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BIAS, PRECISION, AND ACCURACY OF FOUR MEASURES OF
SPECIES RICHNESS

Jessica J. HELLMANN! AND GARY W. FOWLER

School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109 USA

Abstract. Species richness is a widely used surrogate for the more complex concept
of biological diversity. Because species richness is often central to ecological study and
the establishment of conservation priorities, the biases and merits of richness measurements
demand evaluation. The jackknife and bootstrap estimators can be used to compensate for
the underestimation associated with simple richness estimation (or the sum of species
counted in a sample). Using data from five forest communities, we analyzed the simple
measure of richness, the first- and second-order jackknife, and the bootstrap estimators with
simulation and resampling methods to examine the effects of sample size on estimator
performance. Performance parameters examined were systematic under- or overestimation
(bias), ability to estimate consistently (precision), and ability to estimate true species rich-
ness (accuracy).

For small sample sizes in all studied communities (less than ~25% of the total com-
munity), the least biased estimator was the second-order jackknife, followed by the first-
order jackknife, the bootstrap, and the simple richness estimator. However, with increases
in sample size, the second-order jackknife, followed by the first-order jackknife and the
bootstrap, became positively biased. The simple richness estimator was the most precise
estimator in all studied communities, but it yielded the largest underestimate of species
richness at all sample sizes. The relative precision of the four estimators did not differ
across communities, but the magnitude of estimator variance is dependent on the sampled
community. Differences in accuracy among the estimators were not independent of com-
munity, and accuracy patterns were associated with community speciesdiversity. Theresults
of this study can assist policy makers, researchers, and managers in the selection of ap-
propriate sample sizes and estimators for richness estimation and should facilitate the
ongoing assessment of local, and ultimately global, biodiversity.

Key words: biological diversity; bootstrap estimator; jackknife estimator, first- and second-order;
Monte Carlo simulation; quadrat sampling; resampling procedures; sample size determination; simple

richness estimator; species diversity; species richness.

INTRODUCTION

Assessments of speciesdiversity can facilitate or pri-
oritize management and can serve as starting points for
basic research in community ecology. For these rea-
sons, effective methods for estimation of species di-
versity need to be identified and implemented. Many
complicated measures of diversity have been suggested
(e.g., Simpson 1949, Shannon and Weaver 1963, Peet
1974), but some ecologists have argued for the use of
the simplest measure of biological diversity, the num-
ber of species counted in acommunity, or speciesrich-
ness. This preference stems from the relative ease with
which richness can be assessed, the lack of documented
success of more complicated indices, and the lack of
agreement between researchers and managers as to
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which index should be used (see Peet 1974, Magurran
1988).

Yet, problems with simple species richness estima-
tion also exist. In particular, the richness estimator
shows sample size dependency (Smith and van Belle
1984). Simplerichness estimators, such asthe sum total
of observed species in a sample (caled S, in this
paper), underestimate richness at all sample sizes, and
this underestimation decreases with increasesin sample
size. Fortunately, methods exist that allow the reduc-
tion of the underestimation associated with sampling-
based richness estimation. These methods include the
family of jackknives and the bootstrap estimators.
Here, we analyze the performance of S, the first- and
second-order jackknife, and the bootstrap estimators so
that estimator and sample size recommendations can
be made for species richness estimation. Further, we
analyze the dependence of estimator performance on
the ecological properties of a sampled community.

Estimator and sample size selection is largely based
upon consideration of the following questions: (1) Does
the estimator chosen systematically over or underes-

824



August 1999

timate species richness? (bias); (2) If the estimation
procedure were repeated a second time, would the sec-
ond answer be similar to the first? (precision); and (3)
How close to the true species richness value is the
richness estimate? (accuracy). All estimation proce-
dures differ with respect to their performance in each
of these three categories. Further, the performance of
an individual estimator can be either dependent or in-
dependent of the parameters of a sampled community,
and estimator performance may or may not be pre-
dictable.

Definitions of bias, accuracy, and precision

Insufficient knowledge of the role that bias, accu-
racy, and precision play in richness estimation can lead
to inappropriate estimator choice, inconsistent esti-
mation results, and poor decision making. For species
richness estimation, the definitions of bias, accuracy,
and precision are as follows, and each are examined in
this study.

