
Harnessing the Power of Multi-Source Data: an
Exploration of Diversity and Similarity

by

Yang Liu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering-Systems)

in The University of Michigan
2016

Doctoral Committee:

Professor Mingyan Liu, Chair
Professor Alfred O. Hero III
Assistant Professor Grant Schoenebeck
Associate Professor Vijay Subramanian

c© Yang Liu 2016

All Rights Reserved

To my Mom Yufeng Qi, and Dad Zhixian Liu.

ii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to the people who made

this dissertation possible. First, I would like to thank Professor Mingyan Liu with my

deepest gratitude. I have been very fortunate to have Mingyan as my Ph.D advisor, who

showed continuous support for my Ph.D career. Throughout my five years’ study, Mingyan

offered helpful and timely advices on both my research and career development. I am also

very grateful for having Professor Alfred O. Hero III, Professor Vijay Subramanian and

Professor Grant Schoenebeck served on my thesis committee, and I owe many thanks to

them. They provided valuable comments and reviews for this dissertation.

My thanks also go to my collaborators, especially Professor Michael Bailey from UIUC

and Professor Jing Deng from UNCG. The many insightful discussions with them have

inspired multiple pieces of my work. I want to thank Professor Demosthenis Teneketzis

for his excellent lectures. I have gained a lot of technical skills and understandings via

attending his classes.

I thank my colleagues at EECS and friends at Ann Arbor, including but not limited

to Qingsi, Ouyang, Jing, Armin, Parinaz etc. I very much enjoyed our collaborations,

discussions and a whole lot other happy moments.

Most importantly I would like to thank my parents for their love, support and under-

standing, without which I will not be able to reach where I am. My special thanks goes

to Tess Lou. We have been through thick and thin, and I could not thank her more for the

encouragements.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF APPENDICES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Background and Motivations . 1
1.2 Outline of problems studied . 3

1.2.1 Data quality control in a crowd-sourcing market 3
1.2.2 Improving learning performance via crowd-sourced or

multi-source data . 4
1.2.3 Interdependency of network maliciousness: an application 5

1.3 Contributions . 6
1.3.1 Data quality control in crowd-sourcing market [51] . . . 6
1.3.2 Crowd-Learning: improving online recommendation [50,

48] . 6
1.3.3 Online prediction via multi-source data [52] 7
1.3.4 Interdependency of network maliciousness [53, 49] . . . 8

1.4 Organizations . 9

II. Quality control of crowd-sourcing systems 10

2.1 Introduction . 10
2.2 Problem formulation and preliminaries 15

2.2.1 The crowd-sourcing model 15

iv

2.2.2 Offline optimal selection of labelers 17
2.2.3 The lack of ground-truth 18

2.3 Learning the Optimal Labeler Selection 20
2.3.1 An online learning algorithm LS OL 20
2.3.2 Main results . 23
2.3.3 Regret analysis of LS OL 24
2.3.4 Cost analysis of LS OL 27
2.3.5 Discussion . 27

2.4 Weighted Majority Voting and its regret 30
2.4.1 Weighted Majority Voting 30
2.4.2 Main results . 32

2.5 Labelers with different types of tasks 34
2.6 A lower bound on the regret . 36

2.6.1 O(1) reassignment leads to unbounded regret 36
2.6.2 D2(t)> O(1) . 38

2.7 A refined upper bound to match 39
2.7.1 Tightness of O(log2 T) for a type of policies 39

2.8 Experiment Results . 40
2.8.1 Simulation study . 40
2.8.2 Study on a real AMT dataset 43

2.9 Concluding remarks . 45

III. Crowd-learn: Online recommendation system 46

3.1 Introduction . 46
3.2 Problem formulation . 48
3.3 Crowd-Learning, Full Information (CL-FULL) 50

3.3.1 Option independent δ i, j 53
3.3.2 Option dependent δ

i, j
k 54

3.3.3 A joint estimation of δ
i, j
k : beyond pair-wise estimation . 56

3.3.4 Discussion and extensions 57
3.4 Crowd-Learning, Partial Information (CL-PART) 59

3.4.1 Preference identification 59
3.4.2 Algorithm and performance 60
3.4.3 Leveraging more information 63

3.5 The case with contextual information 64
3.6 Numerical Experiment . 65

3.6.1 Simulation setup . 65
3.6.2 Simulation results . 66

3.7 An Empirical Study Using MovieLens 67
3.7.1 Experiment design . 68
3.7.2 Online prediction result 71
3.7.3 Validating partial information algorithm 73
3.7.4 Offline estimation result 73

v

3.8 Offline Crowd-Learning . 75
3.8.1 Experiments . 76

3.9 Concluding remarks . 77

IV. Finding One’s Best Crowd: Online Prediction By Exploiting Source
Similarity . 78

4.1 Introduction . 78
4.2 Problem Formulation . 80

4.2.1 Learning with multiple data sources 80
4.2.2 Pair-wise similarity between data sources 82

4.3 Solution with Complete Information 84
4.3.1 Upper bounding the learning error 84

4.4 Overhead of Learning Similarity 88
4.5 A Cost-efficient Algorithm . 90

4.5.1 A cost-efficient online algorithm 90
4.5.2 Performance of K-Learning 92
4.5.3 Cost analysis . 95

4.6 Concluding remarks . 95

V. Enhancing Multi-source Measurement Using Similarity and Inference:
A Case Study of Network Security Interdependence 96

5.1 Introduction . 96
5.2 The Dataset and Preliminaries . 99

5.2.1 RBL . 99
5.2.2 Internet geographical datasets 99
5.2.3 Data aggregation . 100

5.3 Measuring similarity in maliciousness 102
5.3.1 Anatomy of similarity graphs and topological interpre-

tation . 102
5.3.2 Using similarity to enhance measurement 105

5.4 From Maliciousness to Topological Similarity 107
5.4.1 An inference model over graphs 108
5.4.2 A multi-layer graphical inference model 109
5.4.3 Sensitivity analysis . 111
5.4.4 Inference on the RBL dataset 114
5.4.5 Estimating maliciousness in the absence of measure-

ment data . 116
5.5 Concluding remarks . 118

VI. Conclusion . 120

6.1 Future work . 121

vi

APPENDICES . 122

BIBLIOGRAPHY . 197

vii

LIST OF FIGURES

Figure

2.1 Description of LS OL . 22
2.2 Regret of the LS OL algorithm. 41
2.3 Performance comparison: labeler selection v.s. full crowd-sourcing (ma-

jority voting) . 42
2.4 Effect of amin: higher amin leads to much better performance. 42
2.5 Comparing weighted and simple majority voting within LS OL. 42
2.6 Cumulated number of disagreements. 44
2.7 Performance comparison : an online view 44
2.8 Performance comparison : a summery 44
3.1 Comp. between CL-FULL, UCB-IND, UCB Centralized 66
3.2 Conver. of differentiating users from different groups. 67
3.3 Performance of CL-PART, with different γ parameters. 67
3.4 Comparison between CL-PART(I) and CL-PART(II). 67
3.5 Convergence of regret . 71
3.6 Algorithm performance and comparison. 73
5.1 Examples of the aggregate signal . 101
5.2 Similarity graphs for each of the three malicious types. Top 5,000 prefix-

es of Years 2013-2014. 102
5.3 Prediction performance comparison. 106
5.4 CDF of ranks of separated sub-matrices. 107
5.5 CDF of data filling errors. Separating networks. Average Error (AE) =

0.079 for direct matrix completion. AE = 0.0187 for (W-MF). Perfor-
mance is more than 4 times better. 107

5.6 On the left, we attempt to establish the explanatory power of factors on
the LHS of observations shown on the RHS. The degrees of significance
are given by inferred edge weights. On the right, a multi-layer graphical
inference model. A connector H (hidden matrix) is introduced to simply
the analysis. 109

5.7 Similarity distribution w.r.t. AS hops . 117
5.8 Estimation results for 2014 using topological similarity for different cat-

egories of maliciousness, as well as a union of them. 118

viii

LIST OF TABLES

Table

2.1 Sample of simulation setup . 40
2.2 Performance comparison. There is a clear gap between crowd-sourcing

results with and without using LS OL. 43
2.3 Total number of disagreement each AMT has 43
3.1 Average error (top 3 rows) and average square root error (bottom 3) . . . 72
3.2 Comparison with matrix factorization methods. 74
5.1 The RBL datasets . 99
5.2 Simulation studies with error-free solutions, bounded additive and flip

errors. 113
5.3 Inference result. ξ is set to be 0.85. 115
5.4 Inference result along each malicious type separately. 115

ix

LIST OF APPENDICES

Appendix

A. Proofs for Chapter II . 123
B. Proofs for Chapter III . 143
C. Proofs for Chapter IV . 167
D. Proofs for Chapter V . 188

x

ABSTRACT

Harnessing the Power of Multi-source Data: an Exploration of Diversity and Similarity

by

Yang Liu

Doctor of Philosophy

Chair: Mingyan Liu

This dissertation studies a sequence of problems concerning the collection and utiliza-

tion of data from disparate sources, e.g., that arising in a crowd-sourcing system. It aims at

developing learning methods to enhance the quality of decision-making and learning task

performance by exploiting a multitude of diversity, similarity and interdependency inherent

in a crowd-sourcing system and among disparate data sources.

We start our study with a family of problems on sequential decision-making combined

with data collection in a crowd-sourcing system, where the goal is to improve the quality of

data input or computational output, while reducing the cost in using such a system. In this

context, the learning methods we develop are closed-loop and online, i.e., decisions made

are functions of past data observations, present actions determine future observations, and

the learning occurs as data inputs arrive. The similarity and disparity among different data

sources help us in some cases to speed up the learning process (e.g., in a recommender

system), and in some other cases to perform quality control over data input for which

ground-truth may be non-existent or cannot be obtained directly (e.g., in a crowd-sourcing

market using Amazon Mechanical Turks (AMTs)).

xi

We then apply our algorithms to the processing of a large set of network malicious

activity data collected from diverse sources, with a goal of uncovering interconnected-

ness/similarity between different network entities’ malicious behaviors. Specifically, we

apply our online prediction algorithm presented and analyzed in earlier parts of the disser-

tation to this data and show its effectiveness in predicting next-day maliciousness. Further-

more, we show that data-specific properties of this set of data allow us to map networks’

behavioral similarity to similarity in their topological features. This in turn enables predic-

tion even in the absence of measurement data.

xii

CHAPTER I

Introduction

1.1 Background and Motivations

Machine learning techniques often rely on correctly labeled data for purposes such

as building classifiers; this is particularly true for supervised discriminative learning. As

shown in [68, 57], the quality of labels can significantly impact the quality of the trained

classifier and in turn the system performance. Semi-supervised learning methods, e.g. [84,

12, 43] have been proposed to circumvent the need for labeled data or lower the requirement

on the size of labeled data; nonetheless, many state-of-the-art machine learning systems

such as those used for pattern recognition continue to rely heavily on supervised learning,

which necessitates cleanly labeled data. At the same time, advances in instrumentation and

miniaturization, combined with frameworks like participatory sensing, rush in enormous

quantities of unlabeled data.

Against this backdrop, crowd-sourcing has emerged as a viable and often favored so-

lution as evidenced by the popularity of the Amazon Mechanical Turk (AMT) system.

Prime examples include a number of recent efforts on collecting large-scale labeled image

datasets, such as ImageNet [15] and LabelMe [67]. The concept of crowd-sourcing has al-

so been studied in contexts other than processing large amounts of unlabeled data, see e.g.,

user-generated map [25], opinion/information diffusion [24], and event monitoring [13] in

large, decentralized systems.

1

Its many advantages notwithstanding, the biggest problem with crowd-sourcing is qual-

ity control, which is present in different types of crowd-sourcing systems, albeit of different

nature. In the so-called crowd-sourcing markets where AMTs are used to perform compu-

tational tasks, as shown in several previous studies [31, 68], if labelers (e.g., AMTs) are

not selected carefully the resulting labels can be very noisy, due to reasons such as vary-

ing degrees of competence, individual biases, and sometimes irresponsible behavior. At

the same time, the cost in having a large amount of data labeled (payment to the labelers)

is non-trivial. This makes it important to look into ways of improving the quality of the

crowd-sourcing process and the quality of the results generated by the labelers. The main

technical difficulty here is often the lack of verifiable ground-truth data, or ground-truth

that could be obtained within reasonable amount of time; after all the whole point of a

crowd-sourcing market is to try to obtain approximate ground-truth through the crowd.

In a second type of crowd-sourcing systems, often called recommendation systems, a

similar quality control issue exist. Here recommendations (on movies, movie articles, ven-

dors, restaurants and so on) made by disparate individuals are not only based on objective

ground-truth but also subjective opinion and personal preference. For a user interested in

taking others’ recommendations into consideration when making her own decisions (e.g.,

which movies to see, which restaurants to visit and so on), the issue arises as to which rec-

ommenders’ opinion should she value the most in her decision process so as to maximize

her overall satisfaction.

More generally, whenever a dataset involves multiple sources – a source could be either

the generator or the consumer of the data, this type of quality control issue become rele-

vant due to objective and subjective measures of ground-truth (or the lack thereof). This

motivates us to study how to design data processing and learning algorithms to address this

challenge. We are particularly interested in the type of process scenarios that involve se-

quential decision-making combined with data collection, i.e., data is acquired sequentially

in time and likely from multiple disparate sources, and past observations affects decisions

2

on data collection, which in turn determines future observations. Our goal is to improve

the quality of data input and/or computational output, while reducing the cost in using such

a system, by exploiting the diversity and similarity inherent in the multi-source system.

Within this context, the learning methods we develop are closed-loop and online, i.e., deci-

sions are functions of past data observations, present actions determine future observations,

and learning occurs as data inputs arrive.

1.2 Outline of problems studied

This dissertation studies a sequence of problems concerning the collection and utiliza-

tion of data from multiple sources, and aims at developing learning methods to enhance

the quality of decision-making and learning task performance by exploiting a multitude of

diversity, similarity and interdependency inherent among multiple data sources. Below we

describe these problems in more detail.

1.2.1 Data quality control in a crowd-sourcing market

The first problem we consider is on labeler quality control/selection for crowd-sourcing

system, whereby a user needs to assign a set of arriving tasks to a set of labelers whose

qualities are unknown a priori. It is in the user’s interest to estimate the labelers’ quali-

ty over time so as to make more judicious task assignment decisions which lead to better

labeling outcome. This problem in some sense can be cast as multi-armed bandit (MAB)

problem. Within such a framework, the objective is to select the best of a set of choices (or

“arms”) by repeatedly sampling different choices (exploration) and their empirical quality

is subsequently used to control how often a choice is used (exploitation). However, there

are two distinct features that set our problem apart from the existing literature on bandit

problems. Firstly, since the data is unlabeled to begin with and the labelers’ quality is also

unknown, a particular choice of labelers leads to unknown quality of their labeling outcome

(mapped to the “reward” of selecting a choice in the MAB context). Whereas this reward

3

is assumed to be known instantaneously following a selection in the MAB problem, in our

model this remains unknown and at best can only be estimated with a certain error probabil-

ity. Secondly, to avoid having to deal with a combinatorial number of arms, it is desirable

to learn and estimate each individual labeler’s quality separately (as opposed to estimating

the quality of different combinations of labelers). The optimal selection of labelers then

depends on individual qualities as well as how the labeling outcome is computed using

individual labels.

For this problem our goal is to design a good learning algorithm that estimates the

labelers’ quality as tasks are assigned and performed, which allows the user to over time

learn the more effective combinations of labelers for arriving tasks.

1.2.2 Improving learning performance via crowd-sourced or multi-source data

We next consider two problems on improving learning performance via data collected

through crowd-sourcing.

Crowd learning in a recommendation system: The first problem is set in a general

recommendation system, e.g., Yelp, where users both give recommendations and seek rec-

ommendations to aid their decision-making abstracted to the form of making selections

out of a set of options, e.g., restaurants, movies, etc. Left alone and without prior infor-

mation, a user can only learn the best options by repeated exploration or sampling. This

individual learning process may be aptly captured by the standard MAB model. With a rec-

ommendation system, however, the same user can tap into observations (or samples) made

by others, but the challenge here is that user experiences are subjective, so it is a priori

unclear how much value to associate with any given recommendation. The user’s objec-

tive is to maximize her expected total reward (e.g., overall satisfaction from the sequence

of options she chooses) over a certain time horizon, and this needs to be done through an

online learning process, i.e., a sequence of exploration (sampling the return of each option)

4

and exploitation (selecting empirically good options) steps. Our goal is to design such a

learning process that can effectively utilize “second-hand learning”, i.e., by observing how

others in the system act and what they recommend, in additional to “first-hand learning”,

i.e., direct sampling of options. This is accomplished by estimating pairwise differences

among users, which are then used to “convert” other users’ samples for one’s own use.

Best crowd – a more general setting: The second problem is set in a more general

machine learning context, whereby a user could train a classifier with her own data, but

can also seek to improve her performance by requesting samples from other similar users

at a cost. Similar as in the previous problem, in this case a user also needs to estimate her

“similarity” with others in the system. A difference, however, is that now the user must

also decide which is the best set of users to request data from as it incurs a cost. This gives

rise to the notion of a smarter or best crowd that a user may identify and utilize.

1.2.3 Interdependency of network maliciousness: an application

We will also put results derived earlier in the application context of a particular set of

data collected over the Internet that is of a multi-source nature. Our dataset centers on ob-

servations of malicious activities originated from different networks on the Internet. These

are often symptoms of their security posture and policies adopted by them. In particular, the

dynamics in such activities reveal rich information on the evolution of networks’ underly-

ing conditions and therefore are helpful in capturing behaviors in more consistent ways. At

the same time, the interdependence of today’s Internet also means that what we see from

one network is inevitably related to others. This connection can provide insight into the

conditions of not just a single network viewed in isolation, but multiple networks viewed

together. This understanding in turn allows us to predict more accurately the security con-

ditions or malicious activities of networks in general, and can lead to the design of better

proactive risk aware policies for applications ranging from traffic engineering, peering and

5

routing.

We shall explore unique features in this dataset to highlight the effectiveness of one

of our algorithms in making predictions, as well as to show that data-specific processing

methods also arise within this contexts that can be exploited to offer additional insight.

1.3 Contributions

1.3.1 Data quality control in crowd-sourcing market [51]

For the labeler selection problem, we obtained the following set of results.

1. We designed an online learning algorithm to estimate the quality of labelers in a

crowd-sourcing setting without ground-truth information but with mild assumptions

on the quality of the crowd as a whole, and showed that it is able to learn the optimal

set of labelers under both simple and weighted majority voting rules and attains no-

regret performance guarantees (w.r.t. always using the optimal set of labelers).

2. We similarly provided regret bounds on the cost of this learning algorithm w.r.t. al-

ways using the optimal set of labelers.

3. We showed how our model and results can be extended to the case where the quality

of a labeler may be task-type dependent, as well as a simple procedure to quickly

detect and filter out “bad” (dishonest, malicious or incompetent) labelers to further

enhance the quality of crowd-sourcing.

4. We established a lower bound on the learning regret for our online labeler selection

problem.

5. Our validation included both simulation and the use of a real-world AMT dataset.

1.3.2 Crowd-Learning: improving online recommendation [50, 48]

For the online recommendation problem, we show that:

6

1. When complete information is shared (or being crowd-sourced), our crowd-learning

algorithm results in up to a M-fold improvement to the regret bound under different

problem settings.

2. When only partial information is available, the improvement of learning is tied to a

weight/recommendation factor of how much we value others’ opinion compared to

her own. Interestingly we find in certain special case, simply integrating partial infor-

mation allows the algorithm’s performance bound to outperform its full information

counterpart. To our best knowledge this is the first attempt to analyze online learning

with crowdsourced data.

3. By applying our results to the movie ratings dataset MovieLens [39], we showed how

our algorithms can be used as an online (causal) process to make real-time predic-

tions/recommendations. Experiments show that in both online and offline settings

our recommendation performance exceeds that of individual learning, and in the of-

fline setting our results are also comparable with several existing offline solutions.

4. In order to further understand the difference between the notion of “crowd learn”

and offline collaborative filtering methods, we adapted the idea of finding a crowd

of similar users to existing matrix factorization based recommendation methods and

show its performance.

1.3.3 Online prediction via multi-source data [52]

We extend the idea of crowd learning and study a more general and complicated online

learning objective (training online classifiers) with crowd-sourced data, and we have the

following set of results:

1. We first establish bounds on the expected learning error under ideal conditions, in-

cluding that (1) the similarity information between data sources is known a priori,

and (2) data from all sources are available for free.

7

2. We then relax assumption (1) and similarly establish the bounds on the error when

such similarity information needs to be learned over time.

