigate disturbances to preserve forest C-sink

strength (Kurz et al. 2008), though clearly some forest

ecosystems are vulnerable to even mild disturbance

(Amiro et al. 2010) and the consequences of disturbance-

driven changes in forest structure for C uptake requires

further investigation.

Our experimental defoliation, while intended to mimic

natural disturbance, suggests that wood production and

C uptake may be sustained following moderate silvicul-

tural thinning of maturing early-successional forests,

particularly when already declining canopy-dominant

species are harvested. Numerous studies demonstrate

that partial harvests have short-term effects on wood

production (e.g., Kaye et al. 2005, Chiang et al. 2008,

Sabo et al. 2008, Campbell et al. 2009, Saunders et al.

2012) and C uptake (Misson et al. 2005, Dore et al.

2012, Saunders et al. 2012). As in our study, resistance

of wood production and C uptake to precipitous

declines following thinning is supported by the compen-

sating photosynthesis and growth of unharvested

vegetation (Mund et al. 2002, Martinez-Vilalta et al.

2007, Sabo et al. 2008). Prior results from our site

additionally demonstrate that wood production is most

resilient in stands comprised of a diverse assemblage of

canopy species because improved growth of already

intact, later-successional canopy species rapidly com-

pensates for the loss of early-successional species

(Gough et al. 2010). We caution that our targeted

defoliation of early successional species through stem

girdling deviates from silvicultural thinnings in two

ecologically significant ways: carbon and nutrients were

retained onsite and the extent and distribution of

mortality was spatially irregular. Whether these subtly

different structural consequences convey significantly

different functional responses is uncertain (Amiro et al.

2010), indicating that additional investigation is required

to determine how different types of moderate distur-

bance alter forest structure–function relationships.

Our findings have implications for ecosystem model

simulations of C uptake and storage following moderate

disturbance, demonstrating that LUE varies substan-

tially over time and in response to disturbance, a result

that suggests that model parameterizations using fixed

LUE constants to scale forest production (e.g., see Ahl

et al. 2004, Schwalm et al. 2006) may have limited

predictive power in dynamic ecosystems. Our results

additionally inform models and remote-sensing applica-

tions that use leaf area to simulate C uptake, revealing

that some forests tolerate large LAI losses without

corresponding declines in NEP, while some other studies

report close coupling of C uptake rates and LAI (van

Dijk et al. 2005, Luyssaert et al. 2007, Lindroth et al.

2008, Duursma et al. 2009). Our findings suggest that

declines in NEP occur when a disturbance threshold is

met that causes fAPAR and light use-efficiency to

decline, with C uptake resistance to moderate distur-

bance varying substantially among forest types and with

severity of disturbance (Amiro et al. 2010). Finally, our

results and the findings of others suggest that represen-

tation of canopy structural heterogeneity in models may

improve post-disturbance predictions of NEP (Cook et

al. 2008, Sprintsin et al. 2012), though further investi-

gation is required to establish this linkage. Identification

of disturbance thresholds and the underlying mecha-

nisms supporting functional resistance will improve the

results of models simulating C-cycling responses to

moderate disturbance.

Conclusions

We continue to examine the mechanisms supporting C

storage resistance to moderate disturbance. Presently,

the response of NEP to moderate disturbance is less in

magnitude than projected, with our initial hypothesis

positing that NEP and LAI would decline in parallel

following the stem-girdling of aspen and birch (see Nave

et al. 2011). Instead, our experimental results are

elucidating new, complementary mechanisms supporting

unexpected C uptake resistance to moderate distur-

bance. Our principal findings indicate that substantial

disturbance-prompted declines in leaf area can occur in

some ecosystems with little corresponding change in
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rates of forest C uptake when fAPAR and LUE are

maintained. Though C uptake in our forest was

relatively insensitive to moderate disturbance, the

threshold at which leaf-area losses cause canopy light

absorption and light-use efficiency, and consequently C

uptake, to decline clearly differs among ecosystems

(Amiro et al. 2010, Hicke et al. 2012). Key questions

remain regarding whether ecosystem models can ade-

quately simulate observed C-cycling responses to mod-

erate disturbance and, also, what disturbance thresholds

prompt significant functional changes.
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