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ABSTRACT 

Transcriptional regulation can occur through the modification and remodeling of 

chromatin, which consists of DNA, histones, and non-histone proteins. One such 

mechanism that controls gene expression is the chemical modification of histones. The 

Polycomb repressive complex 2 (PRC2) is a histone-modifying complex that catalyzes 

the trimethylation of lysine 27 on histone H3 (H3K27me3), a modification that is 

associated with transcriptional repression. PRC2 consists of the core proteins EZH2, 

EED, and SUZ12, along with other co-factors. Essential insights into PRC2 function 

have occurred through the study of its involvement in X-chromosome inactivation. X-

inactivation is an epigenetic phenomenon by which female mammals achieve dosage 

compensation by silencing genes on one of two X chromosomes. PRC2 core proteins 

as well as H3K27me3 are physically enriched on the inactive X-chromosome. Our lab 

has found, however, that in mouse extra-embryonic endoderm (XEN) cells, H3K27me3 

accumulates on the inactive-X independently of EZH2 enrichment. I tested whether 

H3K27me3 would still be enriched on the inactive-X of XEN cells devoid of EZH2, and I 

discovered that H3K27me3 enrichment on the inactive-X still occurs in Ezh2-/- XEN 

cells. I next tested whether EZH1, a homolog of EZH2, is responsible for this residual 

H3K27me3, and I found that while enrichment of H3K27me3 on the inactive-X was 

ablated in Ezh2-/-;Ezh1-/- XEN cells, global levels of H3K27me3 were unaffected when 

compared to Ezh2-/- XEN cells by Western blotting. Additionally, I observed a similar 

outcome in Eed-/- XEN cells. These data suggest that although PRC2 is required for 

enrichment of H3K27me3 on the inactive-X, a PRC2-independent histone 

methyltransferase is capable of catalyzing H3K27me3 in XEN cells.  
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INTRODUCTION 

Chromatin is composed of more than just the condensed DNA sequence that 

contains the genetic information necessary for life. In addition to DNA, chromatin 

consists of nucleosomes, which are octamers composed of 4 types of core histones 

around which DNA is wrapped, as well as non-histone proteins, which include 

chromatin-modifying enzymes. Each of the core histones, H2A, H2B, H3, and H4, 

contains an N-terminal unstructured domain, or “tail,” which projects outside of the 

structure of the nucleosome and is subject to post-translational modifications. Histone 

tails can be methylated, acetylated, phosphorylated, or subject to addition of other 

chemical groups by histone-modifying enzymes.  

Modifications or combinations of modifications on specific histone residues are 

often associated with distinct transcriptional states of the surrounding genes, including 

active and repressed transcriptional states. It is typically thought that histone 

modifications function either by changing the level of compaction of chromatin or by 

recruiting downstream non-histone proteins that may then impact transcription 

(Shogren-Knaak et al., 2006). For these reasons, as well as the fact that histone 

modifications persist from one cell cycle division to the next, histone modifications have 

been proposed to be carriers of epigenetic information (Kouzarides 2007).  

Epigenetics is the study of stable, heritable changes in transcription that occur 

independently of alterations in the DNA sequence, and epigenetic regulation is now 

recognized as playing a key role both during development and in disease. Although it 

has yet to be fully determined whether histone modifications are capable of 
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autonomously transmitting the epigenetic memory, it is widely believed that they are 

involved in epigenetic processes (Kouzarides 2007).  

The Polycomb repressive complex 2 (PRC2) is a complex of proteins thought to 

be involved in epigenetically silencing genes. PRC2 catalyzes the trimethylation of 

lysine 27 on histone H3 (H3K27me3). This histone mark is thought to help recruit 

downstream factors that contribute to a silenced transcriptional state (Cao et al., 2002, 

Margueron et al., 2011). It was first suspected that PRC2 could play a role in epigenetic 

regulatory pathways when in Drosophila, embryos devoid of Esc (known as EED in 

mammals), a core member of PRC2, displayed a paradoxical phenotypic outcome. 

Based on the study of these temperature-sensitive esc-/- embryos, in which loss of Esc 

could be observed at various time points, researchers found that Esc is only required for 

developmental fate determination during a discrete window of time during early 

embryogenesis. Interestingly, the defect exhibited in these mutant embryos was at a 

much later stage of embryogenesis than the window of time in which Esc was missing 

during early embryogenesis. Loss of Esc at the later periods of development did not 

result in a defect, despite the fact that Esc is expressed constitutively throughout 

development (Struhl and Brower 1982). These results suggest that Esc acts to establish 

a transcriptional state of homeotic genes allowing for proper developmental fate 

determination, which can be maintained regardless of the presence or absence of Esc 

after that point, suggesting a memory effect. Additionally, PRC2 as a whole further fits 

the profile of an epigenetic regulator because it is allosterically activated by binding to 

the mark it catalyzes (via the EED subunit), providing an intrinsic mechanism for 

propagation and maintenance of H3K27me3 at target sites (Margueron et al., 2009). 
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The core 

members of mammalian 

PRC2 are EZH2, 

SUZ12, and EED, which 

correspond to E(z), 

Suz12, and Esc in 

Drosophila, respectively 

(Figure 1). EZH2 is the 

catalytic subunit that 

methylates histone H3 

through its SET domain (Muller et al., 2002). In Drosophila, E(z), the H3K27me3 

methyltransferase, is a single protein, but in mammals, it exists in the form of two 

homologs: EZH2 and EZH1 (Laible et al., 1997). Although the methyltransferase activity 

of EZH2 is better characterized, EZH1 also contains a SET domain, and there has been 

speculation as to whether it can form an alternative PRC2 complex and catalyze 

H3K27me3 (Shen et al., 2008, Margueron et al., 2008).  

Despite not possessing intrinsic methyltransferase activity, EED, a WD40-repeat 

protein, is arguably the most central component of PRC2. E(z) and EZH2, on their own, 

have been shown to be catalytically deficient, requiring interaction with both Esc/EED 

and Suz12 for robust methylation activity (Kuzmichev et al., 2002, Simon and Kingston 

2009). As demonstrated in an in vitro pull-down assay, EED coordinates binding of 

EZH2 to the other PRC2 components (including SUZ12), since EZH2 does not directly 

interact with any of the other core proteins. At a minimum, interaction with EED and 

Figure 1: Diagram depicting PRC2 catalytic activity and its 
core members EZH2, SUZ12, and EED. EZH2 catalyzes the 
trimethylation of lysine at position 27 on histone H3 
(H3K27me3, red hexagons). 