3. We then relax both (1) and (2) and design an efficient online learning algorithm that

simultaneously makes decisions on requesting and combining data for the purpose

of training the predictor, and learning the similarity among data sources. We again

show that this algorithm achieves a guaranteed performance uniform in time (the best

possible error rate plus additional learning error terms), and the additional cost with

respect to the minimum cost required to achieve optimal learning rate diminishes in

time. Moreover, the obtained bounds show clearly the trade-off between learning

accuracy and the cost to obtain additional data. This provides useful information for

system designers with different objectives.

1.3.4 Interdependency of network maliciousness [53, 49]

Our main contributions and findings for this application study are as follows:

1. We quantify the similarity relationship between two networks’ dynamic malicious

behavior. We show that (1) the online prediction algorithm we developed earlier com-

bined with such quantitative understanding of similarity can achieve a much better

prediction of future maliciousness; and (2) the crowd learning based collaborative fil-

tering method with built-in similarity notions can enable more robust measurements

through more accurate estimates of missing entries in the measurement data.

2. We then use statistical inference methods to evaluate the significance (or the degree

of resemblance) of the set of spatial features in explaining the observed similarity in

malicious behavior. We provide performance bounds on our inference model in the

presence of noise and error inherent in the RBL data.

3. Of particular interest is a finding that within the set of spatial features, the topolog-

ical distance between two networks is by far the most significant indicator of their

8

similarity in maliciousness.

4. We show the understanding in spatial similarity can enable prediction for a network

without historical information which would otherwise be infeasible. The results of

this particular application study shed lights on building cost-efficient Internet-scale

measurement techniques.

1.4 Organizations

The remainder of this dissertation is organized as follows. We start in Chapter II with

the data quality control problem for labeler selection in crowd-sourcing market. Then

we proceed to discuss the crowd learning study on recommendation system with crowd-

sourced ratings in Chapter III. We present the learning via multi-source data problem under

a more generalized setting in Chapter IV. In our last part of the dissertation, we present the

application study on security interdependency with a set of cyber security data collected

from diverse sources in Chapter V. Chapter VI will conclude the dissertation, along with a

discussion on future works. All proofs can be found in Appendices.

9

CHAPTER II

Quality control of crowd-sourcing systems

2.1 Introduction

Machine learning techniques often rely on correctly labeled data for purposes such

as building classifiers; this is particularly true for supervised discriminative learning. As

shown in [68, 57], the quality of labels can significantly impact the quality of the trained

classifier and in turn the system performance. Semi-supervised learning methods, e.g. [84,

12, 43] have been proposed to circumvent the need for labeled data or lower the requirement

on the size of labeled data; nonetheless, many state-of-the-art machine learning systems

such as those used for pattern recognition continue to rely heavily on supervised learning,

which necessitates cleanly labeled data. At the same time, frameworks like participatory

sensing rush in enormous quantities of unlabeled data.

Against this backdrop, crowd-sourcing has emerged as a viable and often favored so-

lution as evidenced by the popularity of the Amazon Mechanical Turk (AMT) system.

Prime examples include a number of recent efforts on collecting large scale labeled image

datasets, such as ImageNet [15] and LabelMe [67]. The concept of crowd-sourcing has

also been studied in contexts other than processing large amounts of unlabeled data, see

e.g., user-generated map [25], opinion diffusion [48], and event monitoring [13] in large,

decentralized systems.

Its many advantages notwithstanding, the biggest problem with crowd-sourcing is qual-

10

ity control: as shown in several previous studies [31, 68], if labelers (e.g., AMTs) are not

selected carefully the resulting labels can be very noisy, due to reasons such as varying

degrees of competence, individual difference, and sometimes irresponsible behavior. At

the same time, the cost for having large amount of data labeled (payment to the labelers)

is non-trivial. This makes it important to look into ways of improving the quality of the

crowd-sourcing process and the quality of the results generated by the labelers.

In this chapter we approach the labeler selection problem in an online learning frame-

work, whereby the labeling quality of the labelers is estimated as tasks are assigned and

performed, so that an algorithm over time learns to use the more effective combinations of

labelers for arriving tasks. This problem in some sense can be cast as multi-armed bandit

(MAB) problem, see e.g., [44, 5, 73]. Within such a framework, the objective is to select the

best of a set of choices (or “arms”) by repeatedly sampling different choices (referred to as

exploration) and their empirical quality is subsequently used to control how often a choice

is used (referred to as exploitation). However, there are two distinct features that set our

problem apart from the existing literature in bandit problems. Firstly, since the data is unla-

beled to begin with and the labelers’ quality is also unknown, a particular choice of labelers

leads to unknown quality of their labeling outcome (mapped to the “reward” of selecting a

choice in the MAB context). Whereas this reward is assumed to be known instantaneous-

ly following a selection in the MAB problem, in our model this remains unknown and at

best can only be estimated with a certain error probability. This poses significant technical

challenge compared to a standard MAB problem. Secondly, to avoid having to deal with a

combinatorial number of arms, it is desirable to learn and estimate each individual labeler’s

quality separately (as opposed to estimating the quality of different combinations of label-

ers). The optimal selection of labelers then depends on individual qualities as well as how

the labeling outcome is computed using individual labels. In this study we will consider

both a simple majority voting rule as well as a weighted majority voting rule and derive the

respective optimal selection of labelers given their estimated quality.

11

Due to its online nature, our algorithm can be used in real time, processing tasks as

they arrive. Our algorithm thus has the advantage of performing quality assessment and

adapting to better labeler selections as tasks arrive. This is a desirable feature because gen-

erating and processing large datasets can incur significant cost and delay, so the ability to

improve labeler selection on the fly (rather than waiting till the end) can result in substantial

cost savings and improvement in processing quality. Below we review the literature most

relevant to the study presented in this paper in addition to the MAB literature cited above.

Within the context of learning and differentiating labelers’ expertise in crowd-sourcing

systems, a number of studies have looked into offline algorithms. For instance, in [22],

methods are proposed to eliminate irrelevant users from a set of user-generated dataset;

in this case the elimination is done as post-processing to clean up the data since the data

has already been labeled by the labelers (tasks have been performed). Another example

is the family of matrix factorization or matrix completion based methods, see e.g., [83],

where labeler selection is implicitly done through the numerical process of finding the best

recommendation for a participant. Again this is done after the labeling has already been

done for all data by all (or almost all) labelers. This type of approaches is more appropriate

when used in a recommendation system where data and user-generated labels already exist

in large quantities.

Recent studies [36, 35] have examined the fundamental trade-off between labeling ac-

curacy and redundancy in task assignment in crowd-sourcing systems. In particular, it is

shown in [36] that a labeling accuracy of 1− ε for each task can be achieved with a per-

task assignment redundancy no more than O(K/q · log(K/ε)); thus more redundancy can

be traded for more accurate outcome. In [36] the task assignment is done in a one-shot

fashion (thus non-adaptive) rather than sequentially with each task arrival as considered in

our paper, thus the result is more applicable to offline settings similar to those cited in the

previous paragraph. In [35] an iterative algorithm is proposed for deciding tasks assign-

ment and it is shown to outperform majority voting. Again the approach here is one-shot

12

where all questions are asked simultaneously and the allocation rule is non-adaptive.

Within online solutions, the concept of active learning has been quite intensively stud-

ied, where the labelers are guided to make the labeling process more efficient. Examples

include [31], which uses a Bayesian framework to actively assign unlabeled data based

on past observations on labeling outcomes, and [54], which uses a probabilistic model to

estimate the labelers’ expertise. However, most studies on active learning require either

an oracle to verify the correctness of the finished tasks which in practice does not exist,

or ground-truth feedback from indirect but relevant experiments (see e.g.,[31]). Similar-

ly, existing work on using online learning for task assignment also typically assumes the

availability of ground-truth (as in MAB problems). For instance, in [28] online learning

is applied to sequential task assignment but ground-truth of the task performance is used

to estimate the performer’s quality. In [56], a Bayes update aided online solution was pro-

posed to minimize the regret in a problem of disseminating news to a crowd of users. The

performance of the developed algorithm was shown to be better than Thompson Sampling

based solutions. However, again, for the setting considered in the above paper, ground-truth

signals indicating whether the user likes or dis-likes pushed news are revealed immediately

after each dissemination. In this sense, our results cannot be compared directly to those

cited above.

Our work differs from the above as we do not require oracle or the availability of im-

mediate ground-truth; we instead impose a mild assumption on the collective quality of the

crowd (without which crowdsourcing would be useless and would not have existed), so an

estimated or imperfect ground-truth can be inferred. Secondly, our framework allows us to

obtain performance bounds on the proposed algorithm in the form of regret with respect to

the optimal strategy that always uses the best set of labelers; this type of performance guar-

antee is lacking in most of the work cited above. Last but not least, our algorithm is very

broadly applicable to a generic crowd-sourcing task assignment rather than being designed

for specific type of tasks or data.

13

Our main contributions are summarized as follows.

1. We design an online learning algorithm to estimate the quality of labelers in a crowd-

sourcing setting without ground-truth information but with mild assumptions on the

quality of the crowd as a whole, and show that it is able to learn the optimal set of

labelers under both simple and weighted majority voting rules and attains no-regret

performance guarantees (w.r.t. always using the optimal set of labelers).

2. We similarly provide regret bounds on the cost of this learning algorithm w.r.t. always

using the optimal set of labelers.

3. We show how our model and results can be extended to the case where the quality of

a labeler may be task-type dependent, as well as a simple procedure to quickly detect

and filter out “bad” (dishonest, malicious or incompetent) labelers to further enhance

the quality of crowd-sourcing.

4. We establish a lower bound on the learning regret for our online labeler selection

problem.

5. Our validation includes both simulation and the use of a real-world AMT dataset.

The remainder of this chapter is organized as follows. We formulate our problem in

Section 2.2. In Sections 2.3 and 2.4 we introduce our learning algorithm along with re-

gret analysis under a simple majority and weighted majority voting rule, respectively. We

extend our model to account for the case where labelers’ expertise may be task dependent

in Section 2.5. Lower bound results on our learning algorithm is presented in Section 2.6

and we provide a matching and refined upper bound in Section 2.7. Numerical results are

presented in Section 2.8. Section 2.9 concludes the chapter.

14

2.2 Problem formulation and preliminaries

2.2.1 The crowd-sourcing model

We begin by introducing the following major components of the crowd-sourcing sys-

tem.

1. User. There is a single user with a sequence of tasks (unlabeled data) to be per-

formed/labeled. Our proposed on-line learning algorithm is to be employed by the

user in making labeler selections. Throughout our discussion the terms task and un-

labeled data will be used interchangeably.

2. Labeler. There are a total of M labelers, each may be selected to perform a labeling

task for a piece of unlabeled data. The set of labelers is denoted by M = {1,2, ...,M}.

A labeler i produces the true label with probability pi independent of the task, and

independent of each other1; a more sophisticated task-dependent version is discussed

in Section 2.5. This will also be referred to as the quality or accuracy of this labeler.

We will assume no two labelers are exactly the same, i.e., pi 6= p j,∀i 6= j and 0 <

pi < 1,∀i. These quantities are unknown to the user a priori. We will also assume

that the accuracy of the collection of labelers satisfies ∑
M
i=1

pi
M > 1

2 . The justification

and implication of this assumption are discussed in more detail in Section 2.2.3.

Our learning system works in discrete time steps t = 1,2, ...,T . At time t, a task k ∈K

arrives to be labeled, where K could be either a finite or infinite set. For simplicity of

presentation, we will assume that a single task arrives at each time, and that the labeling

outcome is binary: 1 or 0; however, both assumptions can be fairly easily relaxed2. For

task k, the user selects a subset St ⊆M to label it. The label generated by labeler i ∈ St for

data k at time t is denoted by Li(t).
1Such assumption of independency is made to simplify the analysis and presentation. In practice when

labelers are correlated, machineries from correlated MAB literature can be borrowed. This merits a future
study.

2Indeed in our experiment shown later in Section 2.8, our algorithm is applied to a non-binary multi-label
case.

15

The set of labels {Li(t)}i∈St generated by the selected labelers then need to be com-

bined to produce a single label for the data; this is often referred to as the information

aggregation phase. Since we have no prior knowledge on the labelers’ accuracy, we will

apply the simple majority voting rule over the set of labels; later we will also examine a

more sophisticated weighted majority voting rule. Mathematically, the majority voting rule

at time t leads to the following label output:

L∗(t) = argmaxl∈{0,1} ∑
i∈St

1{Li(t) = l} , (2.1)

with ties (i.e., ∑i∈St 1{Li(t) = 0}= ∑i∈St 1{Li(t) = 1}) broken randomly.

Denote by π(St) the probability of correct labeling outcome following the simple ma-

jority rule above, and we have:

π(St) = ∑
S:S⊆St ,|S|≥d |St |+1

2 e
∏
i∈S

pi · ∏
j∈St\S

(1− p j)

︸ ︷︷ ︸
Majority wins

+
∑S:S⊆St ,|S|= |St |

2
∏i∈S pi ·∏ j∈St\S(1− p j)

2︸ ︷︷ ︸
Ties broken equally likely

. (2.2)

Denote by ci a normalized cost/payment per sample for labeler i and consider the following

linear cost function

C (S) = ∑
i∈S

ci, S⊆M . (2.3)

It should be noted that extension of our analysis to other forms of cost functions is feasible,

though with more cumbersome notations. Denote

S∗ = argmaxS⊆M π(S) , (2.4)

16

thus S∗ is the optimal selection of labelers given each individual’s accuracy. We also refer

to π(S) as the utility for selecting the set of labelers S and denote it equivalently as U(S).

C (S∗) will be referred to as the necessary cost per task. In most crowd-sourcing systems

the main goal is to obtain high quality labels while the cost accrued is a secondary issue.

For completeness, however, we will also analyze the tradeoff between the two. Therefore

we shall adopt two objectives when designing efficient online algorithm: pick the best set

of labelers while keep the unnecessary cost low.

In fact combinations of both labeling accuracy and costs that are appropriately defined

can also serve as our utility function. For instance define U(S) := π(S)−C (S). The

analysis is quite similar to what we present in this chapter and will not bother with repeating

the details.

2.2.2 Offline optimal selection of labelers

Before addressing the learning problem, we will first take a look at how to efficiently

derive the optimal selection S∗ given accuracy probabilities {pi}i∈M . This will be a crucial

step repeatedly invoked by the learning procedure we develop next, to determine the set of

labelers to use given a set of estimated accuracy probabilities.

The optimal selection is a function of the values {pi}i∈M , the aggregation rule used

to compute the final label, and the unit cost ci. While there is a combinatorial number

of possible selections, the next two results combined lead to a very simple and linear-

complexity procedure in finding the optimal S∗.

Theorem II.1. Under the simple majority vote rule, the optimal number of labelers s∗ =

|S∗| must be an odd number.

Theorem II.2. The optimal set S∗ is monotonic, i.e., if we have i ∈ S∗ and j 6∈ S∗ then we

must have pi > p j.

Proofs of the above two theorems can be found in the appendices. Based on above

results given a set of accuracy probabilities, the optimal selection under the majority vote

17

rule consists of the top s∗ (an odd number) labelers with the highest quality; we only need

to compute s∗, which has a linear complexity of O(M/2). A set that consists of the highest

m labelers will be referred to as a m-monotonic set, and denoted as Sm ⊆M .

2.2.3 The lack of ground-truth

As mentioned, a key difference between our model and many other studies on crowd-

sourcing as well as the basic framework of MAB problems is that we lack ground-truth in

our system; we elaborate on this below. In a standard MAB setting, when a player (the

user in our scenario) selects a set of arms (labelers) to activate, she immediately finds out

the rewards associated with those selected arms. This information allows the player to col-

lect statistics on each arm (e.g., sample mean rewards) which is then used in her future

selection decisions. In our scenario, the user sees the labels generated by each selected

labeler, but does not know which ones are true. In this sense the user does not find out

about her reward immediately after a decision; she can only do so probabilistically over a

period of time through additional estimation devices. This constitutes the main conceptual

and technical difference between our problem and the standard MAB problem.

Given the lack of ground-truth, the crowdsourcing system is only useful if the average

labeler is more or less trustworthy. For instance, if a majority of the labelers produce the

wrong label most of the time, unbeknownst to the user, then the system is effectively use-

less, i.e., the user has no way to tell whether she could trust the outcome so she might as

well abandon the system. It is therefore reasonable to have some trustworthiness assump-

tion in place. Accordingly, we have assumed that p̄ := ∑
M
i=1

pi
M > 1/2, i.e., the average

labeling quality is higher than 0.5; this is a common assumption in the crowd-sourcing lit-

erature (see e.g., [22]). Note that this is a fairly mild assumption: not all labelers need to

have accuracy pi > 0.5 or near 0.5; some labeler may have arbitrarily low quality (∼ 0) as

long as it is in the minority. When p̄ := ∑
M
i=1

pi
M ≤ 1/2, which is often referred to as the

case when majority people are wrong [63], it is possible to apply certain machine learn-

18

ing approach on the set of collected labels to determine whether evidence exists indicating

the crowd is on the whole mis-leading. More advanced and formal reporting mechanism-

s have been developed to elicit the true answer, see e.g., the well known Bayesian Truth

Serum (BTS) algorithm [62]. However, such mechanisms usually require reporting more

information besides the label output. In this study we shall limit ourselves to the simpler

case p̄ > 0.5 whereby only label output needs to be reported; similar problems for the case

p̄ < 0.5 warrants a separate study.

Denote by Xi a binomial random variable with parameter pi to model labeler i’s outcome

on a given task: Xi = 1 if her label is correct and 0 otherwise. Using Chernoff Hoeffding’s

inequality we have

P(
∑

M
i=1 Xi

M
> 1/2) = 1−P(

∑
M
i=1 Xi

M
≤ 1/2)

= 1−P(
∑

M
i=1 Xi

M
− p̄≤ 1/2− p̄)

≥ 1− e−2M·(p̄−1/2)2
.

Define amin := P(∑
M
i=1 Xi
M > 1/2); note this is the probability that a simple majority vote

over the M labelers is correct. Therefore, if p̄ > 1/2 and further M > log2
2(p̄−1/2)2 , then

1− e−2M·(p̄−1/2)2
> 1/2, meaning a simple majority vote would be correct most of the

time. Throughout the paper we will assume both these conditions are true. We will also

have the following fact:

P(
∑i∈S∗ Xi

|S∗|
> 1/2)≥ P(

∑
M
i=1 Xi

M
> 1/2),

where the inequality is due to the definition of the optimal set S∗.

19

2.3 Learning the Optimal Labeler Selection

In this section we present an online learning algorithm LS OL that over time learns

each labeler’s accuracy, which it then uses to compute an estimated optimal set of labelers

using the properties given in the previous section.

2.3.1 An online learning algorithm LS OL

The algorithm consists of two types of time steps, exploration and exploitation, as is

common to online learning. However, the exploration step design is complicated by the

additional estimation due to the lack of ground truth revelation. Specifically, a set of tasks

will be designated as “testers” and may be repeatedly assigned to the same labeler in order

to obtain sufficient results used for estimating her label quality. This can be done in one of

two ways depending on the nature of the tasks. For tasks like survey questions (with binary

answers), a labeler may indeed be prompted to answer the same question (or equivalent

variants with alternative wording) multiple times, usually not in succession, during the

survey process. This is a common technique used by survey designers for quality control

by testing whether a participant answers questions randomly or consistently, whether a

participant is losing attention over time, and so on, see e.g., [64]. For tasks like labeling

images, a labeler may be given identical images repeatedly or each time with added small

iid noise.

With the above in mind, the algorithm conceptually proceeds as follows. A condition is

checked to determine whether the algorithm should explore or exploit in a given time step.

If it is to exploit, then the algorithm selects the best set of labelers based on current quality

estimates to label the arriving task. If it is to explore, then the algorithm will either assign an

old task (an existing tester) or the new arriving task (which then becomes a tester) to the set

of labelers M depending on whether all existing testers have been labeled enough number

of times. Because of the need to repeatedly assign an old task, some new tasks will not be

immediately assigned (those arriving during an exploration step while an old task remains

20

under-sampled). These tasks will simply be given a random label (with error probability

1/2) but their numbers are limited by the frequency of an exploration step (∼ log2 T), as

we shall detail later.

Before proceeding to a more precise description of the algorithm, a few additional

notions are in order. Denote the n-th label outcome (via majority vote over M labelers

in exploration) for task k by yk(n). Denote by y∗k(N) the label obtained using majority rule

over the N label outcomes yk(1),yk(2), · · · ,yk(N), and 1{·} as the indicator function:

y∗k(N) =

 1, ∑
N
n=1 1{yk(n)=1}

N > 0.5

0, otherwise
, (2.5)

with ties broken randomly. It is this majority label after N tests on a tester task k that will

be used to analyze different labeler’s performance. As we show later in algorithm design, a

tester task is always assigned to all labelers for labeling. Therefore these repeated outcomes

yk(1),yk(2), · · · ,yk(N) are of the same statistical quality. We will additionally impose the

assumption that these outcomes are also independent.