Bias is the difference between the expected value of
the estimator (the mean of the estimates of all possible
samples that can be taken from the population) and the
true, unknown, population value of species richness.
Accuracy is the difference between a sample estimate
and the true population value. For species richness,
accuracy is the difference between the estimate of spe-
cies richness based on sample data and the true species
richness of the population or community being sam-
pled. Precision is the difference between a sample es-
timate and the mean of the estimates of all possible
samples that can be taken from the population. For
species richness, precision is the difference between an
estimate of species richness based on sample data and
the mean of all possible estimates of species richness
based on all possible samples of the same size from
the population or community being sampled. Precision
is measured by the variance of the estimator, and ac-
curacy is measured by the mean square error of the
estimator. When the biasis zero, precision and accuracy
are identical. Because bias is never zero, due to innate
estimator bias and data collection error, accuracy may
be difficult to achieve. Accuracy, however, is the most
desirable of the three parameters because a highly ac-
curate estimate is neither biased nor highly variable.

History of the jackknife and bootstrap

The species richness estimators investigated here
have a long history in statistics and ecology and have
broad application in their pure form. The jackknife and
bootstrap first originated as generic nonparametric es-
timators of bias and standard error. The jackknife was
introduced by Quenoille in 1949 and was later ad-
vanced by Tukey in 1958. Generalized equations for
the kth-order jackknife were derived by Gray and Schu-
cany (1972) and were discussed in Miller (1974). Sug-
gestionsfor the use of the jackknife estimator in species
richness estimation originated when Zahl (1977) treat-

MEASURES OF SPECIES RICHNESS

825

ed rectangular vegetation plots, or quadrats, as inde-
pendent samples that could be jackknifed for diversity
estimation. This procedure assumes a random sample
of independent quadrats rather than a random sample
of individuals (Smith and van Belle 1984, Palmer
1990). The random selection of quadrats is, in fact, a
random sample of space (Heltshe and Forrester 1983).
Furthermore, nonparametric estimators, such as the
jackknife and bootstrap, do not assume relationships
among species within a quadrat and make no assump-
tions about underlying species distributions.

The simplest jackknife species richness estimator,
the first-order, is a function of the number of rare spe-
cies found in a community. Its calculation involves the
number of species that occur in one and only one quad-
rat. The second-order jackknife is a function of both
the number of speciesin only one quadrat and the num-
ber of species in only two quadrats. The theoretical
premise of the jackknife isthat estimates of the param-
eter of interest are obtained from n samples of size n
— k, where each sample is formed by deleting k of the
original n quadrats. In the first- and second-order jack-
knife, k = 1 and 2, respectively. Jackknife estimators
exist for each deletion sample size up to the original
sample size, k = n — 1. Hence, the first through kth-
order jackknives form a ‘‘family”’ of estimators. For
species richness, however, a closed, noniterative form
of the jackknife exists, allowing an estimate to be cal-
culated from a single sample to reduce richness un-
derestimation (see the Appendix).

The bootstrap estimator was proposed by Efron
(1979, 1981) and is aresampling procedure where boot-
strap samples of size n are randomly selected from n
quadrats with replacement. A noniterative equation
also exists for the bootstrap, enabling one to calculate
a bootstrap richness estimate from a single sample (see
the Appendix).

Other, more recently developed, nonparametric es-
timators of species richness include the Chaol and
Chao2 estimators, an abundance-based coverage esti-
mator (ACE), and an incidence-based coverage esti-
mator (ICE) (Chao 1984, 1987, Chao and Lee 1992,
Lee and Chao 1994; see Robert K. Colwell's
“EstimateS"’ [1997, availableonline]?). Chao2 and ICE
use presence—absence data, as are the data reported in
this study, but these estimators are not the focus of
analysis here. The Chao2 estimator uses the observed
number of speciesin asample, combined with the num-
ber of species appearing in only one and two samples
(see Colwell and Coddington 1994). ICE can be chal-
lenging to calculate and does not produce estimates in
many cases (Walther and Morand 1998). The Chao2
estimator and |CE are mentioned here so that readers
are aware of their potential application to presence—
absence data sets.

2 URL: (http://viceroy.eeb.uconn.edu/estimates)
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TaBLE 1. Locations of the five study systems.
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Site Location by Section, Township (T), and Range (R)
S1 University of Michigan Biological Station; Section 33, T37N, R3W, Cheboygan County,
Michigan, USA.
S2 Section 26, T44N, R37W, Iron County, Michigan, USA.
S3 University of Michigan's Stinchfield Woods; Section 12, T1S, R4E, Washtenaw County,
Michigan, USA.
4 and S5 University of Michigan’'s Radrick Forest; Sections 24 and 25, T2S, R6E and Sections 19

and 20, T2S, R7E, Washtenaw County, Michigan, USA.

