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ELECTRONIC GEOMETRY
SANDRA LACH ARLINGHAUS

ABSTRACT. A fractal approach to classical central-place theory is recast in terms
of hierarchies of square trade areas. Infinite central-place hierarchies of squares
or hexagons can be assigned fractional dimensions according to the extent to
which they fill space. The fractional dimensions of hexagonal hierarchies are in
all cases less than the square counterparts. When these geometries are interpreted
electronically, in terms of square or hexagonal pixels, a higher degree of picture
resolution on a cathode-ray tube is possible with a hexagonal lattice than with
a square one, especially when pixel boundaries permit some transmission of
content.

HE cathode-ray tube functions as a tablet of paper for many persons:
they write and arrange text and draw maps on it. Whether this electronic
tablet is lined or plain paper is a matter of scale. A blank screen appears

unlined, yet monitor resolution depends on the number of electronic rows
and columns involved. A single row-and-column entry in a lined electronic
matrix serves as a fundamental picture element or pixel, from which text
and maps are formed. As cells in a rectangular matrix, pixels are identical,
nonoverlapping squares; they form a tiling of the paper, which ensures
uniqueness in the designation of location with respect to the grid, and they
apparently carry the color content within themselves, as an open set, rather
than on their pixel boundaries.

Although the logic by which pixels are linked to one another is purely
mathematical, the use of such linkages is often geographical. Geographical
information systems (GIS) and text processors with font designers are bound-
ary dwellers (Nystuen 1966) in the realm between geometry and geography:
they are anchored in the logic of geometry, yet feed off the spatial content
of geography. Researchers have explored the role of GIS in geography (Good-
child and Gopal 1989; Gibson and Lucas 1990; Hall and Gékmen 1990). In
contrast, this article explores the role of geography, specifically central-place
theory, as a theoretical basis for GIS.

PIXEL SEQUENCES AND CENTRAL-PLACE ANALYSIS

Lines and curves on cathode-ray tubes are formed from sequences of
pixels joined together at their edges and corners. The pixel sequence merely
suggests the curve: it does not actually produce a correct curve. Reducing
the size of the pixel can improve the resolution of the image representing
the curve. The extent to which improvement in resolution is possible can
be evaluated with a fractal approach to central-place geometry.
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The pixels in a sequence are separated by boundaries. Hence, when
smaller square pixels are introduced, more lines separating pixels are likewise
introduced. The interior of the pixel, not its boundary, carries the content.
Thus, if the process of introducing finer and finer pixel mesh is carried out
infinitely, the pixel interiors become smaller, and the entire plane region
may become filled with pixel boundary. In this situation, all pixel content
is lost. Clearly, improvement in resolution does not continue ad infinitum;
at some point the trade-off between fineness in resolution and loss of infor-
mation content reaches a peak. The question is, does this diminishing-returns
dilemma exist independent of the shape of the fundamental pixel unit, that
is, independent of the mathematical context in which pixels are embedded?
An analysis using fractally generated central-place hierarchies suggests not:
some pixel shapes and overlay orientations are better suited than others to
reducing clutter from pixel boundaries.

The geometry of central-place theory conjures images of layers of hex-
agonal nets of varying diameter, superimposed in any of an infinity of
orientations (Dacey 1965). The reason for hexagons rather than squares is
that a hexagon is the cell shape that gives the tightest packing of cells. It is
a well-known imitation of hexagons in nature, from cells in a beehive to
coalescing soap bubbles.

Concepts from fractal geometry quantify the extent to which part of the
central-place boundary fills its containing space. The fractal approach pro-
vides replicable, rigorous support for the earlier intuitive notions as to which
hexagonal hierarchies might most reasonably be cast as the ones with mar-
keting, transportation, or administrative orientations (Arlinghaus 1985). This
approach also permits the solution of previously unsolved problems lurking
beneath the integral surface of classical central-place geometry by assigning
fractional dimensions to central-place nets, with that assignment based solely
on properties deduced from the number-theoretic characteristics of the hi-
erarchy (Marshall 1975; Arlinghaus and Arlinghaus 1989; Arlinghaus 1990).