Denote by E(t) the set of tasks assigned to the M labelers during explorations up to

time t. For each task k ∈ E(t) denote by N̂k(t) the number of times k has been assigned.

Consider the following random variable defined at each time t:

O(t) = 1{|E(t)| ≤ D1(t) or ∃k ∈ E(t) s.t. N̂k(t)≤ D2(t)} ,

where

D1(t) =
1

(1
maxm:m odd m·n(Sm) −α)2 · ε2

· log t ,

D2(t) =
1

(amin−0.5)2 · log t ,

and n(Sm) is the number of all possible majority subsets (for example when |Sm|= 5, n(Sm)

21

is the number of all possible subset of size being at least 3) of Sm, ε a bounded constant,

and α a positive constant such that α < 1
maxm:m odd m·n(Sm) . Note that O(t) captures the event

whether an insufficient number of tasks have been assigned under exploration or whether

any task has been assigned insufficient number of times in exploration.

Our online algorithm for labeler selection is formally stated as in Fig. 2.1. The above

Online Labeler Selection: LS OL

1: Initialization at t = 0: Initialize the estimated accuracy {p̃i}i∈M to some value in
[0,1]; denote the initialization task as k, set E(t) = {k} and N̂k(t) = 1.

2: At time t a new task arrives: If O(t) = 1, the algorithm explores.

2.1: If there is no task k ∈ E(t) such that N̂k(t) ≤ D2(t), then assign the new task
to M and update E(t) to include it and denote it by k; if there is such a task,
randomly select one of them, denoted by k, to M . N̂k(t) := N̂k(t)+ 1; obtain
the label yk(N̂k(t));

2.2: Update y∗k(N̂k(t)) (using the alternate indicator function I(·)):

y∗k(N̂k(t)) = 1{
∑

N̂k(t)
t̂=1 yk(t̂)

N̂k(t)
> 0.5} .

2.3: Update labelers’ accuracy estimate ∀i ∈M :

p̃i =
∑k∈E(t),k arrives at time t̂ 1{Li(t̂) = y∗k(N̂k(t))}

|E(t)|
.

3: Else if O(t) = 0, the algorithm exploits and computes:

St = argmaxmŨ(Sm) = argmaxS⊆M π̃(S) ,

which is solved using the linear search property, but with the current estimates {p̃i}
rather than the true quantities {pi}, resulting in estimated utility Ũ() and π̃(). Assign
the new task to those in St .

4: Set t = t +1 and go to Step 2.

Figure 2.1: Description of LS OL

algorithm can either go on indefinitely or terminate at some time T . As we show below the

22

performance bound on this algorithm holds uniformly in time so it does not matter when it

terminates.

2.3.2 Main results

The standard metric for evaluating an online algorithm in the MAB literature is regret,

the difference between the performance of an algorithm and that of a reference algorithm

which often assumes foresight or hindsight. The most commonly used is the weak regret

measure with respect to the best single-action policy assuming a priori knowledge of the

underlying statistics. In our problem context, this means to compare our algorithm to the

one that always uses the optimal selection S∗. It follows that this weak regret, up to time T ,

is given by

R(T) = T ·U(S∗)−E
[T

∑
t=1

U(St)

]
,

RC (T) = E
[T

∑
t=1

C (St)

]
−T ·C (S∗) ,

where St is the selection made at time t by our algorithm; if t happens to be an exploration

then St = M . R(T) captures the regret for the learning algorithm while RC (T) is the one

for cost. Define:

∆max = max
S 6=S∗

U(S∗)−U(S), δmax = max
i6= j
|pi− p j| ,

∆min = min
S 6=S∗

U(S∗)−U(S), δmin = min
i 6= j
|pi− p j| .

ε is a constant such that ε < min{∆min
2 , δmin

2 }. For analysis we assume U(Si) 6= U(S j) if

i 6= j. Define the sequence {βn}: βn = ∑
∞
t=1

1
tn . Our main theorem is stated as follows.

23

Theorem II.3. The regrets can be bounded uniformly in time:

R(T)≤ U(S∗)
(1

maxm:m odd m·n(Sm) −α)2 · ε2 · (amin−0.5)2
· log2(T)

+∆max(2
M

∑
m=1

m odd

m ·n(Sm)+M) · (2β2 +
1

α · ε
β2−z) , (2.6)

RC (T)≤
∑i/∈S∗ ci

(1
maxm:m odd m·n(Sm) −α)2 · ε2

· logT

+
∑i∈M ci

(1
maxm:m odd m·n(Sm) −α)2 · ε2 · (amin−0.5)2

· log2(T)

+(M−|S∗|) · (2
M

∑
m=1

m odd

m ·n(Sm)+M) · (2β2 +
1

α · ε
β2−z) , (2.7)

where 0 < z < 1 is a positive constant.

First note that the regret is nearly logarithmic in T and therefore it has zero average

regret as T → ∞; such an algorithm is often referred to as a zero-regret algorithm. Sec-

ondly the regret bound is inversely related to the minimum accuracy of the crowd (through

amin). This is to be expected: with higher accuracy (a larger amin) of the crowd, crowd-

sourcing generates ground-truth outputs with higher probability, and hence the learning

process could be accelerated. Finally, the bound also depends on maxm m ·n(Sm) which is

roughly on the order of O(2m√m√
2π

).

2.3.3 Regret analysis of LS OL

We now outline key steps in the proof of the above theorem. This involves a sequence

of lemmas; the proofs of most can be found in the appendix. There are a few that we omit

for brevity; in those cases sketches are provided.

Step 1: We begin by noting that the regret consists of that arising from the exploration

24

phase and from the exploitation phase, denoted by Re(T) and Rx(T), respectively:

R(T) = E[Re(T)]+E[Rx(T)] .

The following result bounds the first element of the regret.

Lemma II.4. The regret up to time T from the exploration phase can be bounded as fol-

lows:

E[Re(T)]≤U(S∗) · (D1(T) ·D2(T)) . (2.8)

We see the regret depends on the exploration parameters as product. This is because for

tasks arriving in exploration steps, we assign it at least D2(T) times to the labelers; each

time when re-assignment occurs, a new arriving task is given a random label while under

an optimal scheme each missed new task means a utility of U(S∗).

Step 2: We now bound the regret arising from the exploitation phase as a function of

the number of times the algorithm uses a sub-optimal selection when the ordering of the

labelers is correct, and the number of times the estimates of the labelers’ accuracy result in

a wrong ordering. The proof of the lemma below is omitted as it is fairly straightforward.

Lemma II.5. For the regret from exploitation we have:

E[Rx(T)]≤ ∆max

(
E[

T

∑
t=1

(E1(t)+E2(t))]
)
. (2.9)

Here E1(t) = ISt 6=S∗ , conditioned on correct ordering of labelers, records whether the a

sub-optimal section (other than S∗) was used at time t based on the current estimates {p̃i}.

E2(t) records whether at time t the set M is sorted in the wrong order because of erroneous

estimates {p̃i}.

25

Step 3: We proceed to bound the two terms in (2.9) separately. In this part of the analysis

we only consider those times t when the algorithm exploits.

Lemma II.6. At time t we have:

E[E1(t)]≤
M

∑
m=1

m odd

m ·n(Sm) · (2
t2 +

1
α · ε · t2−z) (2.10)

The idea behind the above lemma is to use a union bound over all possible events where

the wrong set is chosen when the ordering of the labelers is correct according to their true

accuracy.

Lemma II.7. At time t we have:

E[E2(t)]≤M(
2
t2 +

1
α · ε · t2−z) (2.11)

Step 4: Summing up all results and rearranging terms lead to the theorem. Specifically,

E[Rx(T)]≤ ∆max

M

∑
m=1

m odd

2
T

∑
t=1

m ·n(Sm) · (2
t2 +

1
α · ε · t2−z)+∆max ·M ·

T

∑
t=1

(
2
t2 +

1
α · ε · t2−z)

≤ 2 ·∆max

M

∑
m=1

m odd

m ·n(Sm) ·
∞

∑
t=1

(
2
t2 +

1
α · ε · t2−z)+∆max ·M ·

∞

∑
t=1

(
2
t2 +

1
α · ε · t2−z)

= ∆max(2 ·
M

∑
m=1

m odd

m ·n(Sm)+M) · (2β2 +
1

α · ε
β2−z) .

Since β2−z < ∞ for z < 1, we have bounded the exploitation regret by a constant. Summing

over all terms in E[Re(T)] and E[Rx(T)] we obtain the main theorem.

26

2.3.4 Cost analysis of LS OL

We now analyze the cost regret. Following similar analysis we first note that it can be

calculated separately for the exploration and exploitation steps.

For exploration steps we know the cost regret is bounded by

∑
i/∈S∗

ci ·D1(T)+ ∑
i∈M

ci ·D1(T) · (D2(T)−1)

where the second term is due to the fact for all costs associated with task re-assignments

are treated as additional costs.

For exploitation steps the additional cost is upper-bounded by

(M−|S∗|) ·E[
T

∑
t=1

(E1(t)+E2(t))] .

Based on previous results we know the cost regret RC (T) will look similar to R(T) with

both terms bounded by either a log term or a constant. Plug in D1(T),D2(T),E[∑T
t=1(E2(t)]

, E[∑T
t=1 E2(t)] we establish the regret for RC (T) as claimed in our main result.

2.3.5 Discussion

We end this section with a discussion on how to relax a number of assumptions adopted

in our analytical framework.

IID re-assignments

The first concerns the re-assignment of the same task (or iid copies of the same task)

and the assumption that the labeling outcome each time is independent. In the case where

iid copies are available, this assumption is justified. In the case when the exact same task

must be re-assigned, enforcing a delay between successive re-assignments can make this

assumption more realistic. Suppose the algorithm imposes a random delay τk, a positive

random variable uniformly upper-bounded by τk ≤ τmax,∀k. Then following similar anal-

27

ysis we can show the upper bound for regret is at most τmax times larger, i.e., it can be

bounded by τmax ·R(T), where R(T) is as defined in Eqn. (2.6).

Prior knowledge of several constants

The second assumption concern the selection of constant ε by the algorithm and the

analysis which requires knowledge on ∆min and δmin. This assumption however can be

removed by using a decreasing sequence εt . This is a standard technique that has been

commonly used in the online learning literature, see e.g., [73]. Specifically, let

εt =
1

logη(t)
, for some η > 0 .

Replace log(t) with log1+2η(t) in D1(t) and D2(t) it can be shown that there exists T0 s.t.

εT0 < ε . Thus the regret associated with using an imperfect εt is bounded by ∑
T0
t=1

2
logη t =

CT0 , a constant.

Detecting bad/incompetent labelers

The last assumption we discuss concerns the quality of the set of labelers, assumed

to satisfy the condition min{amin, p̄} > 0.5. Recall the bounds were derived based on

this assumption and are indeed functions of amin. While in this discussion we will not

seek to relax this assumption, below we describe a simple “vetting” procedure that can

be easily incorporated into the LS OL algorithm to quickly detect and filter out outliner

labelers so that over the remaining labelers we can achieve higher values of amin and p̄, and

consequently a better bound. The procedure keeps count of the number of times a labeler

differs from the majority opinion during the exploration steps, then over time we can safely

eliminate those with high counts.

The justification behind this procedure is as follows. Let random variable Zi(t) denote

whether labeler i agrees with the majority vote in labeling a task in a given assignment in

28

exploration step t: Zi(t) = 1 if they disagree and 0 otherwise. Then

P(Zi(t) = 1) = (1− pi) ·π(M)+ pi · (1−π(M))

= π(M)+ pi · (1−2π(M)) , (2.12)

where recall π(M) is the probability the majority vote is correct. Under the same assump-

tion amin > 1/2 we have π(M)> 1/2, and it follows that P(Zi(t) = 1) is decreasing in pi,

i.e., the more accurate a labeler is, the less likely she is going to disagree with the majority

vote, as intuition would suggest. It further follows that for pi > p j we have

E[Zi(t)−Z j(t)] = εi j < 0 .

Similarly, if we consider the disagreement counts over N assignments, ∑
N
t=1 Z j(t), then for

pi > p j we have

P(
N

∑
t=1

Zi(t)<
N

∑
t=1

Z j(t)) = P(
∑

N
t=1(Zi(t)−Z j(t))

N
< 0)

= P(
∑

N
t=1(Zi(t)−Z j(t))

N
− εi j <−εi j)

≥ 1− e−2ε2
i jN . (2.13)

That is, if the number of assignments N is on the order of ∼ logT/ε2
i j, then the above

probability approaches 1, which bounds the likelihood that labeler i (higher quality) will

have fewer number of disagreements than labeler j. Therefore if we rank and order the

labelers in decreasing order of their accumulated disagreement counts then the worst labeler

is going to be at the top of the list with increasing probability (approach 1). If we eliminate

the worst performer, then we improve amin which leads to better bounds as shown in Eqn.

(2.6) and Eqn. (2.7). Compared to the exploration steps detailed earlier where in order to

differentiate labelers’ expertise (by estimating pi), O(log2 T) assignments are, here we only

29

need O(logT) assignments, a much faster process. In practice, we could decide to remove

the worst labeler when the probability of not making an error (per Eqn. (2.13)) exceeds a

certain threshold.

2.4 Weighted Majority Voting and its regret

The crowd-sourced labeling performance could be further improved by employing more

sophisticated majority voting mechanism. Specifically, under our online learning algorith-

m LS OL, statistics over each labeler’s expertise could be collected with significant confi-

dence; this enables a weighted majority voting mechanism. In this section we analyze the

regret of a similar learning algorithm using weighted majority voting.

2.4.1 Weighted Majority Voting

We start with defining the weights. At time t, after observing labels produced by the

labelers, we can optimally (a posteriori) determine the mostly likely label of the task by

solving the following:

argmaxl∈{0,1}P(L∗(t) = l|L1(t), ...,LM(t)) . (2.14)

Suppose at time t the true label for task k is 1. Then we have,

P(L∗(t) = 1|L1(t), ...,LM(t))

=
P(L1(t), ...,LM(t),L∗(t) = 1)

P((L1(t), ...,LM(t))

=
P(L1(t), ...,LM(t)|L∗(t) = 1) ·P(L∗(t) = 1)

P((L1(t), ...,LM(t))

=
P(L∗(t) = 1)

P((L1(t), ...,LM(t))
· ∏

i:Li(t)=1
pi · ∏

i:Li(t)=0
(1− pi) .

30

And similarly we have

P(L∗(t) = 0|L1(t), ...,LM(t))

=
P(L∗(t) = 0)

P((L1(t), ...,LM(t))
· ∏

i:Li(t)=0
pi · ∏

i:Li(t)=1
(1− pi) .

Following standard hypothesis testing procedure and assuming equal priors P(L∗(t) = 1) =

P(L∗(t) = 0), a true label of 1 can be correctly produced if

∏
i:Li(t)=1

pi · ∏
i:Li(t)=0

(1− pi)> ∏
i:Li(t)=0

pi · ∏
i:Li(t)=1

(1− pi) .

with ties broken randomly and equally likely. Take log(·) on both sides and the above

condition reduces to

∑
i:Li(t)=1

log
pi

1− pi
> ∑

j:L j(t)=0
log

p j

1− p j
.

Indeed if p1 = ... = pM the above reduces to |{i : Li(t) = 1}| > |{i : Li(t) = 0}| which is

exactly the simple majority voting. Under the weighted majority voting, each labeler i’s

decision is modulated by weight log pi
1−pi

. When pi > 0.5, the weight log pi
1−pi

> 0, which

may be viewed as an opinion that adds value; when pi < 0.5, the weight log pi
1−pi

< 0, an

opinion that actually hurts; when pi = 0.5 the weight is zero, an opinion that does not count

as it mounts to a random guess. The above constitutes the weighted majority voting rule

we shall use in a revised learning algorithm and the regret analysis that follow.

Before proceeding to the regret analysis, we again first characterize the optimal labeler

set selection assuming known labelers’ accuracy. In this case the odd-number selection

property no longer holds, but thanks to the monotonicity of log pi
1−pi

in pi we have the same

monotonicity property in the optimal set and a linear-complexity solution space.

Theorem II.8. Under the weighted majority voting and assuming pi ≥ 0.5,∀i, the optimal

31

set S∗ is monotonic, i.e., if we have i ∈ S∗ and j 6∈ S∗ then we must have pi > p j.

The assumption that all pi ≥ 0.5 is for simplicity in presentation without losing gener-

ality. This is because a labeler with pi < 0.5 is equivalent to another with pi := 1− pi by

flipping its label (assuming the average labeling quality is higher than 0.5).

2.4.2 Main results

We now analyze the performance of a similar learning algorithm using weighted ma-

jority voting. The algorithm LS OL is modified as follows. Denote by

W (S) = ∑
i∈S

log
pi

1− pi
, ∀S⊆M , (2.15)

and W̃ its estimated version when using estimated accuracies p̃i. Denote by

δ
W
min = min

S 6=S′,W (S)6=W (S′)
|W (S)−W (S′)|

and let ε < δW
min/2. At time t (suppose at exploitation phase), the algorithm selects the

estimated optimal set St . These labelers then return their labels that divide them into two

subsets, say S (with one label) and its complement St\S (with the other label). If W̃ (S) ≥

W̃ (St\S)+ ε , we will call S the majority set and take its label as the voting outcome. If

|W̃ (S)−W̃ (St\S)| < ε , we will call them equal sets and randomly select one of the labels

as the voting outcome. Intuitively ε serves as a tolerance that helps to remove the error due

to inaccurate estimations. In addition, the constant D1(t) is revised to the follow:

D1(t) = (
1

maxm max{4C ·m,m ·n(Sm)}
−α)2 · ε2 · log t,

where C is a constant satisfying

C > max
i

max{1+ ε/4
pi

,
1− ε/4
1− pi

,
ε/4
pi

,
ε/4

1− pi
} .

32

With above modifications in mind, we omit the detailed algorithm description for a concise

presentation. We have the following theorem on the regret of this revised algorithm (again

RC (T) possesses a very similar format we omit its detail).

Theorem II.9. The regret under weighted majority voting can be bounded uniformly in

time:

R(T)≤ U(S∗)
(1

maxm max{4C·m,m·n(Sm)} −α)2 · ε2 · (amin−0.5)2
log2 T

+∆max(2 ·
M

∑
m=1

m ·n(Sm)+M+
M2

2
) · (2β2 +

1
α · ε

β2−z) .

Again the regret is on the order of O(log2 T) in time. It has a larger constant compared

to that under simple majority voting. However, the weighted majority voting has a better

optimal solution, i.e., we are converging slightly slower to a however better target.

The proof of this theorem is omitted for brevity and because most of it parallels with

the case of simple majority voting. There is however a main difference: under the weighted

majority voting there is additional error in computing the weighted majority vote. Whereas

under simple majority we simply find the majority set by counting the number of votes,

under weighted majority the calculation of the majority set is dependent on the estimated

weights log p̃i
1−p̃i

which inherits errors in {p̃i}. This additional error, in particular associated

with bounding the error of getting

W̃ (Ŝ)−W̃ (S\Ŝ)< ε, when W (Ŝ)>W (S/Ŝ)

and

W̃ (Ŝ)−W̃ (S\Ŝ)≥ ε, when W (Ŝ) =W (S\Ŝ)

for set Ŝ ⊆ S ⊆M , could be separately bounded using similar methods as shown in the

simple majority voting case (bounding estimation error with large enough number of sam-

33

ples) and can again be factored into the overall bound. This is summarized in the following

lemma.

Lemma II.10. At time t, for set Ŝ ⊆ S ⊆M and its complement S/Ŝ, if W (Ŝ) > W (S/Ŝ),

then ∀t at exploitation phases ∀ 0 < z < 1,

P(W̃ (Ŝ)−W̃ (S\Ŝ)< ε)≤ |S| · (2
t2 +

1
α · ε · t2−z) .

Moreover, if W (Ŝ) =W (S\Ŝ)

P(|W̃ (Ŝ)−W̃ (S\Ŝ)|> ε)≤ |S| · (2
t2 +

1
α · ε · t2−z) .

For rest of the proofs please refer to appendix.

2.5 Labelers with different types of tasks

We now discuss an extension where labelers’ difference in their quality in labeling

varies according to different types of data samples/tasks. For example, some are more

proficient with labeling image data while some may be better at annotating audio data. In

this case we can use contextual information to capture these differences, where a specific

context refers to a different data/task type. There are two cases of interest from a technical

point of view: when the space of all context information is finite, and when this space is

infinite. We will denote a specific context by w and the set of all contexts as W .

In the case of discrete context information, |W | < ∞ and we can apply the same algo-

rithm to learn, for each combination {i,w}i∈M ,w∈W , the pairwise labeler-context accuracy.