Performance analysis and recommendations

Nonparametric estimators, such as the jackknife and
bootstrap, show promise as effective and reliable mea-
sures of species richness (Colwell and Coddington
1994). Therefore, using computer resampling proce-
dures to analyze thousands of hypothetical samplesin
five distinct ecological communities, this paper further
analyzesthefirst- and second-order jackknife, the boot-
strap, and a simple measure of species richness, S,
so that these procedures can be better applied in bio-
diversity surveys and analyses. The bias, precision
(Monte Carlo variance), and accuracy (mean square
error) of these four estimators are compared across
community types, and recommendations for estimator
and sample size choice are presented. It is the goal of
this study to provide improved understanding of the
relationship between estimator behavior, sample size,
and ecological community properties in order to assist
researchers, managers, and policy makersin their spe-
cies diversity estimation and evaluation efforts.

METHODS
Sudy sites

Data were collected in 1994 and 1995 from five 0.4
ha (80 X 50 m) forested plots (communities) in Mich-
igan. These five sites are labeled S1 through S5, and
their geographic locations are given in Table 1. Each
of the five plots contained 160 quadrats measuring 5
X 5 m, and the presence or absence of woody species
was recorded in every quadrat. The abundance of stems
=1.5 cm in diameter (dbh) in each quadrat was also
recorded. The total species richness (S) of each of the

five plots, or communities, was considered the *‘true”
species richness of the community and was used for
comparison with all calculated estimates of richness.
The five sites comprising this study were all northern
forested ecosystems selected for their differences in
total number of species, numbers of rare and common
species, and degree of dominance or evenness (see Ta-
bles 2-4).

The Sl siteis located on a sandy, well-drained high-
level outwash lake plain and is a predominately red
oak, red pine, and white pine forest; red maple can be
found in the understory (see Tables 3 and 4). The S2
site is mesic, on a moraine of fertile silt, and is dom-
inated by sugar maple with a sparse understory. The
S3 site has loamy to clay soils and is a fire-dominated
oak—hickory forest that is slowly being replaced with
maple. The $4 site is on moderately well-drained soils
and is an old-growth forest dominated by white oak;
black maple, ironwood, and slippery and American elm
can be found in the understory. Finally, the S5 site is
mesic with fine-textured clay soils. It is dominated by
oaks and red maples; cherry, maple, ironwood, and
dogwood can be found in the understory.

Computer simulation procedures

A FORTRAN computer program was written to ran-
domly sample, and then resampl e the sample, from each
of the five plots/communities for sample sizes ranging
from 2.5 to 70% of the population of 160 quadrats. For
each random sample, quadrats were selected without
replacement using a pseudorandom-number generator.
For each of the five communities, the FORTRAN pro-

TaBLE 2. Descriptive statistics for the five sites related to the number of species per plot (i.e., community). Each plot
contains 160 quadrats. These data include plants in the over- and understory as well as ground cover species.

Species abundance categories

(No. of species found in x quadrats)

Mean  Variance Range in
No. of “Very “Com- “Very no. of in Variance-  no. of

Commu- species/ Rare” “Rare’’ ‘‘Average’” mon”  Common’ species/ species/ mean species/

nity plot 1-10 11-50 51-100 101-140 141-160 quadrat quadrat* ratio* quadrat*
S1 14 2 2 0 3 7 9.2 141 0.153 5
S2 17 3 5 1 4 4 8.2 2.69 0.326 9
A 42 20 11 3 3 5 111 4.73 0.424 11
S3 45 25 10 4 2 4 9.4 4.96 0.530 13
S5 56 29 16 8 2 1 9.8 8.60 0.879 15

* Pearson correlation against number of species per plot, P < 0.05.
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TABLE 3. (A) Species presence and abundance, and (B) basic statistics (see Magurran 1988) of woody plantsin the understory

(1.5 = dbh < 9.1 cm) and overstory (dbh = 9.1 cm) of each study site.

