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Summary

The seismic quality factor Q is a measure of seismic wave attenuation due to the earth’s
anelasticity. In most global models, Q has a value of about 300-500 in the lower mantle.
Recently, Kanamori and Rivera (2015) estimated a remarkably high value of Q of 1400 beneath
global seismic network station AFI on Samoa using ratios of peak-to-peak amplitudes of
multiple ScS phases generated by earthquakes in Tonga. This indicates that shear-wave
attenuation throughout the mantle in the region is very low. We follow up on this study by
analyzing waveforms from stations AFI and EUAT of the March 9, 1994 Tonga earthquake with
a different analytical approach: (1) we measure amplitude ratios from waveform cross correlation
coefficients, (2) we include surface reflections sScS and its multiples, (3) we estimate Q in the
upper and lower mantle separately. We confirm Kanamori and Rivera’s (2015) estimate of a
high Q value at AFI and estimate that Q = 2000 for both the upper and lower mantle. For station
EUAT with sampling of the Lau Basin, we find that Q may be lower in the upper mantle, but a
complete follow-up analysis must confirm the resolution of upper mantle attenuation using ScS
phases.



1. Introduction

The amplitude is a fundamental attribute of a (seismic) wave. Earthquake seismologists
determine the magnitude (or seismic moment) of earthquakes from the amplitudes of seismic
waves. Wave amplitudes have also been widely used in seismic studies of Earth structure.
Classic studies of so-called shadow zones, with reduced wave amplitudes, and triplications,
where wave amplitudes spike, have led to the discoveries of Earth’s outer core and inner core,
the crust-mantle interface, and phase transitions in Earth’s mantle (see Lay and Wallace, 1995).

Amplitudes also provide constraints on scattering by small-scale compositional heterogeneity
(i.e., extrinsic attenuation) and on the absorption of wave energy by grain-boundary friction and
fluid movement (i.e., intrinsic attenuation) (Knopoff, 1964). Combined, scattering and absorption
diminish seismic waves faster than geometric spreading alone. The reduction of the amplitude
during wave propagation is often expressed by the seismic quality factor Q which quantifies the
fractional energy lost per wave cycle.

0! = AE/Q2nEpa), (1)

where AEis the elastic energy lost per wave cycle and E,,.is the maximum elastic energy
contained in a cycle. Q is the inverse of anelastic attenuation. When Q is high, damping is low,
and, vice versa, when Q is low, damping is high. With this definition of Q, the reduction of the
wave amplitude 4 due to attenuation is proportional to

4 ~ e—wx/ZcQ, (2)

where w is angular frequency, x is the distance of wave propagation, and ¢ is wave velocity, akin
to the attenuation factor of a damped harmonic oscillator.

Figure 1 shows several estimates of the depth profile of Q, for shear wave propagation (from
hereon denoted simply as Q) in the mantle. The profiles indicate a variation that broadly reflects
the physical layering of the mantle. Q is highest in the lithosphere, the mechanically strong,
thermal boundary layer, and lowest in the asthenosphere, the region of the mantle closest to the
melting temperature. More localised studies of Q (e.g. Shito and Shibutan, 2003) as well as
laboratory studies of rock deformation (e.g., Faul and Jackson. 2005), indicate that melt and
water content and grain size are also important factors.

Studies of Q have intensified since the 1970s with the advent of well-calibrated, digital seismic
instrumentation that accurately record wave amplitude over a wide frequency range. The most