This extension is rather straightforward except for a longer exploration phase. In fact, since

exploration is needed for each labeler i under each possible context w, we may expect the

34

regret to be |W | times larger compared to the previous R(T). This indeed can be more

precisely established using the same methodology.

The case of continuous context information is more challenging, but can be dealt with

using the technique introduced in [2] for bandit problems with a continuum of arms. The

main idea is to divide the infinite context information space into a finite but increasing

number of subsets. For instance, if we model the context information space as W = [0,1]

then we can divide this unit interval into v(t) sub-intervals:

[0,
1

v(t)
], ..., [

v(t)−1
v(t)

,1] ,

with v(t) being an increasing sequence w.r.t. t. Denote these intervals as Bi(t), i =

1,2...,v(t), which become more and more fine-grained with increasing t and increasing

v(t).

Given these intervals the learning algorithm works as follows. At time t, for each

interval Bi(t) we compute the estimated optimal set of labelers by calculating the estimated

utility of all subsets of labelers, and this is done over the entire interval Bi(t) (contexts

within Bi(t) are viewed as a bundle). If at time t we have context wi ∈ Bi(t) then this

estimated optimal set is used. The regret of this procedure consists of two parts. The first

part is due to selecting a sub-optimal set of labelers for Bi(t) (owing to incorrect estimates

of the labelers’ accuracy). This part of the regret is bounded by O(1/t2). The second

part of the regret arises from the fact that even if we compute the correct optimal set for

interval Bi(t), it may not be optimal for the specific context wt ∈ Bi(t). However, when

Bi(t) becomes sufficiently small, and under a uniform Lipschitz condition we can bound

this part of the regret as well.

Taken together, if we revise the condition for entering the exploration phase (constants

D1(t) and D2(t)) to grow on the order of O(tz log t) instead of log t, for some constant

0 < z < 1, then the regret R(T) in this case is on the order of T z logT ; thus it remains

35

sub-linear and therefore has a zero average regret, but this is worse than the log bound we

can obtain in other cases.

We omit all technical details since they are rather direct extensions combining our pre-

viously derived results with the literatures on continuous arms.

2.6 A lower bound on the regret

In this section we establish a lower bound on the regret of our online labeler selection

problem.

2.6.1 O(1) reassignment leads to unbounded regret

We first show that a constant number of re-assignments will lead to unbounded regret.

Below we establish this by contradiction. Recall that we have used D2(t) to determine

when reassignment is made, and in our algorithm we have used D2(t) = O(log t). Suppose

instead, D2(t) is given by T0, a bounded constant. Let’s consider one task with label θ ∈

{0,1}. Denote the test outcomes by x(1), ...,x(T0) (as given by the simple majority voting

from all labelers). There are two hypotheses based on x(τ),τ = 1, ...,T0:

H0 : The label is 1, i.e., θ = 1.

H1 : The label is 0, i.e., θ = 0.

Denote by I(θ1,θ0) the Kullback-Leibler (KL) divergence between two distributions fX(x;θ =

1) and fX(x;θ = 0), where fX(x;θ) denotes the sample distribution with parameter θ ,

which in our case is the ground-truth label. Denote the vector [1, ..., t] by [t]. The next

lemma is a well established result:

Lemma II.11 (Theorem 2.2, Tysabakov [75], 2009). The error probability Pe of the above

36

hypothesis test up to time t is lower-bounded by

Pe ≥
1
2
· e−I(P[t]

H0
,P[t]

H1
)
.

Note that in our case

I(P[t]
H0
,P[t]

H1
)

= EH0

[
log

fX(x(1);θ = 1)
fX(x(1);θ = 0)

· fX(x(2);θ = 1)
fX(x(2);θ = 0)

· · · fX(x(T0);θ = 1)
fX(x(T0);θ = 0)

]
= EH0

[T0

∑
t=1

log
fX(x(1);θ = 1)
fX(x(1);θ = 0)

]
= I(θ1,θ0)T0 .

Since T0 is bounded from above, Pe > 0, meaning that there is always a positive probability

of making the wrong labeling decision. What this further means is that one can always find

problem parameters whereby an algorithm will reach incorrect estimates of labelers’ quali-

ties which leads to “permanently” sub-optimal selection of labelers, resulting in unbounded

regret. This is demonstrated using a counter example shown below.

Suppose we have three labelers with labeling qualities being p1 = 1
2 + δ , p2 = 1

2 +

ε, p3 =
1
2 + ε−o(1), where o(1) is an arbitrarily small quantity, and δ ,ε satisfies 0 < ε <

δ < 1
2 . This setting satisfies the assumptions we made throughout the paper:

p1 > p2 > p3.

0 < pi < 1, i = 1,2,3.

p1 + p2 + p3

3
> 1/2.

37

Moreover the labeling accuracy using simple majority voting is as follows:

π(p1, p2, p3)≥
1
2
+

δ

2
+ ε−2δε

2 > 1/2.

For this 3-labeler problem we have the following proposition.

Proposition II.12. With Pe > 0, we can always find a δ such that in the above example, the

regret of any online learning algorithm is on the order of O(T).

2.6.2 D2(t)> O(1)

Now consider the case with D2(t)> O(1). Using Chernoff bound we know the follow-

ing holds

P(
∑

D2(t)
τ=1 x(τ)
D2(t)

> 1/2) = 1−P(
∑

D2(t)
τ=1 x(τ)
D2(t)

≤ 1/2)

= 1−P(
∑

D2(t)
τ=1 x(τ)
D2(t)

− p̄≤ 1/2− p̄)

≥ 1− e2(p̄−1/2)2D2(t) .

Notice we have used p̄ to denote the average labeling accuracy, which is strictly larger than

1/2. Thus Pe ≤ e2(p̄−1/2)2D2(t)→ 0. We have the following proposition.

Proposition II.13. With D2(t)> O(1) we have

R(T)≥ O(
logT ·D2(t)

I(p1, p2)− C1
(C2+δ)2 δ

) , (2.16)

where C1,C2 > 0 are constants and

δ =
Pe

1−Pe
.

38

Also from above results we see when D2(t) = O(1), it cannot be guaranteed that

I(p1, p2)−
C1

(C2 +δ)2 δ > 0 ,

under which case the bound becomes meaningless. This is another implication why we

need D2(t)> O(1).

2.7 A refined upper bound to match

We refine our algorithm and relax the requirement on setting D2(t) := O(log t) to any

D2(t) > O(1). We have the following results to match this lower bound. In particular we

prove the following results.

Theorem II.14. We can refine the upper bound of LS OL to the following.

R(T)≤ O(logT D2(T)) . (2.17)

2.7.1 Tightness of O(log2 T) for a type of policies

Note we previously had a O(log2 T) upper bound. We show this bound is tight for a

certain category of policies. We first define polynomially converging policy for our labeler

selection problem.

Definition II.15. A polynomially converging policy is a policy that there exists a z > 0

such that the error in estimating ground-truth label at time t is decreasing polynomially

Pe ≤ O(
1
tz) . (2.18)

39

For polynomially converging policy, intuitively we need

e−2(p̄−1/2)2D2(t) = O(
1
tz) ,

and again following Lemma II.11, we could successfully show that the number of reas-

signments needs to satisfy that D2(t) ≥ log t. Then O(log t2) is tight for polynomially

decreasing policies.

2.8 Experiment Results

In this section we validate the proposed algorithms with a few examples using both

simulation and real data.

2.8.1 Simulation study

Our first setup consists of M = 5 labelers, whose quality {pi} are randomly and uni-

formly generated to satisfy a preset amin as follows: select {pi} randomly between [amin,1].

Note that this is a simplification because not all {pi} need to be above amin for the require-

ment to hold. An example of these are shown in Table 2.1 (for amin = 0.6) but remain

unknown to the labelers. A task arrives at each time t. We assume a unit labeling cost

L1 L2 L3 L4 L5

pi 0.763 0.781 0.625 0.783 0.727

Table 2.1: Sample of simulation setup

c = 0.02. The experiments are run for a period of T = 2,000 time units (2,000 tasks in

total). The results shown below are the average over 100 runs. Denote by G1,G2 the

exploration constants concerning the two constants (in D1(t) and D2(t)) that control the

exploration part of the learning. G1,G2 are set to be sufficiently large based on the other

40

parameters:

(G1,G2) = (
1

(1
maxm:m odd m·n(Sm) −α)2 · ε2

,
1

(amin−0.5)2) .

0 500 1000 1500 2000
0

1

2

3

4

5

6

Time steps

A
cc

um
at

ed
 r

eg
re

ts

(a) Accumulative regret

1 1000 2,000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time steps

R
(T

)/
T

(b) Average regret R(T)/T

Figure 2.2: Regret of the LS OL algorithm.

We first show the accumulative and average regret under the simple majority voting rule

in Fig. 2.2. From the set of figures we observe a logarithmic increase of accumulated regret

and correspondingly a sub-linear decrease for its average quantity. The cost regret RC (T)

has a very similar trend as mentioned earlier (recall the regret terms of RC (T) align well

with the those in R(T)) and is thus not show here. We then compare the performance with

labeler selection to the naive crowd-sourcing algorithm, by taking a simple majority vote

over the whole set of labelers each time. This is plotted in Fig. 2.3 in terms of the average

reward at each t. There is a clear performance improvement after an initialization period

(where training happens).

In addition to the logarithmic growth, we are interested in knowing how the perfor-

mance is affected by the inaccuracy of the crowd expertise. These results are shown in Fig.

2.4. We observe the effect of different choices of amin = 0.6,0.7,0.8. As expected, we see

when amin is small, the verification process of the labels takes more samples to become ac-

curate. Therefore in the process more error is introduced in the estimation of the labelers’

qualities, which results in slower convergence.

We next compare the performance between simple majority voting and weighted ma-

41

0 200 400 600 800 1000
0.65

0.7

0.75

0.8

Time

A
v

e
ra

g
e

 r
e

w
a

rd

w/ LS_OL

Full crowd-sourcing

Figure 2.3: Performance comparison: labeler selection v.s. full crowd-sourcing (majority
voting)

500 1000 1500 2000
0

0.5

1

Time steps

A
ve

ra
ge

 e
rr

or
 r

at
e

a_min = 0.6
a_min = 0.7
a_min = 0.8

Figure 2.4: Effect of amin: higher amin leads to much better performance.

jority voting (both with LS OL). One example trace of accumulated reward comparison

is shown in Fig. 2.5; the advantage of weighted majority voting can be seen clearly. We

then repeat the set of experiments and average the results over 500 funs; the comparison

is shown in Table 2.2 under different number of candidate labelers (all of their labeling

qualities are uniformly generated).

0 20 40 60 80 100
0

50

100

Time steps

A
cc

um
ul

at
ed

 r
ew

ar
d

Simple majority voting
Weighted majority voting

Figure 2.5: Comparing weighted and simple majority voting within LS OL.

42

Average reward/ M := 5 10 15 20
Full crowd-sourcing (majority voting) 0.5154 0.5686 0.7000 0.7997

Majority voting w/ LS OL 0.8320 0.9186 0.9434 0.9820
Weighted majority voting w/ LS OL 0.8726 0.9393 0.9641 0.9890

Table 2.2: Performance comparison. There is a clear gap between crowd-sourcing results
with and without using LS OL.

2.8.2 Study on a real AMT dataset

We also apply our algorithm to a dataset shared at [3]. This dataset contains 1,000

images each labeled by the same set of 5 AMTs. The labels are on the scale from 0 to 4

indicating how many scenes are seen from each image, such as filed, airport, animal, etc. A

label of 0 implies no scene can be discerned. Besides the ratings from the AMTs, there is a

second dataset from [3] summarizing keywords for scenes of each image. We also analyze

this second dataset and count the number of unique descriptors for each image and use this

count as the ground-truth or gold standard, to which the results from AMT are compared.

We start with showing the number of disagreements each AMT has with the group over

the 1000 images. The total numbers of disagreement of the 5 AMTs are shown in Table

2.3, while Fig. 2.6 shows the cumulative disagreement over the set of images ordered by

their numerical indices in the database. It is quite clear that AMT 5 shows significant and

consistent disagreement with the rest. AMT 3 comes next while AMTs 1, 2, and 4 are

clearly more in general agreement.

AMT1 AMT2 AMT3 AMT4 AMT5
of disagree 348 353 376 338 441

Table 2.3: Total number of disagreement each AMT has

The images are not in sequential order, as the original experiment was not done in

an online fashion. To test our algorithm, we will continue to use their numerical indices

to order them as if they arrived sequentially in time and feed them into our algorithm. By

doing so we essentially test the performance of conducting this type of labeling tasks online

whereby the administrator of the tasks can dynamically alter task assignments to obtain

43

0 200 400 600 800 1000
0

100

200

300

400

Ordered image number

of

 d
is

ag
re

em
en

t

AMT1
AMT2
AMT3
AMT4
AMT5

Figure 2.6: Cumulated number of disagreements.

better results. In this experiment we use LS OL with majority voting and with the addition

of the detection and filtering procedure discussed in Section 2.3.5, which is specified to

eliminate the worst labeler after a certain number of steps such that the error in the rank

ordering is less than 0.1. The algorithm otherwise runs as described earlier. Indeed we see

this happen around step 90, as highlighted in Fig. 2.7 along with a comparison to using the

full crowd-sourcing method with majority voting. The algorithm also eventually correctly

estimates the best set to consist of AMTs 1, 2, and 4.

0 200 400 600 800 1000
0.8

1

1.2

1.4

1.6

1.8

Ordered image number

A
ve

ra
ge

 e
rr

or
 r

at
e

Full crowd
w/ LS_OL

AMT5 ruled out

Figure 2.7: Performance comparison : an online view

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Error in labeling

C
D

F

Full Crowd : avg=1.63
w/ LS_OL: avg=1.36

Figure 2.8: Performance comparison : a summery

All images’ labeling error as compared to the ground truth at the end of this process

44

is shown as a CDF (error distribution over the images) in Fig. 2.8; note the errors are

discrete due to the discrete labels. It is also worth noting that under our algorithm the cost

is much lower because AMT 5 was quickly eliminated, while AMT 4 was only used very

infrequently once the optimal set has been accurately inferred.

2.9 Concluding remarks

To our best knowledge, this is the first work formalizing and addressing the issue of

labeler quality in an online fashion for the crowd-sourcing problem and proposing solutions

with performance guarantee. We developed and analyzed an online learning algorithm

that can differentiate between high and low quality labelers over time and select the best

set for labeling tasks with O(logT ·D2(T)) regret uniform in time, where D2(T) is an

arbitrary function with D2(T) > O(1). We also provided an order-matching lower bound.

In addition, we showed how performance could be further improved by utilizing more

sophisticated voting techniques. We discussed the applicability of our algorithm to more

general cases when labelers’ quality varies with contextually different tasks and discuss

how to detect and remove malicious labelers when there is a lack of ground-truth. We

validated our results via both synthetic and real world AMT data, alongside numerous

observations and discussions.

45

CHAPTER III

Crowd-learn: Online recommendation system

3.1 Introduction

In this chapter we analyze the following learning problem in the context of crowd-

sourcing such as in a recommendation system: M users each faces N options, such as those

in restaurants, movies, etc. In a discrete time setting, at each step a user chooses K out

of the N options, and receives randomly generated rewards, whose statistics depend on the

options chosen as well as the user herself, but are unknown to the user. The objective of

each user is to maximize her expected total reward (e.g., overall satisfaction of watching

movies) over a certain time horizon through an online learning process, i.e., a sequence

of exploration (sampling the return of each option) and exploitation (selecting empirically

good options) steps. Taken separately, an individual user’s learning process may be cast

as a standard multi-armed bandit (MAB) problem which has been extensively studied, see

e.g., [44, 4, 5, 73].

Our interest, however, is on how an individual’s learning process may be affected by

“second-hand learning”, i.e., by observing how others in the group act and what they rec-

ommend. The challenge is that what is considered desirable options for one may be undesir-

able for another (think of restaurant choices: one Yelp user may favor large establishments

with extensive menus while another may favor small out-of-the-way places), and this d-

ifference in preference is in general unknown a priori. Moreover, even when two users

46

happen to have the same preference (e.g., they agree one option is better than the other),

they may differ in their absolute valuation of each individual option (again: two Yelp users

may agree restaurant A is better than B, but one user may rate them 5 and 4 stars respec-

tively, while the other 4 and 3 stars, respectively). Consequently if an individual wants

to take others’ actions into account in her own learning process, she would need to figure

out whether their preferences are aligned. This raises the interesting question of whether

learning from crowdsourcing is indeed beneficial to an individual, and if so what type of

learning algorithm can effectively utilize the crowdsourced data in addition to one’s direct

observations. This is what we aim to address in this paper. A related subject is learning

with side information, see e.g., [79, 55, 45]. In contrast, we do not require such statistical

information; instead we examine how a user can estimate and learn from the crowdsourced

data.

We will assume that users are heterogeneous in general, i.e., when choosing the same

option they obtain rewards driven by different random processes with different mean values

and possibly different distributions. We then consider two scenarios. (1) In the first case

users crowd-source full information, meaning they disclose not only their choices but the

reward outcomes of those choices and (2) when users exchange limited information, only

their choices but not the rewards obtained. Performance is measured in weak regret, the

difference between the user’s total reward and the reward from a user-specific best single-

action policy (i.e., always selecting the set of options generating the highest mean rewards

for this user). We show that when complete information is shared, our crowd-learning al-

gorithm results in upto a M-fold improvement to the regret bound under different problem

settings. When only partial information is available, the improvement of learning is tied to

a weight/recommendation factor of how much we value others’ opinion compared to her

own. Interestingly we find for certain special case, simply integrating partial information

allows the algorithm’s performance bound to outperform its full information counterpart.

To our best knowledge, this is the first attempt to analyze online learning with crowd-

47

sourced data. By applying our results to the movie ratings dataset MovieLens [39], we

show how our algorithms can be used as an online (causal) process to make real-time pre-

dictions/recommendations. Experiments show that in both online and offline settings our

recommendation performance exceeds that of individual learning, and in the offline setting

our results are also comparable with several existing offline solutions. In order to further

understand the difference between the notion of “crowd learn” and offline collaborative

filtering methods, we adapt the idea of finding a crowd of similar users to existing matrix

factorization based recommendation methods and show its performance.

The remainder of the chapter is organized as follows. Section 3.2 presents the system

model, and Sections 3.3 and 3.4 analyze the full and partial information scenarios, respec-

tively. A generalization of the model to include additional context information is discussed

in Section 3.5. Simulation results are given in Section 3.6. Experimental results using

MovieLens data are presented in Section 3.7. For comparison with offline algorithms, a

crowd learning adapted matrix factorization method is discussed in Sections 3.8. Section

3.9 concludes this chapter.

3.2 Problem formulation

Consider a network of M users indexed by the set U = {1,2, ...,M} and a set of avail-

able options (also referred to as arms following the bandit problem literature), denoted by

Ω = {1,2, ...,N}. The system works in discrete time indexed by t = 1,2, · · · . At each time

step a user can choose up to 1 ≤ K ≤ N options. For user i an option k generates an I-

ID reward over time denoted by random variables {X i
k(t)}, with a mean reward given by

µ i
k := E[X i

k]. We will assume that µ i
l 6= µ i

k for l 6= k,∀i ∈U , i.e., different options present

distinct values to a user. We further assume finite support over X i
k, i.e., there is a finite

positive constant X̄ such that X i
k(ω) < X̄ , ∀i,k, where ω denotes an arbitrary realization.

We will denote the set of top K options (in terms of mean rewards) for user i as Ni
K and its

complement Ni
K . Denote by ai(t) the set of choices made by user i at time t; the sequence

48

{ai(t)}t=1,2,··· constitutes user i’s policy.

Following the classical regret learning framework, we will adopt the weak regret as a

performance metric, which measures the gap between the total reward (up to some time T)

of a given learning algorithm and the total reward of the best single-action policy given a

priori knowledge on the average statistics, which in our case is the sum reward generated

by the top K options for a user. This is formally given as follows for user i adopting policy

a:

Ri,a(T) = T · ∑
k∈Ni

K

µ
i
k−E[

T

∑
t=1

∑
k∈ai(t)

X i
k]. (3.1)

The goal of an online learning algorithm is to minimize the above regret measure, whose

time-average should ideally diminish, i.e., it is desirable to have Ri,a(T) = o(T),∀i.

Existing online learning techniques can often attain this goal. For instance, using the

celebrated UCB1 algorithm [5] a logarithmic regret uniform in time can be achieved with

IID rewards; work in [73] showed that the same can be achieved with Markovian rewards

using a renewal based algorithm RCA. Existing algorithms, however, act on each user i

separately, i.e., user i only sees her own rewards X i
js’ sample path on which to base her

decision. By contrast, in this study we investigate whether the regret performance can be

improved by allowing a user i1 access to observations (or decisions) made by another user

i2, i.e., by letting a user crowdsource data generated by other distinct users.

