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CHAPTER I

Introduction

For many years, considerable work have been done by researches to gain better

knowledge of the physics of fluid flow. Design and engineering application rely sig-

nificantly on the understanding of the physics of the flow field in di↵erent design

conditions. Nowadays, the main tools for analysis of fluid dynamics can be generally

divided in to three di↵erent categories, theoretical, experimental and computational

approaches. Even though a theoretical approach can provide a sophisticated point of

view, such as the closed form mathematical expression of canonical problems, there

is a gap between theoretical solutions and real life applications. Experiments, on the

other hand, put us in intimate contact with all the physics involved in the problem

and o↵ers a direct interaction between the design and analysis. However, its appli-

cability is tempered by the cost and challenges in creating the environment. Also,

for engineering applications like naval engineering, it is not realistic to build a ship

to test, especially in the early stage of design. With the rapid development of com-

putational power, simulation of the flow field of the design using a digital computer

has become a more and more important tool for designs and engineering applications.

Significant e↵ort has been put forth to make numerical simulation more applicable

in the early design stage of all the engineering applications. Oracle team USA, the

champion of the 2013 American cup (a world famous sailing competition) has claimed
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that almost all of their design verification e↵ort has relied substantially on numerical

simulations.

There are various methods to perform numerical fluid flow simulations, such as

potential flow based method, numerically solving the Navier-Stokes equations, and

more exotic particle based methods, like Lattice-Boltzmann method. Due to its rel-

ative short development history and other limitations, particle based methods are

still relatively restrictive in engineering applications, while the other two methods are

widely applied based on di↵erent level of desired accuracy of approximation. When

the viscous e↵ects, such as boundary layer, separation and wake, can be ignored, the

potential based methods are normally applied, because of its exceptional computa-

tion e�ciency. The potential flow methods are widely used for preliminary designs.

Especially in naval applications, potential flow methods are extensively exploited to

calculate ship waves and predict wave-making resistance of the vessels. When the

non-breaking wave is assumed and the flow at free-surface can be treated as irro-

tational, the potential flow methods can provide fairly accurate prediction for the

waves generated by surface vessels. However, the potential flow methods are greatly

limited by its irrotational assumption. When the viscous e↵ects are important, then

the viscous flow methods, numerically solving the Navier-Stokes equations, must be

applied to capture the e↵ects of viscosity. Even though viscous flow methods (or

commonly called CFD) are more accurate and applicable in engineering application,

they su↵er from the relatively high computational cost. Hence, it is with appreciable

benefits to combine the computation e�ciency of potential methods and the accuracy

of viscous flow methods. Considerable amount of e↵ort has been spent for this goal

in the literature.
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1.1 Background

A straightforward utilization of the benefits of the potential flow solution to im-

prove the accuracy and e�ciency of the CFD solver is sometimes referred to as the

“far-field correction”, which is to set the potential velocity as the boundary condition

of the CFD solver instead of using the free-stream velocity. In Eça and Hoekstra

(2009), improvements of the Navier-Stokes solution is shown within a smaller domain

through using this approach. However, the improvement is limited since the inter-

action between the viscous and inviscid solution has not been exploited. Since the

viscous e↵ects are usually confined within a small area around the body for most of

the engineering applications, domain decomposition method is introduced to decom-

posed the flow domain into di↵erent regions and apply the suitable solution technique

for each specific region. In Campana et al. (1995), the computational domain is de-

composed into two parts, one contains the body and wake, the other one is the rest

of the area. The conventional RANS method is applied to the former region which

dominated by the viscous e↵ects. Then the flow field at the other region is described

by a potential model. These two domains are coupled by enforcing a matching condi-

tion within their overlap section. The domain decomposition approach in Campana

et al. (1995) is carried further to solve for unsteady wave-breaking flows in Iafrati

and Campana (2003). The fluid domain away from the free-surface is modeled us-

ing potential flow method. The fluid near the free-surface is solved using the RANS

equation while the air-water interface is captured by a level-set technique.

Besides of the domain decomposition approach, the velocity vector can be gen-

erally decomposed into two parts, Then each component can be solved through its

more suitable and su�cient method. This method is usually referred to as the ve-

locity decomposition method. Hafez et al. (2006) and Hafez et al. (2007) exploited

a Helmholtz velocity decomposition to decompose the velocity vector into a gradient
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of potential and rotational component (a correction).

u = r�+w (1.1)

Then the potential is solved through a Poisson equation with a source term due to

the rotational velocity component. And the rotational component is obtained by

solving the Naiver-Stokes equation through a conventional finite volume approach. A

modified Bernoulli’s law is implemented to generate pressure and couple the inviscid

and viscous solutions. Since the potential is solved in the whole domain and cou-

pled with the rotational component, some of the interface di�culties of the domain

decomposition approach can be eliminated.

Kim et al. (2005) also applied the Helmholtz decomposition to derive a com-

plementary RANS equations. Even though the same accuracy of the conventional

RANS method is achieved through solving the complementary RANS equations, the

improvement of computational e�ciency is limited. Kim et al. (2005) noted that a

di↵erent choice of the potential can lead to a faster converged solution and a smaller

computational domain, which may result in further reduce of the computational time.

Following the work of Kim et al. (2005), Edmund et al. (2011) applied the transpira-

tion velocity, which is first introduced by Lighthill (1958), to the boundary condition.

Some improvements of the solution were found when solving the flow problem on a

reduced computational domain. Morino (1986) extensively discussed the use of the

Helmholtz decomposition theorem in fluid dynamics. Relating the Helmholtz decom-

position and the equivalent source approach (also known as transpiration-velocity ap-

proach), introduced by Lighthill (1958), Morino (1986) gave a generalized expression

of this transpiration approach. Inspired by Morino (1986), Edmund (2012) (Edmund

et al. (2013)) exploited the generalized expression of the transpiration-velocity ap-

proach. The vortical component is set to zero outside the viscous layer. Then the
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potential velocity (referred to as viscous potential) satisfies the Navier-Stokes equa-

tion outside the vortical region and can be used as the correct boundary conditions

on a reduced domain. A two way couple procedure is used to couple the vortical

and irrotational components. Good agreement with the results generated by the

conventional RANS approach was shown in steady two-, three-dimensional laminar

and turbulent flows. A significant improvement in computation e�ciency is shown.

Based on the work by Edmund (2012), Rosemurgy (2014) (Rosemurgy et al. (2013),

Rosemurgy et al. (2012), Rosemurgy et al. (2011)) extended the solver to be able to

solve for steady lifting and free-surface flows. In this work, the velocity decomposition

solver developed by Edmund (2012) and Rosemurgy (2014) is extended to be able to

solve for unsteady flow.

1.2 Objectives

The objectives of this work is to demonstrate the ability of the velocity decompo-

sition solver, developed by Edmund (2012) and Rosemurgy (2014), to solve unsteady

flow problems. Promising results for steady flow problems have been shown by Ed-

mund (2012) and Rosemurgy (2014). Additional procedures need to be established

to applied the velocity decomposition method to generate time accurate solutions

for unsteady flow problems. In this work, two approaches to calculate the unsteady

viscous potential are proposed to improved computation e�ciency.