recent global-scale maps of Q (e.g., Dalton et al., 2007) illuminate active tectonic regions as
low-Q regions and stable continental interior as high-Q regions. On regional scales, Q in the
upper mantle has been found to vary laterally by an order of magnitude or more. For example,
using a spectral decay method Benz et al (1997) reported that Q in the upper mantle varies from
187 below Southern California to 1291 below the central United States. Similar variations of Q
have been inferred for South America: low Q values (250-450) are resolved along the western
margin and high Q values (> 700) are present in the interior of the continent (DeSouza and
Mitchell, 1998). The same pattern holds for other continents (Mitchell et al., 2007; Mitchell et
al., 1998; Xie and Mitchell, 1990), suggesting that Q varies as a function of tectonic age, with
low Q values in terraines recently or concurrently undergoing tectonism, and high Q values in
stable regions.
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Figure 1. Profiles of Q, (i.e. Q for S waves) as a function of radius (bottom is the core-mantle boundary;
top is Earth’s surface) from various studies: QM1 (Widmer et al., 1991), SL8 (Anderson and Hart, 1978),
QL6 (Durek and Ekstrom, 1996), and QLMY (Lawrence and Wysession, 2006). Figure from Romanowicz
and Mitchell (2007).

The ScS and ScS, phases are frequently used seismic phases in studies of Q in the deep mantle.
They propagate nearly vertically through the mantle and reflect off the outer core and Earth’s
surface without energy loss. For short epicentral distances, ScS and ScS, have nearly identical
propagation paths except that ScS, has an extra bounce. The ratio of the ScS and ScS,
amplitudes, recorded by the same seismic instrument and for the same earthquake, is a reliable
measure of wave attenuation. It is unaffected by uncertainties of the initial signal strength (the
excitation by the earthquake) and signal amplification by seismic instrumentation. The study by
Kovach and Anderson (1964) was the first to determine Q from spectral ratios of multiple ScS
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waves, finding an average Q of 600 for the entire mantle. Jordan and Sipkin (1977) developed a
phase equalization and phase-stacking algorithm to document large lateral variations in Q.
Multiple ScS studies in the Pacific have documented Q of 139-161 beneath the Lau Basin
(Flanagan and Wiens, 1998), Q of 160 beneath the Sea of Japan (Nakanishi, 1979), an unusually
high Q of 366 below the Ontong-Java Plateau (Gomer and Okal, 2003), and an unusually low Q
of 70-80 in the South Pacific Superswell (Suetsugu, 2001).

This thesis follows up on the recent study of ScS,/ScS ratios by Kanamori and Rivera (2015),
who documented a remarkably high value of 1400 for the average Q in the mantle beneath
Global Seismic Network station AFI (Afiamalu, Samoa). This is among the high values for Q
ever reported and implies that attenuation throughout the mantle beneath Samoa is extremely
low. Low attenuation is in stark contrast to high wave attenuation in the upper mantle beneath
the Lau Basin (Flanagan and Wiens, 1998) and the presence of a broad low shear wave zone in
the lower mantle beneath the southwestern Pacific (e.g., Ritsema et al., 1999) within several
hundreds kilometers. These latter observations suggest that the temperature in the upper and
lower mantle is elevated. We explore Kanamori and Rivera’s (2015) observation further by
expanding the analysis with additional ScS multiples and surface reflections, by analyzing data
from seismic station EUAT (from a temporary regional network in the Tonga region) close to
AFI, and by modeling complete waveforms with synthetics rather than peak-to-peak amplitudes.

2. Methods

2.1 ScS and sScS ray geometry
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Figure 2. (left) Ray paths of ScS and sScS for an earthquake at 500 km depth. ScS bounces off the core
once. ScS, reflects off the surface once and off the core twice. (right) Ray paths of ScS, and sScS,. The
surface reflection sScS, first propagates upward, reflecting off the surface before following a path similar
to ScS,.

In this study we estimate attenuation from the amplitudes of six shear-wave reflections of the
core. The phases ScS, ScS, and ScS; propagate downward from the earthquake and reflect once,



twice and three times off the core, respectively. The phases sScS, sScS, and sScS, are similar to
ScS, ScS, and ScS; but propagate upward from the source and reflect off Earth’s surface first
(Figure 2). Hence, these surface reflections propagate longer paths through the upper mantle than
the initially downward ScS phases.