Specifically, we will consider two types of information shared /exchanged by the users.

Under the first type, users disclose full information: they not only announce the decisions

they make (the options they choose), but also the observations following the decisions, i.e.,

the actual rewards received from those options, such as perceived quality of a movie. Such

announcements may be made at the end of each time step, or may be made periodically

but at a lesser frequency. The second type of exchange is partial information where users

disclose only part of decisions and/or observations. Specifically, we will assume in this

49

case the users only share their decision information, i.e., the set of choices they make, at

the beginning of each time step, but withhold the actual observation/reward information

following the decisions.

Different from full information case, where we do not further differentiate users’ pref-

erence ordering over options, for the partial information scenario we model explicitly that

users have different preference orderings over the N options. Specifically, in this case

we will assume that the M users may be classified into G distinct groups, indexed by the

set G = {1,2, ...,G}, with users within the same group (say group l) having a unique K-

preferred set Nl
K; these preference sets (but not the group membership) are assumed to be

public knowledge. Note that even with the same preference set, users may be further distin-

guished based on the actual ordering of these top K options. Our model essentially bundles

these users into the same group, provided their top K choices or options are the same. This

is because as a user is allowed K choices at a time, further distinguishing their preferences

within these K options will not add to the performance of an algorithm.

3.3 Crowd-Learning, Full Information (CL-FULL)

In this case users disclose the rewards X i
k(t) for each option they chose at the end of

a time step. The technical challenge here is that the statistics driving the rewards are not

identical for all users even when using the same option. So information obtained from

another user may need to be treated differently from one’s own observations. In general the

reward user i obtains from selecting option k can be characterized by X i
k = F (Xk,Ni,Li),

where F (·) is some arbitrary unknown function, Xk describes certain intrinsic or objective

value of option k that is independent of the user (e.g., the rating given to a restaurant by

AAA, and so on), Ni is a noise term, and Li captures user-specific features that affect the

perceived value of this option to user i (e.g., user i’s taste or dietary restrictions which may

affect her preference for different types of restaurants).

Next consider the relationship between users’ observations. For simplicity and without

50

loss of generality, we will limit our attention to the following special case of user-specific

valuations, where the rewards received by two users from the same option are given by a

log-linear relationship:

X i
k

d
= (X j

k)
δ

i, j
k ,∀i 6= j ∈U ,k ∈Ω, (3.2)

where δ
i, j
k is a constant and unknown scaling factor also referred to as the distortion or

distortion factor between two users. This relationship implies that one user’s perception of

a given option is statistically identical to another’s to a constant power. Several common

distributions, such as Log-normal, Pareto, and Weibull, satisfy such an assumption when

used to model user observations. While certainly a simplification, this assumption does

not impact the generality of our result. This is because in principle a user can assume any

model to estimate a pairwise relationship. It can be shown that our analysis holds as long

as such relationship is one-to-one in distribution. This concrete model leads to closed-

form characterizations of the regret bounds, which help shed light on the effect of various

problem parameters. It also proves to work well with the real dataset MovieLens. More

discussions on a general relationship function can be found at the end of this section.

Consider two users i and j, and option k. Denote by r̂i
k(t) the sample mean of log-

reward {logX i
k(t)}t (with its true mean denoted by µ̂ i

k) collected by i from option k. These

quantities are not only available to user i, but also to all other users j ∈U \{i} due to the

full information disclosure, and vice versa. User i then estimates the distortion between

herself and user j by calculating the following

δ̃
i, j
k (t) = r̂i

k(t)/r̂ j
k(t) ,∀i 6= j ∈U ,k ∈Ω . (3.3)

With the above quantity we then make the following simple modification to the well-known

UCB1 algorithm [5]. In the original UCB1 (or rather, a trivial multiple-play extension of

it), user i’s decision ai(t) at time t is entirely based on her own observations. Specifically,

51

denote by ni
k(t) the number of times user i has selected option k up to time t. The original

UCB1 then selects option k at time t, if its index value given below is among the K highest:

UCB1 index: ri
k(t)+

√
2log t
ni

k(t)
.

Our modified algorithm takes this index as a baseline and makes the following changes:

option k is selected at time t if its index value defined below is among the K highest:

CL-FULL index:

ri
k(t) ·n

i
k(t)+∑ j 6=i Λi, j(r j

k(t)) ·n
j
k(t)

∑ j∈U n j
k(t)

+

√
2log t

∑ j∈U n j
k(t)

,

where the operator Λi, j(r j
k(t)) is defined as follows:

Λ
i, j(r j

k(t)) =
∑

t
s=1(X

j
k (s))

δ̃
i, j
k (t) ·1{k ∈ a j(s)}
n j

k(t)
.

We take δ
i,i
k = 1 by default, and denote δ

i,∗
k := max j∈U δ

i, j
k , and further denote δ i,∗ :=

maxk∈Ω δ
i,∗
k . To analyze the performance of this algorithm, we first prove the following

result.

Lemma III.1. Suppose the numbers of samples from option k for users i, j both exceed l.

Define constant ε as follows:

• If l =C1t, let ε := 2δ
i,∗
k

|µ̂ j
k |−2

√
log t
C1t

·
√

log t
C1t ,

• If l =C2 log t, let ε := 2δ
i,∗
k√

C2|µ̂ j
k |−2

.

Then for sufficiently large C2 the estimation error on the distortion δ
i, j
k satisfies:

P(|δ̃ i, j
k −δ

i, j
k |> ε)≤ 4

t2 .

52

Denote X̄k = maxi,ω X i
k(ω) and ∆i

k := µ i
K−µ i

k. We have the following series of results

characterizing the performance of CL-FULL. They are organized based on the nature of

δ
i, j
k . We shall start with the simplest case when δ

i, j
k is option independent: δ

i, j
1 = δ

i, j
2 =

...= δ
i, j
K , followed by k-dependent δ

i, j
k s.

3.3.1 Option independent δ i, j

In this case, for user i to estimate δ i, j, she can simply choose the arm/option that has

the largest number of collected samples (by users i and j) for the purpose of calculation.

As we will show later, under mild conditions each user can always find an arm with O(t)

number of samples up to time t, with any of its peers. Based on results in Lemma III.1, with

O(t) number of samples for calculation, we can achieve an estimation error on the order of

O(
√

log t/t). We assume in this section for each pair of (i, j) we have Ni
K ∩N j

K 6= /0. This

mild assumption is to make sure for any pair of users (i, j) we can find a common good

option. We have the following theorem characterizing the performance of CL-FULL.

Theorem III.2. Under CL-FULL, there exists a constant C1 > 0 such that user i’s weak

regret is upper bounded by:

Ri
CL-FULL(t)≤ ∑

k∈Ni
K

d
8∆i

k

M ·
(

∆i
k−2X̄2

k εk(t)
)2 log te+ const. , (3.4)

where

εk(t) =
2δ i,∗

min j 6=i |µ̂ j
k |−2

√
log t
C1t

·
√

log t
C1t

.

To compare with the original UCB1 algorithm which has a weak regret upper bounded

53

by

Ri
UCB1(t)≤ ∑

k∈Ni
K

d8log t
∆i

k
e+ const., (3.5)

we note that in our result, the term 2δ i,∗

min j |µ̂ j
k |−2

√
log t
C1t

·
√

log t
C1t → 0 at approximately the rate of

O(
√

log t/t); if we ignore this term then our bound becomes

Ri
CL-FULL(t)≤ ∑

k∈Ni
K

d 8
M ·∆i

k
log te+ const. ,

which shows a M-fold performance improvement.

3.3.2 Option dependent δ
i, j
k

The analysis below is similar as before, with a subtle difference in bounding the error

ε in estimating δ
i, j
k , which now needs to be done for each option k. Because of this we can

no longer guarantee that there is always an O(t) number of samples available for all k, and

thus the estimation error is expected to be large. In fact when the number of explorations

(number of samples in each option, as commonly defined in the MAB literature) chosen to

be L log t we can only claim this amount of samples can be used to calculate each δ
i, j
k . In

particular, using result from Lemma 1, with probability at least 1− 4
t2 we have the following

estimation error on each δ
i, j
k (t): εk(t) =

2δ
i,∗
k√

Lµ̂
j

k−2
. Note that this error does not decrease in

t and depends on L. Therefore we expect larger learning error and regret terms. We have

the following result.

Theorem III.3. Under CL-FULL, user i’s weak regret is upper bounded by,

Ri
CL-FULL(t)≤ ∑

k∈Ni
K

dmax{
(2
√

2
M +

12µ i
kµ

j
k δ

i,∗
k

min j 6=i |µ̂
j

k |
)2

∆i
k

,
8∆i

k

(µ i
k ·min j 6=i µ

j
k)

2
} log te+ const. . (3.6)

Compared to the previous bound in Eqn.(3.5) we see the two differ in several places.

54

First 8∆i
k

(µ i
k·min j 6=i µ

j
k)

2
is generally a smaller term compared to 8

∆i
k
, as µ i

k is generally larger com-

pared to ∆i
k. Secondly if we ignore the 12µ i

kµ
j

k δ
i,∗
k

min j 6=i |µ̂
j

k |)2
term, the constant shown in Ri

CL-FULL(t)

becomes 8
M , which is M-fold better than the UCB bound using individual learning, similar

to what we have seen in Eqn.(3.4). This extra term corresponds to errors in estimating

pair-wise discrepancies. From the above observations we see a clear trade-off between

benefiting from crowdsourced data and additional estimation error incurred in order to put

crowdsourced data to use.

3.3.2.1 A (slightly) refined bound for discrete X

When Xs are discrete random variables (which is often the case in a rating system), the

regret bound proved in Eqn.(3.6) can be slightly refined. Denote each user’s observation

space by X i
k . The basic idea is after getting each estimate δ̃ and using it to convert samples

(X j
k (t))

δ̃
i, j
k , we assign a rating x ∈X i

k that is the closest to (X j
k (t))

δ̃
i, j
k . Formally,

X i
k(t) = argminx∈X i

k
|(X j

k (t))
δ̃

i, j
k − x| .

Then with the rest of CL-FULL stay the same, we have the following theorem.

Theorem III.4. Under CL-FULL, user i’s weak regret is upper bounded by,

Ri
CL-FULL(t)≤ ∑

k∈Ni
K

dmax{ 8
M∆i

k
,(

4X̄2
k δ

i,∗
k +2∆X i

k

∆X i
k

min j 6=i |µ̂ j
k |
)2

∆
i
k} log te+ const., (3.7)

where ∆X i
k
= minx 6=y∈X i

k
|x− y|.

We see that the term containing M is now separated from the rest of the terms compared

to Eqn.(3.6); this is a slightly better bound because we removed the constant from this term,

which leads to a smaller quantity. The other terms of both regret bounds are roughly on the

same order.

55

3.3.3 A joint estimation of δ
i, j
k : beyond pair-wise estimation

Note the extra learning error in the bound (3.6) is independent of M and does not de-

crease when the number of users increases; this is a potentially worrisome bottleneck.

Below we examine ways to mitigate this.

We start by explaining why we do not have an M-fold scaling in this additional error

term. Statistically speaking, since we use the converted samples to estimate the sample

mean of each option, there are M-fold number of samples (though noisy) compared to

individual learning. However, this is not true when learning the δ s, as we need to use a

user’s own data to make such pairwise calculations (one-fold for each pair). This motivates

us to consider using all samples to estimate δ simultaneously to achieve an M-fold speed-

up.

Specifically, instead of pair-wise estimation, δ
i, j
k can be estimated as follows:

δ̃
i, j
k =

r̂i
k(t)+∑l 6=i r̂l

k(t)δ̃
i,l
k

r̂ j
k(t)+∑l 6= j r̂l

k(t)δ̃
j,l

k

.

That is, for each pair of users i, j, when estimating the δ
i, j
k for option k, we not only use the

data from i, j, but also the converted data from other users j 6= i. This conversion and thus

the estimate involves solving δ
i, j
k s simultaneously. The above equation can be re-written as

follows:

δ̃
i, j
k r̂ j

k(t)+ δ̃
i, j
k ∑

l 6= j
r̂l

k(t)δ̃
j,l

k = r̂i
k(t)+∑

l 6=i
r̂l

k(t)δ̃
i,l
k ,

which is a quadratic equation of δ
i, j
k s. Denote Φk := [δ̃

i, j
k]i6= j, we have the following

Quadratic Matrix Equation (QME) whose solution leads to solutions for δ :

A+ΦkB+∑
r

Cr(Φk)
T Dr(Φk)Fr = 0 , (3.8)

56

where A,B,{Cr,Dr,Fr} are matrices with entries being functions of users’ reward (log-

reward) statistics. Suppose the true δ
i, j
k is the unique solution to the above QME when

r̂ j
k(t) is replaced by the true mean µ̂

j
k , and denote it by Φ0

k . Since r̂ j
k(t) is a noisy version of

µ̂
j

k , what we want to show is under perturbation our estimated solution δ̃
i, j
k can be bounded.

This small perturbation will add two perturbation terms (A0,B0) in the QME as follows:

A+A0 +Φk(B+B0)+∑
r

Cr(Φk)
T Dr(Φk)Fr = 0 . (3.9)

Suppose we have the following boundedness on the perturbation (which we prove to be the

case in the appendix, see Proof for Theorem III.5):

|A0(i, j)| ≤ ε, |B0(i, j)| ≤ ε , (3.10)

and when the solution to the QME can be bounded proportional to ε by a constant multiplier

C3 we have the following theorem:

Theorem III.5. Under CL-FULL, user i’s weak regret is upper bounded by

Ri
CL-FULL(t)≤ ∑

k∈Ni
K

d
(2
√

2+8X̄3
k δ

i,∗
k C3)

2

M∆i
k

log te+ const. (3.11)

We see that indeed the factor M is now back in the regret bound.

3.3.4 Discussion and extensions

Note that the improvement we have demonstrated in this section are all in the bounds on

the regret and not necessarily in the regret itself; the latter is examined later using numer-

ical experiments. It can also be shown that similar result exists when the full information

exchange occurs only at periodic intervals but not necessarily at the end of each time step

so as to reduce potential communication cost. The proof is very similar to the one presented

here and thus not repeated.

57

The analysis so far assumes a log-linear relationship between two users’ reward distri-

butions. This is obviously not generally true. Consider the following generalization, where

a pair of users i, j’s observations of any option k are given by

X i
k

d
= F(X j

k) ,

where F is an arbitrary function. Then consider using Taylor expansion to make the fol-

lowing approximation:

X i
k

d
≈

D

∑
n=0

bn · (X j
k)

n ,

where D is the degree of estimation. When D = ∞ the equality holds in distribution. It

follows that as long as we can estimate the bns, we will similarly be able to convert a

sample from one user to another. For instance, we could form the following system of

equations in the case of D = 2:

E[X i
k] =

D

∑
n=0

bnE[·(X j
k)

n] ,

E[(X i
k)

2] = E[(b0 +b1X j
k +b2(X

j
k)

2)2] ,

E[(X i
k)

3] = E[(b0 +b1X j
k +b2(X

j
k)

2)3] .

With above three equations we can potentially solve for b0,b1,b2, where D clearly controls

the trade-off between accuracy in converting observation data and the complexity of such

estimation and conversion process. However, there is generally no closed form characteri-

zation of the solutions for bns. In this case even though a similar algorithm can be followed,

its performance bound becomes harder to analyze.

58

3.4 Crowd-Learning, Partial Information (CL-PART)

3.4.1 Preference identification

In the previous section, we showed that by exchanging full information the crowd learn-

ing algorithm can improve the regret bound by a constant factor up to M. In many cases

however, user information is not or cannot be exchanged in its entirety for a variety of rea-

sons such as privacy or communication cost. In this section we consider one such cases

where users only share their decisions/actions, but not their direct observations. We would

like to examine a similar problem in this case, i.e., to what extent can a user tap into de-

cisions made by other users to improve its own decision process, assuming other users act

in self-interest, i.e., decisions are made to maximize their own satisfaction though their

precise objective or utility functions need not be known.

The general idea is to use the shared decision to first obtain any user’s frequency of se-

lecting each option. These statistics are indicators of a user’s preference, assuming the user

is trying to maximize its own reward over time; thus decisions by another reveal preferences

and may be exploited. In what follows we first propose a group classification procedure

with performance guarantee to help a user distinguish similar users and then show how we

can design online learning algorithms utilizing this information.

To differentiate users’ preferences, consider the following sample frequency based

group identification procedure. Each user keeps the same set of statistics ni
k(t) as before:

the number of times user i is seen using option k. Users then estimate each other’s prefer-

ence by ordering the statistics: at time t user i’s preference is estimated to be the set Ñi
K(t),

which contains options k whose frequency ni
k(t) is among the K highest of all i’s frequen-

cies. User i is then put in a preference group with whose (known) preferred set Nl
K(t) is the

closest in distance. Specifically, assign user i to group gi(t) if:

gi(t) = argmaxl∈G Di,l(t) := argmaxl∈G |Ñi
K(t)∩Nl

K| ,

59

with ties broken randomly. The performance of the above classification step will be ana-

lyzed later within the context of a learning algorithm.

3.4.2 Algorithm and performance

After differentiation, denote by Ui the set of similar users for each user i and denote

Mi = |Ui|. There are two options a user can choose to implement an algorithm: (i) to use

information from only those identified as having the same preferences, i.e., users in set Ui,

and (ii) to use all users’ information.

We start with the easier case (i). Denote by nk,i(t) the total number of times option

k has been selected by the crowd Ui up to time t, i.e., nk,i(t) := ∑i∈Ui ni
k(t). Then define

β i
k(t) := nk,i(t)

∑l∈Ω nl,i(t)
to denote the frequency at which option k is used by the group up to time

t. This will be referred to as the group recommendation.

Then we rewrite the frequency parameter to take advantage of crowd learning in the

following way. Based on β i
k(t) we first order the options in descending order; their rank

denoted by rankk. Denote by BK(t) the non-top K options based on the frequency estimate:

BK(t) := {k ∈Ω : rankk > K} .

Define user specific frequency estimate for j ∈U i as

β
i
k(j; t) =

n j
k(t)
t

.

Now we redefine the frequency parameters as follows

β̃
i
k(t) := min

j∈Ui
β

i
k(j; t), k ∈ BK(t) . (3.12)

60

For k /∈ BK(t) we have

β̃
i
k(t) :=

1−∑k′∈BK(t) β̃ i
k′(t)

K
.

Note the above definition is a valid probability measure: ∀ j ∈U

∑
k′∈BK(t)

β̃
i
k′(t)≤ ∑

k′∈BK(t)

β
i
k(j; t)≤ 1 ,

and it follows that ∑k∈Ω β̃ i
k(t) = 1,∀t. With these definitions and notations, we construct the

following algorithm CL-PART(I), by biasing toward potentially good options as indicated

by the group. Under the CL-PART(I) algorithm, option k is selected at time t if its index

value defined below is among the K highest:

CL-PART(I) index: ri
k(t)+α(t)β̃ i

k(t)

√
log t
ni

k(t)
+

√
2log t
ni

k(t)
,

where α(t) ∈ [0,
√

2) is a weighting factor over the group recommendation capturing how

much user i is valuing recommendation from the group. The upper bound of
√

2 is due to

technical reasons seen in the proof.

A few remarks are in order. (1) In the above index expression, the middle bias term

serves as a recommendation: a larger group frequency β̃ i
k(t) means a better recommenda-

tion. But its effect diminishes as ni
k(t) increases. This reflects the notion that over time a

user becomes increasingly more confident in her own observations and relies less and less

on the group recommendation. (2) Secondly, the weight α(t) captures how much the user

values the group recommendation compared to her own observations: a small value puts

a small weight on the group information which may be under-utilizing this information,

while a large α may be placing too much confidence in others.

To prove the performance of CL-PART(I), first we have the following result on the user

classification process.

61

Lemma III.6. Under CL-PART(I), for user i∈U belonging to group r ∈ G the probability

of mis-classification at time t is bounded as follows:

P(gi(t) 6= r)≤ 2C
t2 , ∀i ∈U , t > 0. (3.13)

for some positive constant C > 0.

We then have the following results on characterizing the regret performance of CL-

PART(I).

Theorem III.7. Under CL-PART(I), let ε(t) :=
√

log t
t and set

α(t) :=
√

2(1− γ)−
√

N · ε(t)

at each time t, where 0 < γ ≤ 1 is an arbitrary small number. We have user i’s weak regret

is upper bounded by

Ri
CL-PART(I)(t)≤ ∑

k∈Ni
K

d
4
(√

2−
α(t)(1− 1

Mi
)

K

)2

∆i
k

log te+ const.

γ is to make sure we will not violate the technical assumption α(t)<
√

2 for any t. γ is

tunable and can be made arbitrarily small.