The mathematical formulations, including the governing equations, boundary and

initial conditions, of the conventional Navier-Stokes problem as well as the two veloc-

ity decomposition sub-problems, are described in chapter II. In chapter III, numerical

implementations of the CFD solver, the velocity decomposition solver and the two

approaches to calculate the viscous potential are discussed. Chapter IV presents

the results of two-dimensional laminar flow over a flat plate with finite length and a

cylinder. Conclusion and future work are discussed in chapter V.
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CHAPTER II

Mathematical Formulation

This thesis is focused on applying velocity decomposition method to unsteady flow

problem. In this Chapter the general mathematical formulations of the problems are

stated. The governing equations, initial and boundary conditions for the conventional

Navier-Stokes problems are described. The formulation of two sub-problems, which

are generated after the velocity decomposition is applied, are expressed. Then, the

viscous boundary condition required to solve for the viscous potential velocity in

velocity decomposition is discussed in detail.

2.1 Conventional Navier-Stokes Problem

In this work, the flow problem, which is to directly solve the Navier-Stokes equa-

tions in a computational domain with appropriate initial and boundary conditions,

is denoted as the Navier-Stokes problem. The flow domain is assumed infinite and

two-dimensional in this work. The flow domain and boundaries are shown in figure

2.1, where @⌦1 denotes the boundary of the infinite flow domain which is far away

from the body, @⌦B is the body boundary and @⌦R is the boundary of the reduced

domain.

The whole problem is governed by the incompressible version of the Navier-Stokes

equations and the continuity equation, shown in Eq.(2.1) and Eq.(2.2), which are
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Figure 2.1: Definition of a general flow domain for the Navier-Stokes problem (@⌦B

is the body surface, @⌦W is the wake surface, @⌦R is the boundary of
reduced domain)

derived from conservation of mass and momentum with the assumptions of constant

viscosity and density.

r · u = 0 (2.1)

@u

@t

+r · (uu) = �rp

⇢

+r · ⌫(ru+ru

T ) (2.2)

where u = u(x, t) is the total velocity field that varies in space and time, uu in the

second term means the tensor product, p is the dynamic pressure, ⇢ is the density of

the fluid and ⌫ is the kinematic viscosity, ()T is the transpose. The dynamic pressure

p is defined as total pressure P minus the static pressure, p = P � ⇢g · x, where g is

the gravitational acceleration and x is the position vector. In this work, g = 0, since

buoyancy is not important for the cases studied.
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2.1.1 Boundary and Initial Conditions

The velocity of viscous fluid on body is subject to the no-slip boundary condition

which requires the fluid velocity to be equal to the velocity of the body, as shown in

Eq.(2.3). Since only the flow problems with fixed bodies are considered in this work,

the body boundary condition can be written as (2.4), in a body fixed coordinate.

u = uB on @⌦B (2.3)

u = 0 (2.4)

where uB is the velocity of the body.

Meanwhile, the fluid velocity must satisfy the radiation condition, Eq.(2.5), which

means the fluid velocity recovers the free-stream value far away from the body.

lim
|x|!1

u = U1î (2.5)

The initial velocity field of the domain excluding boundaries is prescribed by the

initial condition, Eq.(2.6).

u(x, t)|t=0

= u(x, 0) = u

0

(x) (2.6)

where u

0

is the initial velocity field.

Even though there are some widely used formations of pressure boundary condi-

tions, the correct ones are still subjected to discussion and debate in the literature

(Rempfer (2006)). Hence, the pressure boundary conditions applied in this work are

discussed in chapter III, as they are parts of the numerical approach for solving the

Navier-Stokes problem.
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2.2 Velocity Decomposition

Following the formulation expressed in Edmund (2012) and Rosemurgy (2014),

the velocity decomposition method utilizes the Helmholtz decomposition to represent

the total flow velocity field u as the sum of an irrotational component r' and a

vortical component, w.

u(x, t) = r'(x, t) +w(x, t) (2.7)

Hence, the original Navier-Stokes problem is decomposed into two sub-problem, one

is a Navier-Stokes initial-boundary value problem in the reduced domain and the

other is a viscous potential sub-problem in the whole domain. To better utilize this

decomposition, the vortical component, w, is set to zero outside the vortical region.

Then the irrotational part of the velocity matches the real fluid velocity when the

fluid is irrotational. The Navier-Stokes sub-problem is similar to the original prob-

lem except the total velocity is solved in a reduced domain with di↵erent boundary

conditions. The viscous potential sub-problem is governed by the Laplace equation

like conventional potential flow problems and solved via boundary integral method.

However, to account for the viscous e↵ect and to couple with the total velocity inside

vortical region, new boundary conditions need to be developed.

2.2.1 Navier-Stokes Sub-problem

This sub-problem is essentially similar to the original Navier-Stokes problem ex-

cept that it is defined inside a reduced domain with boundary @⌦R, as can be seen in

Figure 2.1. The domain boundaries have changed from @⌦1 to the boundary of the

reduced domain, ⌦R. So the boundary condition on @⌦R has to be established. The

boundary of the reduced domain is set to include the vortical region, which implies

that the vortical component w is zero on @⌦R. So on @⌦R, a Dirichlet boundary
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condition (Eq.(2.8)) can be stated as, the total velocity equals to the irrotational

component, which can be determined from the viscous potential sub-problem.

u = r' on @⌦R (2.8)

Through Eq.(2.8), The Navier-Stokes sub-problem is coupled with the viscous poten-

tial sub-problem describe in section 2.2.2. The algorithm that used to couple the two

sub-problems is discussed in chapter III. The governing equations, other boundary

and initial conditions for this sub-problem stay the same as in Eq.(2.1)-(2.4), Eq.(2.6)

of the original Navier-Stokes problem.

2.2.2 Viscous Potential Sub-problem

The velocity in the irrotational region in the flow field can be represented by

the gradient of the viscous potential (Eq.(2.9)). Then the governing Laplace equa-

tion (Eq.(2.10)) can be derived by combining Eq.(2.9) and the continuity equation

Eq.(2.1).

u(x, t) = r'(x, t) (2.9)

r2

' = 0 (2.10)

It is worth knowing that the conventional potential flow problem is governed by

the Laplace equation, Eq.(2.10) and usually solved with a Neumann condition, the

non-penetration body boundary condition, Eq.(2.11).

@'

@n

= 0 on @⌦B (2.11)

As discussed in Chorin and Marsden (1990), the solution for this Neumann problem,

defined on a simply connected region, is unique. However, since the non-penetration

10



body boundary condition does not account for the viscous e↵ects, the potential ve-

locity calculated from the conventional potential flow problem does not represent

the correct velocity even outside the vortical region. Hence, to generate the correct

potential velocity (which is to change the solution of the original well-posed Neu-

mann problem), either the governing equation or the boundary condition has to be

changed. To include the viscous e↵ects in the body boundary condition, a viscous

body boundary condition is used to replace the non-penetration condition, Eq.(2.11).

The solution corresponds to this viscous Neumann condition is designated as the

viscous potential. Directly follow the derivation in Edmund (2012) and Rosemurgy

(2014), the body boundary condition is stated as in Eq.(2.12)-(2.13). The Neumann

body boundary condition Eq.(2.14) can derived as the inner product of Eq.(2.13) and

the surface unit normal vector, n̂.

u = r'(x, t) +w(x, t) = 0 on @⌦B (2.12)

then

r'(x, t) = �w(x, t) on @⌦B (2.13)

@'(x, t)

@n

= �w(x, t) · n̂ on @⌦B (2.14)

This new boundary condition, Eq.(2.14), implies that that the viscous potential veloc-

ity on the body is equal to the opposite of vortical component, which is essentially to

alter the body shape according to viscous e↵ect, such as boundary layer and viscous

wake. So for the problems considered in this work, the viscous wake in downstream

is also applied with this new boundary condition (Eq.(2.15)).