Figure 3 shows the transverse-component seismogram (a ground motion record of primarily
shear wave motions) of a deep earthquake in Tonga (see section 3.1) at seismic station AFT used
in our analysis. This seismogram includes ScS, sScS, ScS,, sScS,, ScS,, and sScS, high above
noise level when lowpass filtered at T > 25 s. The time between ScS, and ScS and between Sc§S,
and ScS, is the two-way traveltime (of about 935 s) of a shear wave across the mantle. The time
between sScS and ScS and between sScS, and ScS, (of about 230 s) is roughly the two-way
traveltime of a shear wave between the earthquake (at 533 km depth) and Earth’s surface. The
systematic amplitude decay is caused by geometric spreading and attenuation.
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Figure 3. Transverse-component (motions orthogonal to the plane of propagation) seismogram at global
seismic network station AFI (Afiamalu, Samoa) generated by the March 9, 1994 Tonga earthquake. The
seismograms (in red) is lowpass filtered at T > 25 s. The six high amplitude signals are (from left to
right): Sc§, sScS, ScS,, sScS,, ScS,, sScS,. The unfiltered seismogram is shown in grey.

The recorded and computed (i.e., synthetic) seismogram for a standard seismic model, such as
the Preliminary Reference Earth Model or PREM (Dziewonski and Anderson, 1981), have three
fundamental differences. First, the ScS, (and sScS,) and ScS; (and sScS,) reflections arrive later
than in the PREM synthetic. Second, the amplitude decay of the core reflections is smaller in the
recorded than the PREM synthetic. Third, the recorded ScS, and ScS, signals have a higher
frequency content than the same signals in the PREM synthetic. The traveltime differences
indicate that, on average, the shear wave speed in the mantle between the Tonga earthquake and
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AFT is lower than in PREM. The small amplitude decay and the relatively high-frequency
content of ScS, and ScS, indicate that shear wave attenuation in the mantle below AFI is

relatively low.

2.2 Shear wave recordings
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Figure 4. Bathymetry map of the study area. Triangles indicate the location of stations AFI and EUAT.
The “beachball” indicates the location and source mechanism of the March 9, 1994 earthquake near
Tonga. Also shown are the Tonga and Kermadec Trenches, where active subduction is occurring. Image
courtesy of NOAA.

We analyze event A using horizontal-component seismograms from station AFI to the northeast
and station EUAT to the southeast of event A (Figure 4) at epicentral distances of A = 7.56° and
A = 4.72°, respectively. We download the data as SAC files from the IRIS Data Management
Center archives using WILBER-III (www.iris.edu). The data are corrected for the instrument
response and converted to ground velocity. We project the horizontal-component seismograms



into a transverse-component waveform to isolate wave polarization in the transverse direction,
i.e. the direction orthogonal to the source-receiver propagation direction. By filtering using a
lowpass Butterworth filter with a corner frequency of 25 mHz over 2 passes, waveform
complexity due to unmodeled rupture directivity and crust and mantle heterogeneity in the Tonga
subduction zone is suppressed. Finally, we taper the waveforms using sin” and cos? tapers.

2.3 Amplitude ratios.

We estimate the shear wave quality factors Q in the mantle from the amplitudes of ScS and its
multiples which are recorded above noise level for event A. We determine amplitude anomalies
from the cross-correlation coefficients of recorded and computed (i.e. synthetic) waveforms. The
synthetic waveforms have been computed using the AxiSEM method (Nissen-Meyer et al., 2014)
for the PREM wavespeed structure and the hypocentral location and moment tensor source
parameters reported in the Global CMT catalog. The AXiSEM synthetics include amplitude
variations due to variable shear wave radiation from the source and amplitude decay due to
geometric spreading and attenuation. We modify the attenuation structure as discussed in section
2.4. We convolve the synthetics with the source time function determined by Vallée et al.. (2011)
to include the effects of rupture finiteness.