Notice we have

α(t)(1− 1
Mi

) =

√
2(1− γ)−

√
N ·
√

log t
t

K
· (1−

√
log t

t
)

→
t

√
2(1− 1

Mi
)

K
.

62

So the bound converges to

∑
k∈Ni

K

d
8(1−

1− 1
Mi

K)

∆i
k

log te+ const.

Interestingly, we see that when K = 1, i.e., when each user selects only one option at a

time, the regret reduces to 8
Mi

+ const., which gives us Mi-fold performance improvement.

Recall that with full information the regret bounds do not always converge to this quantity;

this result thus implies that in some cases restricting to partial information may be more

beneficial than trying to use full information. Intuitively, this could happen when the addi-

tional error incurred in learning pairwise differences exceeds its benefits. When K = 2 the

constant factor reduces from 8 to 4 (with Mi large), a roughly 50% improvement.

3.4.3 Leveraging more information

We next consider leveraging more user information beyond the set Ui. The motivation

is that by adding more samples we may potentially improve the algorithm’s performance,

especially when the population of similar users is relatively small compared to the total

population. Restricting our attention to Ui previously ensures that users have the same

top-K choices. Removing this restriction means that we may have Ni
K 6= N j

K; however, it

is possible there exists option k ∈ Ni
K ∩N j

K . In this sense, j’s sample frequency estimation

of k can again be utilized by i, and vice versa. Accordingly, we propose the following

modification to the algorithm given in the previous subsection.

We largely re-use the index construction as detailed in CL-PART(I), but with the fol-

lowing difference: we discount choices made by users believed to belong to a different

group, so as not to be overly influenced by choices made by users with different prefer-

ences. Specifically, user i assigns the following weight to option k:

β
i
k(t) =

∑ j∈U (n j
k(t))

ω i, j

∑k∈Ω ∑ j∈U (n j
k(t))

ω i, j
, (3.14)

63

where weights ω i, j = 1 if i estimates user j to be in the same group as itself, and ω i, j < 1

otherwise; ω i, j can also be chosen as a function of the difference between different prefer-

ence groups. This modified index leads to algorithm CL-PART(II).

We define the following set for each k ∈ Ni
K we have

U i
k = { j ∈U : k ∈ N j

K} . (3.15)

And denote Mi
k = |U

i
k |. That is, Mi

k records the number of users who have k falls out of

their top choices. Notice U i ⊆ U i
k and thus Mi

k ≥ M. We can then similarly prove the

following result.

Theorem III.8. Under CL-PART(II), at each time t, user i’s weak regret is upper bounded

by

Ri
CL-PART(II)(t)≤ ∑

k∈Ni
K

d
4
(√

2−
α(t)(1− 1

Mi
k
)

K

)2

∆i
k

log te+ const.

Note that due to the fact Mi
k ≥M we have achieved a strictly better bound compared to

the one in Theorem III.7.

3.5 The case with contextual information

In this section we discuss a generalization of the previous model by incorporating addi-

tional contextual information, which is often used to capture a continuum of choices. The

contextual information often captures the fact that although users may have overall pref-

erences towards choices, they can be further distinguished by the context under which a

choice is made, e.g., preference for a restaurant may be influenced by different menu item-

s. Specifically, assume at each time t an extra piece of contextual information Y (t) ∈ Y

64

arrives, and a user’s reward is context-dependent. When |Y | is finite, we in effect have

N× |Y | choices, each denoted by (i,y). All our previous results hold over this new ex-

panded set of choices.

Now consider the case |Y | is infinite, e.g., Y = [0,1]. The extension of our earlier

results in this case is also feasible by following existing literature on continuum arms,

see e.g., [2, 74], which consists of (1) assuming a Lipschitz condition (with L being the

multiplication constant and θ being the power one) on the reward X i
k(t,y), i.e., expected

rewards are similar when contexts are close, and (2) quantizing the context interval [0,1]

into an increasing number of sub-intervals, each treated as a bundle with an average reward

over the sub-interval.

Following this procedure, we let the number of sub-intervals at time t be p(t) = t−z/2

with constant 0 < z < 1, and define ∆∗ = maxi,k ∆i
k . We then have a set of theorems that

parallel their finite-arm counterparts; the full detail is omitted for brevity except for the

following example (proof is also omitted as it followed standard technique and our previous

analysis).

Theorem III.9. The weak regret of user i under contextual CL-FULL is upper bounded by

Ri
CL-FULL(t)≤ ∑

k∈Ni
K

∆
i
k · d

8 · tz · log t
M

e+(2X̄2 +5∆
∗)d t1−z/2

1− z/2
e

+2Ld t1−zθ/2

1− zθ/2
e+ const.

The one under the original UCB1 has a similar format, but without the M-fold speed-up.

3.6 Numerical Experiment

3.6.1 Simulation setup

In this section we evaluate and validate the performance of our crowd-learning algo-

rithms using simulated data. In our simulation we have ten users with five options; each

65

user targets the top three options at each time, i.e., M = 10,K = 3,N = 5. Furthermore, for

each option the reward is given by a truncated exponentially distributed random variable

(bounded). The distortion factor between each pair of users for each option is generated ac-

cording to a Gaussian random variable with mean 1 and variance 1. We use “crowd regret”

to denote the sum of regrets from all users. Throughout the evaluation section, the regret

results are averaged over multiple sample realizations for a certain parameter setting.

3.6.2 Simulation results

We start with performance evaluation for CL-FULL. From Figure 3.1 we see with ful-

l information exchange the crowd learning algorithm significantly outperforms individual

learning. Moreover, its performance is comparable to a centralized scheme (denoted as

UCB Centralized in the figure), whereby the M users are centrally controlled and coordi-

nated in their learning using UCB1, allowing simultaneous selection of the same options

by multiple users, and each receiving MK samples at each time step without distortion.

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

Time

C
ro

w
d

re
gr

et

CL−FULL
UCB−IND
UCB−Centralized

Figure 3.1: Comp. between CL-FULL, UCB-IND, UCB Centralized

We next consider CL-PART. The mis-classification rate of the algorithm is given in

Figure 3.2, which is shown to decay nicely. The performance of CL-PART is compared to

UCB-IND under different parameter γ in Figure 3.3. We see that CL-PART consistently

outperforms UCB-IND. A smaller γ gives better performance, which confirms our analyti-

cal results. Also, as we noted in our analysis and see here, a smaller K results in less regret.

66

0 500 1000 1500 2000 2500 3000

0.2

0.4

0.6

0.8

1

Time

E
rr

or
 r

at
e

Figure 3.2: Conver. of differentiating users from different groups.

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

Time

C
ro

w
d

re
gr

et

CL−PART: γ = 0.1, K=1
CL−PART: γ = 0.1
CL−PART: γ = 0.3
CL−PART: γ = 0.4
UCB−IND

Figure 3.3: Performance of CL-PART, with different γ parameters.

Finally, we compare CL-PART(I) and CL-PART(II). From results in Figure 3.4 we ob-

serve that with more appropriately designed algorithm and leveraging more data, a (much)

better performance can be achieved.

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

Time

C
ro

w
d

re
gr

et

CL−PART(II)
CL−PART(I)

Figure 3.4: Comparison between CL-PART(I) and CL-PART(II).

3.7 An Empirical Study Using MovieLens

We now apply the idea of crowd-learning to the MovieLens data [39] collected via a

movie recommendation system. We will use MovieLens-1M dataset for this experiment

67

(this is one of the three sets available; the others are 100K and 10M in size). It contains

around one million rating records provided by 6040 users on 3952 movies (from 18 cate-

gories/genres), dated from April 25, 2000 to February 28, 2003. Each rating is on a scale

of 1-5; throughout the rest of this section we will also refer to a rating record as a review.

In general each user contributes to multiple reviews, with a significant portion of users pro-

viding a large amount, e.g., about 70% have more than 50 reviews. This makes the dataset

quite suitable for testing our algorithm as we try to estimate groups or crowds of “similar”

users.

Our goal is to use the MovieLens data to verify whether our crowd-learning algorithm

can help us predict how a user is going to rate movies in the future given this and other

users’ reviews in the past. The basic idea in applying learning is that based on such a pre-

diction a user would then choose (more often) to watch a movie that she thinks she is going

to like rather than dislike, thereby maximizing her satisfaction over time. Obviously this

decision aspect of the learning algorithm cannot be verified using this dataset as we have no

information on the users’ actual decision process. Our experiment thus only focuses on the

estimation/prediction aspect of the learning algorithm. Put in a different way, this would

also allow us to show whether our algorithm can provide better recommendations for a

particular user for a particular movie. Within this context we further aim to highlight the

potential uses of our algorithm in an online fashion as more data samples become available.

3.7.1 Experiment design

To perform this experiment we must explain the algorithm in the context of this dataset.

We first note that in this case time is no longer discrete, as reviews arrive as an arbitrary

arrival process in continuous time. Therefore the discrete time steps used in the algorithm is

replaced by a clock driven by this arrival process, i.e., one tick for each arrival or each batch

of arrivals. Mathematically, this means to assign integer time indices t = 1,2, · · · ,T as the

discretized time stamps for the reviews, up to some maximum T . Under this assignment

68

multiple reviews may have the same time stamp, and there is at least one review at each

time.

Secondly, the reviews tend to arrive in clusters upon new movie releases, and it may

be hard to find any review for a movie that was released some time ago. This means

that if we are to treat each movie as a separate option (or arm) then these options are not

simultaneously available at all times as movies come and go, and along with them their

corresponding reviews. We thus bundle these movies into categories so that over a long

period of time there are always reviews available for a genre. Adopting the classification

given in [39], we will bundle movies by their genres, e.g., Action, Adventure, Comedy, etc.,

resulting in 18 categories/genres; each is regarded as an option/arm for our algorithm. A

review for any movie within a genre is treated as a sample of the corresponding option. In

doing so, we have for each user a continuing sequence of arriving samples for each option,

and our algorithm (the estimation part) can then be applied in a straightforward way. We

do lose the finer distinction between movies of the same genre and thus strictly speaking

our prediction result is for the whole genre; this prediction is then used as a proxy for a

specific movie within that genre. As we shall soon see our prediction performance even

with this coarse grained bundling is competitive with existing methods. Since each review

contains the actual rating, not just preference ordering, we will mainly use CL-FULL for

testing. We nevertheless will also test CL-PART.

The prediction performance is measured by the error and squared error, both averaged

over the number of samples in the data. Specifically, adopting the same notation used in

our analysis, ai(t) denotes the set of movies user i reviewed at time t (under the discretized

time), and X i
k(t) denotes her rating for movie k for k ∈ ai(t); also let X̂ i

k(t
−) denote the

prediction/estimation of user i’s rating for movie k given all reviews that have arrived before

t, i.e., up to and including t−1, using the learning algorithm. The average error (referred

69

as Average Error) over a horizon T is given by:

EA(T) =
∑

T
t=1 ∑(i,k):k∈ai(t) |X̂ i

k(t
−)−X i

k(t)|
∑

T
t=1 ∑(i,k):k∈ai(t) 1

, (3.16)

where the denominator is the total number of reviews received by time t. Similarly the

average root-squared error (referred as RMSE) over a horizon T is given by:

ES(T) =

√√√√∑
T
t=1 ∑(i,k):k∈ai(t) |X̂ i

k(t
−)−X i

k(t)|2

∑
T
t=1 ∑(i,k):k∈ai(t) 1

. (3.17)

The estimate X̂ i
k(t
−) is obtained following the learning algorithm with the modifica-

tion mentioned earlier and summarized below. Note that since the algorithm works at the

category/genre level, we have X̂ i
k(t
−) = X̂ i

l (t
−) for all k, l in the same movie category.

Algorithm 1 Online Movie Recommendation
1: loop:
2: At time t, do the following simultaneously for each user i s.t. ai(t) 6= /0:

1: given X i
k(t), k ∈ ai(t), update i’s preference ranking over arms (categories of

movies);

2: update user i’s similarity group (group identification): users that share the same
set of top K preferred options as i;

3: estimate the distortion between i and those in her similarity group (CL-FULL) ;

4: update user i’s rating for each option by including estimates from those in her
similarity group weighted by the estimated distortion as given in the original al-
gorithm.

3: At the end of time step t, we obtain X̂ i
k((t +1)−) for all i,k.

4: goto loop.

The error given in Eqns (3.16)-(3.17) will be used in two ways in our experiments. In

the first, online setting, we will examine it as a function of T so it reflects the true prediction

error because the error is measured between future values and estimates based on all past

values. In the second, offline setting, we compute these errors by interpreting X̂ i
k(t
−) as i’s

estimated rating for movie k given all reviews provided at all times other than t (both before

70

and after), i.e., X i
k(t) is treated as the only missing entry in the data to be estimated. This

latter case is more aptly referred to as estimation than prediction because the processing is

non-causal, but it appears that the term prediction has been adopted to describe this type of

process in various contexts, see e.g., [41].

3.7.2 Online prediction result

We start by plotting EA(T) as a function of T ; this is shown in Figure 3.5 where we have

used K = 3, i.e., a user’s top 3 preferences (unordered) determine her similar group. The

data suggests that a user rarely reviews more than 6 different categories of movies, thus the

choice of K = 3 is a reasonable trade-off between too restrictive a definition of similarity

group (a large K and a very small similarity group) and an overly liberal one (a small K

and a very large similarity group). As expected we see a downward trend as the prediction

becomes more accurate with more past samples and crowd learning clearly outperforms

individual learning. However, this trend is not exactly monotonic primarily because the

arrivals of new movies which can give rise to increased error within the corresponding

category.

0 500 1000 1500 2000

0.8

1.1

Time

A
ve

ra
ge

 e
rr

or

Individual
CL−FULL

Figure 3.5: Convergence of regret

We next compare how crowd learning compares with individual learning; in the latter

case the errors are calculated according to Eqns. (3.16)-(3.17) by computing the estimate

X̂ i
k(t
−) using only user i’s own past reviews. To eliminate the fluctuation in error at the be-

ginning of the learning, we will use the first half of the data for training and measure errors

71

Cate. k 1 2 3 4 5 6
Indv. 0.4853 0.6343 0.6620 0.6868 0.7134 0.7278

CL-FULL (K = 3) 0.4618 0.5173 0.5356 0.6371 0.6551 0.6529
CL-FULL (K = 6) 0.4826 0.6249 0.6543 0.6776 0.7084 0.7263

Indv. 0.5376 0.7367 0.8251 0.6551 0.7503 0.7574
CL-FULL (K = 3) 0.6002 0.7195 0.7997 0.7933 0.8648 0.8389
CL-FULL (K = 6) 0.7071 0.8438 0.8773 0.9276 0.9685 0.9997

Table 3.1: Average error (top 3 rows) and average square root error (bottom 3)

only over the second half, i.e., we separate the dataset to (Training, Test) by (50%,50%)

based on their time of arrival.

Furthermore, to see more clearly the effect of the parameter choice K, we compare the

error performance by categories. Specifically, we measure the prediction error of each user

for movies in her most preferred category and average this over all users. This gives us the

error, for example, for Category k = 1 shown in Tables 3.1; errors for the other categories

are similarly computed up to k = 6. For each user the preference ordering of categories is

determined using her average rating for each category over the entire data trace. Due to

our choice of K = 3, we see a clear degradation in the average error performance under

the crowd learning algorithm when we go from k = 3 to k = 4, although the latter still

outperforms individual learning. This is to be expected because in making prediction for

one’s top 3 categories we have the advantage of using the similarity group for help; this

may not apply to the next 3 categories as members of the similarity group may not share

the same preference over the next 3 categories. This is also seen under the root-squared

error measure, where crowd-learning underperforms individual learning for k ≥ 4. For a

complete discussion we also added the performance when choosing K = 6. Clearly the

big prediction gap between the top 3 and latter categories goes away. We however observe

the performance under setting K = 6 is generally worse compared with the case of setting

K = 3 implying the fact that K = 6 does not accurately align users by similarity.

72

3.7.3 Validating partial information algorithm

We next show the convergence of group recommendation factors β using only partial

information. To do so we ignore the detailed ratings and use only the review counts that

user i has provided for category k, and track the convergence of the estimated frequency

β̃ i
k(t). Note that the decision to provide a review does not necessarily imply preference for

movies. So the number of reviews is used here as a proxy; as we see below it proves to be

a useful one. Accordingly, here similarity is determined by one’s rating frequency of each

category. From Theorem 3 we know that ideally the frequency for visiting the top choices,

β ∗i := ∑k∈Ni
K

β̃ i
k(t), should converges faster (smaller variance) when combining decision

information from similar users. We thus test the average and variance of β ∗i for all users

over time. K is set to 3. In Figure 3.6, we see clearly that by adding crowd recommendation,

better convergence of β ∗ is achieved (through reduction in variance indicated by the error

bars).

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

Time

β*

Individual
CL−PART(II)

Figure 3.6: Algorithm performance and comparison.

3.7.4 Offline estimation result

We end this section by showing that our algorithms can also be used in an offline set-

ting, to estimate the value of missing entries in the dataset as part of post-processing. The

result then becomes comparable to several existing solutions. In particular, we compare our

estimation results with that of the following three methods, among the best we have seen in

the literature and all of which are essentially based on matrix factorization techniques, see

73

for example [9]. (1) SoCo [47], which is a social network and contextual information aided

recommendation system. A random decision tree is adopted to partition the original user-

item-rating matrix (user-movie-rating matrix in the context of the MovieLens-1M dataset)

so that items with similar contexts are grouped. (2) RPMF [83], which uses what is known

as the Random Partition Matrix Factorization method, a contextual collaborative filtering

model based on a tree structure constructed by using random partition technique. (3) MF,

the basic matrix factorization techniques utilizing the user-item matrix.

We would like to emphasize that unlike our crowd-learning algorithm, these methods

are not designed to be executed online, as matrix factorization relies on the existence of

the whole matrix (with a few missing entries) which contain all past, present and future

samples. For comparison, we also add an “Individual” algorithm in the mix which resem-

bles the individual learning algorithm examined in the preceding subsection but in offline

estimation form, i.e., a user’s rating is estimated based on all her other (past and future)

ratings.

Algorithm Crowd Ind. SoCo RPMF MF
Avg. Error 0.6880 0.8145 0.7066 0.7223 0.7596

RMSE 0.9054 1.0279 0.8722 0.8956 0.9666

Table 3.2: Comparison with matrix factorization methods.

The comparison is presented in Table 3.2: the SoCo results are quoted from [47] and

RPMF, MF results are from [83] (all on the same MovieLens dataset), respectively. We see

clearly that our crowd-learning algorithm has the best average error performance, while its

RMSE underperforms SoCo and RPMF, though comparable. This is because the crowd-

learning algorithm uses sample mean measures to guide its learning and has an objective

of improving sample mean estimates rather than the mean squared error, so there is a slight

mis-match. This is also due to the quantization noise introduced by the bundling of movies

mentioned earlier.

It is worth noting that while our crowd learning algorithm does not rely on exogenous

74

social or contextual information as in SoCo or an explicit tree structure as in both SoCo

and RPMF, our learning and estimation of similarity groups implicitly introduces a type of

social connectivity among users that achieves similar goals. Furthermore, our estimation

of the differences among members of the same similarity group adds one more layer of

qualification of peer users when their inputs are combined; these distortion factors make

the selection of similarity groups more robust and error tolerant. All these factors contribute

to its superior error performance.

Nevertheless the performance difference in the offline setting is not significant. The

reasons are as follows. Firstly, offline solutions already utilize the concept of finding sim-

ilar users/rating in an implicit way. Secondly, often times the offline solutions work better

for low rank rating matrices. The gists of our crowd learning based methods are to differ-

entiate similar users from dissimilar ones and thus reduce the rank of subsequent, separated

sub-rating matrix. However, the rank of MovieLens data is already low due to its sparse

structure, which is the reason we did not see a more pronounced improvement.

3.8 Offline Crowd-Learning

It is indeed remarkable that our crowd-learning algorithms manage to achieve compa-

rable results with the set of offline algorithms, particularly considering the fact that we

have significant quantization error built in the algorithm when we bundled the movies into

genres. This motivates us to further investigate whether this improvement comes from the

idea of “crowd learning” (hopefully) or due to other differences in the algorithm design. To

answer this question, we combine the idea of finding a crowd of similar users with classical

collaborative filtering and demonstrate this with matrix factorization (MF) [42]. The MF

based recommendation methods are rooted in finding and utilizing the hidden interleave

embedded in users’ ratings. To exploit the idea of “similar crowd” in a more explicit way,

we propose a waypoint based collaborative filtering method, the basic idea being to asso-

ciate similar users to the same group; the hope is that we could potentially reduce the rank

75

of each of them, thus more similar ratings.

Algorithm 2 Waypoints based matrix factorization (W-MF)

1: Input: A training rating matrix M ∈ RM×n.
2: Similarity calculation: For each pair of users (i, j), calculate their similarity Si, j based

on the rating samples.
3: Sampling: Sample O(logM) center nodes uniformly. Name these nodes as Waypoint

nodes and denote them as {wi}O(logM)
i=1 .

