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The structure of nonverbal communication expressed as eye-contact between two
human beings is analyzed using graph-theoretic tools involving a theorem of Konig on
bipartite graphs and various results concerning directed graphs (as in Harary). A
taxonomy for possible eye-contact configurations is constructed; then a theory, formed
from a sequence of theorems proved about classes of eye-contact graphs derived from
the taxonomy, is interpreted to analyze possible levels of communication. This theory
can apply to any living system but it is interpreted here with respect to human
subsystems composed of (1) individuals with normal vision, and (2) individuals with

vision disorders which lead to crossed eyes.
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Nor do they trust their tongue alone,
But speak a language of their own;
Can read a nod, a shrug, a look,
Far better than a printed book;
Convey a libel in a frown
And wink a reputation down.
(Jonathan Swift, 1729)

FREQUENTLY, nonverbal communication
is transmitted between two individuals
via eye contact. Many factors influence the
nature of that exchange in communication,
but independent of these, there is always
present an underlying structure that de-
scribes the pattern of that interaction from
one eye to the other. The material below
presents a structural taxonomy, based in
graph theory, for all possible eye-contact
configurations between two individuals.
This classificatory structure will be used to
generate theorems whose proofs can be in-
terpreted to analyze the extent of commu-
nication exchanged between individuals
with normal vision as well as between those
with crossed eyes.

CLASSIFICATORY MATERIAL

Throughout this material, X will be an
individual with left eye x and right eye x’,
and Y will be an individual with left eye y
and right eye y’. The sequence of lemmas
in this section, that follows directly from
definitional material, leads to a taxonomy
which will be used to generate results that
are not as straightforward.

Definition 1

An eye-contact graph is a directed graph
with vertex set {x, x’, v, ¥’} and edge set
composed of directed edges (expressed as
ordered pairs) chosen from the set of pos-
sible linkages among x, x’, y, and y’. Two
vertices are adjacent if and only if one of
the eyes they represent is looking at the
other; the direction assigned to the edge
linking these vertices represents the direc-
tion of gaze from one eye to the other.

Thus in the pair (x, y), the vertex x is
adjacent to the vertex y, and these vertices
are linked by an edge representing the di-
rection of gaze from eye x to eye y.

Definition 2

An adjacency matrix that represents an
eye-contact graph is a matrix of 0’s and 1’s;
a 1 (0) in the ith row and jth column
indicates the presence (absence) of an edge
from vertex i to vertex j in the graph (Har-
ary, 1969, p. 202).

Definition 3

A bipartite directed graph G is a directed
graph whose vertex set V may be parti-
tioned into two subsets, V; and V;, such
that every edge in V links a vertex of V; to
a vertex of V, (or of V, to V;) (Harary,
1969, p. 17).

Lemma 1
An eye-contact graph, G, is a bipartite
graph.
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Proof:

The vertex set V, of G, is V = {x, x’, v,
y’}. Since each vertex represents an eye,
the two heads of X and Y, that contain
pairs of eyes, provide a natural partitioning
of Vinto V; = {x, x’}, Vo= |y, y’}. All edges
in G must be from V; to V; (or from V, to
V1), for otherwise individual X (or Y)
would be required to have his left eye look
at his own right eye, or his own right eye
look at his own right eye, or vice-versa.
This is physically impossible assuming that
X (or Y) does not use a mirror.

Corollary 1

In an eye-contact graph G with V = {x,
x’, ¥, ¥}, the edges (x, x), (x’, x’), (y, ¥),
(v',y'),and (x, x"), (x’, x), (3, 5"), (', »)
may never appear.

Proof:

This is a direct consequence of Lemma
1.

Definition 4

The indegree of a vertex is a nonnegative
integer representing the number of distinct
directed edges coming to that vertex from
other vertices; the outdegree of a vertex is
a nonnegative integer representing the
number of distinct directed edges leading
from that vertex to other vertices (Harary,
1969, p. 198).

