
The City Is a Tree; The Real World Is Not a Tree!

Frank Harary

The guest coeditors of this issue set a context in which to view a previously unpublished
article of Frank Harary. The Harary article is followed here by contemporary material
of Joseph Kerski that addresses similar real-world issues. The two together, along with
the context, serve as a springboard to launch the reader into the rest of the materials
in this special issue devoted to graph theory and network science.

Interpretation of archived materials in context

We remember Frank sitting in our living room, stating vehemently, “the city is a
tree,” then a moment of thought and then a wry laugh: “and, it’s not a semi-lattice,
either!” To the one of us more acquainted with literature outside the realm of pure
mathematics, these apparently strange comments made perfect sense. Frank did not
agree with architect Christopher Alexander’s 1965 article entitled “A City Is Not a
Tree” (Alexander 1965), where he argues that cities built along the lines of a
graph-theoretic tree are sterile, devoid of interest, and destined to fail. The reason
for such failure is attributed to the lack of shared components among the laterally
equivalent nodes represented in a top-down-oriented tree. Alexander argues that
the semilattice better fits natural cities that evolve over time because in contrast to
the tree, the semilattice shares various elements in hierarchical layers that one
might associate with a tree-like structure.

Generally, Alexander appears to see the whole city as created by the joining of
parts. Perhaps the eye of this great architect fell naturally to the buildings and other
components that go together to make a city. Frank, on the other hand, apparently
viewed the city as a whole that is more than the sum of its parts. He worked first
with the entire system and then with its components. Perhaps he saw the city as a
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dynamic entity, based on streams of water, streams of trash, streams of roads, and
so forth that allowed people to benefit from economies of scale brought about by
the clustering of resources and amenities. Clearly, these two great scholars looked
at the concept of city from diametrically opposed viewpoints. Both approaches
have merit, and how one looks at the concept determines what one sees. Indeed,
their divergent viewpoints played out later in the world of computer science as
Alexander influenced object-oriented programming and Harary influenced parallel
processing (Salingaros c. 1997; Shirky 2004).

Viewpoint can make a world of difference! When Frank considered the entire
world, he seemed to do so by assembling a view of components: the real world as
the sum of its parts. Frank saw then, as Alexander had with the city, that the
composite structure was not a tree. Indeed, in the note in Fig. 1, in Frank’s own
hand, he seems to acknowledge this sort of idea in constructing a hierarchy of
articles to write beginning with “The city is not a semi-lattice either” (e.g., some
urban systems should not share with each other drinking water supply lines and
sewer lines). Harary and Rockey published an article by this name in Environment
and Planning A (Harary and Rockey 1976). Next, Frank inserted, “The city is not a
tree,” then, “The city is a tree,” apparently seeing both sides of the coin. Finally, he
notes, “The real world is not a tree.” Even in this sequence, he begins with the
global and works to the local. One might debate, however, whether the emphasis
in “real world” is on “real” or on “world.” Perhaps it is on both; in any event, its
place in this hierarchy is identical.

Frank’s archived articles offer insight not only into the articles he may have
wished to write but into his pattern of thinking about systems; they also reflect his
intense enthusiasm for graph theory and for academic endeavor of all sorts (Harary
Publication Archive 20111; Wikipedia). His interests perhaps have appeared far-
flung, but they had method. Thus, there are extensive collections of notes about
physical streams as trees with the numerical ordering of them from one tributary to
the next (Shreve 1966; Kirkby 1976; Stevens 1976; Moon 1980). Other streams he
appeared to think about involve polluting materials; he categorized pollution types
as a form of ordering of these streams (ENACT 1970; Thermal Pollution 1970) and
people and crowding, all as part of viewing the urban dynamic in terms of feedback
expressed as a signed graph. Again, he looked at the whole system as an abstract

Figure 1. Note written by Frank Harary describing a set of articles to write, c. 1976.
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entity and fit various concepts into that viewpoint—not to “fill” the space and
answer all questions but to place items in places where they did fit. Consequently,
he considered important urban concepts, such as “centrality,” in the context of his
view of the city as a tree. He claims there are only four types of graphical centrality:
center (Jordan 1869), centroid (Jordan 1869), median, and cutting center (Harary
1969; Harary Publication Archive 2011). Beyond these somewhat natural concepts
associated with cities, we find, juxtaposed with a graph representing urban dynam-
ics, one representing streams of attitudes toward mental illness and their charac-
terization as planar or nonplanar, corresponding (presumably) to states of
rationality. In all cases, however, the view of the whole dominates: the pieces fit
into the whole view.

