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1 Introduction

Technological advances in mobile devices have seen a growing popularity in Just-In-Time Adap-

tive Interventions (JITAI), which are interventions that are adapted and delivered in real-time

to reflect individuals’ behaviors and needs in their daily lives [1]. Compared to traditional

Adaptive Interventions, JITAI is able to adapt and deliver interventions in real-time according

to present contextual variables by taking advantage of the information observed by individuals’

mobile devices. Many mobile applications, such as personalized news article recommendations,

have successfully applied JITAI to adapt their recommendations to people’s interests according

to the time value of news in real-time [2]. Given the power of JITAI, we would like to apply it

to mobile health problems.

Previous studies have shown that JITAIs can support behavior changes in many fields, such

as eating disorder [3] and smoking cessation [4]. An example of JITAI in mobile health is

HeartSteps [5], which is a mobile intervention application installed on Android smartphones and
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designed to help cardiac patients maintain physical activity after their cardiac rehabilitation [6].

HeartSteps adapts personalized suggestions for individuals’ physical activity through frequent

interactions with individuals via their phones. Suggestions are delivered in real-time with

intervention policies, given patients’ real-time contextual variables, such as weather, time, and

location. Provided the features of HeartStep, it is suitable to model the JITAI as a contextual

bandit problem for the purpose of learning the optimal treatment plan and delivering immediate

interventions on mobile devices.

A contextual bandit problem is a sequential decision-making problem [1]. At each decision

point, its decision making strategy will update simultaneously according to a learning algorithm

that observes side information, interventions and feedbacks. The value of a new context is

evaluated by exploring a feedback collected (exploration), and an optimized decision is provided

in real-time given the current information (exploitation). A trade-off between exploration and

exploitation would reveal an optimal policy for decision making. In mobile health problems, we

want to take advantage of the contextual bandit algorithm to provide optimal physical activity

suggestions for people.

However, in the real world application of learning the optimal policy for recommending physical

activities to people, deviations to the algorithms’ assumptions occur. It is traditionally assumed

that the distribution of context states at a decision point is independent of the interventions,

contexts and costs from previous decision points [1]. In real world mobile health cases, this

assumption is fragile, for there are many ways the distribution of contexts can be impacted by

past interventions. In general, a physical activity motivation effect is observed as a main factor

affecting the distribution in mobile health problems. For example, people may cultivate health-

ier habits after receiving a recommendation. In order to test the applicability of the contextual

bandit algorithm in mobile health problems, this paper investigates the performance of the

algorithm when a physical activity motivation effect is present. In particular, it explores the

performance of the algorithm when previous interventions impact the distribution of contexts.
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Physical activity motivation effects are involved in the context generating procedures. This

study focuses on two conditions: when the assumption of the algorithm is satisfied, and when

the physical activity motivation effect breaks the algorithm’s assumption. We want to compare

the performance of the algorithm under these two conditions.

In this paper, we will overview the study procedure in section 2. Section 3 provides an online

Actor-Critic algorithm of our learning algorithm [1], which is used for choosing an optimized

decision during the process. In section 4, we design the simulation models to the problem under

different conditions. Section 5 analyzes and reports the experiment results. Section 7 provides

a discussion of the application of the contextual bandit algorithm in mobile health problems.

2 Problem Overview

2.1 The contextual bandit problem

There are four vital elements for a contextual bandit problem [7]:

a. The first element is a series of decision points, {1,2, . . . t, . . . }, when interventions are chosen.

b. The second element is contextual information, based on which interventions are chosen.

c. The third element is a list of sequential intervention decisions.

d. The last element is a decision rule (or policy) for choosing an intervention based on the

context at each decision point.