6 
 

SUZ12 is necessary for EZH2 to manifest its full methyltransferase potential (Cao and 

Zhang 2004). Deletion of any of the WD40 repeats after the first 81 amino acids of EED 

results in abolishment of the EED-EZH2 interaction (Cao et al., 2014). Additionally, 

another study in Drosophila has shown that functional Esc is necessary for E(z) catalytic 

activity even in the presence of an interaction between the two proteins, as formation of 

a complex containing a partial mutant Esc protein that still contains the WD40 domains 

for binding E(z), but lacks its N-terminal domain, results in loss of methyltransferase 

activity (Tie et al., 2007). More directly, researchers have shown that in Eed-/- mouse 

embryonic stem (ES) cells, H3K27me3 is depleted in both immunofluorescence (IF) 

assays and Western blotting (Montgomery et al., 2005). Thus, EED is necessary for 

both the formation and catalytic function of the PRC2 complex. As such, Eed-/- embryos 

and cells have commonly been thought of as being effectively “PRC2 null.”  

In addition to its known roles in genome-wide histone methylation, PRC2 is also 

known to be involved in the epigenetic process of X-chromosome inactivation. X-

inactivation, a form of dosage compensation that occurs in mammals, is the 

phenomenon by which XX female mammals globally transcriptionally silence one of two 

X chromosomes in order to equalize X-linked gene expression with XY males. Once the 

inactive-X (Xi) in a given cell has been chosen and silenced during development, with 

few exceptions, it maintains the silent state through mitosis for the remainder of the 

animal’s life (Lyon 1961, Payer and Lee 2008). X-inactivation is stably maintained in the 

somatic cells of all female mammals, thus making it an important model system for the 

study of epigenetic mechanisms and cell memory. The involvement of PRC2 in X-

inactivation was first discovered when it was found that in the extra-embryonic portion of 
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Eed-/- embryonic day (E) 7.5 mouse embryos carrying an XGFP transgene, the inactive-X 

was aberrantly re-activated (Wang et al., 2001).  

PRC2 proteins are thought to be recruited to the inactive-X through the X-linked 

long noncoding RNA Xist (X-inactive specific transcript), which is expressed specifically 

from the inactive-X (Brown et al., 1991). The RNA physically coats the inactive-X, a 

phenomenon that can be visualized through the use of RNA fluorescence in situ 

hybridization (RNA FISH). Transgenic expression of Xist in male ES cells is sufficient to 

recruit PRC2 to the X chromosome, and expression of a mutant version of Xist 

containing a large inversion spanning much of the gene in female blastocyst stage 

mouse embryos is no longer capable of PRC2 recruitment to the Xist-coated X 

chromosome (Plath et al., 2003, Silva et al., 2003). Furthermore, Xist has recently been 

shown to target Jarid2, a PRC2 cofactor, to the inactive-X chromosome (da Rocha et 

al., 2014). Although the mechanism remains unclear, Xist potentially provides a means 

for PRC2 to get to the inactive-X chromosome during X-inactivation.  

PRC2 components such as EZH2 and EED accumulate on the inactive-X along 

with Xist during early mouse embryogenesis, as assessed by immunocytochemistry; 

accordingly, H3K27me3 is also found enriched on the inactive-X in early embryos (Silva 

et al., 2003, Kalantry et al., 2006). Co-localization of H3K27me3 with the Xist RNA coat 

can therefore be used as a readout of PRC2 activity (Figure 3).  
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Both X-inactivation and Polycomb group 

function have also been well-studied in mouse 

stem cell lines. Several types of stem cell lines 

can be derived from E3.5 mouse blastocyst-

stage embryos: these include extra-embryonic 

endoderm stem (XEN) cells, trophoblast stem 

(TS) cells, and mouse embryonic stem (ES) cells 

(Figure 2). XEN, TS, and ES cells derive from the 

portions of the blastocyst that go on to become 

the yolk sac, placenta, and the fetus, respectively. When stained via IF using antibodies 

against EZH2 and H3K27me3, combined with RNA FISH for Xist RNA, TS cells 

resemble blastocyst-stage embryos in that Xist, H3K27me3, and EZH2 are all enriched 

on the inactive-X (Plath et al., 2003). In XEN cells, however, while Xist and H3K27me3 

accumulate on the inactive-X, EZH2 is not enriched on the inactive-X (Figure 3).  

Figure 3: 
IF/FISH 
staining of 
Xist, 
H3K27me3, 
and EZH2 in 
representative 
wild-type 
female TS and 
XEN cells. 
Nuclei are 
stained with 
DAPI. Scale 
bars, 2.5 μm.  

Figure 2: Diagram of a mouse 
blastocyst (E3.5), from which XEN, 
TS, and ES cells can be derived. 
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Because of the lack of enrichment of EZH2 on the inactive-X as assessed by IF, 

we questioned whether another factor could also catalyze H3K27me3 on the inactive-X 

in XEN cells. We therefore decided to investigate the requirement for various core 

components of PRC2 for catalysis of H3K27me3. Our hypothesis is that a 

methyltransferase other than EZH2 can catalyze H3K27me3. 

This study is significant because in addition to providing insights into factors that 

contribute to the catalysis of the repressive histone modification H3K27me3, which is 

intrinsically of interest to chromatin biologists; the results can also be linked to more 

translational aspects, such as cancer therapy. Researchers have observed 

overexpression of EZH2, and consequently increased levels of H3K27me3, in various 

forms of cancer, including prostate and breast cancer (Varambally et al., 2002, Kleer et 

al., 2003). As such, inhibitors of EZH2 aimed at decreasing H3K27me3 levels, and 

hence potentially ameliorating the negative effects of high levels of H3K27me3, have 

been brought forward as cancer therapeutic agents (McCabe et al., 2012). If, however, 

there are EZH2-independent, or even PRC2-independent, pathways of H3K27me3 

catalysis, these therapies may not be fully effective in the treatment of cancer. 
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RESULTS AND DISCUSSION 

H3K27me3 catalysis in Ezh2-/- XEN cells  

In order to be able to 

examine the extent to which 

H3K27me3 is catalyzed in the 

absence of EZH2, a member of 

the lab generated Ezh2 mutant 

XEN cells for analysis (Clair 

Harris, Acknowledgements). 