CLASSICAL HEXAGONAL AND SQUARE HIERARCHIES

One way to derive the classical central-place hierarchy is as layers of
hexagonal nets representing trade areas between competing villages and
cities: villages have relatively small trade areas, and cities have larger ones.
Thus a net of unit hexagons surrounds villages spread evenly, as points on
a triangular lattice, across a minimal abstract environment. Similar layers
emerge with trade areas centered on large central places (Dacey 1965). Under
the hexagonal scheme, the village located at P (Fig. 1a) has six nearest neigh-
bors, each sharing evenly with P the interstitial space. The boundaries from
this sharing of space form the small hexagonal trade area immediately sur-
rounding P. Each of the other villages, in turn, competes with its nearest
neighbors, which creates a network of unit hexagonal cells.
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If P enlarges its capacity as a central place and its nearest neighbors do
not do so but the next nearest do so, a larger hexagon would be produced
around P as its trade area (middle-sized hexagons in Fig. la). This area
contains the equivalent of three unit trade areas: the entire small hexagonal
trade area of P and one-third of each of six others, one of which is shaded.
This relationship, known as the Loschian number, is constant throughout
the hierarchy between successive layers; the distance between competing
centers within a layer is the square root of three (Losch 1954; Christaller
1966). The invariance of three in this specific orientation of hexagonal nets
is often emphasized by referring to it as a K = 3 hierarchy.

The same style of analysis can be used on an underlying lattice that is
square, not triangular. Any village selected as a distinguishing point (lattice
point) on Figure 1b has four nearest neighbors with which it competes for
interstitial space. This level of competition produces a net of square unit
areas surrounding each village. When a village expands its capacities, it
competes with its next nearest neighbors, four of them, for space. An enlarged
trade area results that contains the equivalent of two small ones: the full
square trade area around the distinguishing point and quarters of four others
(one of which is shaded). As a parallel to the classical notion, this hierarchy
might be denoted a | = 2 hierarchy. Hexagonal hierarchies beyond K = 3
that are generally familiar to geographers include the K = 4 and K = 7
hierarchies (Figs. 1c and 1le); their square-lattice counterparts are | = 4 and
J = 5 (Figs. 1d and 1f). When the sharing of trade areas is used as the basic
concept, the generalization from hexagonal to square hierarchy is
straightforward.

It is easy to insert a natural coordinate system into either a triangular or
a square lattice. In the former the axes are oblique, at angles of 60° and 120°
(Fig. 2a); in the latter they are orthogonal (Fig. 2b). When each lattice point
is assigned a pair of coordinates (x, y), relative to these axes, a K or | value
may be associated with each ordered pair, based on the distance from (x, v)
to the origin: in the case of the square lattice, ] = x* + y*; in the case of the
hexagonal lattice, K = x* + xy + y2. Thus, with any given ordered pair of
integers, it is possible to find both | and K values associated with that point.
If(x,y)=(23),then]=2*+3F=4+9=13, and K = 2% + (2)3) + 3* =
4 + 6 + 9 = 19. As hierarchies associated with the lattice point (2, 3), each
next-larger square trade area would contain the equivalent of thirteen small
trade areas, and each next-larger hexagonal trade area would contain the
equivalent of nineteen small ones.

FracTtaL HIERARCHIES

Fractal geometry generates central-place nets (Arlinghaus 1991, 1993). The
fractal approach produces all the classical results and far more as well. An
advantage of using fractals to characterize central-place geometry is that the
fractal approach assigns a single number to an entire hierarchy that measures
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Fic. 1—a: hexagonal K = 3 hierarchy. b: square | = 2 hierarchy. c: hexagonal K = 4 hierarchy.
d: square | = 4 hierarchy. e: hexagonal K = 7 hierarchy. f: square | = 5 hierarchy.

the extent to which boundary fills space. The classical approach assigns a
single number to the hierarchy that measures the relationship of trade-area
sizes between adjacent layers of the hierarchy; the fractal approach uses this
relationship, in combination with the idea of a fractional dimension, to
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Fic. 2—a: sector of a triangular lattice and selected coordinates. b: sector of a square lattice and
selected coordinates.

generate a different universal constant of the hierarchy. To understand the
uses to which this new constant might be put, one must have some appre-
ciation for the mechanics of the fractal approach for producing classical
hierarchies.