@'(x, t)

@n

= �w(x, t) · n̂ on @⌦W (2.15)

Even though time variable is not explicitly present in the Laplace governing equa-
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tion, both the viscous potential and the vortical velocity may be time dependent

for unsteady flow. The unsteadiness can be implicitly included through the viscous

boundary condition, Eq.(2.14). The time dependency in Eq.(2.14) may be due to the

unsteadiness present in the boundary layer or wake of the flow. For di↵erent types of

unsteadiness, it can be solved through specific approach relevant to its physics. Two

di↵erent approaches are proposed in this work and discussed in chapter III.

Because the total velocity satisfies the continuity Eq.(2.1) and the irrotational

part of the velocity is divergence-free, the vortical component of the velocity must

also be divergence-free.

r ·w = 0 (2.16)

Then Eq.(2.16) can be expressed in the local orthogonal coordinate system:

@wt

@t

+
@wn

@n

= 0 (2.17)

where the subscripts t, denotes the component of tangential direction, and subscript

n is for the normal direction pointing out of the body.

Eq.(2.17) is then integrated along the normal direction out to a distance �, Eq.(2.18).

After rearranging, It can be simplified to equation Eq.(2.19).

Z �

0

✓
@wt

@t

+
@wn

@n

◆
dn = 0 (2.18)

wn(0) =

Z �

0

✓
@wt

@t

◆
dn+ wn(�) (2.19)

If the upper limit of the integration, �, is set large enough, which means it is far away

from the body and lands outside the vortical region, where the vortical component of

the velocity decomposition is zero. Then the Eq.(2.19) can be further simplified to

12



Eq.(2.20).

wn(0) =

Z �

0

✓
@wt

@t

◆
dn (2.20)

This can be substituted into Eq.(2.14), then the viscous Neumann boundary condition

becomes Eq.(2.21).

@'

@n

= �w · n̂ = wn

= �
Z �

0

✓
@wt

@t

◆
dn on @⌦B and @⌦w (2.21)

In an infinite fluid domain, the velocity is also subjected to the radiation condition,

Eq.(2.22), which means the disturbance due to the body decreases as the increase of

the distance, |x|, away from the body.

lim
|x|!1

(r'�U1) = 0 (2.22)

This implies that the velocity of the flow field recovers the free-stream velocity far

away from the body. This turns out is automatically satisfied by the fundamental

solutions of the Laplace equation. Hence, the governing equation Eq.(2.10), radia-

tion boundary condition Eq.(2.22) and the new Neumann body boundary condition

Eq.(2.21) define the viscous potential sub-problem. The numerical implementation

and the solution strategy of the two sub-problems are discussed in chapter III.
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CHAPTER III

Numerical Implementation

The mathematical description of the problems are described in chapter II. The

discretization and numerical solution techniques to solve for the problems need to be

selected. In this chapter, the numerical solution methods and the implementation are

discussed. First, the solution strategy for the Navier-Stokes initial boundary value

problem is described. Then, the solution method for solving the viscous potential

sub-problem is presented, followed by the discussion of the iteration algorithm of the

unsteady velocity decomposition solver and the description of its parameters.

3.1 Navier-Stokes Solution Method

The continuum mechanics problems solver environment, OpenFOAM, is used to

solve the Navier-Stokes problem, because of its vast open source libraries, including

CFD solvers, discretization scheme and so on. For discretization of the Navier-Stokes

equations, Eq.(3.2), Finite Volume method (FVM), which is the most commonly

used method in CFD today, is used. The whole computational domain is discretized

by structured mesh. The governing equations, Eq.(3.1)-(3.2), of the Navier-Stokes

14



problem are restated here for convenience.

r · u = 0 (3.1)

@u

@t

+r · (uu) = �rp

⇢

+r · ⌫(ru+ru

T ) (3.2)

Eq.(3.1)-(3.2) are the di↵erential forms of the conservation of mass and momentum

for each fluid element. In finite volume approach, they need to be integrated over a

control volume and in time to produce the integral form of the governing equations,

Eq.(3.3)-(3.4).

Z

V

r · udV =

Z

S

udA = 0 (3.3)

Z t+�t

t

Z

V

du

dt

+r · (u⌦ u)�r · ⌫(ru+ru

T )dV

�
dt = �

Z t+�t

t

Z

V

rp

⇢

dVdt

(3.4)

Then they must be transformed through discretization schemes into a corresponding

system of algebraic equations. The solutions of these algebraic equations correspond

to the solutions of the original set of equation in certain time and space.

For the time derivative term, the implicit Euler di↵erencing scheme is used for

discretization. The gradient and Laplacian terms are integrated using Gaussian in-

tegration with linear interpolation of the cell center values to the face centers. The

divergence terms are also calculated with Gaussian integration, but linear upwind

interpolation is used instead.

After applying the discretization scheme described above, the PISO (Pressure

Implicit with Splitting of Operators) procedure proposed by Issa (1986), is used to

solve for the velocity and pressure. More detailed discussion about the discretization

techniques and the numerical solution method of the Navier-Stokes equation can be

found in Ferziger and Perić (1996). For conventional Navier-Stokes problem, the
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pressure boundary conditions are commonly set as in Eq.(3.5) and Eq.(3.6).

p = 0 on @⌦O (3.5)

@p

@n

= 0 on rest of the boundaries (3.6)

The pressure directly outside the reduced domain can be calculated through the

viscous potential velocity using Bernoulli’s law. Then the pressure gradient boundary

conditions for the Navier-Stokes sub-problem can be calculated using a two point finite

di↵erence scheme, as described in Rosemurgy (2014).

3.2 Viscous Potential Solution Method

The solution methodology is very similar to the boundary element method, which

is widely used for solving conventional potential flow problems. This method is ex-

tensively discussed in Katz and Plotkin (2001). In the viscous potential sub-problem,

the general solution of the Laplace governing equation can be constructed by the sum

of the fundamental solutions distributed on the boundary surface. The fundamental

solutions can be generated by relating Green’s second identities to the Laplace equa-

tion. Since only the flow problem with no circulation is considered in this work, the

basic solution of a point source (Eq.(3.7)) is selected. Then the constant strength

source distribution over the boundary surface can be formed as in Eq.(3.8). Because

the focus of this work is to demonstrate the algorithm of velocity decomposition solver

solving unsteady flow, only the constant source panel method is applied. However, it

should be kept in mind that other more sophisticated methods can be readily applied.

The constant source panel is coincided with the body discretization from the finite
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volume method.

� =
�

2⇡
ln r (3.7)

� =
1

2⇡

Z

@⌦B+@⌦W

� ln rdS (3.8)

where � is the strength of the point source. r is the distance from the point source.

It is important to include @⌦W in the surface integral. The source distribution

over the wake surface is able to account for the viscous e↵ect in the wake after the

body, such as separation. This is one of the advantages of velocity decomposition

compared to conventional inviscid potential method. The radiation boundary con-

dition Eq.(2.22) is automatically satisfied by the fundamental solution Eq.(3.7). To

include the free-stream flow and have the source distributions act as the disturbance

potential, �, Eq.(3.8) is written as Eq.(3.9).