We determine two ratios, A, and A, between the recorded, d(?), and synthetic, s(z), waveforms
by minimizing the integrated squared difference between d(¢#) and s(#) in a 80-s wide
cross-correlation window W around the phases of interest. The value A, minimizes

JV [d(D)— 4, 5(t)] “dt (3a)
and A, minimizes
VIV[ Ay d() — s(t)] 2dt (3b)

A, and A, can be computed from the crosscorrelation and autocorrelation functions (Ritsema and
Van Heijst, 2002):

A, = max(d*s) / s*s (4a)
and
A, = d*d | max(d*s) (4b)



where ‘*” denotes correlation. If d and s were identical, A = A, = A, is simply a scaling factor.
Since d and s are always different due to noise and simplifications in the modeling, we define the
amplitude ratio A between d(z?) and s(z) as

4 == (5)

and the uncertainty E in the amplitude A by

E = [52

(6)

2.4 Model parameters and selection

We parameterize the Q structure using two free parameters. Q,, and Q,,, are the quality factors
for the upper mantle (0-670 km) and lower mantle (670-2891 km), respectively. We do not
consider lateral variations of Q,, and Q,,, but let differences in the estimates for different
stations inform us on possible geographic variations. In the modeling we vary Q,, and Q,,
between 50 and 2000, and calculate a data bank of synthetics in which Q,, and Q;,, have
discrete values of 50, 80, 100, 200, 500, 800, 1000, and 2000. This range captures the variability
of ScS amplitude and waveforms due to attenuation in the mantle.

We determine the goodness of fit for a given model of attenuation, determined by Q,;,, and Q,,,,
from the least-squares mismatch between the inferred amplitude factors A and their uncertainties
E for each of the six phases (Figure 5):

2 6 2
— “w
X i=zl (uE)” )

where 7 is the index integer for each of the six ScS signals. A (equation 5) and E (equation 6) are
the scaling factors and uncertainties computed from cross correlation (see Figure 5), and p is the
mean of the six misfit values for each ScS signal. The optimal combination of Q;,, and Q,,
produces the most consistent set of amplitudes A, (apart from a common amplitude factor p) and
the lowest value for . By plotting x* as a function of Q,, and Q,,, we evaluate the resolution of
Quu and Q,,,, leaving a rigorous statistical analysis as future work.

3. Event A: March 9, 1994, M, 7.6, H = 534 km, Samoa Islands

We have limited our analysis to a deep earthquake that occurred on 9 March 1994 beneath the
Samoa Islands (Table 1). This earthquake, which we call event A, had a moment magnitude



(My,) of 7.6 and a vertical dip-slip double-couple mechanism according to the Global CMT
catalog (Dziewonski et al., 1981; www.globalcmt.org). A double-couple source with a vertical
dip slip mechanism is effective in radiating high-amplitude shear waves, such as ScS and sScS,
in the up and downward direction. The large event depth of 533.9 km ensures that the ScS and
sScS phases and their multiples are separated by at least 230 seconds. This simplified measuring
amplitude ratios. Moreover, event A (like most other deep earthquakes) had a relatively short
rupture duration of 16 s (e.g., Goes and Ritsema, 1995) and produced waveforms without strong
directivity that could complicate wave analysis.

Table 1. Event A source parameters and stereonet diagram of the full moment tensor

Date: 1994/ 3/9 Centroid Time: 23:28:17.7 GMT N
Lat=-17.69 Lon=-178.11

Depth = 567.8 Half duration = 16.0

Centroid time minus hypocenter time: 10.0 W c
Mw=76 mb=6.6 Ms=0.0 Scalar Moment = 3.07e+27

Nodal plane 2: strike =250 dip =27 slip=-30

Nodal plane 1: strike =7 dip=77 slip=-114 .