To generate Ezh2-/- XEN cells, 

we first derived conditionally-

mutant Ezh2fl/fl XEN cells (Su et al., 2002). The XEN cell lines were generated from 

embryonic day (E) 3.5 mouse embryos in which exons 15-18, which encode the SET 

domain, are flanked by loxP sites (Ezh2fl/fl). Since the SET domain is the catalytic unit of 

EZH2, deletion of the SET domain ensures that regardless of whether a truncated 

protein is expressed, the mutation is null. Female Ezh2fl/fl XEN cells were then 

transfected with Cre recombinase to delete the floxed exons, generating a null allele 

(Ezh2-/-) (Figure 4). This strategy allows for direct comparison of parent cell lines in 

which Ezh2 is still present (Ezh2fl/fl) to the derivative cell line that is Ezh2 null (Ezh2-/-). 

Using genomic PCR, RT-PCR, and Western blotting, I validated that Ezh2 had 

been properly deleted in the Ezh2-/- XEN cells (Figure 5a-c). The Ezh2 deletion 

produces a truncated RNA (Figure 5b), but does not produce a stable truncated protein, 

Figure 4: Diagram of the conditional Ezh2 mutation used 
to delete Ezh2 in XEN cells. This figure is adapted from 
Figure 2 of Su et al., 2002. 
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as Western blotting using a 

monoclonal antibody against the 

residues of EZH2 surrounding Arg354 

(which corresponds to a region that is 

encoded for by a region of the gene 

that remains intact in the mutant 

allele) did not detect a shorter band 

(Figure 5d), and the lack of a 

truncated protein in this mutant allele 

has also been previously reported (Su 

et al., 2002).   

Having verified that Ezh2 had 

been homozygously deleted and that 

no protein is made following Cre 

transfection of the XEN cells, I 

performed H3K27me3 IF followed by 

Xist RNA FISH to assess whether 

H3K27me3 would accumulate on the inactive-X in the absence of EZH2 (Figure 6a). For 

this analysis, I used three different antibodies against H3K27me3 (Millipore, Active 

Motif, and Abcam). Quality control experiments by the manufacturers, as well as by 

other groups, suggests that these antibodies are highly specific and detect only 

H3K27me3 (Egelhofer et al., 2011). I counted three sets of 100 nuclei for each antibody 

in each cell line to quantify how often H3K27me3 was enriched on the inactive-X; the 

Figure 5: Ezh2 status in Cre-transfected Ezh2fl/fl 

female XEN cells. a. Ezh2 genomic PCR. b. 
Ezh2 RT-PCR. c-d. EZH2 Western blots on 30 
μg of whole cell lysates. 
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inactive-X is marked by Xist RNA accumulation (Figure 6b). For the two antibodies with 

better staining efficiency in Ezh2fl/fl  XEN cells (Millipore and Active Motif), the 

percentage of nuclei with accumulation of H3K27me3 on the inactive-X in Ezh2-/- XEN 

cells remained approximately the same as for Ezh2fl/fl XEN cells, although staining 

intensity throughout the nucleus was somewhat reduced (Figure 6b and data not 

shown). The third antibody (Abcam), however, which stained the inactive-X poorly even 

in Ezh2fl/fl XEN cells (at an efficiency of about 50% of Xist-coated nuclei), did not show 

accumulation of H3K27me3 on the inactive-X in Ezh2-/- XEN cells (Figure 6b).  

Because of this slight discrepancy between the different H3K27me3 antibodies, I 

decided to assess global levels of H3K27me3 in Ezh2-/- XEN cells. I extracted histones 

from Ezh2fl/fl and Ezh2-/- XEN cells and performed Western blotting against H3K27me3. 

For all three antibodies, H3K27me3 was detectable by Western blotting in the absence 

of EZH2, albeit at lower levels compared to the control cell line (Figure 6c). This 

confirms the results from the IF/ RNA FISH experiments. The findings further suggest 

that the lack of staining observed with the Abcam antibody is because of a decrease in 

the amount of H3K27me3; this antibody stains relatively weakly and is unable to detect 

the lower levels of H3K27me3 on the inactive-X by IF in the mutant cells. Nevertheless, 

from these data, it appears that despite the absence of EZH2 protein, H3K27me3 is 

able to be catalyzed and is still enriched on the inactive-X. 
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Figure 6: a. Immunofluorescence detection of H3K27me3 using three different antibodies in 
Ezh2fl/fl and Ezh2-/- female XEN cells. Xist RNA FISH marks the inactive-X. Scale bars, 2.5 μm. b. 
Quantification of Xist and H3K27me3 co-localization for Xist-coated nuclei. Mean ± standard 
error, n=300 (3 separate stains counted for 100 nuclei each). c. Histone extracts from Ezh2fl/fl and 
Ezh2-/- XEN cells analyzed by Western blotting for H3K27me3 using the three antibodies, as well 
as a histone H4 antibody and Coomassie staining of the histone extracts. 
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Figure 7: Diagram of the Ezh1 mutation used in this study. RT-PCR primers are shown as blue 
arrows, and genotyping primers are shown as green arrows (diagram created by Clair Harris) 

H3K27me3 catalysis in Ezh2-/-;Ezh1-/- XEN cells  

 Because of previous studies suggesting that EZH1, the homolog of EZH2, may 

have catalytic activity as part of PRC2 (Shen et al., 2008), we decided to investigate 

whether the residual H3K27me3 observed in Ezh2-/- XEN cells is attributable to EZH1 

taking the place of EZH2 in PRC2-mediated catalysis of H3K27me3. We therefore 

generated Ezh2fl/fl;Ezh1-/- XEN cells and transfected the derived cells with Cre to yield 

Ezh2-/-;Ezh1-/- XEN cells. Since the nature of this Ezh1 mutation has not been 

previously published (Acknowledgements), I characterized the genomic sequence of the 

construct by using a series of PCR primers and sequencing products. EZH1 has 21 

exons, of which exon 17 through half of exon 21 constitute the SET domain (Figure 7). 