A) Species abundance

No. of stems/site

Scientific name Common name S1 S2 S3 4 S5
Ulmus americana American elm 3 70 31
Tilia americana Basswood 10 1 42 13
Populus grandidentata Bigtooth aspen 4
Carya cordiformis Bitternut hickory 3 5
Prunus serotina Black cherry 29 83
Acer nigrum Black maple 14 137 23
Quercus velutina Black oak 33 3 17
Juglans nigra Black walnut 2
Prunus virginiana Choke cherry 38 3 18
Malus pumila Common apple 1
Rhamnus cathartica Common buckthorn 29 1
Celtis tenuifolia Dwarf hackberry 1
Tsuga canadensis Eastern hemlock 2
Cornus florida Flowering dogwood 1 91
Vitis spp. Grape 3 3
Ostrya virginiana Ironwood 3 308 133
Lonicera maackii Maack’s honeysuckle 12
Carpinus caroliniana Musclewood 1
Acer platanoides Norway maple 1 6
Carya glabra Pignut hickory 71 21 11
Toxicodendron radicans Poison ivy 2
Acer rubrum Red maple 58 2 35 1 161
Quercus rubra Red oak 167 4 8
Pinus resinosa Red pine 192
Sassafras albidium Sassafras 2 26 5
Amelanchier spp. Serviceberry 4 1
Carya ovata Shagbark hickory 17 2
Ulmus rubra Slippery elm 29 60
Acer saccharum Sugar maple 213 191 58 6
Prunus avium Sweet cherry 1
Juglans spp. Walnut 1
Fraxinus americana White ash 12 9 3
Quercus alba White oak 30 57 21
Pinus strobus White pine 148
Crataegus spp. Hawthorn 1
Hamamelis virginiana Witch hazel 2
Betula alleghaniensis Yellow birch 5
Total number of stems 569 235 441 864 706

B) Basic statistics
Site

Statistical quantity S1 S2 S3 4 S5
No. of species (S) 5 6 16 24 25
Density (No. of stems/ha) 1422.50 587.50 1102.50 2160.00 1765.00
Shannon Index 1.34 0.44 1.86 2.23 2.38
Simpson |ndex 3.61 121 4.25 572 7.71
Log Series « 0.75 1.12 3.25 4.57 5.05
Berger—Parker 2.96 1.10 2.32 2.81 4.39
Shannon Evenness 0.83 0.25 0.67 0.70 0.74

Notes: These abundance data were used to calculate measures of dominance and evenness for each community for over-
and understory data only; abundance data for ground-cover plants are not available for several sites. See Table 2 for a

nonindex-based comparison of dominance and evenness that includes ground-cover woody plants.

gram calculated richness estimates based upon 5000
samples (iterations) using S, the first- and second-
order jackknife, and the bootstrap for all tested sample

sizes.

Estimates of the expected value of species richness

(E(S)) were calculated as a mean:

EOS) = (

=]

)/

where S are individual estimates of species richness
based on one of the n = 5000 random samples. The
bias of each estimator was estimated as follows:

bias(S) = (213)/n -S

where S is the true species richness value of a com-
munity. The Monte Carlo variance (precision) was also

calculated for each estimator as follows:
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TaBLE 4. Very common species found in the studied communities in the understory, overstory, and ground cover (see
Table 2).

S1 S2 4 S3 S5
Red oak, Sugar maple, Sugar maple, Sugar maple, Red maple,
Quercus rubra Acer saccharum Acer saccharum Acer saccharum Acer rubrum
White pine, Black cherry, Black maple, Black cherry, Black cherry,
Pinus strobus Prunus serotina Acer nigrum Prunus serotina Prunus serotina
Low sweet blueberry, Red-berried elder, Choke cherry, White ash, Choke cherry,

Vaccinium angustifolium ~ Sambucus pubens Prunus virginiana Fraxinus americana  Prunusvirginiana

Wintergreen, Yellow birch, White ash, Gooseberry,
Gaultheria procumbens  Betula alleghaniensis Fraxinus americana Ribes spp.

Huckleberry, Downy arrowwood, Hickory,
Gaylussacia baccata Viburnum rafinesquianum  Carya spp.

Trailing arbutus,
Epigea repens

Bush-honeysuckle,
Diervilla lonicera

Notes: Commonness is based on the number of quadrats a species occupies per plot. Species listed here that are not listed
in Table 3 are species found only in the ground cover. (Common species for S5 are also listed; see Table 2.) The communities

are presented in the order of increasing number of species per plot (S).

var(®) = 2§—<2S)2/n/<n—1)

and mean square error (accuracy) was calculated as

MSE(S) = var(S) + (2 S/n) -

(Note that the mean square error is equivalent to
MSE(S) = var(S) + (bias(S))2)

2

Analysis

The true number of speciesin an community (S) was
correlated (Pearson’s r) with the mean number of spe-
cies per plot, the variance in the number of species per
plot, the variance-mean ratio in number of species per
plot, and the range of the number of species per plot
for the 160 quadrats in each plot (i.e., community). The
sample size at which each estimator begins to over-
estimate species richness was compared across com-
munities. The magnitude of the Monte Carlo variance
of the estimators was compared with the true species
richness of each community. Finally, the sample size
where the mean square error for a given estimator be-
comes larger or smaller than another estimator (called
the ** crossover point’’) was compared with true species
richness and the variance—mean ratio in each of thefive
systems.