4. Results
4.1 Station AFI

Figure 5 illustrates the measurements of A and E for Sc§, sScS, Sc8S,, sScS,, ScS;, and sScS, for
our preferred two-layer model of Q: Q,, = 2000 and Q,,, = 2000. The top panel shows the
recorded and PREM seismogram including ScS, sScS, ScS,, sScS,, ScS;, and sScS, (see also
Figure 3). The six lower panels show the initial PREM and optimal match between recorded and
synthetic waveforms after alignment and scaling. The time shifts AT have been applied to obtain
highest waveform correlation. AT is positive for each phase, indicating that the shear velocity of
the mantle between event A and AFI is, on average, lower than in PREM. Since ScS; and sScS,
have the longest propagation paths, they are delayed most with respect to the predicted PREM
arrival times. All scaling factors A are lower than 1, so the amplitudes of all seismic phases are
overestimated by the PREM synthetic, presumably because the seismic moment reported in the
Global CMT catalog is too high. The relatively high errors E for ScS, and sScS; indicates that
the multiple ScS propagation is complicated by the heterogeneous crust and upper mantle in the
region. Nevertheless, the amplitude scaling factors A for all six phases agree within error E with
the synthetics computed for the model of Q used in this simulation.
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Figure 5. llustration of the measurements of A and E. The top panel show the (in black) recorded and (in
red) PREM transverse component seismogram of event A at AFI. The lower six panels show windows
around (upper row) ScS, ScS,, ScS;, (lower row) sScS, sScS,, sScS;. The recorded signals are in black,
the PREM synthetic is in red, and the synthetic (after alignment AT) for Q,;,, = 2000 and Q,,, = 2000 is in
green. The estimated values for A and E are indicated in the lower-left corner of each panel.

Figure 6 shows y” as a function of Qy,, and Q,,, for all 6 signals combined. The misfit y* = 6.233
for the best-fitting model when Qg ,, = Q;,, = 2000 (log,, Q = 3.3) which means that the
uncertainty E in the six amplitude scaling factors is similar to the variation of the amplitude
factor A from the mean value. That is, the amplitudes are fit perfectly within uncertainty. Q,,=
Q;um = 2000 are the highest Q values that we have explored in our modeling. For these values,
attenuation is undetectable in the modeled long-period ScS signals. The internal consistency of
the amplitude scaling factors A for the six ScS phases increases, with exception to small values
of Q,,;, as the values for both Q,and Q,, increase. The scaling factors A are sensitive primarily
to Qp,, because all ScS phases propagate the longest paths through the lower mantle and thus are
influenced most by attenuation parameters in the lower mantle.
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Figure 6. y*as a function of log,, Q,, (x-axis) and log,, Q, , (y-axis) computed for station AFI based on

the amplitude A and error E measurement for ScS, sScS, ScS,, sScS,, ScS,, and sScS,. The contour colors
indicate >. The coolest colours represent the best fit.

The low values of y* obtained when Q,,, < 100 are due to our choice to include in y* (equation 7)
only a term that quantifies the consistency of the scaling factors A for each phase and to exclude
the fit between the recorded and synthetic signals. As shown in Figure 5, the scaling factors A
have similar values for all phases when Q= Q;,; = 2000. The similarity of A results in the
minimum in x> When Q,,, < 100, the spread of A is relatively large but the significant errors E
result in low values for y* because (UE,)* appears in the denominator of equation (7). By
inspection, we have verified that an attenuation structure with Q,,, < 100 predicts ScS signals
that are much broader than the signals in the recordings. As E is a measure of waveform misfit
(see equations 3a and 3b) we can infer optimal values for Q,,,and Q,,, also from the minimum
value of E and, in fact, let E contribute to y* as in equation (8).

A
zl“((uEu)) —HL;E ()

where A is a weight factor that determines the contribution of waveform misfit (i.e., the second
term) to x*. Figure 7 displays E and A as a function of Q,,and Q,,,. E is relatively high for Q,,
< 100 which demonstrates that a misfit function y* that includes a term representing waveform
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fit, such as the 2™ term in equation (8), would have a unique minimum. Follow-up work must
therefore address a form of y* that incorporates a measure of waveform fit.