' = �+ �1 (3.9)

=
1

2⇡

Z

@⌦B+@⌦W

� ln rdS +U1 · x

where �1 = U1 · x is the free-stream potential. Now the frame of the solution for

viscous potential is formed (Eq.(3.9)). The strength, �, of the source distribution

must to be determined. This is solved by imposing the viscous Neumann boundary

condition, Eq.(2.21). Then, the term contains free-stream potential can be move to

right hand side since it is known. This results in Eq.(3.10).

@�

@n

= �U1 · n̂�w · n̂ on @⌦B and @⌦W (3.10)

The influence coe�cient, the part of the integral that excludes the source strength,

of the constant source distribution is analytically calculated using the expressing

provided in Katz and Plotkin (2001). Eq.(3.11)and Eq.(3.12) represent the velocity,
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expressed in Cartesian coordinates, at point p in space, due to a source panel.

up =
@�

@xp

=
�

4�
ln

(x� x

1

)2 + z

2

(x� x

2

)2 + z

2

(3.11)

wp =
@�

@zp

=
�

2�


tan�1

z

x� x

2

� tan�1

z

x� x

1

�
(3.12)

(3.13)

where the subscript p represent the point in space, The subscripts 1 and 2 are denoted

as the two end-points of a panel, as shown in Fig.3.1. After the potential velocity in

Figure 3.1: coordinate definition for the two-dimensional perturbation potential (Katz
and Plotkin (2001))

point p is calculated in the panel coordinate, a rotation matrix is applied to transform

it to the global coordinated. The potential velocity in each point is resulted by the

sum of the influence of all the source panels. Combining all the influence of all

the source panels and enforcing the viscous boundary condition, Eq.(3.10), at each

panel on body and wake surface. This will result in a system of algebraic equations,

Eq.(3.14)

[C] [�] = � [U1 · n̂]� [wn] on @⌦B and @⌦W (3.14)
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where [C] is the matrix of influence coe�cients. The system is solved by the open

source linear algebra package, LAPACK. The matrix of influence coe�cient is inverted

by LU decomposition.

3.3 Unsteady Velocity Decomposition

One of the main advantages of velocity decomposition approach is to lower com-

putational cost by considerably reducing the computational domain that CFD solver

need to solve on. The methodology of the unsteady velocity decomposition solver is

to generate a time-accurate viscous potential velocity and apply that to the inlet and

far-field boundary of the reduced domain. To calculate the viscous potential veloc-

ity that can satisfy the Navier-Stokes equations directly outside the vortical region,

the viscous boundary condition is required (Eq.(3.10)). Hence the vortical velocity

need to be calculated. Since the vortical velocity, w is calculated as in Eq.(3.15), the

vortical velocity is not known until the velocity field is calculated.

w = u�r' (3.15)

So a iteration algorithm needs to be applied to solve for the vortical velocity. In this

section, the algorithm of unsteady velocity decompositions solver is described. Then,

two proposed methods for calculating the viscous potential are discussed. At the end

of the section, the parameters governing the unsteady velocity decomposition solver

are summarized.

3.3.1 Unsteady Velocity Decomposition Algorithm

The algorithm used by the unsteady velocity decomposition solver is shown in the

form of a flowchart in Fig.3.2. Each step of the algorithm is described below:

1. Initialize the solver. If simulation start from t = 0, then go to step 2. If not,
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go to step 3.

2. Apply the inviscid potential velocity, r�inv, as the boundary condition on the

inlet and far-field boundary of the reduced domain.

3. Use CFD solver to solve for the Navier-Stokes sub-problem in the reduced

domain with the new inlet and far-field boundary condition. If update

conditions are reached, then go to step 4.

4. calculate the viscous potential.

5. Apply viscous potential velocity, r', as the boundary condition on the inlet

and far-field boundary of the reduced domain.

6. Repeat step 3 to step 5 until the number of updates specified by the user is

reached.

7. When the time equals the end time, the solver is terminated.

In Fig.3.2, t
end

is the end time of the simulation, t
update

is the time to update, n
update

and N

update

is the update counter and the total number of updates respectively. The

update in the algorithm means the process of applying the viscous potential velocity

to the reduced domain boundary, @⌦R.

The methods and procedures presented so far are essentially similar to those in

Edmund (2012) and Rosemurgy (2014). However, to solve the unsteady flow problems,

more need to be done, since the velocity of the transient flow varies in time, which

means both the viscous potential and the vortical velocity can be time dependent, as

stated in Eq.(3.16).

u(x, t) = r'(x, t) +w(x, t) (3.16)

Therefore, a new procedure need to established to solve for the unsteady viscous

potential. In the following subsections, two approaches for calculating the unsteady
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viscous potential are proposed to solve for di↵erent types of unsteadiness in the flow.

1

2

3

4

5

Figure 3.2: Unsteady velocity decomposition algorithm
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3.3.2 Instantaneous Velocity Based Approach

When the unsteadiness is present in the whole flow field, the total velocity field

after velocity decomposition is shown in Eq.(3.17).

u(x, t) = r'(x, t) +w(x, t) (3.17)

Both w and ' are time dependent. So the instantaneous velocity field can be used

to calculate the viscous potential. This is to calculate the viscous potential using

the instantaneous velocity generated in Navier-Stokes sub-problem. It is functionally

similar to the approach used in Edmund (2012) and Rosemurgy (2014). The calcu-

lation executed in this method is the complete process within step 4. Steps of the

instantaneous velocity Based method are described below:

4.1 Calculate the vorticity thickness, �, based on the magnitude of the vorticity,

! = r⇥ u. The details of this procedure are discussed in 3.3.2.1.

4.2 Iterate the following steps until the convergence criteria for the vortical

velocity is met.

(a) Calculate the vortical velocity, w(i) = u�r'

(i). (The superscripts, (i),

denote the iteration counter.)

(b) Calculate the strength of the source distributions using the viscous

boundary condition, Eq.(3.23).

(c) Check if the convergence criteria is met, go to step 5 of velocity

decomposition algorithm in previous section. If not, go back to step

4.2(a).

In this method, The update time, t
update

, can be specified by the user. The user can

specify the update time, t
update

, by setting the interval between updates, as stated in
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Eq.(3.18).

t

update

= t

0

+ n

update

· dt
update

(3.18)

where t

0

is the time the user want to start the update, n
update

is the update counter

shows the number of updates have been made, dt
update

is the time interval between

updates which means how frequently updates should be made. For this method, the

user can also turn o↵ the update time setting and have the solver update in every time

step of the simulation. By doing this, the simulation accuracy is increased by paying

the price of a higher computational cost. The viscous boundary condition discussed

in chapter II is restated in Eq.(3.19) for convenience. Di↵erent than the boundary

condition in chapter III, the term with wn(�) still needs to be included, because it is

non-zero before the correct viscous potential is achieved.