By reading widely, Frank supported his various big-picture concepts; often, he
appeared to feel the frustration that a person heavily trained in formal logic and
pure mathematics (and to a lesser extent, in theoretical physics) encounters when
trying to study how other disciplines use mathematics. Fig. 2 illustrates the frustra-
tion with one particular issue that both guest editors have felt as well.

We leave it to the reader to imagine whether Frank thought there was anything
“new” about “network science.” Whatever conclusion is drawn, at least selected
graph theorists clearly have been considering whole systems for many years. Their
work is not always easy to read and therefore, often not accessible to a wide variety
of readers in various disciplines. This possible nonaccessibility, however, does not
mean no work exists. Indeed, Frank, as a young logician/mathematician, appears to
have been inspired by the work of Herbert Robbins (1939), who looked at urban
street patterns, from the standpoint of the whole, to understand how one might
assign flows to balance traffic. Robbins’ work apparently continued to inspire
Frank, not only in terms of particular content but also in its general approach of
working from the global to the local rather than local to global.

Thus, we include here a previously unpublished article (with permission of the
Harary Publication Archive at New Mexico State University and of Frank’s son, Joel
Harary, and with a light copyediting for style), undated but clearly written after
1980, in which Frank explains some of the material in an article written by two of
his many coauthors that expands Robbins’ earlier work. This latter work reflects
Harary’s “global first” approach and supports his view that the city (or at least one
view of it) is a tree. In his usual style, with appreciation tempered by precision,
Frank not only adds to the exposition of this article on one-way streets as a means
to balance traffic flows but also suggests, following a critique of the work, directions

Figure 2. Quotation from Frank Harary.
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for further research. It was our privilege and pleasure to work with Frank in
developing a number of structural models in geography (Arlinghaus, Arlinghaus,
and Harary 1993, 1994, 2002; Arlinghaus et al. 1994). We thank Daniel A. Griffith,
the current editor of Geographical Analysis, for his forward-looking idea of resur-
recting some of Frank’s materials so that others might benefit as well. We present
this previously unpublished (to our knowledge) article of Frank Harary (from the
Harary Publication Archive) complete with his original hand-drawn graphs.

Introduction

The article “Robbins’ Theorem for Mixed Multigraphs” by Frank Boesch and Ralph
Tindell (1980) is an extension of an earlier article by H. E. Robbins (1939). It
attempts to answer the question, “When is it possible to find an assignment of
one-way directions for all the streets in a town while preserving the property that it
is possible to reach any point in town from any other point?” Robbins answered this
question for a town that has no one-way streets. Boesch and Tindell solved it for the
case when some, but not all, of the streets are already one-way. They show that all
the streets can be made one-way so that reachability is preserved if and only if it
was possible to do so before any streets were made one-way.

In order to illustrate their traffic problem, I begin by defining a few terms and
describing the graph theoretic model. In a multigraph, more than one line can join
two points, and in a multidigraph, more than one arc in the same direction can join
two points. A mixed multigraph can have both arcs and lines between its points. A
multidigraph and a multigraph are special cases of a mixed multigraph. The
underlying multigraph of a mixed multigraph is the multigraph obtained by undi-
recting all the directed edges (arcs). Fig. 3 illustrates these definitions.

A multigraph is connected if there exists a path between every distinct pair of
points, and a multidigraph is strongly connected if there exists a dipath between
every ordered pair of points. A walk from u to v in a mixed multigraph is an
alternating sequence of points and edges or arcs, u (u, u1), u1,., ui, [ui, ui+1], ui+1,., v,
in which all arcs are traversed in their proper orientation: denote an edge between
u and v by (u, v), and an arc from u to v by [u, v]. The point v is accessible from u
in a mixed multigraph if a walk exists from u to v. A mixed multigraph is connected
if a walk exists between every ordered pair of points. In Fig. 3, the multigraphs in

(a) (b) (d)(c)

Figure 3. Illustrations: (a) and (d) a multigraph; (b) a multidigraph; (c) a mixed multigraph;
and (d) the underlying multigraph of (c).
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(a) and (d) are connected as is the mixed multigraph in (c). The multidigraph in (b)
is strongly connected. If a direction can be chosen for all edges in a multigraph such
that there exists a dipath between every ordered pair of points, then the multigraph
G is called strongly orientable. A bridge in a graph is an edge whose removal
disconnects the graph (Fig. 4), illustrating this concept.