The decrease of ¥* by a factor of 10 when Q,,, is increased from 100 to 2000 and Q,,, = 2000
(Figure 6) indicates that the amplitude measurements have some sensitivity to Qy,,. Figure 7
shows that this resolving power is provided by the sScS signal since E computed for sScS is
smallest for largest values of Q;,,. E does not exhibit a clear minimum for Q;,, for ScS, a phase
that has only one propagation segment in the upper mantle. However, E determined for just sScS
has a defined minimum in both Q;,and Q,,,. That sScS is more sensitive to Q,;,, than Sc§ is not
surprising since sScS propagates two extra legs through the upper mantle (see Figure 2). We find
a similar sensitivity to Q,, for sScS, and sScS, but do not illustrate it here.
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Figure 7. Measures of E (top row) and A (bottom row) as a function of log,,(Q,,,) and log,,(Q,,,)- The
left column is measurements for phase ScS, the right column is measurements for sScS. Note that sScS is
more sensitive to Q,,, than ScS. The color spectra represent the change in A and E. Note the saturation at
the intermediate values.

Whether the attenuation model [Q,,, = 2000; Q,,, = 2000] is better than the model [Q,, = 200;
Q,m = 2000] must be evaluated by a more complete waveform analysis that includes an
investigation of the velocity structure and the source parameters on the waveforms. Here, we
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assume the Global CMT moment tensor solution for sScS and ScS radiation (i.e. initial
amplitudes) and we ignore the effect of local heterogeneity on the ScS waveforms. An analysis
of synthetics, based on different moment tensor solutions and more complicated wave speed
structures, is beyond the scope of this thesis but must be addressed in future research.

Quwm = 2000, Q,,, = 2000 Qum = 200, Q. = 2000 Qum = 200, Qup = 200
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Figure 8. Waveform fits to (top row) ScS, (2™ row) sScS, (3" row) ScS, and (bottom row) sScS, for Q
models defined by (left) [Q,, = 2000; Q,,,=2000], (middle) [Q,, = 200; Q,,,=2000], and (left) [Q ;=
200; Q,,, = 200]. The recorded waveforms are in black, the synthetic waveforms are in green.

Figure 8 compares the waveform fits for several attenuation models to illustrate the variation of
waveform fit as a function of attenuation. Model [Q;, = 2000; Q,,, = 2000] results in the lowest
value of y* since the scaling factors A for the ScS signal, which range from 0.65 to 0.74, are most
consistent. As discussed, model [Q,, = 200; Q,,, = 2000] has a slightly higher misfit x* given the
slightly more inconsistent scaling factors. Model [Q,, = 200; Q;,, = 200], which is more
representative of the average attenuation structure of the mantle, yields inconsistent scaling
factors: they vary between 0.87+0.05 for ScS to 1.3240.15 for ScS,. The high value for ScS,
indicates that synthetic waveform computed for the attenuation model underpredicts the recorded
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amplitude of ScS,, and, therefore, that attenuation is too strong. The waveform fits, expressed by
E, are similar for models [Q;,, = 2000; Q,,, = 2000] and [Q,,, = 200; Q,,, = 2000], ranging from
0.04 to 0.19. E is significantly higher for model [Q;,, = 200; Q,,, = 200] because the relatively
high attenuation results in strong broadening of the signals in the synthetics that is not seen in the
recordings.

4.2 Station EUAT

Waveform data from station EUAT, from a temporary regional seismic network in the region,

allows us to evaluate whether the low attenuation observed at AFI is a regional phenomena.
EUAT is located to the south of AFI (see Figure 4) and the surface reflection of ScS, and ScS,
reflect off the surface within the Lau Basin. Figure 9 shows y* a function of Q,, and Q, ,, akin to
Figure 6. Like AFI, we resolve the lowest value for y* (x> = 4.2126) when Q,,, = 2000. However,
in contrast to AFI, the minimum value is obtained for Q,;,, = 100.