Lemma 2

In an eye-contact graph, the outdegree of
any vertex is either O or 1.

Proof:

Without loss of generality, analyze the
size of the outdegree of vertex x. By Defi-
nition 4, (outdegree x) = 0.

a) If (outdegree x) = 0, then eye x is not

looking at either eye of Y.

b) If (outdegree x) = 1, then eye x is
looking at exactly one of Y’s eyes.

c) If (outdegree x) > 1, then eye x is
looking, simultaneously, at more than
one of Y’s eyes, which is physically
impossible.
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Corollary 2

In an adjacency matrix representing an
eye-contact graph, the sum of the entries
in any row is less than or equal to 1.

Proof:

This is a direct consequence of Lemma 2
and Definition 2.

Lemma 3

In an eye-contact graph the indegree of
any vertex is at most 2.

Proof:

Without loss of generality, analyze the
size of the indegree of vertex x. By Defini-
tion 4, (indegree x) = 0.
a) If (indegree x) = 0, then neither eye
of Y is looking at x.

b) If (indegree x) = 1, then one eye of Y
is looking at x.

¢) If (indegree x) = 2, then both eyes of
Y are focused on x.

d) If (indegree x) > 2, then more than
two eyes of Y are focused on x, which
is not possible.

Corollary 3

In an adjacency matrix representing an
eye-contact graph, the sum of the entries
in any column is less than or equal to 2.

Proof:

This is a direct consequence of Lemma 3
and Definition 2. (If equality holds, both
eyes of one individual are focused on a
single eye in the other).

Lemma 4

An eye-contact graph has, at most, four
directed edges.

Proof:

An eye-contact graph has four vertices
(Definition 1) and each of these has out-
degree, at most, 1 (by Lemma 2). Conse-
quently, there can be no more than four
distinct edges in this graph; these edges are
directed in the manner indicated in Defi-
nition 1.
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Corollary 4 iii) X focuses on y’.

An adjacency matrix representing an a) x’ X xxyy
eye-contact graph has at most four nonzero i e 0001
rowe. T\Qy » (o001
Proof: : y 0100

This is a direct consequence of Lemma Y y ¥ 1000
4,

These definitions, lemmas, and corollar- b) Y focuses on x.
ies lead to the following taxonomy for all x’ x xx' yy'
possible eye-contact configurations, repre- . . x 0001
sented both as graphs and adjacency ma- >{Q> x’ 0001
trices, between individuals X and Y. ) y 1000
Class 1 y yoy 1000

Assume X has normal vision (or cor- ¢) Y focuses on x’.
rected to normal). Also, assume that both , , ,
eyes in X are engaged in eye-contact. One x x xx yYy
could exchange Y for X, or y for x, through- : fox 0001
out to obtain dual configurations; these will TQ¢ x’ 0000
not be shown (Harary, 1957, p. 259). ! oy 0100

A) Assume Y has normal vision and that y y' oy 0100

both eyes are engaged in eye-contact.

By Lemma 4, the graphs representing B) Suppose that Y has only one eye en-
eye-contact will have four edges. gaged in eye-contact. The graphs rep-
resenting eye-contact configurations

’

~

i) «’ x xXx yy will have exactly three edges.
. w X 0001
(y gyx 0010 0)a)x x ixyy
. Y 0100 - . x /0010
y ¥ v \1000 () | # fooo0n
ii) X focuses on y. : Ty 0100
. Y y y oy 0000
a) x’ x xx'yy’ ,
. Lox 0010 b) x X xx"yy
( Tx’ 0010 : s X 0001
& 1, lo1o0o0 J,/l » (0010
y y oy 1000 : oy 1000
b) Y focuses on x. y Yoy 0000
X! x xx yy 1) X focuses on y.
. . X 0010 a) x’ x xx yy
'L//YT (0010 n o % (0010
' LY 1000 (V o (o010
y ¥y 1000 . -y 0100
¢) Y focuses on x’. y y oy 0000
X’ x xx' yy b) x’ x xx' yy’
.X 0010 . . x 0010
(V  [0010 W « (o010
: .y Vo100 - .y {1000
y ¥y 0100 y ¥ ¥y \0000O
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11i) X focuses on y’.