4: Association: For other users j /∈ {wi}O(logM)
i=1 we associate j to Waypoint wk that is

most similar to itself.

wk = argmax
k∈{wi}

O(logM)
i=1

S j,k .

5: Local MF: All together we form O(logM) groups. Form a rating matrix for each group
and execute MF method for each one of them.

Denote each user i’s rating as Xi ∈ Rn. It should be noted there are many different ways

of calculating the similarity measure Si, j, for instance the cosine similarity:

Si, j =
Xi,T ·X j

||Xi|| · ||X j||
. (3.18)

The performance of the above algorithm can be found in the Appendix.

3.8.1 Experiments

We apply the above algorithm and apply it to the Movielens data. Firstly we observe

for some formed groups, users are not particularly similar to each other. We thus require a

group Ck to satisfy
∑i 6= j,i, j∈Ck

Si, j

|Ck|2−|Ck|
> τ, i.e., we would like the average intra-group similarity

to be larger than some threshold. We shall only keep such groups, that is for these groups,

we only use data from inside the group to carry out MF based prediction. For groups failing

this condition, all data will be used. We have obtained the following experiments results.

Algorithm MF W-MF
Avg. Error 0.7596 0.7575

RMSE 0.9666 0.9658

76

We do not observe a clear performance improvement. The main reasons are as follows.

The essence of our crowd learning based methods is to differentiate similar from dissimilar

users so as to reduce the rank of the rating matrix. However, the rank of Movielen data is

already low due to its sparse structure. We will further validate this conjecture using a set

of high rank data in Chapter V.

3.9 Concluding remarks

In this chapter we considered a crowd-learning problem in the context of online recom-

mendation systems with crowdsourced data, and analyzed two cases, where users share full

or partial information. We constructed UCB1-like index algorithms and derived bounds on

their weak regret. These bounds generally see a multi-fold improvement due to crowd-

sourcing, i.e., the exploitation of both first-hand and second-hand learning. We demon-

strated the power of crowd learning using simulations as well as numerical experiments

over MovieLens 1M dataset. We showed that our algorithm can achieve an improvemen-

t in movie recommendation quality in an online manner. We also compared our method

with several offline algorithms and further proposed an offline algorithm using explicitly

the idea of crowd learning.

77

CHAPTER IV

Finding One’s Best Crowd: Online Prediction By

Exploiting Source Similarity

4.1 Introduction

The ability to learn (classify or predict) accurately with sequentially arriving data has

many applications. Examples include predicting future values on a prediction market,

weather forecasting, TV ratings, and ad placement by observing user behavior. The sub-

ject of learning in such contexts has been extensively studied. Past literature is heavily

focused on learning by treating each source or object’s historical data separately, see e.g.,

[44, 55, 45] for single source multi-armed bandit problems for learning the best options

of returned rewards, [38] for a support vector machine based forecasting for financial time

series data, [26] for a model predicting spammers using a network’s past statistics, and [32]

for forecasting stock price index, among other.

More recent development has increasingly been focused on improving learning through

integrating data from multiple sources with similar statistics, see e.g., [27] for wind pow-

er prediction using both temporal and spatial information. The idea of increasing sample

spaces by exploiting similarity proves to be helpful especially when the data arrives slow-

ly, e.g., weather reports generated a few times per day. This idea naturally arises when

different data sources are physically correlated, e.g., wind turbines on the same farm, or

78

environmental monitoring sensors located within close proximity. However, it also fit-

s well in the emerging context of crowdsourcing, where different sources (e.g., Amazon

Mechanical Turks) contribute to a common data collection objective (e.g., labeling a set

of images), and exploiting multiple data sources can improve the quality of crowdsourced

data. For instance the idea of aggregating selectively data from a crowd to make prediction

more accurate is empirically demonstrated and referred to as finding a “smaller but smarter

crowd” in [20, 23].

In this chapter we seek to make the notion of a “smarter” crowd quantitatively precise

and develop methods to systematically identify and utilize this crowd. Specifically, we con-

sider a problem involving K (potentially-)disparate data sources, each may be associated

with a user. A given user can use its own data to achieve a certain learning (prediction,

classification) objective but is interested in improving its performance by tapping into oth-

er data sources, and can request data from other sources at a cost. Accordingly, decisions

need to be made judiciously on which sources of data should be used so as to optimize

its learning accuracy. This implies two challenges: (1) we need to be able to measure the

similarity/disparity between two sources in order to differentiate which sources are more

useful toward the learning objective, and (2) we need to be able to determine the best set

of sources given the measured similarity. Prior work most relevant to the present study is

[14], where the problem of combining static IID data sources is analyzed. There are how-

ever a number of key differences: 1) in [14] the similarity information is assumed known a

priori and the cost of obtaining data is not considered. 2) The results in [14] are established

pre-collected IID data, while we focus on an online learning setting with Markovian data

sources. In addition, the methodology we employ in this chapter is quite different from

[14] which draws mainly from VC theory [78], while our study is based on both VC theory

and the multi-armed bandit (MAB) literature [5].

We will start by establishing bounds on the expected learning error under ideal condi-

tions, including that (1) the similarity information between data sources is known a priori,

79

and (2) data from all sources are available for free. We then relax assumption (1) and simi-

larly establish the bounds on the error when such similarity information needs to be learned

over time. We then relax both (1) and (2) and design an efficient online learning algorithm

that simultaneously makes decisions on requesting and combining data for the purpose of

training the predictor, and learning the similarity among data sources. We again show that

this algorithm achieves a guaranteed performance uniform in time, and the additional cost

with respect to the minimum cost required to achieve optimal learning rate diminishes in

time. Moreover, the obtained bounds show clearly the trade-off between learning accuracy

and the cost to obtain additional data. This provides useful information for system design-

ers with different objectives. To our best knowledge this is the first study on online learning

by exploiting source similarity with provable performance guarantees.

The rest of the chapter is organized as follows. We first formulate our problem in

Section 4.2, and derive the error bounds under ideal conditions in Section 4.3. We present

the results when similarity information needs to be learnt in Section 4.4. We then elaborate

a cost-efficient online algorithm and analyze its performance in Section 4.5. Section 4.6

concludes this chapter.

4.2 Problem Formulation

4.2.1 Learning with multiple data sources

Consider K sources of data each associated with a unique user, which we also refer to

as the whole crowd of sources. We index them by D = {1,2, · · · ,K}. The sources need

not be governed by identical probability distributions. Data samples arrive in discrete time

to each user; the sample arriving at time t for user i is denoted by zi(t) = (xi(t),yi(t)),

t = 1,2, · · · , with xi(t) denoting the features and yi(t) denoting the labels. At each time

t, xi(t) is revealed first followed by a prediction on yi(t) made by the user, after which

yi(t) is revealed and zi(t) is added to the training set. For simplicity of exposition, we

80

will assume xi(t) to be a scalar; however our analysis easily extends to more complex

forms of data, including batch arrivals. The objective of each user is to train a classifier to

predict yi(t) using collected past data, and after prediction at time t, yi(t) will be revealed

and can be used for training in the future steps. As a special case, when the target is

to predict for future, yi(t) can be taken as xi(t + 1). For analytical tractability we will

further assume that the data arrival processes {xi(t)}t , ∀i, are mutually independently (but

not necessarily identical), and each is given by a first order1 finite-state positive recurrent

Markov chain, with the corresponding transition probability matrix denoted by Pi on the

state space X i (|X i| < ∞). Denote by Pi
x,y the transition probability from state x to y

under Pi, and by π i its stationary distribution on X i. For simplicity we will assume that

X 1 = X 2 = ... = X K = X , though this assumption can be easily relaxed, albeit with

more cumbersome notation. The motivation for such modeling choice is by observing that

for many applications the sequentially arriving data does not follow IID distribution as has

been studied in the literature; consider e.g., weather conditions. Suppose labels yi(t) ∈ Y i

and again for simplicity let us assume Y 1 = Y 2 = ... = Y K = Y , and |Y | < ∞. Denote

y∗ := maxy∈Y |y|.

For the classification job, a straightforward approach would be for each user i to build a

classifier/predictor by using past observations of its own data up to time t: {zi(1), ...,zi(t)}.

Denote the classifier by fi for user i, and a loss function L to measure the classification

error. For instance L can be taken as the squared loss function L (fi,zi(t)) = [yi(t)−

fi(xi(t))]2. With the definition of loss function, the classification task for a user is to find

the classifier that best fits its past observations:

fi(t) = argmin f∈F

t

∑
n=1

L (f ,zi(n)) , (4.1)

where we have used F to denote the set of all models of classifier (hypothesis space). For

example, F could contain the classical linear regression models.

1A high order extension is also straightforward.

81

The idea we seek to explore in this chapter is to construct the classifier fi by utilizing

similarity embedded among data sources, i.e., we ask whether fi should be a function of all

sources’ past data and not just i’s own, and if so how should such a classifier be constructed.

Specifically, if we collect data from a set Ωk of sources and use them as if they were from

a single source, then the best classifier is given by

fΩk(t) = argmin f∈F ∑
j∈Ωk

t

∑
n=1

L (f ,z j(n)) . (4.2)

It was shown in [14] that the expected error of the above classifier is bounded by a function

of certain source similarity measures; the higher the similarity the lower the error bound.

Our interest is in constructing the best classifier for any given user i by utilizing other

data sources. To do so we will need to measure the similarity or discrepancy between

sources and to judiciously use data from the right set of sources. We will accomplish this

by decomposing the problem into two sub-problems, the first is to use a similarity measure

to determine a preferred set Ω∗k to use, and the second is to construct the classifier using

data from this set.

4.2.2 Pair-wise similarity between data sources

We first introduce the notion of cross-classification error, which is the expected loss

when using classifier f j (trained using source j’s data) on user i’s data and can be formally

defined as ri(f j) =Ei[L (f j,zi)] where the expectation is with respect to user i’s source data

distribution. In principle, this could be used to measure the degree of similarity between

two data sources i and j. However, this definition is not easy to work with as it involves a

classifier that is only implicitly given in (4.1). Instead, we introduce a notion of similarity

between two data sources i and j, that satisfies the following two conditions: (1) it can be

obtained from the statistics of two respective data sources, and (2) it satisfies the following

82

bound:

ri(f j)≤ β1(1−Si, j)+β2 , (4.3)

where β1,β2 ≥ 0 are normalization constants and 0 ≤ Si, j ≤ 1 denotes the similarity mea-

sure; the higher this value the more similar two sources. The relationship captured in Eqn.

(4.3) between the error function and similarity can also take on alternate forms; we adopt

this simple linear relationship for simplicity of exposition. The following example shows

the existence of such a measure.

Suppose for each user i, corresponding to each state/feature x ∈X , labels y ∈ Y is

generated according a probability measure Qi
x and denote each probability as Qi

x,y and

∑y∈Y Qi
x,y = 1. Consider the following example. Take L as the squared loss and Si, j as:

Si, j = 1− max
x∈X ,y∈Y

|Qi
x,y−Q j

x,y|2 . (4.4)

Then we can show2 that, by setting β1 := 2∑y∈Y y2 and β2 := 2∑x∈X π i
x ·∑y∈Y Qi

x,y ·

(∑ŷ∈Y Qi
x,ŷŷ−y)2, i.e. two times the intrinsic classification error with user i’s own (perfect)

data, which is independent with other sources j, the choice of Si, j satisfies both conditions.

We note that the choice of such an S is not unique. For example, we could also take Si, j to

be

Si, j = 1− ∑
x∈X

π
i
x · ∑

y∈Y
|Qi

x,y−Q j
x,y|2 ,

while setting β1 := 2(y∗)2. Later we will argue that an S that leads to a tighter bound can

help achieve a better performance in classification. As it shall become clearer later when

such similarity information needs to be estimated, the trade-off between selecting a tighter

and looser similarity measure comes from the fact that tighter similarity may incur more

2Please refer to supplementary materials.

83

learning error as it requires the evaluation of more terms.

Without loss of generality, for the remainder of our discussion we will focus on user 1.

We will also denote si :=min{S1,i,Si,1},∀i. While the definition given in (4.4) is symmetric

in i and j such that S1,i = Si,1, this needs not be true in general under alternate definitions

of similarity. Note that s1 = 1. We will then relabel the users in decreasing order of their

similarity to user 1: 1 = s1 ≥ s2....≥ sK ≥ 0.

4.3 Solution with Complete Information

As mentioned earlier, the problem of finding the best set of data sources to use and that

of finding the best classifier given this set are inherently coupled and strictly speaking need

to be jointly optimized, resulting in significant challenges. The approach we take in this

chapter is as follows. We will first derive an upper bound on the error of the classifier given

in (4.2) when applied to user 1, for a set of k independent Markov sources; this bound is

shown to be a function of k and their similarity with user 1. This bound is then optimized

to obtain the best set. Below we derive this upper bound assuming (1) the similarity infor-

mation is known and (2) data is free, i.e., at time t all past and present samples from all

sources are available to user 1.

4.3.1 Upper bounding the learning error

First notice we have the following convergence results for positive recurrent Markov

Chain we consider in this chapter [66],

||π̃ i(t)−π
i||TV ≤CMC · (λ i

2)
t ,

where CMC is some positive constant, π̃ i
x(t) is the empirical distribution of state x for data

source i’s Markov chain upto time t for user i and π i
x denotes its stationary distribution, and

0< λ i
2 < 1 is the second largest eigenvalue which specifies the mixing speed of the process.

84

The total variation distance ||p−q||TV between two probability measures p and q that are

defined on X is defined as follows

||p−q||TV := max
S∈2X

|∑
x∈S

(p(x)−q(x))| . (4.5)

Denote ρk(t)(t) :=maxL ·CMC
∑i∈k(t)(λ

i
2)

t

|k(t)| , where maxL is the maximum value attained

by the loss function. Throughout the chapter we denote [k] := {1,2, ...,k} as the ordered

and continuous set up to k, and k(t) for any other un-ordered set invoked at time t and use

|k(t)| to denote its size. For squared loss function we have the following results:

Theorem IV.1. At time t, with probability at least 1−O(1
t2) the error of a classifier f[k](t)

constructed using data from k sources of similarity si, i ∈ k(t) can be bounded as

r1(fk(t)(t))≤ 4 min
f∈F

rIID
1 (f)+6β2︸ ︷︷ ︸
Term 1

+6β1
∑i∈k(t)(1− si)

|k(t)|︸ ︷︷ ︸
Term 2

+ρk(t)(t)︸ ︷︷ ︸
Term 3

+8y∗(2
√

2d + y∗)

√
log |k(t)|t
|k(t)|t︸ ︷︷ ︸

Term 4

, (4.6)

where d is the VC dimension for F , and rIID
1 (f) is the expected prediction error when the

data are generated according to an IID process.

Denote the upper bound for r1(·) in Eqn. (4.6) with set k(t) of data sources (after

ordering based on their similarity with user 1) at time t by Uk(t)(t). The results may be

viewed as an extension to the previous one from [14] where static and IID data sources

were considered. This upper bound can serve as a good guide for the selection of such a set

and in particular the best choice of |k(t)| given estimated values of si’s 3. Note that Terms 1

is independent of this selection and it is a function of the baseline error of the classification

problem, Term 2 is due to the integration of disparate data sources, Term 3 comes from the

3We will show finding such optimal set can be done by a linear search later.

85

mixing time of a Markov source, and Term 4 arises from imperfect estimation and decision

using a finite number of samples (|k(t)|t samples up to time t).

Below we first point out the key steps in the proof that differ from that in [14] (full

proof is in the supplementary materials), and then highlight the properties of this bound.

4.3.1.1 Main steps in the proof

Our analysis starts with connecting Markovian data sources to IID sources so that the

classical VC theory [78] and corresponding results can apply. The idea is rather simple:

by the ergodicity assumption on the arrival process, the estimation error converges to that

of IID data sources as shown in [1]. In particular, we can bound the difference in error

when applying a predictor f ∈F to a Markovian vs. an IID source (with distribution being

the same as the steady state distribution of the Markov chain) at time t, constructed with

available data as follows:

|ri(f (t))− rIID
i (f (t))|

= | ∑
x∈X

π̃
i
xEy∼Y [L (f (t),(x,y))]− ∑

x∈X
π

i
xEy∼Y [L (f (t),(x,y))]|

≤maxL ·CMC(λ
i
2)

t .

We impose α-triangle inequality on the error function ∀i, j,k , of the corresponding data

sources ri(f j) ≤ α · [ri(fk)+ rk(f j)], where α ≥ 1 is a constant. When L is the squared

loss function, we have α = 2, following Jensen’s inequality. Then ∀ f

r1(f)
k
≤ α · [r1(fi)+ ri(f)]

k
.

Sum over all i ∈ k(t) we have

r1(f)≤ αβ1

|k(t)|
· ∑

i∈k(t)
(1− si)+αβ2 +α · r̄k(t)(f) ,

86

where r̄k(t)(f) = ∑i∈k(t) ri(f)
|k(t)| is the average regret by applying f onto the |k(t)| data sources.

Due to the bias of mixing time for Markovian sources we have the following fact :

r̄k(t)(f)≤ r̄IID
k(t)(f)+ρk(t)(t).

The rest of the proof focuses on bounding r̄IID
k(t)(f), i.e., the expected prediction error on IID

data sources, which is similar in spirit to that presented in [14].

4.3.1.2 Properties of the error bound

The upper bound Uk(t)(t) has the following useful properties.

Proposition IV.2. For sources ordered in decreasing similarity s1 ≥ s2 · · · , ∑
k
i=1 si
k is non-

increasing in k.

This is straightforward to see by noting that

∑
k+1
i=1 si

k+1
−∑

k
i=1 si

k
=−

k

∑
i=1

si

k(k+1)
+

sk+1

k+1
=

k

∑
i=1

sk+1− si

k(k+1)
≤ 0 .

Terms 3 and 4 both decrease in time. While Term 4 converges at the order of O(1/
√

t),

Term 3 generally converges with geometric rate, which is much faster than Term 4 and can

be ignored for now. We then know because of the use of multiple sources, Term 4 decreases

|k(t)| times faster, leading to a better bound. This shows how the use of multiple sources

fundamentally changes the behavior of the error bound.

The upper bound also suggests that the optimal selection is always to choose those with

the highest similarity, which leads to a linear search for the optimal number k. Based on

above discussions, the trade-off comes from the fact a larger k returns a smaller average

similarity term ∑
k
i=1 si/k (and thus a larger ∑

k
i=1(1− si)/k), while with more data we have

a faster convergence of Term 4. Define the optimal set of sources at time t as the one

minimizing the bound Uk(t)(t), and denote it by k∗(t). We then have the following fact,

87

Proposition IV.3. When {si}i∈D is known, ∃ to, such that ∀t ≥ to, if i ∈ k∗(t) then i ∈

k∗(n),∀to ≤ n≤ t.

This implies that if a data source is similar enough to be included at t, then it would

have been included in previous time steps as well except for a constant number of times.

This also motivates us to observe a threshold or phase transitioning phenomenal in selecting

each user’s best crowd. This result is also crucial in proving Theorem IV.6 where it helps

establish bounded number of missed sampling for an optimal data source in an adaptive

algorithm.

Proposition IV.4. A set of tighter similarity measures S returns better worst case perfor-

mance.

Consider two such similarity measures s′ and s with s′i ≥ si (with at least one strict

inequality). Suppose at any time t and optimal set of crowd for s is k(t), then simply by

selecting k(t) for s′ we achieve a better worst case performance (a smaller ∑
k
i=1(1− si)/k

in upper bound).

4.4 Overhead of Learning Similarity

As we show in the previous section, once the optimal set of data sources is determined,

the classification/prediction performance is bounded. However in a real crowdsourcing

system, neither of the two assumptions may be valid. In this section we relax the first

assumption and consider a more realistic setting where the similarity information remains

unknown a priori and can only be learned through shared data. In this regards we need

to estimate the similarity information {si}i 6=1 while making decision of which set of data

sources to use.

The learning process works in the following way. At step t, we first estimate similarity

88

s̃i according to the following:

s̃i = 1− max
x∈X ,y∈Y

|Q̃i
x,y(t)− Q̃1

x,y(t)|2 ,

where Q̃i
x,y(t) := ni,x→y(t)

ni,x(t)
are the estimated transition probability matrices with ni,x(t) de-

noting the number of times user i is sampled to be in state x ∈X up to time t and ni,x→y(t)

denoting the number of observed samples from data source i being in (x,y). Different from

the previous Section, now since {si}i 6=1 is unknown, in order to select data sources, the

estimate of the upper bound Uk(t)(t) becomes a function of {s̃i}: Uk(t)(t;{s̃i}i∈k(t)), which

is obtained by simply substituting all s terms in Uk(t)(t) with s̃. Denote the terms that are

being affected by choosing set k(t) in Uk(t)(t;{s̃i}i∈k(t)) as follows:

Ũ tr
k(t)(t) = 6β1

∑i∈k(t)(1− s̃i)

k
+8y∗(2

√
2d + y∗)

√
log |k(t)|t
|k(t)|t

.