REsuLTS
Ecosystem differences

The true species richness values (S) of each of the
five communities are 14, 17, 42, 45, and 56 species for
S1, S2, $4, S3, and S5, respectively (Table 2). A di-
versity of species can be found on the five sites, and
no two sites would be generally classified as the same
forest community type (Tables 3 and 4). The five com-

munities also differ with respect to their relative num-
bers of rare and common species (Tables 2 and 3). S1
and S2 have the fewest rare species and a high per-
centage of common species. The S5 site and the S3
stand have a high number of rare species and a small
percentage of common species. Table 3 shows the dom-
inance and evenness calculations for overstory (dbh =
9.1 cm) and understory (1.5 = dbh =< 9.1 cm) treesin
each of the five sites. Abundance data were not col-
lected for ground cover (dbh = 1.5 cm) species in
several sites, so abundance-based indicators could not
be calculated for the sum total (understory, overstory,
and ground cover) of woody plantsin each community.

The mean number of species per quadrat for the five
communities ranges from 8.2 to 11.1 (Table 2); the
difference between the minimum and maximum num-
ber of species found in a quadrat ranges from 5 to 15
for the five communities; the variance in the number
of species per quadrat ranges from 1.41 to 8.6; and the
variance—mean ratio in the number of species per quad-
rat ranges from 0.153 to 0.879. Qualitatively, the com-
munities seem similar in their mean number of species
per quadrat but differ in their ranges of species per
quadrat, variance in species per quadrat, and variance—
mean ratios.

Based upon the variance-mean ratios, S1 is the most
uniform of the five communities, and S5 is the most
random (Table 2). A strong positive linear relationship
exists between true species richness and the variance—
mean ratio (n = 5, r = 0.889, P = 0.044), the variance
in the number of species per plot (n = 5, r = 0.943,
P = 0.016), and the range in the number of species per
plot (n = 5, r = 0.938, P = 0.018). There is not a
significant relationship between true species richness
and the mean number of species per plot (n = 5, r =
0.597, P = 0.288).
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Bias

The bias of an estimator is the difference between
the expected value of the estimator and the true species
richness value. Positive bias is identical to the over-
estimation of true species richness, while negative bias
is the underestimation of that value. The percent of
sampled quadrats at which the first- and second-order
jackknife and the bootstrap begin to overestimate true
species richness (e.g., Fig. 1) is qualitatively similar
for each of the five communities (Table 5). The simple
estimator, S;,,,, yields the largest underestimate of spe-
cies richness for all sample sizes. It always underes-
timates species richness with the underestimate de-
creasing with increasing sample size. The bootstrap
estimator yields estimates of species richness uniform-
ly larger than S;,, and underestimates species richness
until sample sizes are >63-69% of the population,
where it begins overestimating. The first-order jack-
knife estimator yields estimates of species richness uni-
formly larger than the bootstrap and underestimates
species richness until sample sizes are >37-44%. The
second-order jackknife estimator yields estimates of
species richness uniformly larger than the first-order
jackknife estimator and underestimates species rich-
ness until samples sizes are >22.5-30%, where this
estimator begins to overestimate. Each estimator yields
increasing estimates of species richness as sample size
increases, and it should be noted that for agiven sample

TABLE 5. Linear interpolations of the crossover point (i.e.,
sampl e size as the percentage of 160 quadratsin plot) where
the first- and second-order jackknife and bootstrap esti-
mates begin to overestimate the true species richness.

Sample size (%)

Commu- Second-order First-order
nity jackknife jackknife Bootstrap
S1 24.897 41.030 63.901
S2 29.122 43.902 69.025
4 23.830 39.386 65.728
S3 24.532 38.835 63.095
S5 22.593 36.805 63.464

10 20 30 40 50 60 70

Percentage of total quadrats sampled

size, the magnitude of each estimator is positively cor-
related with the true species richness val ues across the
five communities.