The general strategy is to select a shape, or generator, that, when applied
to a hexagonal or square initiator, will yield hexagonal or square cells of the
next-smaller size that are in correct central-place orientation relative to the
original initiator (Fig. 3). In Figure 3a, the two-sided wedge-shaped generator
is applied to a hexagonal initiator, by replacing the hexagonal initiator sides
with generator sides, alternately pointing the generator toward the interior
of the hexagon and then toward the outside of the hexagon. Portions of the
underlying figure thus underfit and overfit the original shaded hexagon.
After the first iteration, a cluster that outlines three hexagons emerges; the
second iteration produces nine hexagonal cells. Each of these frames corre-
sponds to a portion of a layer in the K = 3 central-place hierarchy. The fit
is exact, when the layers are superimposed on the distinguished point. It-
eration can be carried out infinitely using successively smaller and smaller
generators. When this is done, a dimension can be assigned to the hierarchy.
The dimension measures the extent to which the solid boundary fills the
region.

I refer to clusters of this sort, which outline size and position for sets of
polygons of the same shape as the previous stage, as boundary animals.
Changing the scale of the generator will produce successive boundary ani-
mals representing layers of the hierarchy and illustrating the invariance, in
the case of Figure 3a, of the value 3 throughout the successive application
of the generator. The middle boundary animal in Figure 3a outlines three
hexagons; the right-hand boundary animal there outlines three of the three-
fold boundary animals from the central frame. Each stage in the fractal
iteration corresponds exactly to a layer in the K = 3 central-place hierarchy.
Figures 3c and 3e suggest how fractal generators may be applied to hexagonal
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FiG. 3—Fractally generated hierarchies. a: K = 3 hexagonal. b: | = 2 square. c: K = 7 hexagonal.
d: | = 5 square. e: K = 4 hexagonal. f: | = 4 square,
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initiators to generate the classical K = 7 and K = 4 hierarchies. Fractal
generators may also be found for any Loschian number; the requirements
for finding them are dependent only on number-theoretic considerations
(Arlinghaus 1985; Arlinghaus and Arlinghaus 1989).

Fractal geometry may be tailored to fit classical central-place concepts; it
may also be extended into a central-place environment based on squares as
the fundamental unit. In the latter case, the manner of application of the
generator to the initiator is, once again, to remove the sides of the initiator
and replace them alternately with the generator underfitting and overfitting
the initiator (Fig. 3b). A wedge with a 90° angle is used as a generator applied
to a square to illustrate how to produce a hierarchy. Again, the square initiator
is shaded throughout the sequence of three frames to make the underfit-
overfit strategy apparent. The center frame of Figure 3b contains two smaller
squares generated from the one to its left; the boundary animal, in solid
lines, consists of two scaled-down copies of the previous stage. The right
frame contains two scaled-down copies of the central frame. The classical
constant of this hierarchy is thus | = 2. These two hexagonal and square
hierarchies, with generators of similar style, are both associated with the
lattice point (1, 1) in the triangular and hexagonal sectors of Figure 2.

Figures 3¢ and 3d show how to generate the hexagonal and square hi-
erarchies associated with (1, 2), the K = 7 and | = 5 hierarchies. Both these
hierarchies employ a generator with three edges; alteration of inside-outside
application of the generator creates a boundary animal that envelops, in the
hexagonal case, seven scaled-down copies of the previous stage and, in the
square case, five scaled-down copies of the previous stage. In the same vein,
Figures 3e and 3f demonstrate how to generate fractally the hexagonal and
square hierarchies associated with (0, 2), the K = 4 and | = 4 hierarchies.
Each of these figures, however, displays only the first stages of an infinite
sequence. As the process becomes infinite, it is possible to consider the extent
to which the infinite boundary animals will fill space.

SPACE FILLING

Fractals offer a way of looking at a continuous spectrum of dimensions.
Most persons are accustomed to thinking of dimension in integral leaps, yet
they easily see that a highly crenulated line fills more space than does a
straight line segment, even though both are of Euclidean dimension one. A
way to calculate this sort of partial filling of space is to use a fractional
dimension, F, in the following formula:

F = (log n)/(0.5 log K),

where K and n are related in some natural fashion (Mandelbrot 1983). To
see the extent to which fractally generated central-place layers fill space as
the number of layers becomes infinite, use n as the number of edges in the
generator and K or | as the number of self-similar shapes created by it, the
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constant of the hierarchy (Arlinghaus 1985). For example, the K = 7 hierarchy
has a generator with three sides, so n = 3, K = 7, and F = 1.129. For the |
= 5 hierarchy, n = 3, | = 5, and F = 1.365. The boundary animals of the K
= 7 hierarchy, after infinite iteration, fill less space than do those of the | =
5 hierarchy. Table I shows comparisons for various | and K values. In all

: cases, given a particular (x, i), the fractional dimension is less for the hex-
agonal hierarchy than it is for the corresponding square hierarchy.