In this study, the problem has a context space S and a binary intervention space A = {0,1}. At

each decision point t, context, intervention, and cost are St, At, and Ct respectively. This study

uses a parametrized logistic policy πθ(a|s) for choosing interventions, given context s (e.g., [5,
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8]). To provide a practical meaning of the problem, we interpret the average cost as sedentary

time, which we want to minimize. At = 1 means a physical activity suggestion is provided at

time t, while At = 0 means no suggestion is provided. Contexts are information provided by

mobile devices, such as weather and location. Detailed interpretations of context states will be

discussed later in section 4. An average cost is observed before the next decision point.

The contextual bandit algorithm is used to find the optimal policy that minimizes the average

cost. The purpose of this study is to observe the impact of a physical motivation effect to the

performance of the algorithm. In order to limit the search of the optimal policy, and ensure

the convergence to the optimal policy, we regularize the average cost by adding a penalty term.

The regularized average cost of a policy πθ(a, s) = eg(s)
T θ

1+eg(s)
T θ

is a long-term cumulative cost

E(C|S = s, A = a) weighted on the policy-specified probability over context and intervention

space [9]. In addition, it subject to a quadratic constraint:

J(θ) =
∑
s∈S

d(s)
∑
a∈A

E(C|S = s, A = a)πθ(a|s) + λθTE[g(S)Tg(S)]θ (1)

where λ is a tuning parameter that controls the amount of penalization [1]. The problem is to

explore an optimal policy (θ∗) such that J(θ) is minimized.

3 A Bandit Actor-Critic Algorithm

The bandit actor-critic algorithm is an online learning of the optimal policy, denoted as θ∗.

Starting from t = 0, at each decision point t before Tmax (the total number of decision points),

the Critic algorithm learns about the cost function, and evaluates the quality of a given policy

πθ(a, s) by estimating the average cost together with derivatives. The Actor algorithm uses the

information provided by Critic to find the regularized optimal policy. The optimal policy θ∗

is the one that minimizes the regularized average cost function J(θ). Both the Critic and the
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Actor algorithms update their parameters at each decision point. The strategy of learning the

optimal policy is updated at each decision point.

Algorithm 1: An online linear actor critic algorithm

Tmax is the total number of decision points.

Critic initialization: B(0) = ζId×d, a d× d identity matrix. ζ = 0.001. A(0) = 0d is a

d× 1 column vector.

Actor initialization: θ0 is the optimal policy based on domain theory of historical data.

Start from t = 0.

while t ≤ Tmax do

At decision point t, observe context st ;

Draw an intervention at according to the probability distribution πθt−1(A|St) ;

Observe an immediate cost ct ;

Critic update:

B(t) = B(t− 1) + f(st, at)f(st, at)
T , A(t) = A(t− 1) + f(st, at)Rt, µ̂t = B(t)−1A(t). ;

Actor update:

θ̂t = argmin
θ

1

t

t∑
τ=1

∑
a

f(Sτ , a)Tµtπθ(A = a|Sτ ) + λθT [
1

t

t∑
τ=1

g(Sτ , a)Tg(Sτ , a)]θ (2)

Go to decision point t+ 1.

end

In the algorithm above, f(st, at) is the cost feature; in other words, it is the covariates that

affect costs for each arm introduced. A small ζ = 0.001 is chosen to ensure a full rank of the

initial matrix of B(t), so that it is invertible in the critic update process. The choices for the

tuning parameter λ for each model will be discussed in section 4.
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4 Simulation Design

The purpose of this study is to explore the performance of the algorithm when context states

are non-iid, but depend on previous contexts and/or previous interventions. In this section, we

introduce dependency of context states on previous context states and/or previous interventions

in different models. By observing the policy values under different models, we can compare the

performance of the algorithm under different conditions.