The mutation consists of a 750 bp deletion in the middle of exon 7 extending into intron 

7-8, followed by an insertion containing a β-geo cassette and other vector sequences. 
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Using 

Ezh2fl/fl;Ezh1-/- mice to 

generate E3.5 embryos, 

we derived two 

Ezh2fl/fl;Ezh1-/- XEN cell 

lines, one male and one 

female. The lines were 

then transfected with Cre 

to induce conditional 

deletion of Ezh2. To 

verify the genotypes of 

the lines, I performed 

Ezh2 and Ezh1 genomic 

PCRs on the cell lines 

(Figure 8). I furthermore 

performed an Ezh1 RT-

PCR on the cell lines in order to assess whether there was any transcription from the 

mutant allele, as well as Ezh2 RT-PCRs for genotyping purposes (Figure 9a). The Ezh1 

mutation produces a truncated mRNA that is transcribed until the middle of Exon 7, 

where the deletion begins (Figure 9b). There are some instances where faint bands can 

be detected by using primers in scattered regions downstream of the deletion, but I did 

not find evidence of a continuous transcript that would produce a sizable protein, as 

assessed by RT-PCR primer pairs and 5’RACE (Figure 9c and data not shown).  

Figure 8: Genomic PCRs on XEN cell lines to detect wild-type 
and mutant alleles of a. Ezh2 and b. Ezh1. Mouse DNA was 
used in control lanes. 
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Figure 9: Verification of Ezh1 mutant XEN cells by RT-PCR analysis.  
a. Ezh1 RT-PCR using primers in exons 6 and 19, and Ezh2 RT-PCR to 
demonstrate genotypes of cells. b. RT-PCR using primers in exons 2 and 5 of Ezh1 
to show presence of the truncated mRNA transcript. c. Various primer sets showing 
lack of a continuous transcript in Ezh1 mutant XEN cells. Additional primer sets were 
also tested (data not shown). Figures 9A and 9C made by Clair Harris. 
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To check for protein 

products in the various mutant 

cell lines, I performed Western 

blotting for EZH2 (Figure 10). 

Unfortunately, the level of 

endogenous EZH1 protein 

appears to be too low in XEN 

cells to be detectable by Western 

blotting, based on my tests of six 

different antibodies against EZH1 

(Methods, Table 1). Because of 

this, I have not been able to 

unequivocally show that there is 

no EZH1 protein in the Ezh1-/- 

XEN cells. However, based on 

the RT-PCR data, it would be 

impossible for there to be a full-

length protein, and the SET 

domain is on the C-terminal end 

of the protein (which is after the 

deletion and insertion), making it 

unlikely that any potential 

methyltransferase activity of 

Figure 10: EZH2 Western blot using 30 μg of whole 
cell lysates from XEN cell lines. 

Figure 11: a. H3K27me3 Western blot using Millipore 
antibody, with histone H4 as a loading control and a 
Coomassie stain of histone preps. b. Quantification of 
band intensity, normalized to histone H4 loading 
control. Mean ± standard error, n=3. 
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EZH1 would remain functional in these cells, even if a shortened protein were made 

from the first seven exons. 

I then repeated the same set of analyses for H3K27me3 detection as in the  

Ezh2-/- single mutant XEN cells with our best antibody (Millipore). Surprisingly, 

H3K27me3 was still detectable by Western blotting even in Ezh2-/-;Ezh1-/- XEN cells 

(Figure 11a). The H3K27me3 and histone H4 Western blots were done using 

fluorescent secondary antibodies simultaneously in two different channels, and they 

were imaged in a SynGene G:Box gel-doc system. The use of this system, as well as its 

associated software, allows for accurate quantification of the fluorescent signal that 

does not rely on the use of scanning films. Using this quantification method, I 

determined that the amount of H3K27me3 in double mutant cells appeared to be the 

same as in Ezh2-/- single mutant XEN cells (Figure 11b).  

When I performed IF/ Xist RNA FISH on the Ezh2-/-;Ezh1-/- double mutant cells, 

however, there was no detectable enrichment of H3K27me3 with Xist on the inactive-X 

(Figure 12a-b). There was still background staining present for H3K27me3, however, 

and in some instances, nuclei took on a “speckled” appearance in which there were 

multiple foci of high DAPI staining intensity, and the H3K27me3 often co-localized with 

the DAPI foci in these instances, but not with the inactive-X (Figure 12c). These data 

suggest that in the absence of both EZH2 and EZH1, H3K27me3 is still catalyzed in 

XEN cells, but that specific enrichment of H3K27me3 on the inactive-X is impaired. This 

implies that targeting of H3K27me3 to the inactive-X requires either EZH2 and/or EZH1. 

This supports the idea that Xist RNA directly or indirectly recruits PRC2 in order to 

cause enrichment of H3K27me3 on the inactive-X chromosome. 
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Figure 12: a. Immunofluorescence detection of H3K27me3 using the Millipore antibody in Ezh2fl/fl, 
Ezh2-/-, Ezh2fl/fl;Ezh1-/-, and Ezh2-/-;Ezh1-/- female XEN cells. Xist RNA FISH marks the inactive-X. b. 
Quantification of H3K27me3 on Xist-coated nuclei. Mean ± standard error, n=300 for three separate 
counts of 100 nuclei each. c. Representative image of a subset of nuclei that display H3K27me3 
localization on spots of high DAPI staining intensity. Scale bars, 2.5 μm. 
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Figure 13: Diagram of the Eed mutation used in this study. RT-PCR primers are shown in blue; 
genotyping PCR primers are shown in green. 