@'

(i+1)

@n

= �
Z �

0

 
@w

(i)
t

@t

!
dn on @⌦B

= �w

(i)
n (0) + w

(i)
n (�) (3.19)

The first term on the right hand side of Eq.(3.19) can be expressed as Eq.(3.22), which

is derived from Eq.(3.20)-(3.21). The velocity vector equals to zero in Eq.(3.21),

because of the non-slip condition.

w = u�r' (3.20)

= ⇢⇢>
0

u�r' on @⌦B (3.21)

wn(0) = �@'

@n

(3.22)

With the expression in Eq.(3.22), the viscous boundary condition, Eq.(3.19), can be

stated as in Eq.(3.23). The normal component of the vortical velocity at � can be
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treated as a correction of the boundary condition from the previous iteration.

@'

(i+1)

@n

=
@'

(i)

@n

+ w

(i)
n (�) (3.23)

The detailed discussion of this formulation of the viscous boundary condition can be

found in Rosemurgy (2014).

The convergence criteria used by the iteration is shown in Eq.(3.24).

✏

(i)
' =

���kw(i)
n (�)k1 � kw(i�1)

n (�)k1
���

kw(i)
n (�)k1

< ✏̃' (3.24)

The infinity norm is used to judge the convergence of the iteration. ✏̃' is the tolerance

set by the user.

3.3.2.1 Determination of Vorticity Thickness

At step 4.1 of section 3.3.2, a procedure is applied to determine the vorticity

thickness, which is a scalar distance, �, away from each panel center in the panel

normal direction. This procedure is essentially the same as the one that is used by

Rosemurgy (2014). The steps of the procedure are described below:

4.1.1 Sample from the panel center to a distance, �max, and find the maximum of

the vorticity magnitude, |!|max for each panel.

4.1.2 If |!|max is smaller than a threshold value, |!|↵, that set by the user to

eliminate fictitious numerical fluctuations, the maximum vorticity magnitude

is set to zero.

4.1.3 Sample from the location, where the maximum vorticity magnitude was found,

to �max. Find the location where vorticity magnitude is smaller than a

threshold value, |!|
limit

.
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4.1.4 If the minimum of vorticity magnitude along the sample line is larger than

|!|
limit

, � is set to zero and the inviscid non-penetration boundary condition is

applied for this panel.

For unsteady flow, Step 4.1.2 is added in addition to the original procedure to prevent

fictitious numerical fluctuations at the area where the vorticity has not yet developed.

The threshold value, |!|↵, can be set as a fraction of the magnitude of the free-stream

velocity divided by the body length, as in Eq.(3.25).

|!|↵ = ↵!
|U1|
LB

(3.25)

where ↵! is the fraction value can be set by the user, LB is the body length.

The threshold value, |!|
limit

, in step 4.1.3 can be set as in Eq.(3.26).

|!|
limit

= �!|!|max (3.26)

where �! is a factor set by the user.

3.3.3 Time-averaged Velocity Based Approach

When the unsteadiness is mainly confined in a small region around the body, this

means that the flow outside the vortical region is weakly time dependent, or even

steady. Then velocity decomposition of the total velocity field can be transform to

Eq.(3.27).

u(x, t) = r'(x, t) +w(x, t)

⇡ r'(x) +w(x, t) (3.27)

Eq.(3.27) shows that the viscous potential velocity can be treated as a time invariant

solution. Then the time-averaged velocity field can be used to calculate the viscous
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potential for a considerable save in computational cost. The procedure of this method

is similar with the instantaneous velocity based method except the following changes.

When using this method, the time of updates, t
update

, is defined as in Eq.(3.28).

t

update

= t

0

+ (n
update

+ 1) · T
avg

(3.28)

where t

0

is the start-time of the time averaging, T
avg

is the averaging period of the

time averaging, n
update

is the update counter. The time-averaged velocity is calculated

as in Eq.(3.29)

u =

NtimeP
i=1

(ui · dti)

T

avg

(3.29)

T

avg

=
NtimeX

i=1

dti (3.30)

where N

time

is the number of time steps, dt is the time step size. After the time-

averaged velocity is calculated, it is used to replace the role of, u, in the instantaneous

velocity based method. The procedure to determine the vorticity thickness, �, is the

same as the one described in section 3.3.2.1, except the vorticity field is replaced by

the mean vorticity field Eq.(3.31).

! = r⇥ u (3.31)

After the vorticity thickness is determined, the time-averaged velocity is used to

calculate the vortical velocity Eq.(3.32).

w = u�r' (3.32)

Then the mean vortical velocity, w and the mean velocity field, u is used throughout

the iteration to calculate the viscous potential, instead of the instantaneous quantities.
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The rest of the steps in the time-averaged velocity based method is similar to those

in the instantaneous velocity based method.

3.3.4 Summary of Parameters in Unsteady Velocity Decomposition Solver

In this section, user-specified parameters in the unsteady velocity decomposition

solver are summarized. For the velocity decomposition algorithm, there are 4 pa-

rameters in total, that govern the algorithm. They are listed in table 3.1, where the

U

inst

and U

mean

represents respectively the instantaneous velocity and time-averaged

velocity based method.

Parameters Function

t

0

the time of the first update (U
inst

)
the start-time of averaging (U

mean

)
N

update

the total number of updates
dt

update

the time interval between update (U
inst

)
T

avg

the period of the time averaging (U
mean

)

Table 3.1: The parameters for the velocity decomposition updates

In the calculation of the viscous potential, four parameters can be controlled by

the user. They are listed in table 3.2.

Parameters Function
✏̃' the convergence criteria of vortical velocity
�max the maximum sample distance for searching |!|max

↵! the factor control the vorticity filter value, |!|↵
�! the factor for calculate the negligible vorticity magnitude

Table 3.2: The parameters for viscous potential calculation

To account for the viscous e↵ects in the wake, the wake surface also need to be

discretized. This is done using the same procedure described in Rosemurgy (2014).

The wake surface is discretized by wake panels, starting from the trailing edge of the

body to some distance, L
wake

, downstream. N
wake

is the total number of wake panel.

⇣

wake

is the growth rate of the wake panel length. �
wake

is the length of the first wake
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panel. The length of each panel is calculated as a geometric series, Eq.(3.33).

l

wake,i = �
wake

(1 + ⇣

wake

)i (3.33)
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CHAPTER IV

Unsteady Velocity Decomposition Results

In this Chapter, two cases: two-dimensional laminar flow over a finite-length flat

plate and a circular cylinder, are simulated to demonstrate the method of unsteady

velocity decomposition discussed in preceding chapters. The unsteady viscous poten-

tial is studied first to justify it can be used as boundary condition on the reduced

domain. Unsteady viscous potential velocity is calculated based on the largest domain

and compared with the Navier-Stokes solution from fully viscous CFD simulation in

the largest domain. Then, the e↵ect of the outlet boundary location is investigated to

determine a appropriate reduced domain size. Lastly, results of simulation in a signif-

icantly reduced domain using unsteady velocity decomposition method are generated

and discussed.

4.1 Laminar Flow Over Finite Flat Plate

In this section, unsteady velocity decomposition method is applied to the flow

over a finite-length flat plate. The Reynolds number based on the flat plate length,

L, is Re = 2000. The flat plate is located at the center of the bottom boundary

of the domain. The bottom boundary is specified as three parts. The parts located

behind and in front of the flat plate is the center plane boundary, @⌦
CP

, at which

the slip boundary condition is applied. At the flat plate, @⌦B, the no-slip boundary
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condition is applied. The free-stream flow is in the x+ direction, flowing from the

inlet boundary @⌦I . The boundaries @⌦I , @⌦F , @⌦O ares located at the distance,

x

extent

, away from the flat plate. The schematic sketch of the domain is shown in

figure 4.1. And the boundary conditions for the Navier-Stokes problem are stated in

equations (4.1).