Precision

S, IS the most precise (least variable) of the four
estimators at all sample sizes tested (Fig. 2). The boot-
strap estimator is the second most precise estimator
followed by the first- and the second-order jackknife,
respectively. The general trend for the first-order jack-
knife, the bootstrap, and S;,,, in al five communitiesis
asteady but slow declinein variability with an increase
in sample size. However, the variance of the second-
order jackknife estimator islarger and the trend is more
hump-shaped than that of the other three estimators.
While the order of precision of the four estimators is
the same in all communities, the magnitude of the vari-
ance differs across communities (Fig. 2). S1 isthe least
variable community followed, in increasing order, by
S2, $4, S3, and Sb.

Accuracy

S, is the least accurate of all the estimators for all
sample sizes <7.5-40%, depending on the community
(Fig. 3). The second-order jackknife is the least ac-
curate of the estimators for sample sizes >40%. The
second-order jackknife is the most accurate estimator
for sample sizes <22.5-25% for S4, S3, and S5 (Fig.
3c—e). The first-order jackknife estimator, however, is
the most accurate estimator for sample sizes <12.5%
for S1 (Fig. 3a) and for sample sizes <30% for S2 (Fig.
3b). The bootstrap estimator is the most accurate of the
estimators for sample sizes >40-50% for S2, S3, 4,
and Sb. S, however, is the most accurate of the es-
timators for sample sizes >50% for S1. There are
mixed results for sample sizes within ~20—-60% in all
study sites.

The crossover points of the mean square error curves
for each of the four estimators describe changes in
accuracy for the estimators within a sampled com-
munity. The mean square error curve of the second-
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order jackknife crosses that of the bootstrap at smaller
sampl e sizes for those communities with smaller values
of species richness and smaller variance-mean ratios
(Table 2, Fig. 3). For those communities with larger
values of species richness and variance-mean ratios,
the crossover of the second-order jackknife and the
bootstrap occurs at larger sample sizes. A crossover of
the second-order jackknife mean square error curve and
the first-order jackknife curve occurs only in $4, S3,
and S5, the three richest of the five sites (Fig. 3c—e).
The sample sizes at which the first-order jackknife
crosses and exceeds the bootstrap mean square error
curve differs for those communities with small and
large species richness and variance—mean ratio val ues.
Again, crossover points occurred at smaller sample
sizes for those communities with low richness, while
crossover points occurred at larger sample sizes for
those communities with higher richness.

DiscussioN

The desire to assess and describe global biological
diversity is a continuing theme in ecology (Magurran
1988). Controversy abounds, however, as to how to go
about quantifying biodiversity. Species richness, or the
total number of speciesin acommunity, isanimportant
measure of biodiversity because it is relatively easy to
measure, is comparabl e across communities, and iswell
understood by researchers, managers, and the public.
Further, species richness is an essential point of con-
sideration in the development and implementation of
effective conservation planning. For example, many
agree that maximization of total species richness should
form one component of our global conservation goals
(Hobbs and Lleras 1995).

Given that species richness is both widely used and
is an important parameter to measure, researchers and
managers need to estimate species richness robustly.
Unfortunately, simple species richness estimation de-
pends heavily on sample size. Simple richness esti-
mation, or the enumeration of speciesin a sample, will
result in richness underestimation unless one samples
the entire community of interest. Because exhaustive
sampling is rarely financially or logistically viable, the

nonparametric jackknife and bootstrap can reduce the
biases associated with species richness (Heltshe and
Forrester 1983, Smith and van Belle 1984). Our Monte
Carlo analysis of the biases, accuracy, and precision of
simple species richness, the first- and second-order
jackknife, and the bootstrap illustrates that these esti-
mators may have properties that are both dependent
and independent of community parameters. An under-
standing of this dependence and independence will al-
low selection of the most appropriate estimators and
sample sizes for species richness estimation.
Bias

Our study indicates that for any given sample size,
there exists a single best estimator with respect to bias.
The second-order jackknife estimator isthe least biased
estimator for sample sizes less than ~25% in all com-
munities (Table 5, e.g., Fig. 1). Thefirst-order jackknife
is the least biased estimator for sample sizes within
~25-40%. The bootstrap estimator is the least biased
estimator for sample sizes within ~40—-65%. The sim-
ple estimator, S, istheleast biased estimator for sam-
ple sizes greater than ~65%. At larger sample sizes,
the second-order jackknife, the first-order jackknife,
and the bootstrap estimators become positively biased
for each of the five communities.