H3K27me3 catalysis in Eed-/- XEN cells  

Since H3K27me3 was still present in Ezh2-/-;Ezh1-/- XEN cells, we wished to 

know if H3K27me3 is catalyzed in Eed-/- XEN cells. Previous work showed a complete 

absence of H3K27me3 in Eed-/- ES cells (Montgomery et al., 2005). We therefore 

hypothesized that another methyltransferase, instead of EZH2 or EZH1, might be 

associating with EED in order to catalyze H3K27me3. We therefore decided to generate 

Eed-/- XEN cells in order to test whether H3K27me3 would be abolished, which would be 

consistent with the hypothesis that the methyltransferase responsible for residual 

H3K27me3 in the Ezh2-/-;Ezh1-/- XEN cells does so via association with EED. Using 

mice with the mutation construct shown in Figure 13, a member of the lab (Clair Harris, 

see Acknowledgements) generated female Eedfl/- and Eed-/- XEN cells (one parental 

Eedfl/- line and two Eed-/-subclones after Cre transfection, #1 and #2) using a similar Cre 

transfection strategy as in the previous sections.  
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The Eed mutation used in 

this study results in a single exon 

deletion, exon 7, upon Cre 

transfection, as can be seen via 

PCR and RT-PCR (Figure 14a-b). 

Studies have shown that the 

WD40-repeat domains of EED are 

required for its interaction with 

EZH2 (Han et al., 2007). In fact, 

based on a series of truncation 

mutants, EED requires amino 

acids 90-441, which contain all of 

the 7 WD40 repeats, to interact 

with EZH2 (Sewalt et al., 1998). 

Expression of Eed constructs 

containing some, but not all, of the WD40 repeats results in a lack of interaction with 

EZH2 (Cao et al., 2014). Exon 7 (aa 212-242) encodes part of the 3rd and 4th WD40 

repeats (aa 193-229 and 239-264); therefore, deletion of this exon should prevent 

formation of PRC2 even if a partial EED protein were to form (the sequence of the 

mutant mRNA was also analyzed, and there is a predicted in-frame stop codon created 

by the deletion). 

 I then analyzed levels of H3K27me3 in histone extracts from Eedfl/- and Eed-/- 

XEN cells by fluorescent Western blotting and quantification, as described in the 

Figure 14: a. Genotyping PCR on Eed XEN cell lines. 
Mouse DNA is included as a control. b. RT-PCR using 
primers in Eed exons 5 and 12 to observe deletion of 
exon 7 in the mutant Eed XEN cell lines. (Experiments 
in this figure performed by Clair Harris). 
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previous section (Figure 15a-b). Unexpectedly, I found that H3K27me3 was still present 

at significant levels in both Eed-/- XEN cell subclones. 

 

Similarly, I analyzed H3K27me3 catalysis on the inactive-X in Eedfl/- and Eed-/- 

XEN cells using H3K27me3 IF and Xist RNA FISH (Figure 16a). Just as in Ezh2-/-; 

Ezh1-/- cells, loss of EED drastically reduced co-localization of H3K27me3 and Xist 

(Figure 16b). Based on this data, it appears that EED is necessary for accumulation of 

H3K27me3 on the inactive-X. This is in agreement with the data from the previous 

section, which showed that either EZH2 or EZH1 is necessary for localization of 

H3K27me3 to the inactive-X, but not for residual levels of global H3K27me3 catalysis. 

Taking these two sets of data together, the results are suggestive that PRC2 function is 

necessary for enrichment of H3K27me3 on the inactive-X, and that there is likely a 

PRC2-independent mechanism for catalysis of H3K27me3 in the absence of PRC2. 

Figure 15: a. H3K27me3 Western blot using Millipore antibody, as well as an antibody against 
histone H4 and a Denville Blue Protein stain of histone preps as loading controls. b. 
Quantification of band intensity for Eedfl/- and Eed-/- XEN lines, normalized to H4 loading control. 
Mean ± standard error, n=4. 
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Figure 16: a. Immunofluorescence detection of H3K27me3 using the 
Millipore antibody in Eedfl/- and Eed-/- female XEN cells. Xist RNA FISH marks 
the inactive-X. b. Quantification of H3K27me3 on Xist-coated nuclei. Mean ± 
standard error, n=300 for three separate counts of 100 nuclei each for Eed fl/- 
and Eed-/- #2; n=500 for five separate counts for Eed-/- #1. Scale bars, 2.5 μm. 
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DISCUSSION 

 In this study, I assessed catalysis of the repressive histone mark H3K27me3 in 

the absence of Polycomb group proteins EZH2, EZH1, and EED in XEN cells. The 

results of this study demonstrate that, as assessed by IF, H3K27me3 is still enriched on 

the inactive-X in the absence of EZH2, and as assessed by Western blotting, 

H3K27me3 catalysis still occurs in the absence of EZH2, EZH2 together with EZH1, and 

EED. These results therefore imply that there is an unknown PRC2-independent factor 

capable of catalyzing H3K27me3.  

Enrichment of H3K27me3 on the inactive-X is PRC2-dependent 

The levels of H3K27me3 were similar between Ezh2-/- and Ezh2-/-;Ezh1-/- XEN 

cells, which suggests that EZH1 does not contribute significantly to overall levels 

H3K27me3 catalysis in these cells. On the other hand, while single mutant Ezh2-/- and 

Ezh1-/- XEN cells showed no defects in levels or accumulation of H3K27me3 on the 

inactive-X, Ezh2-/-;Ezh1-/- XEN cells lacked enrichment of H3K27me3 on the inactive-X. 

These data imply that EZH2 and/or EZH1 is required for inactive-X-specific 

accumulation of H3K27me3. Eed-/- XEN cells also lacked accumulation of H3K27me3 

on the inactive-X, further cementing the idea that enrichment of H3K27me3 on the 

inactive-X is PRC2-dependent. These results are in agreement with the current model 

that Xist RNA may somehow target PRC2, and thereby H3K27me3, to the inactive-X. 

Further studies are necessary, however, to conclusively determine whether this is a 

direct interaction between Xist and PRC2 or an indirect effect caused by Xist 

expression, as recent studies disagree on which regions of Xist are necessary for PRC2 
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recruitment to the inactive-X, and reliable biochemical assays have yet to be performed 

(Da Rocha et al., 2014, Zhao et al., 2008).  

 The finding that H3K27me3 catalysis still occurred in Ezh2-/-;Ezh1-/- XEN cells 

helps to elucidate the discrepancy between two previous studies that describe 

conflicting results on the requirement of EZH1 for residual H3K27me3 in Ezh2-/- ES cells 

(Shen et al., 2008, Margueron et al., 2008). In one study, residual H3K27me3 in Ezh2-/- 

ES cells was abolished upon Ezh1 siRNA treatment (Shen et al., 2008), while the other 

study found that H3K27me3 was still present in Ezh2-/- ES cells treated with Ezh1 

siRNA (Margueron et al., 2008). In our study, H3K27me3 was clearly still catalyzed in 

Ezh2-/-;Ezh1-/- cells, supporting the results of the second study. Furthermore, our use of 

a germline null Ezh1 allele rather than siRNA allows for certainty of the depletion of 

EZH1 protein; in siRNA knockdown experiments, a complete knockdown of the protein 

of interest may not occur.  