a) x’ X xx" yy’
: <X 0001
T\i = (0001
: Sy 0100
Yy ooy 0000

b) x’ X xx" yy’
- - X 0001
><ix’ 0001
. Yoy 1000
y vy 0000

C) Suppose that Y has no eyes engaged
in eye-contact. The graphs represent-
ing eye-contact configurations will
have exactly two edges.

~
~

1) x’ X xx'yy

: X 0001

l lx’ 0010

: Ty 0000

y y' oy 0000
ii) X focuses on y.

x’ X xx" yy'

: - X 0010

,L/ » (0010

: Y 0000

y ¥y oy 0000
iii) X focuses on y’

x’ x xx' vy’

. L ox 0001

\l' » (o001

. Y 000O

y y' oy’ 0000

Class 11

Assume X is cross-eyed and that both
eyes in X are engaged in eye-contact.
(Duals will not be shown.)

A) Assume Y has normal vision and that

both eyes are engaged in eye-contact.
The graphs representing eye-contact
configurations will have four edges.

4

~

i) x’ X xx'yy
. s X 0010
‘T‘XTx 0001
: Y 0100
y LA ¢ 1000
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B) Suppose that Y has only one eye en-
gaged in eye-contact. The graphs rep-
resenting eye-contact configurations
will have exactly three edges.

~
~

1) x’ x xx" yy
: - X 0010
TX x’ 0001
: Y 0100
% vy’ 0000

it) x’ x xx" yy’
. . X 0010
Xx’ 0001
/ y 1000
y vy 0000

C) Suppose that Y has no eyes engaged
in eye-contact; the graphs represent-
ing eye-contact configurations will
have exactly two edges.

7 ’

~

x X xx' vy

. T 0010

>< x [oo0o01

. Y 0000

Yy y' oy’ 0000
D} Suppose that Y is also cross-eyed.

x’ x xx' yy’

. - X 0010

@ x’ 0001

. Y 1000

¥y vy 0100

Class I1I

This includes all trivial cases, such as no
eye-contact on the part of either X or Y,
no contact from Y and contact from one
eye of X only, and contact from one eye for
each of X and Y.
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THEOREMS ABOUT EYE-CONTACT
GRAPHS

PDefinition 5

An n-cycle (n = 2) in a directed graph is
an alternating sequence of n vertices and
n'edgesr Vo, (UO’ Ul): Uy, (U17 Uz), ©cty Un-1y
(Un-1, Un), Un, in which all vertices are dis-
tinct except the first and last (Harary, 1969,
p. 198).

Theorem 1

A cycle in an eye-contact graph has either
two or four edges.

Proof:

This is a direct consequence of Lemma 1
and of a theorem of Konig that a graph is
bipartite if and only if all of its cycles are
even (Harary, 1969, p. 17). A constructive
proof, expressed in terms of eye-contact
graphs, is exhibited below.

By Definition 5, any cycle has at least
two edges. Since there are at most four
edges in an eye-contact graph (Lemma 4),
it follows that a cycle could have 2, 3, or 4
edges (a cycle with 2 edges is exhibited in
I.A.i and one with four edges in IL.A.i). So
it remains to determine if a cycle of three
edges can exist in an eye-contact graph.
Suppose, without loss of generality, that x
is adjacent to y. The sequence in the 3-cycle
under construction begins x, (x, ¥),y - - -

4

X X
£
¥ y'

and must continue by linking y to x” (a 2-
cycle is formed if y is linked to x, and
Lemma 1 is violated if y is linked to y’).
Thus, the sequence in the 3-cycle reads x,
(x, ¥), v, (y, x’), x’, --- and to force the
sequence to represent a cycle with three
edges, it must be completed, to satisfy Def-
inition 5, as x, (x, ¥), y, (¥, '), 27, (x”, %),
x. But this contradicts Corollary 1 and so
no 3-cycle may exist in an eye-contact
graph. Q.E.D.
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Theorem 2

In an eye-contact graph,

a) If a 4-cycle is present, then exactly
one of X and Y is cross-eyed.

b) If 4 edges are present and neither X
nor Y has crossed eyes, then the only
cycles that may exist are 2-cycles.