TABLE I—SPACE FILLING FOR SQUARE AND HEXAGONAL HIERARCHIES

CONSTANTS DIMENSION
LATTICE
COORDINATES K ] SQUARES HEXAGONS

(1,1) 3 2 2.0 1.262
(1, 2) 7 5 1.365 1.129
(0,2) 4 4 2.0 1.585
(0, 3) 9 9 1.465 1.262
(0, 4) 16 16 1.5 1.161
(0, 5) 25 25 1.365 1.209
(0, 6) 36 36 1.387 1.161
(0,7) 49 49 1.318 1.129
(0, 8) 64 64 1.333 1.153
(0,9) 81 81 1.2590 1.131
(0, 10) 100 100 1.301 1.114
(0,113 121 121 1.270 1:124
(0,12) 144 144 1.279 1.116

The prevalent electronic geometry using square units relies, for refine-
ment in resolution, on a | = 4 approach. Infinite improvement in resolution
using this scheme would result in a total loss of pixel content, because the
dimension of the boundary animal is two. The screen would be entirely
filled by boundary, and a total failure to transmit information would result.
Despite this difficulty, one advantage of the | = 4 approach over others is
that refinement in resolution keeps layers in the same orientation. There is
no twisting, an issue likely of interest given current scanning and printer
technology.

If both the hexagonal and the square geometric environments are viewed
as composed of crenulated boundary-animal outlines suggesting the central-
place layers, the hexagonal environment is the one that permits infinite
iteration with least loss of pixel content. When zooming in by reducing pixel
size and improving resolution by reducing pixel size are the only consid-
erations, the hexagonal pixel environment is a better choice than the square
pixel environment. This is all the more so when one considers the possibility
that parts of pixel boundaries might carry color content or information. The
boundary-animal outlines that fill only small amounts of space (for example,
1.129 for K = 7) could then become the entire boundary outlines for groupings
of hexagonal pixels. The K = 7 boundary animal is the outline of a snowflake;
when pixel boundaries carry no content, this outline suggests positions for
interior pixel boundaries. However, when these interior pixel boundaries
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carry content, the boundary animal completely defines a portion of the pixel
space rather than merely suggesting it. The hexagonal hierarchy associated
with (1,2) has boundaries that fill only 1.129 dimensions of a two-dimensional
space, but the corresponding square hierarchy has boundaries that fill 1.365
dimensions in a two-dimensional space. With increasing resolution and
boundaries that carry content, more information is once again lost in the
square electronic geometry than in the hexagonal electronic geometry. For-
mulators of mapping technology that involves pixels with boundaries car-
rying information might be well advised to note this sort of theoretical
problem of trade-off in resolution and content, as well as its solution, before
creating state-of-the-art programs.

CLOSING COMMENTS

A continuing increase in resolution can bring about a black-hole-like
collapse of an image, with the pixel boundaries choking out pixel content.
When pixel boundaries carry information, it is possible to ensure that only
low-dimensional boundary animals remain as resolution increases indefi-
nitely. This improvement can be executed in either a square or a hexagonal
electronic geometry. The dimensions are lower in the latter.

At an even broader scale, one might also look for this sort of application
in hooking computers together as parallel processing units. When central
places are thought of as central processing units of electronic information,
an underlying geometry for finding shortest paths through networks linking
multiple points might emerge. In an electronic environment with the hex-
agonal pixel as the fundamental unit, the 120° intersection points would
correspond exactly to the requirements for finding shortest-distance or Steiner
networks linking multiple locations. The branching or Steiner points in an
electronic configuration might then correspond to locations at which to jump
from one hexagonal lattice of fixed cell size to another of different cell size,
or from one machine to another.

An even richer electronic geometry might see layers of pixels of all shapes
and sizes, not simply a single shape as a fundamental unit, interacting, even
overlapping, to produce dazzling arrays of superfine resolution. At this point,
the spatial theory underlying GIS must become tightly intertwined with
research that builds theorems in topological spaces, some of which might
contain half-open sets as pixels with partial boundaries carrying information.
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