Presence of H3K27me3 catalysis in Eed-/- XEN cells 

The finding that H3K27me3 was still catalyzed in Eed-/- XEN cells was highly 

unexpected, given previous data showing a lack of H3K27me3 in Eed-/- ES cells 

(Montgomery et al., 2005). There are several potential reasons as to the discrepancy 

between my results and previous data. Firstly, I believe that the fluorescent Westerns 

that I performed on purified histone extracts are more sensitive than the Western blots 

reported in previous studies. This idea is supported by the fact that even though others 

have reported H3K27me3 in the absence of EZH2 alone, the bands that I observe in my 

Ezh2-/- samples are much more robust compared to samples expressing EZH2 than in 
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analogous experiments in the literature (Shen et al., 2008, Margueron et al., 2008). 

Secondly, the previous studies resorted to examining ES cells; biochemical studies of 

ES cells are confounded by feeder cells that are required for proper growth and 

maintenance of the cell lines. In Westerns using ES cell lysates, faint bands can be 

attributed to feeder contamination, since it is difficult to ascertain that lysates are 

completely free of feeder cells. XEN cells do not require feeder cells for growth, allowing 

for the certainty that any H3K27me3 observed by Western blotting must be from the 

mutant XEN cells themselves. 

Before definitive conclusions can be made, however, it will be necessary to 

conclusively show that there is no functional EED protein in our putative Eed-/- XEN 

cells, since there is a shortened, but not truncated, RNA produced in this cell line. 

Preliminarily, this shortened RNA is also less abundant than the wild-type Eed RNA. If, 

however, a shortened EED protein is produced from the mutant allele, I cannot exclude 

the possibility that this protein could be participating in the formation of the PRC2 

complex, thus facilitating PRC2-dependent catalysis of H3K27me3. Arguing against this 

possibility, however, is the fact that our Eed mutation removes part of two WD40 

repeats, and these WD40 domains have been shown to be required for EZH2 binding 

and EED function in the catalysis of H3K27me3 as part of PRC2 (Cao et al., 2014, 

Sewalt et al., 1998). If I do find evidence of a truncated protein in the Eed-/- XEN cells, I 

will need to perform immunoprecipitation to determine whether the PRC2 complex still 

forms. In this case, the H3K27me3-catalyzing methyltransferase could still be part of 

PRC2 and associate with the mutant EED protein. An EED immunoprecipitation could 

then be used to purify and identify the unknown methyltransferase. 
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A potential novel PRC2-independent histone methyltransferase capable of 

H3K27me3 catalysis 

 If I determine that there is no shortened EED protein in the Eed-/- XEN cells that 

is responsible for residual H3K27me3, then the presence of H3K27me3 in these cells 

implies the existence of a novel histone methyltransferase that catalyzes H3K27me3 in 

the absence of functional PRC2 components. The next step, then, would be to discover 

the identity of this methyltransferase. This process is complicated by the fact that in this 

case, the methyltransferase does not associate with EED, so there is no means of 

purifying it through interaction with EED. An alternative option is to examine known 

SET-domain containing proteins and use siRNA knockdown in both Ezh2-/- and Ezh2-/-; 

Ezh1-/- XEN cells to look for whether knockdown of any of the proteins causes depletion 

of the residual H3K27me3 in these cell lines. To date, with only one exception, all lysine 

methyltransferases contain a SET domain, facilitating this approach (Dillon et al., 2005). 

Another potential method to identify the H3K27me3-catalyzing enzyme is an intensive 

column chromatography-based protein purification, using H3K27me3 activity as the 

readout of the purified proteins. 

 Whether or not the identity of the methyltransferase is discovered, this study is 

still significant in that it demonstrates the existence of H3K27me3 catalysis activity that 

is independent of EZH2, EZH1, and potentially EED. As such, it should not be expected 

that inhibition of EZH2 or EED in cancers that have a hyperabundance of the 

H3K27me3 mark will result in complete inhibition of H3K27me3 catalysis. 
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METHODS 

Cell Lines 

XEN cells were derived as described previously (Kalantry et al., 2006). Briefly, 

E3.5 embryos were flushed from the mouse uterus with medium (MEMα/10% fetal 

bovine serum) and plated individually on MEFs (mouse embryonic feeder cells) into 

wells of a 4-well tissue culture dish containing 750 μl of XEN derivation medium (MEMα, 

50 μg/ml penicillin/streptomycin (Invitrogen, #15070063), 20% fetal bovine serum, 1 mM 

sodium pyruvate, 100 μM β-mercaptoethanol, 2mM L-glutamine, 100μM non-essential 

amino acids (Gibco, #11140-050), 1000 units/ml Leukemia Inhibitory Factor (LIF, 

Millipore #ESG1107)). After 6-8 days of growth at 37˚C with 5% CO2, blastocyst 

outgrowths were dissociated using 0.05% trypsin. Cells were then plated on MEFs into 

individual wells of a 96-well dish containing XEN derivation medium and cultured at 

37˚C with 5% CO2.Cells were screened by morphology and then passaged into 4-well 

wells following confluency, and then finally into 6-well wells without MEFs. For 

maintenance of derived cell lines, XEN cells were grown in XEN medium (MEMα, 20% 

fetal bovine serum, 1 mM sodium pyruvate, 100 μM β-mercaptoethanol, 2 mM L-

glutamine, 100 μM non-essential amino acids) on gelatinized wells without feeders. 

XEN cell lines were characterized both by morphology and by expression of XEN-

specific factors, assessed by RT-PCR (data not shown).  