¢) If both X and Y have crossed eyes,
only 2-cycles exist.

Proof:

This is a direct consequence of the tax-
onomy and the proof of Theorem 1; enu-
meration of possibilities will yield the re-
sults.

a) All possible 4-cycles are enumerated

below:
x’ x x’ X x’ x
>t D<o
. . . . (—
y yoooy yoy y’

@) (i1) (iii)
x’ x x’ x x’ X
X X
.__). .,___). .(____.
y yoy y oy y’

(iv) (v) (vi)

In (i), X is cross-eyed and in (ii), Y is
cross-eyed. Cases (iii), (iv), (v), and (vi)
violate Lemma 1 and so are not eye-contact
graphs. Thus (a) follows.

b) Since neither X nor Y has crossed-
eyes, the only 4 cycles that can be
created are those in (iii), (iv), (v), and
(vi); but these are not eye-contact
graphs. So there can be no 4-cycle in
this case. Theorem 1 insures that
there can be no 3-cycle in this case.
Thus the only cycles that may exist
are 2-cycles, and the result follows.

¢) In this case, there is only one possible
eye-contact graph, (Class I1.D) and it
has two 2-cycles. Q.E.D.

The following assumption will permit
further interpretation of eye-contact
graphs, and is based on the idea that an eye
is both a transmitter and a receiver in any
eye-contact exchange.
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Basic Assumption

From a structural viewpoint, the size of
the indegree (outdegree) of a vertex repre-
sents directly the extent of nonverbal com-
munication coming to (from) the eye which
that vertex represents.

The condition set forth in Definition 6 is
suggested by the basic assumption, and is
consistent with the “concept of equal ex-
change” set forth by Berger and Snell
(1957, p. 114).

Definition 6

The interchange in communication, re-
sulting from eye-contact between X and Y,
is maximal (structurally) if for every vertex
v in the eye-contact graph representing the
exchange,

indegree v = outdegree v.

Definition 7

The row rank of an adjacency matrix
representing an eye-contact graph is the
number of distinct, nonzero, rows in that
matrix.

Theorem 3

In an eye-contact graph with four edges,
there is maximal interchange of communi-
cation between X and Y if the row rank of
the adjacency matrix is 4.

Proof:

The row rank of the adjacency matrix is
4, by hypothesis. By Corollary 2 and the
hypothesis, each row contains exactly one
entry of 1. Thus the sum of the entries in
each row is 1 and so the outdegree of each
vertex is 1 (Lemma 2). Since the four rows
are distinct, by Definition 7, each column
contains exactly one entry of 1. Thus the
sum of the entries in each column is 1 and
so the indegree of each vertex is 1 (Lemma
3). Therefore, indegree v = outdegree v for
every vertex v, and so, by Definition 6, there
is maximal interchange of communication
between X and Y. Q.E.D.

Theorem 4

In an eye-contact graph with four edges,
there is nonmaximal interchange of com-
munication between X and Y if the row
rank of the adjacency matrix is less than 4.
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Proof:

a) Suppose the row rank is 3.