4.1 Generative Model

For each model, we simulate 1000 people, each with a total number of decision points Tmax

= 200 (if not stated specially). The initial distribution of the context states is multivariate

normal with mean 0 and covariance matrix

Σ1 =


1 0.3 −0.3

0.3 1 −0.3

−0.3 −0.3 1


The generative model for context states generation is as follows:

ξt ∼ Normal4(0, I),

St,1 = β1St−1,1 + ξt,1,

St,2 = β2St−1,2 + α2At−1xcoefficient + ξt,2,

St,3 = β3St−1,3 + γ3St−1,3At−1xcoefficient + α3At−1xcoefficient + ξt,3,

The context states have different interpretations. St,1 represents weather at decision point t.
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St,2 represents the current level of physical activity motivation at decision point t, where the

intervention is an engagement to St,2 in particular. The impact of the motivation effect is

buried in the contexts simulation process, and the parameter xcoefficient measures the size of

the motivation effect. St,3 represents a disengagement to an intervention. In order to focus on

the impact of St,2, we ignore the effect of St,3 by setting the corresponding coefficient in the

cost generation model equal to zero.

In all models below, context states form a vector of length three: St = [St,1, St,2, St,3] at

each decision point. By setting the coefficients β1, β2, β3, α2, α3, γ3 to different values, we can

observe the performance of the algorithm under different conditions. After the context states

are observed, an intervention is chosen according to the parametrized logistic policy:

πθ(At = 1|St = [St,1, St,2, St,3]) =
eθ0+θ1S,t1+θ2St,2+θ3St,3

1 + eθ0+θ1St,1+θ2St,2+θ3St,3

Intervention At is a binary variable with value 1 or 0. At = 1 means a physical activity

suggestion is provided at time t, while At = 0 indicates no suggestion at time t. Ct is interpreted

as the sedentary time and is revealed according to a linear cost generation model:

Ct = 10− St,1 − At × (0.25 + 0.25St,1 + 0.4St,2) + ξt,4

where the noise term ξt,4 has i.i.d. standard normal distribution.

The problem of searching for the optimal policy is turned into an unconstrained optimization

problem using Lagrangian:

θ∗ = argmin
θ

Jλ(θ) + λθTE[g(S)Tg(S)]θ (3)

The stringency of the quadratic constraint increases monotonically as the Lagrangian parameter

λ increases [1]. We use line search on a range of λ’s to find the smallest one, denoted as λ∗, such
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that the minimizer θ∗ to the regularized average cost function satisfies the quadratic constraint.

We use the same corresponding λ∗ in the actor critic learning algorithm.

The non-convexity of the regularized average cost function makes it difficult to solve the opti-

mization problem. Thus, we refine grid search by pattern search method in MATLAB to find

the optimal policy for a given λ. The optimal policy value (minimum average cost) for each

model is found from the result of 100,000 Monte Carlo samples.

4.1.1 Model.a

In model.a, context states are identically and independently distributed (i.i.d). The assumption

of the contextual bandit algorithm is satisfied. Correspondingly, all coefficients in the generative

model for contexts simulation are set to zero, which means setting β1, β2, β3, α2, α3, γ3 all to

zeros. The context states are generated as follows:

ξt ∼ Normal4(0, I),

St,1 = ξt,1,

St,2 = ξt,2,

St,3 = ξt,3,

When its assumption is satisfied, we expect the contextual bandit algorithm to effectively select

the optimal policy. The policy value (average cost) for each simulated person is expected not

to deviate far from the optimal policy value.
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4.1.2 Model.b

Model.b violates the traditional assumption of the contextual bandit algorithm. We suspect

that a physical activity motivation effect would impair the performance of the contextual bandit

algorithm. In the models in this section, we add motivation effects in the contexts evolving

process. By setting the coefficients in the generative model [β1, β2, β3, α2, α3, γ3] to [0.4,0.25, 0.5,

0.8, 0.5, 0.05], we get the following models with different levels of physical activity motivation

effects, the size of which is measured by xcoefficient.

ξt ∼ Normal4(0, I),

St,1 = 0.4St−1,1 + ξt,1,

St,2 = 0.25St−1,2 + 0.8At−1xcoefficient + ξt,2,

St,3 = 0.5St−1,3 + 0.05St−1,3At−1xcoefficient + 0.5At−1xcoefficient + ξt,3,

As a measure of the motivation effect, xcoefficient increases from 0 to 1 in the step of 0.2. The

impact of motivation effect increases as xcoefficient increases.