TS cells derivation, culture, and characterization was carried out as described 

previously (Kalantry et al., 2006). 
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RNA Fluorescence in situ Hybridization (RNA FISH) probe 

Double stranded Xist probes were generated using random priming of the Xist 

gene using BioPrime DNA Labeling System (Invitrogen, #18094011). Labeling was 

performed at 37˚C overnight using Fluorescein-12-dUTP (Invitrogen), Cy3-dCTP (GE 

Healthcare, #PA53021), or Cy5-dCTP (GE Healthcare, #PA55031). Following labeling, 

probes were purified using a G50 Sephadex column, precipitated in a 0.3M sodium 

acetate solution with 200 μg yeast tRNA and 100% ethanol. Probes were spun down at 

16,000x g for 20 minutes at 4˚C, then re-dissolved in 100% ethanol, with 0.01M sodium 

acetate. One tenth of this labeled probe stock solution was then precipitated in a 3M 

sodium acetate solution with 300 μg yeast tRNA (Invitrogen, #15401-029), 15 μg of 

mouse COT-1 DNA (Invitrogen, #18440-016), and 150 μg of sheared, boiled salmon 

sperm DNA (Invitrogen, #15632-011), then spun at 16,000 x g at 4˚C for 20 minutes. 

The pelleted probe was then washed with 70% ethanol, spun down, washed with 100% 

ethanol, and dried. The washed probe was then re-suspended in deionized formamide 

and denatured for 10 minutes at 90˚C, followed by an immediate incubation on ice for 5 

minutes. A 2X hybridization solution (4X SSC, 20% dextran sulfate (Millipore, #S5030), 

2.5 mg/ml purified BSA (New England BioLabs, #B90018)) was added to the denatured 

probe, resulting in a 1X hybridization /50% formamide solution. Probes were stored at -

20˚C prior to use in IF/FISH experiments. 

Immunofluorescence (IF) and IF/FISH 

Cells were split onto gelatinized glass coverslips and grown to confluency (2-3 

days). To permeablize, cells were incubated for 20-30 seconds in cytoskeletal buffer 
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(CSK: 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 10 mM PIPES pH 6.8), then for 

20-30 seconds in CSK containing 0.4% Triton X-100, then again for 20-30 seconds in 

CSK. (Eed-/- XEN cells were treated for twice as long in the aforementioned conditions). 

Cells were fixed for 10 minutes in 4% paraformaldehyde, washed twice with 70% 

ethanol, and then stored at -20˚C in 70% ethanol. 

Processed cells were rinsed three times in 1X PBS, then washed three times for 

3 min each while shaking. The samples were then incubated in blocking buffer (0.5 

mg/ml BSA (New England BioLabs, #B9001S), 50 μg/ml yeast tRNA (Invitrogen, 

#15401-029), 80 units/ml RNAseOUT (Invitrogen, #10777-019), and 0.2% Tween-20, in 

1X PBS) in a humid chamber at 37˚C for 30 minutes. Following the blocking step, cells 

were incubated with primary antibody, diluted in blocking buffer, in a humid chamber at 

37˚C for 1 hour. Next, cells were washed three times for 3 minutes each in 1X PBS, 

0.2% Tween-20 while shaking. The samples were incubated again in blocking buffer for 

5 minutes in the humid chamber at 37˚C, then incubated in a 1:300 dilution of 

fluorescently-conjugated secondary antibody (Alexa Fluor, Invitrogen), diluted in 

blocking buffer, for 30 minutes in the humid chamber at 37˚C. Samples were washed 

three times in PBS/0.2% Tween-20 as above, and then either processed for RNA FISH 

or mounted on microscope slides using Vectashield with DAPI (Vector Labs,#H-1200) 

and sealed with clear nail polish.  

For IF/FISH, cells were washed for 5 minutes in 70% ethanol at room 

temperature, dehydrated through a series of 5 minute incubations in 85%, 95%, and 

100% ethanol solutions, and then air-dried. Coverslips were then incubated with a 

double-stranded Xist probe and hybridized overnight at 37˚C in a humid chamber. 
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Following hybridization, samples were washed for 7 minutes each in a humid chamber 

at 39˚C 3 times with 2X SSC/50% formamide, 3 times with 2X SSC, and twice with 1X 

SSC, with a 1:200,000 dilution of DAPI (Invitrogen, #D21490) added to the third 2X SSC 

wash. Coverslips were mounted on glass slides with Vectashield (Vector Labs, #H-

1000) and sealed with clear nail polish. 

Microscopy 

 Stained cells were visualized and imaged using a Nikon Eclipse TiE inverted 

microscope with a Photometrics CCD camera. Images were deconvolved and uniformly 

processed using NIS-Elements software. Published images are maximum intensity 

projections of Z-stacks spanning multiple planes of focus. 

Protein Lysate Collection 

For whole cell extracts, cells (grown for a few days in gelatinized tissue culture 

plates without feeders for ES and TS cells) were washed in cold 1X PBS, then 

incubated in modified RIPA buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 0.25% sodium 

deoxycholate, 150 mM NaCl) with protease inhibitors (Complete Protease Inhibitor 

tablet (catalog number), 1 mM PMSF, and a 1:100 dilution of Aprotinin (EMD 

Millipore/Calbiochem, #616399-100KU)) for 10 minutes on ice with mild agitation. 

Lysates were then collected using a cell scraper and sonicated three times for 30 

seconds each, with 1 minute rest periods in between. Lysates were then spun for 15 

minutes at 16,000 x g at 4˚C to remove insoluble components. 
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Acid Extraction of Histones. 

Isolation of histones was performed essentially as described in Shechter et al., 

2007. Briefly, cells were pelleted, washed with 1X PBS, resuspended in hypotonic lysis 

buffer (10 mM Tris pH 8.0, 1 mM KCl, 1.5 mM MgCl2) with protease inhibitors (1 mM 

DTT, 1 mM PMSF, Complete Mini EDTA Protease Inhibitor Tablets, catalog number), 

rocked at 4˚C for 30 minutes, and then spun down at 10,000g for 10 min at 4˚C to pellet 

nuclei. Nuclei were then resuspended in 0.2M H2SO4 and incubated overnight at 4˚C. 

Histones, which were present in the supernatant, were precipitated by adding 

trichloroacetic acid and incubating for 30 minutes on ice. Histones were pelleted at 

16,000g for 10 min at 4˚C, subjected to a series of acetone washes, and then dissolved 

in ddH2O. To assess purity, 5 μg of histone samples were run on 15% polyacrylamide 

gels, then stained with Denville Blue Protein Stain (Denville Scientific, #E2700-SA). 