8
>><

>>:

u = U1

@p
@n

= 0

on @⌦I and @⌦F (4.1)

8
>><

>>:

@u
@n

= 0

p = 0

on @⌦O

8
>><

>>:

u = 0

@p
@n

= 0

on @⌦B

8
>><

>>:

@u
@n

= 0, v = 0

@p
@n

= 0

on @⌦
CP

where n is the outward pointing normal direction, u, v is the horizontal and vertical

component of the velocity vector.

The details of the largest computational grid are listed in table 4.1. Other compu-

tational grids used in this case are topologically identical as the largest computational

grid in the common regions.

number of cells �x

min

�z

min

88953 0.01 0.01

Table 4.1: The parameters of the largest computational grid

Even though this is an extremely simple problem, it is still a good test case to

study velocity decomposition method for unsteady flow, because of the growth of the

boundary layer during the start-up process due to the no-slip boundary condition
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Figure 4.1: The domain of the flow over flat plate simulation

specified on flat plate. Its simplicity gives an unpolluted view of the velocity decom-

position approach handling this instantaneous unsteadiness. It is worth knowing that,

for conventional potential flow based method, the solution for this case equals to the

free-stream velocity everywhere in the domain, while velocity decomposition provides

the correct potential velocity that satisfies the Navier-Stokes equations outside the

vortical region, as discussed in chapter II.

It is also a demonstration of the instantaneous velocity based approach to calculate

the viscous potential discussed in chapter III. Because of the physics of the this

problem, the boundary layer keeps growing before reaching steady state. During this

process, vorticity is di↵used away from the flat plate and transported downstream,

after it is generated. This means a vortical region with changing shape and area. And

it will a↵ect the solution even outside the vortical region. So it is important to know

if the unsteady velocity decomposition method can capture all the viscous e↵ects.

4.1.1 Unsteady Viscous Potential

This section focuses on calculating a viscous potential velocity that matches with

the benchmark solution (the Navier-Stokes solution in the largest domain). The
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unsteady viscous potential velocity is calculated based on the Navier-Stokes solution

of the largest domain (x
extent

= 1000L, L is the flat plate length). The parameters

for calculating the viscous potential are set using the discussion in Edmund (2012)

and Rosemurgy (2014) as guidelines. The setting of parameters is listed in table

4.2. The number of wake panels is set to 0, N
wake

= 0, while both the center plane

and the flat plate are represented using body panel. This can be used to generate

correct results because of the special nature of this problem and the viscous potential.

For the viscous boundary condition of viscous potential discussed in chapter II, it is

e↵ectively to alter the shape of body based on viscous e↵ects like boundary layer and

wake. So for this case, the panels at the center plane boundary in front of the flat

plate have no e↵ect on the flow. The value of �max is set as a relatively large value to

ensure that the boundary layer and wake is completed included during the calculation

of viscous potential.

Parameters Value
�max/L 5
N

wake

0
✏' 0.01
�! 0.01
↵! 1e-3

Table 4.2: The parameter value for viscous potential calculation of flow over flat plate

Due to the unsteadiness of the flow, a non-dimensional time t

⇤ is defined for

convenience.

t

⇤ =
t

tref

=
tU1

L

(4.2)

where tref = L
U1

, which is the time that it takes for the flow to travel one body length.

The profile of streamwise velocity at z/L = 0.3 is shown in figure 4.2(a). For

conciseness, only the solutions of x/L 2 [�10 : 20] are shown. The viscous potential

velocity ',x agrees very well with the Navier-Stokes solution for x/L < 6. After that,

two solutions show completely di↵erent trends. The reason causing this discrepancy
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(a) Streamwise velocity profile at z/L = 0.3
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(b) Streamwise velocity profile at z/L = 0.5
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Figure 4.2: Profiles of streamwise velocity and vorticity thickness at t⇤ = 100, (',x is
the streamwise component of viscous potential velocity, u is that of the
Navier-stokes solution, U1 is the free-stream velocity)

is that the sample line z/L = 0.3 is inside the vortical region after around x/L = 6.

As can be found in figure 4.2(c), the vorticity thickness �/L at x/L = 6 is around

0.3. To verify this, a profile of streamwise velocity at z/L = 0.5, which is outside the

vortical region at x/L = 20 is generated. The viscous potential velocity overlaps with

33



the Navier-Stokes solution, as shown in figure 4.2(b).

The streamwise velocity profiles at x/L = 0, 0.5, 1, 5 are shown in figure 4.3. The

two solutions do not agree within a small distance to the flat plate due to the vorticity

in boundary layer and wake, while in the rest of the area, the viscous potential velocity

almost overlaps with the Navier-Stokes solution for all positions shown.
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(c) Streamwise velocity profile at x/L = 1
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(d) Streamwise velocity profile at x/L = 5

Figure 4.3: Vertical profiles of streamwise velocity at t⇤ = 100

To investigate if the unsteady velocity decomposition can generate a time accurate

viscous potential solution that matches the Navier-Stokes solution, the time history

of the solution needs to be studied. As shown in figure 4.4, the time history of the

streamwise viscous potential velocity is compared with the Navier-Stokes solution at

three di↵erent locations, (0, 0.3L), (0.5L, 0.3L), (1L, 0.3L). The vertical coordinate is
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Figure 4.4: The time histories of streamwise velocity

chosen to make sure the sample points are outside the vortical region, only in which

the viscous potential is physical. As can be seen, the viscous potential velocity almost
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overlaps with the Navier-Stokes solution at all time instants. As the viscous potential

velocity agrees well with the Navier-Stokes solution, it is possible to use it as the

boundary condition at the inlet and far-field boundaries of the reduced domain.

4.1.2 E↵ect of Outlet Boundary Location

Since the viscous wake is rotational, the velociy decomposition can only be applied

to the inlet and farfield boundary (@⌦I , @⌦F ). To minimize the influence of the outlet

boundary condition, the outlet boundary need to be set far away downstream.

One of the advantages of velocity decomposition approach is to reduce the compu-

tational domain for the Navier-Stokes problem. So it would be useful to investigate

the e↵ect of the outlet boundary location. To be consistent, the meshes used for this

Figure 4.5: Flow domain of outlet boundary location study

study are topologically identical in the common regions as the large domain in last

section. As shown in figure 4.5, the computational domain is very similar to the large

domain. The only di↵erence is the distance between the flat plate and the outlet

boundary, x
outlet

. The study of the outlet boundary location in this work ranges from

x

outlet

/L = 500 to x

outlet

/L = 1. All other settings are the same as the Navier-Stokes

problem described in last section.
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Figure 4.6: The e↵ect of outlet boundary location(LE, Mid-plate, TE, represents the
locations at (0, 0.3L), (0.5L, 0.3L), (1L, 0.3L))

There are three metrics to evaluate the e↵ect of the outlet boundary location.

They are the root mean square errors of the streamwise velocity for t⇤ 2 [0 : 100] at

three di↵erent locations. The three locations to sample the streamwise velocity are

(0, 0.3L), (0.5L, 0.3L), (1L, 0.3L). The solution in the largest domain x

extent

/L = 1000

is used as baseline solution. The root mean square errors are calculated as in stated

in equation (4.3).