When xcoefficient = 0, context-simulation is an auto-regressive process. Even though the context

states do not depend on the interventions from previous decision points in this case, it still

violates the classic bandit problem’s assumption.

Intuitively speaking, when a suggestion/intervention is received (At−1 = 1), a person gets

motivated to do physical activity from the suggestion/intervention. The sedentary time Ct

of the person is supposed to decrease. We expect to see a decreasing trend in the average

sedentary time as a result of an increasing motivation effect.
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5 Simulation Results

5.1 Simulation Results: Model.a

In figure 1, each boxplot is based on 1000 simulated people. Plot (a) shows the simulation

results with 200 decision points (Tmax = 200), when the context states are i.i.d. Plot (b) shows

the results with different total numbers of decision points Tmax. Both plot (a) and (b) show

that the optimal policy value touches the bottom of each boxplot, and the policy value of each

simulated person does not deviate away from the optimal policy value. As the total number of

decision points Tmax increases from 200 to 1000, we observe the variance of the policy values

decreasing, and the policy value for each simulated person gets closer to the optimal policy

value. This observation suggests that increasing the observation time Tmax can improve the

performance of the contextual bandit algorithm when its assumption is satisfied.

(a) IID when Tmax is 200 (b) IID as Tmax changes

Figure 1: IID

Table 1 below provides θ̂’s bias and mean square error (MSE) as Tmax increases from 200 to

1000, when context states are i.i.d. Bias of θ̂ is calculated by taking the average value of θ̂ over
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1000 simulated people, and then subtracting the optimal θ. MSE for each θ̂ is calculated by

adding the variance of θ̂ over 1000 simulated people to the square of θ̂’s bias. We observe that

both bias and MSE of θ̂ are close to 0, and the MSE values decrease as Tmax increases.

Table 1: Bias and MSE of Policy Parameters Under i.i.d Model

Bias(θ̂) = E(θ̂)− θ

Tmax θ0 θ1 θ2 θ3

200 0.0000 0.0015 0.0055 0.0000

400 -0.0031 0.0014 0.0042 0.0019

600 0.0007 0.0010 0.0037 0.0010

800 0.0015 -0.0004 0.0026 0.0027

1000 0.0001 -0.0009 0.0031 0.0020

MSE = V ar(θ̂) +Bias(θ̂)2

Tmax θ0 θ1 θ2 θ3

200 0.0161 0.0134 0.0127 0.0141

400 0.0082 0.0065 0.0066 0.0068

600 0.0052 0.0045 0.0042 0.0049

800 0.0038 0.0032 0.0031 0.0038

1000 0.0029 0.0026 0.0024 0.0029

5.2 Simulation Result: Model.b

5.2.1 Comparison Between Model.a and Model.b when xcoefficient is 0

Figure 2 compares the simulation results of model.a and an auto-regressive model. According

to the two boxplots, the policy values are slightly different, and the variances of policy values

are similar under the two models. Moreover, table 2 provides the Interquartile Range (IQR)

and (Median Absolute Deviation) MAD of policy values for both models, which are also similar.

This comparison reveals that the contextual bandit algorithm is still effective in selecting the

optimal policy when the contexts generation is auto-regressive.
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Figure 2: Compare iid and xcoefficient is 0

When context states generation is auto-regressive, the policy values are slightly different from

when context states are i.i.d. The MAD and IQR are similar under two conditions. According

to these observations, even though the auto-regressive context states generation violates the

traditional assumption of the contextual bandit algorithm, the performance of the contextual

bandit algorithm is still robust.