EUAT y* Fit for All Phases

TR
Logyy Quu
Figure 9. ¥*as a function of log,, Q,,, (x-axis) and log,, Q, , (y-axis) computed for station EUAT based

1.8 2.0 2.2

on the amplitude A and error E measurement for Sc§S, sScS, ScS,, sScS,, ScS,, and sScS,. The contour
colors indicate y>. The coolest colours represent the best fit.

Figure 10 addresses the resolution of Q,;,, by comparing A, E and waveform fits for attenuation
models [Qy, = 2000; Q,,, = 2000] and [Q;, = 100; Q,,, = 2000]. The smaller variation in the
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scaling factors A of 0.74-0.83 for Q,, = 100, compared to 0.54-0.71 for Q,,, = 2000, results in
the of y* for Qg = 100. This variation is slightly larger than the standard errors E, but the
robustness must be evaluated by experimenting with the effect of the moment tensor and velocity
structure on synthetic waveforms.

Quw = 2000, Q. = 2000 Qune = 100, Q= 2000

T T
- 5CS R I~ 5cS B

AT=-6.10 AT = -7.
FA = 071, E= 005 R A=
|

[

]

=N
[~ m

I

e

=
=

| AT = 8.00 AT = 460 .
|l A= 066, E= 0.11 i | A= 083, E= 0.10 ]

| AT= 1070
La = o5d. E= 614 .

Figure 10. Waveform fits to (top row) ScS, (2™ row) sScS, (3" row) ScS, and (bottom row) sScS, for Q
models defined by (left) [Q,, = 2000; Q,,, = 2000] and (left) [Q,,, = 100; Q,,, = 200]. The recorded
waveforms are in black, the synthetic waveforms are in green.

For the same reason as with station AFI, the minimization of E as a function of Q,,and Q,,, is
useful in identifying for which Q,, and Q,,, the synthetic phase requires the least scaling to
match the recorded phase. Figure 11 shows E as a function of Q,,and Q,,, for ScS, and sScS,.
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For both phases, E is minimized at Q,, = 50, Q,,, = 200. Again, the addition of an extra travel
path through the upper mantle increases the resolution of the fit against Q,;,,, indicating the
waveform is sensitive to the additional attenuation incurred in the upper mantle during sScS,.
Unlike for station AFI, which identified the same Q parameters producing the lowest error and
lowest %> values, the results for EUAT identify a discrepancy between the Q parameters
minimizing E and x’, with lower values of both Q,, and Q,,, producing the smallest E. As
Figure 10 shows, the amplitude scaling factors A are all smaller than 1, meaning that the PREM
synthetic is overestimating the seismic moment and all of the recorded waveform amplitudes
must be increased to match the synthetic. Q,, = 50, Q,,, = 200, then, is the synthetic that
requires the least scaling to match the ScS, and sScS, phases of the recorded waveform, but for
all six phases our y test indicates this synthetic is not producing the most consistent values of A,
and is therefore not the best fitting model for the loss in energy across all six phase arrivals.
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Figure 11. Measures of E (top row) and A (bottom row) as a function of log,(Q,,,) and log,(Q,,,). The
left column is measurements for phase ScS, the right column is measurements for sScS.