RMSerror =
1

N

time

vuut
NtimeX

i=1

✓
fx,i � f

1000L,i

f

1000L,i

◆
2

⇥ 100% (4.3)

where f represents the variable that desired to calculated root mean square error

with. In this case, f can be the streamwise velocity in those three locations. f

1000,i

is the value from the largest domain. N
time

is the total number of time steps. 0.01%

is used as a error bound for all the values. As shown in figure 4.6, it can be found

that for the case x

outlet

/L = 25, the root mean square error of all the values is below

the 0.01%. Hence, x
outlet

/L = 25 is the smallest distance to outlet boundary without

a↵ecting the accuracy of the solution. So x

outlet

/L = 25 is selected as the outlet
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boundary location for the reduced domain in the next section.

4.1.3 Unsteady Velocity Decomposition On Reduced Domain

From the results of preceding sections, it is confident that unsteady velocity de-

composition method is capable of providing correct results while considerably reduc-

ing the domain size. The computational domain for this case is significantly reduced

from x

extent

/L = 1000L to x

extent

/L = 0.8, while x

outlet

/L is set as 25 based on the

study from last section.

The settings of the parameters for unsteady velocity decomposition is show in

table 4.3. The parameters not shown in the table is set as the same as in table 4.2.

It is worth knowing that �max is reduced to 0.6. As from figure 4.2(c), at x/L = 25,

the vorticity thickness is �/L ⇡ 0.6.

Parameters Value
N

update

200
T

update

/tref 0.2
�max 0.6

Table 4.3: The parameter value for viscous potential calculation of flow over flat plate

For the results presented in figure 4.7-4.9, the Navier-Stokes solutions on the

largest domain and reduced domain are denoted as “NSL” and “NSR”respectively.

The Navier-Stokes solutions on the reduced domain are also compared to show the

improvement by applying velocity decomposition. The velocity decomposition results,

that use the same parameter but updated in every time step, are also calculated and

denoted as “VD2”, while the velocity decomposition results updated based on the

parameter in table 4.3 denoted as “VD1”.

As shown in figure 4.7-4.8, all the streamwise velocity profile of the velocity de-

composition solutions at t⇤ = 100 agrees well with the Navier-Stokes solution, while

the Navier-Stokes solutions in the reduced domain are over-predicted. Figure 4.9

shows the time histories of streamwise velocity at four location, (0, 0.3L), (0.5L, 0.3),
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Figure 4.7: Horizontal profiles of streamwise velocity at t⇤ = 100

(1L, 0.3L), (5L, 0.3L). Since the flow becomes steady for t⇤ > 20, only the time his-

tory for 0  t

⇤  20 is shown. For the VD1 solution before t

⇤ = 5, there is some

overshoot of the solutions. After that, the solutions are quickly corrected by the vis-

cous potential velocity boundary condition. On the other hand, the VD2 solutions

shows remarkable agreement with the Navier-Stokes solutions in the large domain.

Even though the computational cost of VD2 solutions is higher than that of VD1, it

is still much more e�cient than that of the Navier-Stokes large domain solutions.
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(d) Streamwise velocity profile at x/L = 5

Figure 4.8: Vertical profiles of streamwise velocity at t⇤ = 100
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Figure 4.9: The time histories of streamwise velocity and drag coe�cient
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4.2 Laminar Flow Over Cylinder

In this section, unsteady velocity decomposition method is applied to the flow

over a circular cylinder. The Reynolds number based on the cylinder diameter, D,

is Re = 140. The cylinder is located at the center of the domain. At the cylinder

surface, @⌦B, the no-slip boundary condition is applied. The free-stream flow is in the

x+ direction, flowing in from the inlet boundary @⌦I . The boundary @⌦I , @⌦F , @⌦O

is located xextent away from the cylinder. The schematic sketch of the domain is

shown in figure 4.10. And the boundary conditions for the Navier-Stokes problem are

stated in equations (4.4).

8
>><

>>:

u = U1

@p
@n

= 0

on @⌦I and @⌦F (4.4)

8
>><

>>:

@u
@n

= 0

p = 0

on @⌦O (4.5)

8
>><

>>:

u = 0

@p
@n

= 0

on @⌦B (4.6)

The details of the largest computational grid are listed in table 4.4. Other compu-

tational grids used in this case are topologically identical as the largest computational

grid in the common regions.

number of cells �x

min

�z

min

176584 0.03 0.03

Table 4.4: The parameters of the largest computational grid

The physics of laminar flow over a circular cylinder has been extensively studied

in the literature. The Reynolds number chosen for this case is within the range

to generate the Von Kármán vortex street. This case would be a ideal test case to
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Figure 4.10: The domain of the flow over cylinder simulation

study the capability for unsteady velocity decomposition approach to handle unsteady

separation flow around a blunt body. It is well known that the paradox of the inviscid

potential solution in flow over cylinder, which is essentially unphysical. So the inviscid

potential method is generally not applicable for massively separation flows. This

makes it a interesting challenge for the unsteady velocity decomposition method.

In Edmund (2012), promising results are shown for the steady laminar flow over

cylinder in a very low Reynolds number, Re = 60. It is a good demonstration of the

capability of velocity decomposition method handling flow with massive amount of

separation. However, for Re = 60, there is no Von Kármán vortex street and the flow

is steady.

In the case studied in this work, after the flow has developed, the oscillating flow

around the cylinder shows a steady frequency. A strong periodicity presents in the

flow field. This would be a appropriate condition to use the time-averaged velocity

based method (discussed in chapter III) to calculate the viscous potential. Hence,

this section would investigate the feasibility of this Umean based approach.
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4.2.1 Unsteady Viscous Potential

In order to apply the viscous potential velocity, convincing agreement outside

the vortical region needs to be found between the viscous potential velocity and

the solution from the Navier-Stokes solution in a large domain, (xextent = 1000D is

selected). Since the Umean based approach described in III is applied to generate the

viscous potential, the viscous potential velocity is compared with the time averaged

velocity, u, from large domain. u is calculated as in equation (4.7) .

u =

NtimeP
i=1

(ui · dti)

TN

(4.7)

where N

time

is the number of time steps of the simulation, TN is the end time of

the averaging. The parameters for calculating the viscous potential are set using the

discussion in Edmund (2012) and Rosemurgy (2014) as guidelines. The setting of

parameters is listed in table 4.5.

Parameters Value
�max/D 10
N

wake

463
L

wake

/D 200
✏' 0.01
�! 0.01
↵! 1e-3

Table 4.5: The parameter value for viscous potential calculation of flow over cylinder

It is worth mentioning that calculating viscous potential based on u, instead of

the instantaneous u, has the advantage of reducing the computational cost as well

as the di�culty for implementation. As shown in figure 4.11(a), the vorticity field

is a typical Von Kármán vortex street, which can be troublesome because of the

asymmetrical unsteady wake, while figure 4.11(b) shows the vorticity field generated

by u, the wake is essentially steady and symmetrical. It still possesses the similar

vorticity magnitude and vorticity thickness that velocity decomposition desired.
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(a) Magnitude of vorticity

(b) Magnitude of mean vorticity

Figure 4.11: The contour of magnitude of vorticity and mean vorticity

To be able to generate a correct viscous potential based on u, two conditions need

to be met. The first one is that the viscous potential velocity agrees with the u field

outside the vortical region. The other one is that the u field is averaged in a way

that can correctly represent the characteristics of the flow field.