Table 2: IQR and MDA with Different xcoefficient

IQR = Q3 −Q1

MAD = mediani(|Xi −medianj(Xj)|)

Model i.i.d Auto-Regressive

IQR 0.0069 0.0073

MAD 0.0043 0.0045

5.2.2 Comparison of Policy Values with Different xcoefficient

Table 3 provides λ values, optimal policy values, and optimal policy parameters with different

levels of physical activity motivation effects measured by xcoefficient. Larger λ is needed when
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xcoefficient increases, so that the quadratic constraint is satisfied. We see that θ0 increases

relative to θ1 and θ2. Intuitively, it suggests that more motivated people are more likely to

exercise regardless of the context. A decreasing trend in the policy value is also revealed in the

table when the impact of the motivation effect increases.

Table 3: Optimal policy values and parameters for different xcoefficient

xcoefficient λ∗ optimal policy value θ∗0 θ∗1 θ∗2 θ∗3

0 0.13 9.8372 0.2117 0.2078 0.3313 0

0.2 0.16 9.8165 0.2117 0.1688 0.2820 0

0.4 0.18 9.7925 0.2117 0.1531 0.2469 0

0.6 0.21 9.7694 0.2156 0.1352 0.2117 0

0.8 0.22 9.7422 0.2469 0.1313 0.2000 0

1 0.24 9.7161 0.2469 0.1156 0.1844 0

Model.b visualizes the impacts of different levels of physical activity motivation effects on the

average sedentary time (average cost). As xcoefficient increases, the level of the physical activity

motivation effect St,2 increases. According to the cost generation function, an increase in St,2

will decrease the cost Ct. In figure 3, each boxplot is a result of an independent model with

a unique xcoefficient, based on 1000 simulated people with Tmax = 200. The decreasing trend

in the average cost values implies that the contextual bandit algorithm captures the impact

of the motivation effect. In addition, within each boxplot, the optimal policy value touches

the bottom of the corresponding boxplot. These observations indicate that, in our generative

model, the contextual bandit algorithm is still robust when a physical activity motivation effect

is present.
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Figure 3: Average Sedentary Time with Different Levels of Physical Activity Motivation

Table 4 indicates that the IQR and MAD of the average cost do not have a significant increase

as xcoefficient increases. Also, we observe from table 5 that the bias and MSE of the policy

values are relatively small and do not increase significantly as xcoefficient increases.

Table 4: IQR and MDA with Different xcoefficient

IQR = Q3 −Q1

MAD = mediani(|Xi −medianj(Xj)|)

xcoefficient 0 0.2 0.4 0.6 0.8 1

IQR 0.0073 0.0051 0.0061 0.0056 0.0065 0.0067

MAD 0.0034 0.0025 0.0028 0.0027 0.0029 0.0032
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Table 5: Mean Square Error of Average Cost

Bias(Ĉ) = E(Ĉ)− C∗

MSE = V ar(Ĉ) +Bias(Ĉ)2

xcoefficient 0 0.2 0.4 0.6 0.8 1

Bias 0.0081 0.0062 0.0070 0.0069 0.0077 0.0084

MSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

5.2.3 Policy Parameters With Different xcoefficient

We tracked the policy parameters θ for different xcoefficient, and calculated the bias and MSE

of θ̂’s. Table 6 below shows that both the bias and MSE of θ̂’s are small, and do not have

significant increase as xcoefficient increases.

The observations of the policy values and policy parameters for different xcoefficient values

suggest that the contextual bandit algorithm can still effectively select the optimal policy in

our generative model. According to our generative model, the contextual bandit algorithm is

still robust when different levels of physical activity motivation effects are present.
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Table 6: Bias and MSE of Policy Parameters With Different xcoefficient