Western Blotting and Quantification 

 For EZH2 Western blots, 30 μg of whole cell extracts were loaded in gels. For 

H3K27me3 Western blots, 15 μg of acid extracted histones were loaded in gels. 

Western blotting was performed using the antibodies listed below with the dilutions in 

Table 1. EZH2 Western blots were performed using HRP-labeled secondary antibodies 

at a dilution of 1:5000 and detected using SuperSignal West Pico Chemiluminescent 

Substrate (Thermo Scientific, #34079) in a G:Box iChemiXR (Syngene) with GeneSys 

software (v.1.2.5.0) using no light and no filter H3K27me3 and H4 Western blots were 

performed using fluorescently-conjugated secondary antibodies (Alexa Fluor, 

Invitrogen) at a dilution of 1:300 and detected/imaged using G:Box iChemiXR with the 



33 
 

FRLP filter and Lights Red LED (RGB) for the 647 wavelength and the SGNB filter and 

Lights Green LED (RGB) for the 555 wavelength. Quantification of band intensity was 

performed on unsaturated fluorescent images using Syngene Genetools software, and 

values were normalized to the intensity of the H4 loading control for each lane.  

Antibodies 

Table 1: The antibodies used in Western blotting and IF experiments (with dilutions) 

Antibody Supplier Raised in Western 
Blot 

IF 
 

EZH2 Cell Signaling (DC29) Rabbit (mAb) 1:1000 1:200 
H3K27me3 Millipore (ABE44) Rabbit (pAb) 1:5000 1:5000 
H3K27me3 Active Motif (39155) Rabbit (pAb) 1:5000 1:1000 
H3K27me3 Abcam (ab6002) Mouse (mAb) 1:500 1:200 
H3K27me3* Millipore (07-449) Rabbit (pAb) 1:2500 Still determining 
EZH1 Millipore (ABE281) Rabbit (pAb) 1:2500 N/A 
EZH1 Abcam (ab137693) Rabbit (pAb) 1:500 N/A 
EZH1 Abcam (ab64850) Rabbit (pAb) 1:250 N/A 
EZH1 LS Bio (LS-C676) Rabbit (pAb) 1:250 N/A 
EZH1 LS Bio (LS-C176828) Rabbit (pAb) 1:750 N/A 
EZH1 Company (LS-C144356) Rabbit (pAb) 1:500 N/A 
EED Millipore      (09-774) Rabbit (pAb) 1:1000 N/A 
β-actin Sigma Aldrich (A5060) Rabbit (pAb) 1:5000 N/A 
Histone H4 Cell Signaling (L64C1) Mouse (mAb) 1:500 N/A 
 
*Note: All experiments are in the process of being repeated with this antibody (Millipore, 
07-449). So far, by Western blotting, the antibody shows the same results as the 
antibody described in this study (Millipore, ABE44) for all XEN cell genotypes described 
in the study, including Ezh2-/-, Ezh2-/-;Ezh1-/- and Eed-/-. IF experiments with this 
antibody are still undergoing optimization. 
 
RT-PCR and PCR Primers 

For RT-PCR experiments, total RNA was isolated from cells using Trizol reagent 

(Life Technologies, #15596018) in order to do a phenol-chloroform extraction. mRNA 

was purified from total RNA using the Dynabeads mRNA DIRECT Micro Kit (Life 
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Technologies, #61012). RT-PCR was performed using Superscript III One-Step RT-

PCR System with Platinum Taq DNA Polymerase (Life Technologies, #12574-026). 

Table 2: List of Primers, sequences, and their uses. 

 

 

 

 

 

 

 

 

 

Primer (F/R) Sequence Use Figure 

Ezh2-5-loxP-3 (F) CTGGCTCTGTGGAACCAAAC Ezh2 PCR 5A, 8A 
Ezh2-L5-loxP-1 (F) ATGGGCCTCATAGTGACAGG Ezh2 PCR 5A, 8A 

Enx1-3-loxP (R) GGAGTTGCCATTCAGAGCAG Ezh2 PCR 5A, 8A 
Ezh2delete 5-2 (F) AACACCAAACAGTGTCCATGCTAC Ezh2 RT-PCR 5B, 9A 
Ezh2delete 3-2(R) CTAAGGCAGCTGTTTCAGAGAGAA Ezh2 RT-PCR 5B, 9A 

Ezh1SA-1 (F) GTACTCTTAACCACTGGACTG Ezh1 PCR 8B 
Ezh1WT-3 (R) GTCTTGCTATGAGGACAGGAG Ezh1 PCR 8B 

Ezh1LACZ-2(R) CCTGAATGGCGAATGGCGCTT Ezh1 PCR 8B 
Ezh1ex2F (F) CGTCTGCAGAACAGAGGTA Ezh1 RT-PCR 9C 
Ezh1ex3F (F) GAGTATATGCGGCTTCGACA Ezh1 RT-PCR 9C 
Ezh1ex4F (F) AAATTTTGCAAAGGTTCAAG Ezh1 RT-PCR 9C 
Ezh1ex5F (F) TTGATGCGGTCTCTGAACAC Ezh1 RT-PCR 9C 
Ezh1ex6F (F) TACATGGGTGACGAGGTGAA Ezh1 RT-PCR 9A 

Ezh1WalkEx8F (F) GCAACAAAAAGAGTTCCAAG Ezh1 RT-PCR 9C 
Ezh1Setex19R (R) CATAACAGTTGGGGTTCACT Ezh1 RT-PCR 9A & C 

Ezh1ex5R1 (R) ATCAACATATCCTGGCTGTC Ezh1 RT-PCR 9B 
EED 5’ (F) GGACTCATCCTCTGGTAGAGCAGC Eed PCR 14A 

EED 3’a (R) TCAGCCTCAAGGGACTATCG Eed PCR 14A 
EED R1 (R) TCAATTGGTGGGTTTTGGAT Eed PCR 14A 

EEDexon5F (F) AACACCAGCCACCCTCTATT Eed RT-PCR 14B 
EEDexon12R (R) ATGATGGGTCAGTGTTGTGC Eed RT-PCR 14B 
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