In figure 4.12, velocity profiles of the streamwise component from viscous potential

velocity and the instantaneous and time averaged Navier-Stokes solution in large

domain are compared. Horizontal profile of the solutions at z/D = ±6 and vertical

profile at x/D = 0 and 5 are shown, in figure 4.12. Figure 4.13 shows the time

histories of those three solutions. As can be seen, ',x agrees well with u outside the

vortical region. Then the first condition is met, while the second condition is greatly

relied on the averaging period for calculating the mean velocity field. This will be

45



discussed in section 4.2.3.
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Figure 4.12: Profiles of streamwise velocity at t⇤ = 100, (',x is streamwise component
of viscous velocity, u and u is respectively the instantaneous and time
averaged Navier-stokes solution)
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Figure 4.13: The time histories of streamwise velocity

4.2.2 E↵ect of Outlet Boundary Location

Similar to the flat plate case, the e↵ect of outlet boundary location need to be

studied to determine the reduced domain size. To be consistent, the meshes used for

this study are topologically identical in the common region as the large domain in

last section.

As shown in figure 4.14, the computational domain is very similar to the large

domain. The only di↵erence is the distance between the center of the cylinder and

the outlet boundary, x
outlet

. The study of the outlet boundary location in this work

ranges from x

outlet

/D = 250 to x

outlet

/D = 25. All other settings are the same as the

Navier-Stoke problem described in section 4.2. There are three metrics to evaluate

the e↵ect of the outlet boundary location. They are the root mean square errors of the

streamwise velocity at t⇤ 2 [0 : 100] at three di↵erent locations. The three locations
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Figure 4.14: The domain for outlet boundary location study

to sample the streamwise velocity are (0, 6D), (1D, 6D), (5D, 6D). The solutions in

the largest domain x

extent

/D = 1000 are used as baseline solutions. The root mean

square errors are calculated as stated in equation (4.3).
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Figure 4.15: The e↵ect of outlet boundary location(Mid, TE, Aft respectively repre-
sents the locations at (0, 6D), (1D, 6D), (5D, 6D))

0.05% is used as a error bound for all the values. As shown in figure 4.15, it can

be found that for the case x
outlet

/D = 50, the root mean square error of all the values

is below the 0.05%. Hence, x
outlet

/D = 50 is the smallest distance to outlet boundary

without a↵ecting the accuracy of the solution. So x

outlet

/D = 50 is selected as the
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outlet boundary location for the reduced domain in the next section.

4.2.3 Unsteady Velocity Decomposition On Reduced Domain

The first condition for applying the time-averaged velocity based approach, which

is the viscous potential velocity matches the mean velocity field outside the vortical

region, is proved to be met in section 4.2.1. To satisfy the second condition, which

is the mean velocity field can correctly represent the characteristics of the velocity

field, u needs to be averaged over integer times of the oscillation period after the flow

shows a constant frequency. From the time histories in figure 4.13, the flow shows a

relatively stable frequency for t⇤ > 60. The oscillating period is T/tref ⇡ 5.5. Then

the averaging period is set correspondingly. With this setting, two conditions can be

met. The velocity decomposition method is ready to be applied to this case.

Based on the vorticity thickness and influence of the outlet boundary location,

the computational domain is reduced to x

extent

= 7D, x

outlet

= 50D. Since this case is

used to demonstrate the ability of velocity decomposition solver to capture the Von

Kármán vortex street, there is no intent to predict the start-up of the flow. Hence,

only one update based on the instantaneous velocity is applied at t⇤ = 60. After that,

20 updates are made based on the time-averaged velocity field. The setting of the

velocity decomposition parameters are shown in table 4.6.

Parameters Value
N

update

200
T

avg

/tref 5.5
t

start

/tref 60
N

wake

325
L

wake

/D 50
�max 6

Table 4.6: The parameter value for viscous potential calculation of flow over cylinder

Figure 4.16 shows the profile of streamwise velocity at t

⇤ = 200 from velocity

decomposition solver on a reduced domain and the Navier-Stokes solution on the
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large domain, xextent/D = 1000. To show the improvement of applying velocity

decomposition method, the Navier-Stokes solutions on a reduced domain are shown

as well. The oscillating amplitude and period match well with the Navier-Stokes

solution in large domain, despite of the small di↵erence in the phase of the solution.

On the other hand, the Navier-Stokes solution in reduced domain is over-predicted.
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Figure 4.16: Horizontal profiles of streamwise velocity at t⇤ = 200

Due to the presence of phase di↵erence, unlike preceding section, the velocity

profiles on the vertical direction are not shown. However, this would not temper

the analysis to velocity decomposition method, as good agreement is found when

comparing the time histories of streamwise velocity in various locations and the drag

coe�cient in figure 4.17. It can be seen that all the time histories of velocity decompo-

sition results in reduced domain match with the Navier-Stokes solutions after around

t

⇤ ⇡ 100. This means after around 7 updates in velocity decomposition, the solution

is quickly corrected to match with the Navier-Stokes solution. So the time-averaged
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velocity based method is able to provide accurate results.

0.84

0.88

0.92

0.96

1

0 50 100 150 200

u
/
U

1

t

⇤

N-S large
N-S reduced

VD

(a) Streamwise velocity time history at (�1D, 1D)

1

1.1

1.2

1.3

0 50 100 150 200

u
/
U

1

t

⇤

N-S large
N-S reduced

VD

(b) Streamwise velocity time history at (0, 1D)

1

1.04

1.08

1.12

0 50 100 150 200

u
/
U

1

t

⇤

N-S large
N-S reduced

VD

(c) Streamwise velocity time history at (5D, 5D)

1

1.1

1.2

1.3

1.4

0 50 100 150 200

C

d

t

⇤

N-S large
N-S reduced

VD

(d) Drag coe�cient time history

Figure 4.17: The time histories of streamwise velocity and drag coe�cient
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CHAPTER V

Conclusion and Future Work

In this work, the velocity decomposition solver, developed by Edmund (2012) and

Rosemurgy (2014), is extended to solve for unsteady flow problems. Two methods are

proposed to solve for the viscous potential in the unsteady velocity decomposition al-

gorithm. The instantaneous velocity based approach is applied when solving the two

dimensional laminar flow over a finite flat plate. Good agreement between the veloc-

ity decomposition results and the results generated by a conventional CFD solver is

shown. The time-averaged velocity based approach is applied to solve the two dimen-

sional laminar flow over a circular cylinder with Von Kármán vortex street. Despite

of di↵erences in the phase of the solution, the amplitude and frequency of the oscillat-

ing wake predicted by the velocity decomposition solver matches well with those from

conventional CFD solver. Even though only two-dimensional results are studied in

this work, extension to three-dimensional cases is the next step, given the encourag-

ing results presented by Edmund (2012). The velocity decomposition solver’s ability

to handle free-surface flow has been demonstrated by Rosemurgy (2014). Given the

promising results for unsteady flow presented in this thesis, the velocity decomposi-

tion solver will be further developed to solve for three-dimensional turbulent flows

with free-surface. The ultimate application of the velocity decomposition solver can

be predicting the interaction among multiple bodies moving on the free-surface.
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