Bias(θ̂) = E(θ̂)− θ

xcoefficient θ0 θ1 θ2 θ3

0 -0.0028 0.0023 -0.0116 0.0057

0.2 -0.0313 0.0016 -0.0056 0.0026

0.4 -0.0505 0.0052 0.0048 0.0021

0.6 -0.0739 0.0030 0.0013 0.0017

0.8 -0.1106 0.0003 0.0013 0.0013

1 -0.1193 0.0048 0.0017 0.0015

MSE = V ar(θ̂) +Bias(θ̂)2

xcoefficient θ0 θ1 θ2 θ3

0 0.0154 0.0111 0.0109 0.0112

0.2 0.0091 0.0060 0.0061 0.0057

0.4 0.0119 0.0067 0.0065 0.0062

0.6 0.0133 0.0050 0.0049 0.0047

0.8 0.0202 0.0047 0.0043 0.0041

1 0.0217 0.0042 0.0033 0.0034

5.2.4 Collinearity Issue

In figure 3, we observe significant outliers in boxplots when xcoefficient is 0.6, 0.8 and 1. The

suspected reason for these outliers is the collinearity in covariate matrix. Intuitively speaking,

as the size of motivation increases, the average cost values decrease. The algorithm will update

its selection strategy to choose to receive an intervention more likely. In this way, the collinearity

of cost feature increases.

Ct = 10− St,1 + 0× St,2 + 0× St,3 − At × (0.25 + 0.25St,1 + 0.4St,2) + ξt,4

At each decision point, when At = 1, the cost feature is the vector [1, St,1, St,2, St,3, St,1, St,2, St,3].

When At = 0, the cost feature is [1, St,1, St,2, St,3, 0, 0, 0]. The condition number is the largest

eigenvalue of the cost feature matrix. We want the square root of the condition number of our

cost feature matrix to be close to 1. A large value of the square root of the condition number

indicates high collinearity. Figure 4 provides the square root of condition number of cost feature

matrix under different levels of physical motivation when Tmax is 200. As xcoefficient increases,

the collinearity of the cost feature increases, and the corresponding IQR and MAD of policy
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values increase as indicated by table 4 and5.

Figure 4: Square Root of Condition Numbers as xcoefficient Increases

We suspect that the outliers are special cases. We repeated the simulation in model.b when

xcoefficient is 0.8 and 1 with a different seed. Figure 5 shows that there is no significant outlier

in this simulation.

Figure 5: Average Cost With A Different Simulation Seed
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5.2.5 Convergence of Policy Values and Policy Parameters

From the simulation results of model.a, it is observed that the performance of the contextual

bandit algorithm can be improved by increasing the observation time Tmax for each simulated

person. In this section, we increase the observation time for different levels of motivation

effects. We set xcoefficient = 0, 0.6, and 1, and observe the performance of the algorithm as the

observation time Tmax increases from 200 to 1000.

Figure 6 shows that for each value of xcoefficient, the average cost values get closer to the cor-

responding optimal value, and the variance of the average cost decreases when the observation

time increases. This observation suggests that when a physical activity motivation effect exists,

the algorithm can still improve its performance by increasing observation time for each person.

Figure 6: Average cost vs. Tmax

The MAD of average cost values for xcoefficient = 0, 0.6, 1 also decreases as Tmax increases. In

addition, there is no significant increase in MAD when xcoefficient increases from 0 to 1 under

given Tmax. The corresponding median absolute deviation values are provided in table 7.

18



Table 7: Median Absolute Deviation

MAD = mediani(|Xi −medianj(Xj)|)

xcoefficient Tmax

200 400 600 800 1000

0 0.0044 0.0022 0.0014 0.0011 0.0008

0.6 0.0038 0.0022 0.0017 0.0014 0.0012

1 0.0044 0.0028 0.0022 0.0018 0.0016

Since the performance of the algorithm can be improved by increasing the number of decision

points, we expect to see that the policy parameters converge when Tmax increases. The tables

8, 9, 10 below provide the bias and MSE of policy parameters when xcoefficient is 0, 0.6 and

1 respectively. From the tables, we observe that for each xcoefficient, the bias of each θ̂ is

stable when Tmax increases, and the variance of each θ̂ decreases when Tmax increases. This

observation suggests that the policy parameters converge, but do not converge to the optimal

policy.