Robbins’ theorem states that a multigraph is strongly orientable if and only if it
is connected and bridgeless. Boesch and Tindell’s extension, which they call “The
General Robbins Theorem,” may be stated as follows.

Theorem 1. Let e be an undirected edge of a connected mixed multigraph G. Then
e may be directed to produce another connected mixed multigraph if and only if e
is not a bridge of the underlying multigraph of G.

The authors prove Theorem 1 and then claim that an obvious inductive proof yields
Theorem 2, which is their version of Robbins’ theorem. From Theorem 1, if no
bridges exist in the underlying graph of a mixed multigraph G, then the undirected
edges can be directed, one at a time, to produce a strongly connected multidigraph.
In other words, all the two-way streets of a city can be made one-way and preserve
reachability if the city with all two-way streets has no “bridges”; Fig. 5 illustrates
this concept. Consequently,

Theorem 2. A mixed multigraph G has a strongly connected orientation if and only
if G is connected and the underlying multigraph of G is bridgeless.

Explanation of proof

The “only if” part of the proof (Theorem 1) is obvious. If e is a bridge, then the mixed
multigraph would not be connected when e is directed; Fig. 6 shows this feature.

The authors next show that if neither orientation of e (let e be any edge between
any two points u and w) produces a connected mixed multigraph, then e is a
bridge. They show that no walks from u to w, or from w to u, can exist because if
either one existed, then e could be oriented so that G would still be connected.
Fig. 7 illustrates this feature.

Next, Boesch and Tindell divide the points of G into the sets U and W, where
U is the set of points accessible from U in G—e, and W is V—U, V being the set of

Figure 4. The edge e is a bridge in this multigraph.
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all points in G. They then show that u is accessible from any point v in U. This result
has to be true because in G, u is accessible from v, and if this accessibility required
e, then w would be accessible from u, but this walk already was shown to not exist.
They also show that w is accessible from any point z in W.

The proof is completed when Boesch and Tindell show that e is the only line of
the underlying multigraph that has one endpoint in U and one in W. The definition

(a) (b)

(d)

(c)

(e) (f)

Figure 5. The mixed multigraph in (a) is connected and has a bridgeless underlying multi-
graph. Sequentially in (b) through (f), one additional undirected edge is directed, always
yielding a connected mixed multigraph, until G becomes a strongly connected multidigraph.

(a) (b) (c)

Figure 6. The mixed multigraph in (a) has a bridge e between points u and w. If it is directed
from u to w (case [b]), u is not accessible from w, and vice versa, when e is oriented from
w to u (case [c]).

(a) (b)

Figure 7. In (a), a walk from u to w exists, and e can be oriented from w to u so that the
mixed multigraph G is connected. In (b), a walk from w to u exists so that e can be oriented
from u to w, and again, G is connected.
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of U precludes the existence of either an undirected edge between U and W or an
arc from U to W. There can be no arc from W to U because there then would be
a walk from w to u, which was shown to be impossible. Because e is the only edge
with one endpoint in U and one in W, it must be a bridge, and the proof is
completed. Fig. 8 illustrates the proof.

Critique

The application of graph theory to traffic control is what attracted me to Robbins’
article, and that article led me to Boesch and Tindell’s article. Boesch and Tindell
describe a traffic problem to motivate their theorem, and this application adds color
and makes the article more interesting. In the beginning of the article, the authors
try to describe their theorem in terms of streets and traffic control. Their sentence
“We show that if reachability has been preserved in arriving at this initial condition,
then there is some assignment of directions to convert the remaining two-way
streets to one-way if and only if it was originally possible to find an assignment for
converting all the streets to one-way” confused me because it uses an “if-then”
construction along with an “if and only if” construction in the same sentence. I had
to read it several times to understand exactly what they meant, and I think that they
could have worded it in a clearer way.

Before the statement of the theorem, the authors define several general
graph theoretic terms and also define some new terms of their own (e.g., mixed
multigraph, connected mixed multigraph, and underlying multigraph) that are
necessary in their theorem and its proof. All of these definitions were given
before the terms were used, which greatly aided in my understanding of the
article.