The results presented here are supported by previous
research. Smith and van Belle (1984) found, with the
use of random spatial distribution models, that when a
small number of quadrats are sampled, the expected
value of the jackknife is less biased than the bootstrap
and the jackknife tends to overestimate for large sample
sizes. Colwell and Coddington (1994) also report, for
data on germinating rainforest seeds, that the second-
order jackknife “‘clearly provides the least biased es-
timates” for small sample sizes, followed by the first-
order jackknife. Palmer (1991) analyzed richness es-
timation by random samples of subplots from 30 for-
ested plots in North Carolina and found the
second-order jackknife to be the best estimator when
compared to the bootstrap and the first-order jackknife
with respect to bias. Palmer (1990, 1991) also found
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that simple species richness, the first- and second-order
jackknife, and the bootstrap were all highly correlated
with the true species richness value of the studied plots
and were useful for comparing species richness across
communities. In avery recent parasitology study, how-
ever, the first-order jackknife performed consistently
better than both the second-order jackknife and the

60
Percentage of total quadrats sampled

Fic. 3. Mean square error (MSE; i.e., accuracy) as a
function of sample size for the four estimators of (a) S1,
(b) S2, (c) $4, (d) S3, and (e) S5. Low msE indicates high
accuracy. See Fig. 1 legend for meanings of abbreviations
in key.

bootstrap, especially at low sample sizes (Walther and
Morand 1998). The sum total of our study and previous
studies suggest that the jackknife is a less biased es-
timator than the bootstrap for a variety of study sys-
tems. These studies do not seem to agree, however, on
the relative performance of the first-order vs. the sec-
ond-order jackknife.
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Precision

For all studied communities and sample sizes, the
second-order jackknife estimate is the least precise of
the four estimators (e.g., Fig. 2). Further, the impre-
cision of the second-order jackknife increases for more
diverse communities. Though less variable than the
second-order, the first-order jackknife is relatively im-
precise when compared to the simple estimate, S;,,,, and
the bootstrap. For any single community, the above
results are supported by Efron and Gong (1983), who
report the high variability of the jackknife relative to
the bootstrap. Palmer (1990, 1991) also found the first-
order jackknife to be superior to the second-order when
precision was required. Palmer, however, found the
first-order jackknife to be more precise than the boot-
strap. Similarly, Walther and Morand (1998) found the
first-order jackknife performed better overall than the
bootstrap with respect to precision. In sum, therefore,
it seems that little consensus on estimator variability
has arisen from a broad collection of estimator studies.

Our study further suggests that for sampling in com-
munities with few species, the relative precision of the
four estimators may not be important given the low
variability of all estimatorsin systemswith low species
richness values (Table 2, Fig. 2). For such communities
(perhaps those with <20 species), the difference in
variability between the four estimators may be rela-
tively insignificant. On the contrary, the richness es-
timation precision of ecologically diverse communities
may require special attention. In rich systems, the mag-
nitude of the variability of each estimator is large, and
the difference between estimators with respect to pre-
cision grows with increasing richness.

Accuracy

The complicated pattern of accuracy for the four es-
timators at variable sample sizesisdifficult to interpret,
and therefore recommendations of estimator and sam-
ple sizewith respect to accuracy can not be easily made.
As sample size increases, a change in relative accuracy
among the estimators appears (Fig. 3). The relative
accuracy of the measures appears to be dependent upon
the total number of species in a community (Table 2).
For communities with few total species, the relative
accuracy of the estimators becomes ‘“muddled” at rel-
atively small sample sizes (as small as 7.5%). For di-
verse communities, the changes in accuracy among the
four estimators occur at larger sample sizes (~22—
25%). At very large sample sizes (>50%), either the
bootstrap or the simple estimator, S;,,,, can be the most
accurate. To the best of our knowledge, no other study
has explicitly examined trends in estimator accuracy
with changes in sample size.

Apparent generalities

In summary, the bias of the four studied estimators
appears to be relatively constant across the commu-
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nities studied here, while precision and accuracy differ
across systems as related to the properties of the com-
munity. This study confirms the performance of the
jackknives and the bootstrap at small sample sizeswith
respect to bias and indicates that their biases may be
largely independent of the properties of a site. The
defining characteristics of a community (including the
total number of species, the number of rare species,
and the pattern of species distribution) do not appear
to affect the sample size—estimation functional rela-
tionship. Precision among the four estimators within a
community also appears independent of community
properties, but the magnitude of variability is not in-
dependent of the community. The accuracy of the four
estimators also appears dependent upon the properties
of a community. This accuracy and precision depen-
dency on community illustrates that estimator choices
could be made, in part, based upon the expected total
number of species.