Table 8: Bias and MSE of policy parameters when xcoefficient is 0

Bias(θ̂) = E(θ̂)− θ

Tmax θ0 θ1 θ2 θ3

200 -0.0011 -0.0067 -0.0029 -0.0017

400 -0.0009 -0.0052 -0.0022 -0.0004

600 -0.0027 -0.0045 -0.0017 0.0008

800 -0.0030 -0.0025 -0.0014 -0.0011

1000 -0.0017 -0.0023 -0.0017 -0.0008

MSE = V ar(θ̂) +Bias(θ̂)2

Tmax θ0 θ1 θ2 θ3

200 0.0159 0.0109 0.0116 0.0108

400 0.0079 0.0054 0.0060 0.0053

600 0.0050 0.0037 0.0038 0.0036

800 0.0036 0.0026 0.0028 0.0028

1000 0.0028 0.0021 0.0021 0.0022
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Table 9: Bias and MSE of policy parameters when xcoefficient is 0.6

Bias(θ̂) = E(θ̂)− θ

Tmax θ0 θ1 θ2 θ3

200 -0.0766 -0.0001 0.0057 -0.0005

400 -0.0742 -0.0005 0.0048 -0.0005

600 -0.0762 -0.0011 0.0051 0.0004

800 -0.0761 -0.0002 0.0051 -0.0010

1000 -0.0755 0.0000 0.0050 -0.0005

MSE = V ar(θ̂) +Bias(θ̂)2

Tmax θ0 θ1 θ2 θ3

200 0.0147 0.0051 0.0051 0.0047

400 0.0097 0.0025 0.0026 0.0022

600 0.0085 0.0017 0.0017 0.0015

800 0.0078 0.0012 0.0013 0.0012

1000 0.0073 0.0009 0.0010 0.0009

Table 10: Bias and MSE of policy parameters when xcoefficient is 1

Bias(θ̂) = E(θ̂)− θ

Tmax θ0 θ1 θ2 θ3

200 -0.1217 0.0023 0.0070 -0.0020

400 -0.1200 0.0021 0.0059 -0.0012

600 -0.1220 0.0020 0.0058 0.0001

800 -0.1228 0.0028 0.0058 -0.0010

1000 -0.1223 0.0028 0.0058 -0.0006

MSE = V ar(θ̂) +Bias(θ̂)2

Tmax θ0 θ1 θ2 θ3

200 0.0234 0.0039 0.0037 0.0034

400 0.0186 0.0020 0.0019 0.0017

600 0.0175 0.0013 0.0012 0.0011

800 0.0168 0.0009 0.0009 0.0009

1000 0.0163 0.0007 0.0008 0.0007

6 Discussion

6.1 Observation and Conclusion

In the hope of applying the contextual bandit algorithm to mobile health for providing optimal

activity suggestions, this study explored the robustness of the contextual bandit algorithm
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when deviation to its i.i.d assumption happens. Since a physical activity motivation effect is

concerned as a major factor affecting the distribution of context states, this study explored the

impact of a physical activity motivation effect on the performance of the algorithm through

simulation and comparison. The results of our simulation study imply that the algorithm

can still effectively choose the optimal policy. In addition, the impact of a physical activity

motivation effect on decreasing the average sedentary time can be captured by the algorithm.

Thus, based on the observations from simulation results, we claim that the physical activity

motivation effect that buried in the contexts evolving process do not nullify the application of

the contextual bandit algorithm.

6.2 Limitation

Physical activity motivation is not the only factor that violates the assumption of the contex-

tual bandit algorithm. Even though the algorithm performs well in our generative model, in

another generative model in Huitian Lei’s work [1], where the motivation effect also impacts

the cost generation, there is more bias in the policy parameters. Moreover, in real world mo-

bile health problems, there are various kinds of ways that the distribution of contexts can be

impacted by past interventions. For example, a disengagement to an intervention represented

by S3 in our model.b is also a major factor in the practical world affecting the context states

distribution. When the disengagement is present, the average sedentary time is expected to

increase. Further study may involve the disengagement factor in the cost generation model to

observe the performance of the algorithm.
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