By Corollary 2 and the hypothesis, each
row contains exactly one entry of 1. Thus
the sum of the entries in each row is 1 and
so the outdegree of each vertex is 1 (Lemma
2). There are three distinct rows, by Defi-
nition 7. By hypothesis all four rows are
nonzero, so two rows must be identical.
Thus one column contains two entries of 1,
another contains only entries of 0, and the
remaining two each contain a single entry
of 1. Thus the sums of the entries in the
columns are 2, 0, and 1, respectively. There-
fore the indegrees of the vertices are 2, 0,
and 1 (Lemma 3). Thus indegree v # out-
degree v for two vertices v and there is
nonmaximal interchange of communica-
tion between X and Y (Definition 6).

b) Suppose the row rank is 2.

As above, the outdegree of each vertex is
1. There are two distinct rows, by Defini-
tion 7. By hypothesis, all four rows are
nonzero, so there must be two pairs of
identical rows or three rows the same (the
latter is impossible for then one column
would contain three 1’s in violation of Cor-
ollary 3). So, there are two pairs of identical
rows, generating two columns each with
two entries of 1, and two columns each with
only 0 entries. The indegree of two vertices
is 2, and of the remaining two, is 0. Thus
degree v # outdegree v, for all v. By Defi-
nition 6, there is nonmaximal exchange
between X and Y.

¢) The row rank cannot be 1.

If it were, all rows would be the same,
generating a column with four entries of 1
in violation of Corollary 3. Q.E.D.

Combining Theorems 3, 4, and Corollary
4 produces:

Theorem 5

In an eye-contact graph with four edges,
there is maximal interchange of communi-
cation between X and Y if and only if the
row rank of the adjacency matrix is 4.

Definition 8

Given an eye-contact graph, and its ad-
jacency matrix, that represent an exchange
of communication between X and Y; the
interchange will be called
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a) unbalanced, if the row rank is 3

b) balanced, if the row rank is 2 or 4.

This is distinct from, but not unrelated
to, Harary, Norman, and Cartwright’s use
of balance in signed graphs; in the case of
eye-contact graphs, all cycles of the signed
digraph associated with the underlying di-
graph would be positive so that strict use
of their notion of balance would not distin-
guish situations in which exchange of eye-
contact is uneven (Harary, Normal, &
Cartwright, 1965, p. 341).

Corollary 5

In an eye-contact graph with four edges,

a) indegree v — outdegree v = 0 for all
vertices v if and only if there is max-
imal (balanced) exchange of commu-
nication.

b) |indegree v — outdegree v |

]0, for two vertices
|1, for the other two vertices

if and only if there is an unbalanced
(nonmaximal) interchange of com-
munication.

¢) |indegree v — outdegree v| = 1 for all
vertices if and only if there is balanced
nonmaximal interchange of commu-
nication.

Proof:

The proof of (a) is a consequence of
Theorem 5. The proofs of (b) and (c) are
consequences of the proof of Theorem 4
and of Definition 8.

Examples of each type of interchange are
represented, in graph and matrix form, in
the taxonomy:

a) Graphs exhibiting maximal (bal-

anced) exchange: 1.Ai, I1.A.i, I1.D.

b) Graphs exhibiting (nonmaximal) un-
balanced exchange: [.A.ii.a, I.A.iiLa,
ILA.G, LA

¢) graphs exhibiting nonmaximal bal-
anced exchange: ILA.ib, LA.i.c,
LLA.ii.b, I.A.dii.c.

This exhausts all cases with four edges.

Definition 9

Using the Basic Assumption, a cycle in
an eye-contact graph will be considered to
represent direct feedback in nonverbal
communication between X and Y.
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Definition 10

A sink (source) of eye-contact is a vertex
in an eye-contact graph which has only
edges leading to (from) it (Harary, 1969, p.
201).

Theorem 6

In an unbalanced (nonmaximal) inter-
change, delete all direct feedback (cycles).
Then the individual who receives the larger
share of the remaining communication has
the eye which is a sink.

Proof:

That an eye which is a sink receives a
larger share of the remaining communica-
tion than does an eye which is not, is a
consequence of the basic assumption. It
remains to show that there is exactly one
such eye in any graph that satisfies the
hypothesis. Only I.A.ii.a, L.Aiiia, ILA.i,
and ILA.iii satisfy the hypothesis.