They start their proof of the first theorem by saying that the “only if” portion
is obvious and then proceed to the “if” portion. I agree that the “only if” part is
obvious, but I think that they could have and should have included one sentence
to demonstrate its obviousness. Next, they proceed to prove the “if” part (if X,

Figure 8. No arcs or edges other than e can exist with one endpoint in u and one in w so
e must be a bridge.
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then Y ). They do it by proving “if not Y, then not X,” but they do not tell the
reader that the proof is “by contrapositive”; they just go ahead and do it. This
forced me, as I read the proof, to look back at the theorem several times to make
sure that I knew what they were trying to prove. Toward the middle of the proof,
I got a little confused, specifically when they say, “points in G that are accessible
in G—e from u. . . .” I think that they should say, “points of V, in G-e, accessible
from u. . . .” At the end of the proof, they did not bring together all of the points
of the proof to conclude that the hypothesis is true, and to make matters worse,
they did not include any symbol to mark the end of the proof.

My last criticism is that they restate, after Theorem 2, that Robbins’ theorem is
a special case of their second theorem and was not used in their proof of Theorem
2, so they have a new proof of Robbins’ theorem. They point this out earlier in the
article and thus do not need to point it out again. Also, they refer to their proof of
Theorem 2, but this proof is never shown in the article.

New directions

Determining how many different ways graph theory could be applied to problems
dealing with city streets would be interesting. One could try to find the most
efficient way to pick up the garbage in a city. One could draw the graph repre-
senting the streets and, for a given number of garbage trucks, find the routes that
would give the least duplication.

One also could designate the points in the city that are most frequently
driven to and from and try to minimize the travel time between these points. One
could say that by making a street one-way, the travel time is cut in half. By
considering the graph, one could assign directions to certain streets without
making traveling to and from other points in the city more difficult (editors:
Harary was apparently inspired by earlier works of Tucker [1973] as well as by
those of Robbins. Consider the exercise to come as integrative of earlier and
contemporary efforts).
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Appendix

With input from Joseph Kerski, PhD, education manager, ESRI

Harary’s suggestion to use graph theory to optimize garbage removal is an inter-
esting one. It is one that apparently continued to intrigue Harary and that is of
enduring interest. Tucker (1973) wrote about the use of perfect graphs to optimize
garbage pickup in New York City. Later, Egudo (from the disparate location of Papua
New Guinea) wrote an analysis of municipal garbage collection based on graph-
theoretic techniques (Egudo 1992). We (the guest coeditors) think that Frank would
have greatly enjoyed Joseph Kerski’s commentary using ESRI’s Network Analyst
software to optimize the routing of trucks within and outside of New York City.

Routing using ArcGIS online

ArcGIS Online now includes a collection of tasks, including geocoding and a
routing service that supports point-to-point and optimized routing for North
America and Europe. It is available as a standard, no-cost service with a limit of
5,000 routes per year, and as a fee-based service for each additional block of 5,000
routes, which can be used for commercial purposes. The network analyst extension
is not required.

To begin, start ArcMap 9.3.1, turn on the StreetMap toolbar, and select “Find
Route using online route services.” Select the desired routing service for North
America or Europe. The North America routing service, based on Tele Atlas 2008
data, enables the generation of routes and driving directions for the United States
and Canada. Up to 25 route barriers may be included per request.

In the Find Route box, under the Stops tab, enter the stops along a proposed
route. Up to 10 stops can be added from graphics or features. For the example in
Fig. 9, I set up a lesson where students are the “new owners” of a double-decker,
open-top Manhattan tour bus. They have to route the bus from St. John the Divine
Church to Radio City, the New York Public Library, the Empire State Building, the
House of Oldies in Greenwich Village, the Woolworth Building, the American
Geographical Society on Wall Street, and return.

The seven stops came from a comma-separated value (.csv) file that I geocoded
using the ArcGIS Online geocoding service and saved as a shapefile. With the
Options tab, add a graphic, add a callout, and save the route and the stops as
shapefiles. Students compare the quickest (in white/yellow) and the shortest (in
black/blue) route in terms of the map and the total distance traveled. Only the
quickest route has the bus traveling through the Upper East Side of Manhattan. How
does adding one stop, changing the order of stops, or adjusting the influence of
local roads versus highways affect the final route?

Give the ArcGIS Online routing service a try in your classroom!
Joseph Kerski
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Frank said he was born on the site of the Empire State Building (Stop 6 on
Kerski’s bus tour). “Mr Graph Theory” not only saw the world as a graph/network
but often interpreted his visions in the context of New York City. We imagine that
drawing those interests together with his compassion for the young, their education,
and their prospect, and with parallel interests in computers, would have thrilled
him no end. Thus, we encourage the reader of this special issue of Geographical
Analysis to move with us through the various fields that attracted the attention, on
a regular basis, of Frank Harary.
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