5. Discussion

The seismic quality factor Q is a measure of seismic attenuation and quantifies energy lost per
wave cycle, recorded by the decay of the amplitude of seismic waves. A recent study by
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Kanamori and Rivera (2015) shows that shear-wave propagation beneath Samoa is extremely
low. In this thesis, we have followed up on this paper by modeling ScS wave amplitudes using a
new approach. We have analyzed waveform recordings of near-vertical ScS waves from a deep
earthquake in the Tonga region at station within several hundred kilometers distance. By
analyzing the surface reflected sScS, sScS, and sScS; phases generated by deep earthquakes we
have attempted to constrain the quality factor Q,,, in the upper mantle independently from the
quality factor Q;,, in the lower mantle. Further, our measurement of wave amplitudes are
obtained from the correlation of recorded and synthesized waveform. Waveform correlation
functions provide a measurement of the wave amplitudes on the basis of the entire waveform in
contrast to the peak-to-peak amplitude, which is essentially a measurement at a single time
sample. We quantified the goodness of fit %* from the consistency of six scaling factors that
optimize the match between recorded and computed amplitudes of ScS, ScS,, ScS;, sScS§, sScS,,
and sScS,. We have not included in x* a measure of waveform fit that expresses how well signal
broadening due to attenuation is reproduced by the synthetic waveform. Our preliminary analysis
indicates that a misfit function fit %> with terms representing the consistency of amplitude scaling
and waveform misfit (i.e. equation 8) may provide a unique misfit minimum.

We confirm Kanamori and Rivera’s (2015) observation that attenuation is anomalously low
beneath seismic station AFI on Samoa. We find similarly low attenuation beneath seismic station
EUAT further to the south. There is a hint in our data that the quality factor Qy,, for the upper
mantle is lower for EUAT, but a rigorous statistical and seismological analysis is required to
determine the robustness of this observation. New research should evaluate the effects of
uncertainties in the moment tensor that determines the initial amplitudes of ScS (and it multiples)
and sScS (and its multiples). Further, the effect of wave speed heterogeneity in the Tonga
subduction zone may be important.

The Samoan islands, situated nearby the convergent boundary of the Pacific and Tonga plates
(Figure 4), are traditionally considered a hotspot trail associated with a deep mantle plume, as
evidenced by the linear age progression of the islands (Hart et. al., 2004; Koppers et. al., 2008).
Global images (e.g., Ritsema et al., 1999) reveal low wave speed structure in the lower mantle
beneath the Pacific. If the geologic and seismic observations point to an anomalously hot mantle
beneath Samoa it is surprising that the quality factor Q for the region is high. The high Q that
we, and Rivera and Kanamori (2015) observe, is also in disagreement with the global Q model
presented by Gung and Romanowicz (2004). Kanamori and Rivera (2015) propose a laterally
heterogeneous structure of a low-velocity core surrounded by a high-velocity sheath that enhance
S-wave amplitudes by focusing, resulting in very high Q observations.

Although we must conduct new analyses to determine the resolution of Q,;, independently from
Q,u» We speculate that higher attenuation in the upper mantle (i.e. a lower value for Q,,,) for
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EUAT has a geologic origin. Multiple ScS waves propagating to EUAT reflect off the surface
beneath the Lau Basin. Wave attenuation in the upper mantle beneath the Lau Basin is expected,
and observed, to be high (Q = 139-161 according to Flanagan and Wiens, 1998) due to back-arc
spreading and active volcanism. The ScS waves between event A and AFI may not sample the
Lau Basin but instead propagate predominantly through the cold slabs of subducted lithosphere
that do not attenuate shear waves. If the difference in Q,, and Q,,, can indeed be robustly
determined, the analytical approach presented in thesis may be useful to document the scale of Q
variations in both the upper mantle and lower mantle from ScS waves in subduction zones where
regional seismic networks have been deployed.

6. Conclusions

This study presents further evidence of remarkably high Q values in the mantle beneath the
Samoan islands. By computing cross-correlation coefficients of recorded and synthetic
waveforms and calculating the synthetic waveform that produces the most consistent amplitude
scaling ratios, we estimate that, on average, Q = 2000, in the lower beneath seismic stations AFI
and EUAT. Our data also suggest that Q is much lower in the upper mantle beneath EUAT,
albeit that rigorous follow-up analysis is necessary to confirm this observation. These results are
in agreement with the study by Kanamori and Rivera (2015), and they are surprising given the
hotspot setting and location of Samoa above a broad low shear-wave velocity anomaly in the
lower mantle.
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