Analyze each graph which satisfies the
hypothesis.

a) Delete the cycle in graph 1.A.ii.a.

’

A

Then y is the only sink by Definition 10.
So Y receives the larger share of the re-
maining communication.

b) Delete the cycle in graph I.A.iii.a.

’

X X
y y'

Then y’ is the only sink by Definition 10.
So Y receives the larger share of the re-
maining communication.

¢) Delete the cycle in graph ILA.ii.

14

N

Then x is the only sink by Definition 10. So
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X receives the larger share of the remaining
communication.
d) Delete the cycle in graph I1.A iii.

’

L

Then x’ is the only sink by Definition 10.
So X receives the larger share of the re-
maining communication. Q.E.D.

Corollary 6

The sink in an eye-contact graph satis-
fying the hypotheses of Theorem 6 is the
only vertex v in the graph such that inde-
gree v — outdegree v = 1.

Proof:

From the proof of Theorem 6,
indegree of sink — outdegree of sink = 1
in all cases
indegree of source — outdegree of source
= —1 1in all cases
indegree of another vertex — outdegree
of another vertex = 0 in all cases.

INTERPRETATIONS

The following examples represent the
types of inference, concerning the struc-
tural characteristics of eye-contact, that
may be made as a consequence of the tax-
onomy and of the sequence of theorems
based on it. If both individuals have normal
vision (class I.A in the taxonomy), direct-
ness in feedback, fullness of contact, or
openness between the individuals is maxi-
mized through creating two cycles (Defini-
tions 6 and 9) by focusing x” on y, y on x’
and xon y’, ¥y’ on x (as in I.A.1). Since this
is the only configuration in Class [.A whose
row rank is four, a shift of the eyes, on the
part of X, forces the situation from one of
maximal interchange to one of nonmaximal
interchange between X and Y (by Theorem
5). Reasons for X to shift away from the
maximal position could include discomfort
in open contact with someone to whom he
is lying, or from whom he is hiding some-
thing. For whatever reason, suppose that Y
maintains the steady gaze of I.A.i (with v
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on x’ and y” on x) while X shifts his eyes
to focus them both on only one of Y’s eyes
(as in I.A.ii.a or I.Aiii.a).

x’ x
y y’
LA
x’ x
y y’
LA.ia
x’ X
y y'
LLA.lii.a

If X wishes to retain complete eye-contact
with Y (iLe., with four edges present), in
order to keep the appearance of willingness
to engage openly with Y in eye-contact,
then these are the only two configurations
that can result. Both represent unbalanced
nonmaximal interchange of communica-
tion (Corollary 5), but the larger share of
the communication outside the cycle struc-
ture belongs to Y since indegree y’ — out-
degree y’ = 1 (in 1.A.ii.a) and indegree y —
outdegree y = 1 (in I.A.iii.a) by Theorem 6
and Corollary 6. So, as long as Y maintains
his steady gaze of LLA.i, X may not, by
shifting his eyes, both retain complete eye-
contact and maneuver the configuration to
a position in which he receives the larger
share of communication. If X is willing to
sacrifice complete eye-contact with Y, then
he may tip the balance to receive the larger
share in communication by focusing x” on

v’ and x on Y’s right ear (or elsewhere) as
in I.B.1.b.

P

I.B.i.b
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In this case, x is a sink since indegree x —
outdegree x = 1 (Corollary 6), and so X
receives the larger share in communication.
If Y senses this strategy on the part of X
(which seems likely unless X has close-set,
deep-set, small, bespectacled eyes) he may
shift his eyes to create a cycle by focusing
on x’ (I.B.iii.a).

x’ x

y ¥’
L.B.iii.a
For X to restore his position, he must break
this newly formed cycle that provides Y
with some feedback. This requires a shift

so that x looks at y, and x’ looks at Y’s left
ear (I.B.iii.b).