The generality of the results reported here, both to
arange of systems and sampling techniques, is largely
unresolved. As studies on estimator performance ac-
cumulatein the literature, further conclusions about the
robustness of estimator performance across systems
can be drawn. Certainly, the procedures discussed here
can be applied in a large number of cases (e.g., tem-
poral, spatial, and effort-based sampling; Walther and
Morand 1998). These cases might include sampling of
animals and plants in both terrestrial and aquatic en-
vironments. In addition, there is no reason to believe
that the outcomes of this study are unique to our sam-
pling strategy or to northern forests. We emphasize
caution, however, as estimator performance is a func-
tion of the distribution of speciesin a system of study
(Colwell and Coddington 1994). It remains to be seen
whether or not patterns in species presence or abun-
dance across systems might lead to consistent estimator
performance.

Other considerations and the politics of biodiversity

Further exploration of the constancy or dependency
of bias, precision, and accuracy on ecological param-
eters could be performed with more extensive computer
resampling of data or with simulation of theoretical
communities (e.g., Heltshe and Forrester 1983, Smith
and van Belle 1984). In particular, we recommend a
Monte Carlo analysis of the impact on estimator per-
formance with changes in quadrat shape and size.
Changes in the scale of quadrat sampling might com-
plicate some of the generalities uncovered in this study.
We also recommend the generation of theoretical com-
munities spanning a greater range of dominance and
evenness than the range spanned by the communities
studied here. We hypothesize that differences in vari-
ability and accuracy may become even more pro-
nounced with strong community contrasts in domi-
nance and evenness.

Finally, this study and others indicate that estimator



August 1999

and sample size selection is of great importance when
estimating species richness. Each field estimation ex-
ercise, however, will have specific objectives. Given
individual estimation goals, one should consider a
priori the desired estimator precision, accuracy, and
bias. In addition, there may be political ramifications
of richness estimation results. When managers and re-
searchers interpret the biological and political ‘“ mean-
ing”’ of anindividual richness estimate, aconsideration
of the underlying biases and properties of the estimator
at the selected sample size may be helpful. The two
types of richness estimation error, Type A (underesti-
mation) and Type B (overestimation), can be evaluated
in the context of the sampling procedure utilized, and
the results presented here should be of assistance in
that endeavor. The issue, however, as to which of the
two error types is more critical is left as a matter for
social and political debate.
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APPENDIX

Quadrat-based sampling

In order to use the species richness estimation formulas
detailed here, data should be collected in a quadrat-based
fashion. The sampled community (i.e., plot) is divided into
equally sized quadrats, and a random sample of these quad-
rats is selected. The number of species is enumerated in
each selected quadrat, and the total number of species oc-
curring in all sampled quadrats is determined. (This total
richness value is called S, in this Appendix and S, in the
body of the paper.) Again, with increases in the percent of
total quadrats sampled, simple determinations of species
richness (S) will approach the true community richnessval-
ue (i.e., plot value).

Species richness estimators

Species richness estimation formulas given here are in
closed form (i.e., single expressions requiring no iteration).

Therefore, computer simulation is not necessary, and the
estimates can be calculated using a single simple richness
estimation procedure for quadrat-based data.

Jackknife

The closed-form, first-order jackknife estimator of species
richness is

B =S + {riwn— }/n

where & is the total of the number of species found in a
sample, r,, is the number of species found in exactly one
quadrat, and n is the sample size (Heltshe and Forrester
1983, Smith and van Belle 1984).

The second-order jackknife (k = 2) estimator is

JiS) = S + [{ryw(@n — 3)/n}
= {rip = 22} /{n(n - 1)}]
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where r,;) = 21, ry; is the number of species in only one Bootstrap
quadrat, and r,, = X, ry; is the number of speciesin only
two quadrats (Smith and van Belle 1984, Palmer 1991). The closed-form bootstrap estimate of speciesrichnessis
The expression of the kth-order jackknife is
O n—ij\o S
I I By(S) = S+ 2 (1 - Yy/n)r
15 K (K N =1
I(S) = + g% i) 2 (—1)'+1(i>(n —iy———0
() D where Y, is the number of quadrats in which species j is
0 I/ 0 present (Smith and van Belle 1984).