L.B.iii.b

Presumably Y would notice a shift of X’s
eyes as wide as this, and would respond by
once again creating a cycle; a sequence of
shifts of this sort could be carried on indef-
initely. But by now, consistent with what
we have learned about “shifty” eyes, Y
should suspect that X has something to
hide (Harary, 1982).

Arguments of this sort, involving shifti-
ness of gaze on the part of one individual
may all be analyzed using Theorems 5 and
6, their corollaries, and the taxonomy, in-
dependent of the original configuration
representing initial eye-contact.

Another strategy that could be employed
by X in modifying the structure of an initial
eye-contact configuration is to wink (a
wink is a deliberate action, distinct from a
blink which is involuntary). A wink may be
friendly, or it may suggest something mys-
terious. From an initial position of eye-
contact such as .A.ii.a, a wink of x’ tem-
porarily breaks complete eye-contact; in
this case Y has an advantage for an instant
since indegree y — outdegree y = 1 (Theo-
rem 6 and Corollary 6).
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LA.i.a

By winking, X has deliberately increased
his vulnerability in terms of eye-contact
exchange, and so this configuration could
be viewed as one that represents trust and
friendliness. (Vulnerability, as used here,
cannot be aligned with Harary’s use of the
word, since no eye-contact graph is a com-
plete graph [Harary, Norman, and Cart-
wright, 1965, p. 194]). On the other hand,
from a position such as LA.i.b, a wink of
x’ creates a temporary advantage for X,
since indegree x — outdegree x = 1, and this
strategy could be used by X to dodge con-
tact during a small part of a conversation
as well as to receive more communication
(from both y and y’) than is given (from
x). :

’

X X

o

Y Y
LAiib

Still a third method of forcing change in
eye-contact structure is by changing the
distance between X and Y. Since vision is
binocular (in Class L.A), moving 'Y very
close to X would force a break in the link-
ages of L.A.i (for example). If X and Y are
sufficiently close, each would be forced to
focus on a single eye in the other and so
only positions LA.ii.b, L.A.ii.c, LA.iii.b, and
L.A.iii.c would be possible.

Finally, if one individual has crossed eyes
and the other does not, maximal inter-
change occurs in configuration ILA. via
the 4-cycle present in that configuration
(Definition 5). Since this configuration is
impossible between two individuals with
normal eyesight, by Theorem 2, this pro-
vides a structural reason for the sense of
discomfort felt by individuals with normal
vision when engaging in eye-contact with a
cross-eyed individual. From this position,
the person who is not cross-eyed may re-
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store comfort in eye-contact by shifting his
gaze to a single eye in the cross-eyed person
(IL.A.ii or IL.A.iii). He does so, however, at
the expense of retaining balance in the
exchange. For, in ILA.ii, indegree x—out-
degree x = 1 and so X receives the larger
share of communication in this unbalanced
exchange (Theorem 6, Corollary 6). Alter-
nately, the person who is not cross-eyed
may keep a balanced configuration by
crossing his own eyes, restoring the eye-
contact to I1.D, but probably the discomfort
is not worth it.

DIRECTIONS FOR FURTHER RESEARCH

Extensions in the application of these
theorems to eye-contact systems with more
than two individuals could suggest strategy
for dealing with crowds, both in terms of
controlling contagious effects such as panic
transmitted through a sequence of individ-
uals (Rashevsky, 1951, p. 81), as well as in
dispersing academic or social material from
a point-source to a region of points, as a
professor to a class, singer to an audience,
or a clergyman to a congregation.
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Further, a theory of eye-contact for spe-
cies that do not possess binocular vision
could be constructed parallel to the one for
humans. Coupling of these might yield in-
sight into the role eye-contact plays in de-
termining the shapes of territorial bound-
aries associated with various species (Ar-
drey, 1966, pp. 131, 154; Neutra, 1969, p.
314).
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