Note we are omitting ρk(t)(t) as it is on a much smaller order and will not affect our results

order-wise.

Then the learning algorithm first orders all data sources according to {s̃i}, and then

choses k̃∗(t) by a linear search such that

k̃∗(t) = arg max
[k],1≤k≤K

Ũ tr
[k](t) .

We have the following results.

Theorem IV.5. At time t, with probability at least 1−O(1
t2) the error of trained classifier

fk̃∗(t)(t) using k̃∗(t) data sources can be bounded as follows

r1(fk̃∗(t)(t))≤Uk∗(t)(t)+O(

√
log t

t
) . (4.7)

Clearly from above results we see there is an extra O(
√

log t/t) term capturing the loss

89

of learning the similarity information.

4.5 A Cost-efficient Algorithm

Now we relax the second restriction on data acquisition. In reality data acquisition from

other sources are costly. In our study, we explicitly model this aspect whereby at each time

step a user may request data from another user at a unit cost of c. This modeling choice

not only reflects reality, but also allows us to examine the trade-off between a user’s desire

to to keep its overall cost low while keeping its prediction performance high. We present a

cost-efficient algorithm with performance guarantee. As one may expect, with less data the

prediction accuracy will degrade. But the number of unnecessary data will also be bounded

from above.

4.5.1 A cost-efficient online algorithm

Denote by ni(t) the number of collected samples from source i up to time t and Nk(t)(t)=

∑i∈k(t) ni(t). Notice in this section ni(t) 6= t in general. Denote D(t) := O(tz); z will be re-

ferred to as the exploration constant satisfying 0< z< 1 . Later we will show how z controls

the trade-off between data acquisition and classification accuracy. Again denote by ni,x(t)

the number of times user i is sampled to be in state x ∈X up to time t and construct the

following set at each time t :

O(t) = {i : i ∈D ,∃ x ∈X ,ni,x(t)< D(t)} .

We name the algorithm as K-Learning, which consists mainly of the following two

steps (run by user 1):

Exploration: At time t, if any data source has a state x that has been observed (from

requested data) for less than D(t) times, i.e., if O(t) is non-empty, then the algorithm enters

an exploration phase and collects data from all sources k2(t) = D and predicts via its own

90

Algorithm 3 K-Learning

1: Initialization:
2: Set t = 1 and similarity {s̃i(1)}i∈D to some value in [0,1]; ni,x(t) = 1 for all i and x.
3: loop:
4: Calculate O(t).
5: if O(t) 6= /0 then
6: Explores, sets k1(t) = {1},k2(t) = D .
7: else
8: Exploits, orders data sources according to {s̃i(t)}i∈D and computes k1(t) that

minimizes Ũ tr
k1(t)

(t), which is solved using the linear search property, and the cur-

rent estimates {s̃i(t)}i∈D . Set k2(t) as k2(t) := argmaxk′(t)⊆D{|k′(t)| : Ũ tr
k′(t)(t) ∈

[Ũ tr
k1(t)

(t)−
√

log t
tz ,Ũ tr

k1(t)
(t)+

√
log t
tz]}.

9: end if
10: Construct classifier fk1(t) using data collected from sources in k1(t). Request data from

k2(t).
11: t := t +1 and update {ni,x(t)}i,x, {s̃i(t)}i∈D using collected samples.
12: goto loop.

data k1(t) = {1}. The prediction at exploration phase is conservative since without enough

sampling user 1 cannot be confident in calculating its optimal set of similar sources, in

which case the user would rather limit itself to its own data.

Exploitation: If O(t) is empty at time t then the algorithm enters an exploitation phase,

whereby it first estimates similarity measures of all sources. For our analysis we will use the

same definition given earlier: s̃i(t) = 1−maxx∈X ,y∈Y |Q̃i
x,y(t)− Q̃1

x,y(t)|2. The algorithm

then calculates k1(t) using the estimated bound Ũ tr
k1(t)

(t), and uses data from this set k1(t)

of sources for training the classifier, while requesting data from set k2(t), where k2(t) is set

to be:

k2(t) : = argmaxk′(t)⊆D{|k′(t)| :

Ũ tr
k′(t)(t) ∈ [Ũ tr

k1(t)
(t)−

√
log t

tz ,Ũ tr
k1(t)

(t)+

√
log t

tz]} .

Notice when calculating k2(t) we set a tolerance region (due to imperfect estimation of

Ũ tr
k1(t)

(t)) so that a sample data from an optimal data source will not be missed with high

91

probability.

4.5.2 Performance of K-Learning

There are three types of error in the learning performance: (1) Error due to explo-

ration, in which case the error comes from conservative training due to no enough sam-

pling. Due to technical difficulties, we approximate the error (compared to the perfor-

mance with optimal classifier) by the worst case performance loss, that is the performance

difference in upper bounds. (2) Prediction error associated with incorrect computation of

k1(t) (i.e., k1(t) 6= k∗(t)) in exploitation due to imperfect estimates on {si}i 6=1. (3) Pre-

diction error from sub-sampling effects. This is because even though under the case that

k1(t)= k∗(t), i.e., k∗(t) is correctly identified, due to incomplete sampling, ∃ i> 1,ni(t)< t,

Ûk1(t) 6= Uk1(t), where Ûk1(t) is the upper bound for the classification error with collected

data: this can be similarly derived following the proof of Theorem IV.1 and results in [14]:

Ûk(t)(t) = 4 min
f∈F

rĨID
1 (f)+6β2 +6β1

∑i∈k(t) ni(t)(1− si)

Nk(t)(t)

+ ρ̃k(t)(t)+8y∗(2
√

2d + y∗) ·

√
logNk(t)(t)

Nk(t)(t)
,

where

ρ̃k(t) := maxL ·CMC
∑i∈k(t)(λ

i
2)

ni(t)

|k(t)|
,

and min f∈F rĨID
1 (f) is error rate over a biased data distribution due to incomplete sam-

pling, compared to the target IID distribution. We emphasize that the difference between

Uk(t)(t;{s̃i}i∈k(t)) and Ûk(t)(t): Uk(t)(t;{s̃i}i∈k(t)) is the estimation of upper bound Uk(t)(t)

with estimated similarity information s̃, while Ûk(t)(t) bounds actual error of the learning

task at each step. In Uk(t)(t) and Uk(t)(t;{s̃i}i∈k(t)), full samples are assumed to have been

collected for each data source in k(t), i.e., ni(t) = t. However this is not true for Ûk(t)(t),

except for n1(t) the data source for user 1 itself. Also due to dis-continuous sampling for

92

Markovian data, the sampled data distribution is biased which results in min f∈F rĨID
1 (f).

The main gist of bounding this discrepancy is that due to Proposition IV.3 we are able to

bound the missed samples for a data source appearing in the optimal set.

A subtle difference between the results in this section and the previous one is the perfor-

mance of the classifier trained during an exploration phase is simply the one using user 1’s

own data, which is bounded away from the optimal performance bound (via data sources

k∗(t)). Denote the worse case performance loss (difference in performance upper bound)

in exploration phases upto time t as Re(t), that is

Re(t) =
t

∑
n=1

1{O(n) 6= /0} · |U[1](t)−Uk∗(t)(t)| . (4.8)

This is a quantity we are interested in determining for exploration phases. For exploitation

phases, we evaluate the prediction/classification performance as the ones with classifier

fk1(t)(t).

Theorem IV.6. At time t,

• The number of exploration phases is bounded as follows,

E[
t

∑
n=1

1{O(n) 6= /0}]≤ O(tz) .

Further the per round performance loss due to exploration phases E[Re(t)]
t is bounded

as follows: with probability being at least 1−O(e−Ctz
) where C > 0 is a constant,

E[Re(t)]
t

≤ O(
√

z · log t · tz/2−1) .

• If t is an exploitation phase, with probability being at least 1−O(1
t2) we bound the

93

average prediction error for classifier fk1(t)(t) with data sources k1(t) as follows,

r1(fk1(t)(t))≤Uk∗(t)(t)+O(

√
log t

tz)+O(log t · t−2/3) .

Note on the bound:

• O(
√

z · log t · tz/2−1) is the average error invoked by exploration. This term is di-

minishing with t, that is the average amount of exploration error is converging to

0. O(
√

log t/tz) is the learning error incurred in exploitation phases, which is in

analogy to the O(
√

log t/t) term as shown in the bound proved in Theorem IV.5.

O(log t · t−2/3) is also incurred in exploitation phases. This is a unique error term

associated with sub-sampling of Markovian data: due to (1) missed sampling and (2)

discontinuous sampling.

• It should be noted that the prediction error term O(
√

log t/tz) decrease with z for

0 < z < 1. That is with a higher z, a tighter bound can be achieved. With z→ 1

(number of samples cannot go beyond t at time t), we can show the prediction error

term converges to O(
√

log t/t), which is consistent with the results we reported in

last section. Also it worths pointing out O(log t ·t−2/3) is generally on a smaller order

compared to O(
√

z · log t · tz/2−1) and O(
√

log t/tz) : simply set z to be z > 2/3.

• This observation also sheds lights on establishing the tightness of this bound for z

close to 1, as O(
√

log t/t) is the uniform convergence bound as proved in statistical

learning theory [78].

94

4.5.3 Cost analysis

To capture the effectiveness of cost saving, we define the following difference in cost:

Cost measure : Rc(t) = c
t

∑
n=1

K

∑
i=1

1{i /∈ k∗(n), i ∈ k2(n)} .

Rc(t) will be referred to as the cost measure, which quantifies the amount of data requests

from non-optimal data sources. We have the following main results.

Theorem IV.7. At time t, we have E[Rc(t)]≤ O(ctz) .

Notes on the bound:

• First of all note that E[Rc(t)] = o(t) when t < 1 and thus E[Rc(t)]/t → 0 as t → ∞.

This demonstrates the cost saving property of our algorithm as the average number

of redundant data request is converging to 0.

• Clearly z controls the trade-offs between prediction accuracy r1(fk1(t)(t)) and data

acquisition cost regret E[Rc(t)]. A higher z leads to a more frequent sampling scheme

and thus higher cost regret, while with a small z the sampling is conservative which

leads to higher prediction error.

4.6 Concluding remarks

In this chapter we considered a problem of finding best crowd for a user to enhance its

online prediction performance with disparate sources of sequentially arriving data. In par-

ticular we proposed and analyzed an online algorithm to help users adaptively distinguish

between similar and dis-similar data sources and aggregate appropriately selected external

sources of arriving data for the purpose of training the predictor. Meanwhile our algorithm

helps avoid requesting redundant data from sources that are helpless (or even harmful) and

thus saves cost.

95

CHAPTER V

Enhancing Multi-source Measurement Using Similarity

and Inference: A Case Study of Network Security

Interdependence

5.1 Introduction

In this chapter we will put some of the results derived earlier in the application context

of a particular set of data collected over the Internet that is of a multi-source nature. We

will highlight the utility of some of our algorithms in this context. We will also demonstrate

that often times data-specific processing methods arise within specific application contexts

that can be exploited to offer additional insight.

Our dataset centers on observations of malicious activities originated from different

networks on the Internet. These are often symptoms of their security posture and policies

adopted by them. In particular, the dynamics in such activities reveal rich information on

the evolution of networks’ underlying conditions and therefore are helpful in capturing be-

haviors in more consistent ways. At the same time, the interdependence of today’s Internet

also means that what we see from one network is inevitably related to others. This connec-

tion can provide insight into the conditions of not just a single network viewed in isolation,

but multiple networks viewed together. This understanding in turn allows us to predict

more accurately the security conditions or malicious activities of networks in general, and

96

can lead to the design of better proactive risk aware policies for applications ranging from

traffic engineering, peering and routing.

In this chapter we study this connectedness through the following: (1) The notion of

similarity as have been defined and studied in previous chapters; in this application context

similarity is a quantitative measure of the extent to which the dynamic evolutions of mali-

cious activities from two networks are alike. (2) We shall map this behavioral similarity to

their similarity in certain spatial features, including their relative proximity to each other.

We then seek to understand how such similarity can help us in uncovering or predicting the

maliciousness of a network.

In this study we utilize a set of commonly used IP-address based host reputation black-

lists (RBLs) collected over the past year and a half as representations of observed ma-

liciousness. These RBLs broadly cover three categories of malicious activities: spam,

phishing, and active scanning. We measure a network’s maliciousness from the behavior

observed from the vantage points of these RBLs. In doing so, an emphasis is placed on

capturing the dynamic behavior of malicious activities, rather than an average over time.

Specifically, the maliciousness of a network is determined by its presence on these RBLs

(either collectively or by different malicious activity types) as a temporal process (e.g., the

amount of IP addresses within the network that show up on these RBLs at any given time).

The similarity between two networks’ maliciousness can then be measured by correlating

the two corresponding temporal signals. Due to our emphasis on measuring maliciousness

as a time-varying process, the resulting similarity between two networks not only captures

the similarity in the magnitude of their presence on these RBLs, but also more importantly

captures any synchrony in their behavior. This is a distinct aspect that sets our study apart

from existing literature, which largely focuses on measuring the level of malicious activ-

ities as a time average (see e.g., [82]). To avoid suffering from the issue of dynamic IP

allocation, we aggregate the RBL data to BGP routed prefix level to have a relatively more

steady description, that is we study this maliciousness on network-level.

97

To measure the relative proximity of two networks, we consider a variety of spatial

characteristics (precise definitions are given in subsequent sections). The first is AS mem-

bership: two prefixes belonging to the same AS are considered close. The second is AS

type: two prefixes that belong to ASes of the same (business) type are considered close.

The third is AS connectivity: the physical distance between two prefixes as measured by

the number of hops (direct connections) between the ASes they each belong to. The fourth

is country/geographical affiliation: two prefixes residing in the same country are consid-

ered close. These spatial characteristics are obviously non-exhaustive, but constitute a

fairly comprehensive set of features. We are going to use statistical inference to determine

key metrics (out from above) that impact our similarity measure. This basic technique has

been used for analysis over a networks’ spatial features [7]. An interesting branch of graph

analysis is community detection. [58] proposes a spectral clustering algorithm along with

theoretical analysis and performance guarantees and [18] analyzed and adopted spectral

clustering for community detection in large scale networks. In addition, [81] proposed

an evolutionary clustering technique to track the dynamics of community change. Causal

inference over latent variables is discussed in [71] and most relevantly, [60] proposed a

multi-layer model for analyzing inference problems. These results are going to offer us

a rather novel perspective in understanding large scale temporal relationships in various

malicious activities.

The contributions of this study lie in two distinct areas. The first is specific to the

application of cyber security. In this context we make interesting observations on how

network-level malicious activities, a sign of the corresponding networks’ security posture,

are related to each other, and how this understanding helps us gain insight into the inter-

dependence of network security. Of particular interest we found within the set of spatial

features the topological distance between two networks is by far the most significant indi-

cator of their similarity in maliciousness, i.e., the closer two networks the more likely they

have similar security posture or in other words, there exist “good” and “bad” neighborhoods

98

Type Blacklist Name
Spam CBL[10], SBL[70], SpamCop[69],

WPBL[80], UCEPOTECT[76]
Phishing/Malware SURBL[72], Phish Tank[61], hpHosts[30]

Active attack Darknet scanner list, Dshield[17], OpenBL[59]

Table 5.1: The RBL datasets

on the Internet.

Beyond the application, our study also contributes to the understanding of collaborative

filtering methods in non-classical settings, and highlights how data-specific features and

domain knowledge can greatly enhance our ability in data processing. Although our eval-

uations in this chapter are limited to the specific set of measurement data, we believe the

notion of similarity and the explicit use of similarity in filtering more generally applicable,

especially when traditional collaborative filtering methods fail.

In the remainder of this chapter, our datasets are detailed in Section 5.2 and the be-

havioral similarity study in Section 5.3. We present the inference method, its performance

analysis and experimental results in Section 5.4. Section 5.5 concludes this chapter.

5.2 The Dataset and Preliminaries

5.2.1 RBL

Our analysis is performed over 11 IP address-based reputation blacklists over the period

January 2013-June 2014. The sampling rate is once per day (i.e., the list content is refreshed

on a daily basis). Table 5.1 summarizes these lists and the types of malicious activities they

target: spam, phishing/malware, and active scanning. All combined this dataset includes

more than 164 million unique IP addresses.

5.2.2 Internet geographical datasets

In addition to the RBLs, this study also employs the following sets of data on spatial

and proximity features of networks which are all extracted from BGP global routing table

99

snapshots and other public information sources:

1. AS membership, which reveals which prefix belongs to which AS.

2. AS types which associates a given AS with one of four types based on their broad

overall role in the Internet eco-system: Enterprise Customers (ECs), Small Tran-

sit Providers (STPs), Large Transit Providers (LTSs), and Content/ Access/ Hosting

Providers (CAHPs); this is done following methods proposed in [16].

3. Country affiliation, which associates a given prefix with the country in which the

prefix’s owner resides.

4. AS distance (Hop), which gives the shortest hop count between a pair of ASes.

Specifically, for prefixes within the same AS, their AS distance is considered to be

0. If they belong to ASes that can directly communicate (neighbors based on Inter-

net routing and peering relationship), their AS distance is considered to be 1. Using

the same adjacency information, we calculate the shortest path between any pair of

prefixes; its length is then taken to be their AS distance.

5.2.3 Data aggregation

The RBL dataset is at the individual IP address level, while our analysis is done at

an aggregate prefix level. We aggregated IP addresses to the BGP routed prefixes that are

collected by all vantage points of Route Views [77] and RIPE [65] projects. The prefix level

aggregation can be done over a single blacklist or over some combined form of multiple

blacklists (e.g., those belonging to the same type of malicious activities). In this study we

will use two versions of this combination: (1) Combine all 11 lists in a union fashion (i.e.,

an IP is listed on the union list on a given day as long as it shows up on at least one of the

individual blacklists on that day). This list will be referred to as the complete union list.

(2) Combine all lists within the same malicious activity type, which leads to three separate

union lists, referred to as the Spam, Phishing, and Scanning lists, respectively.

100

We then aggregate at the prefix level over a given union list to obtain a discrete-time

aggregate signal for each prefix i; these are denoted by rU
i (t), rsp

i (t), rph
i (t), rsc

i (t), t =

0,1,2, · · · , for signals obtained from the complete union, spam, phishing and scanning lists,

respectively; example signals are shown in Figure 5.1. There are two types of aggregate

one can define: the normalized version and the un-normalized version. For the normalized

version, r∗i (t) is given by the fraction of the total number of IPs on the ∗-list on day t

that belong to prefix i over the total number of addresses within prefix i; here we use ∗ to

denote any of the union lists. In the un-normalized version r∗i (t) is simply defined as the

total number of IPs on the ∗-list on day t that belong to prefix i. These two are equivalent

when prefixes are of the same size, but the normalized version prevents a larger prefix from

overwhelming a small one during comparison when we examine prefixes of difference

sizes. Throughout this study we will use the normalized version. In all, our RBL dataset

represents over 400,000 unique prefixes, and therefore 400,000 time series data.

0 20 40
0

1

2

3

4x 10
−3

A
gg

re
ga

te

(a) Prefix 1

0 20 40 60
0

0.5

1x 10
−3

(b) Prefix 2

0 20 40 60
0

1

2

3

4x 10
−3

(c) Prefix 3

Figure 5.1: Examples of the aggregate signal

For simplicity in presentation, we will treat the RBLs as error-free in introducing our

methodology; this is obviously not true in reality and furthermore there is often no reliable

information on the error rates of these lists. To remedy this in Section 5.4.3 we present

a sensitivity analysis that provides performance bounds on our method as functions of

potential errors in the dataset.

101

Prefixes
AS 38444
AS 24378
AS 6713
AS 12714

(a) Spam : AS

Prefixes
EC
STP
LTP
CAHP

(b) Phishing : Type

Pre!xes

US

RU

IN

(c) Scan : Country

Figure 5.2: Similarity graphs for each of the three malicious types. Top 5,000 prefixes of
Years 2013-2014.

5.3 Measuring similarity in maliciousness

In this section we quantify similarity between two aggregate signals r∗i (t) and r∗j (t) for

two prefixes i, j. We also refer to this similarity measure as behavioral similarity.

Let r∗i and r∗j be the vector forms of r∗i (t) and r∗j (t), t = 1, · · · ,τ , respectively, for

some horizon τ . There are various ways to measure the temporal similarity between these

two vectors, e.g., by using the Gaussian kernel which measures the distance between two

vectors, see for e.g. [6]. Our subsequent methodology does not rely on the specific choice

of this similarity measure, although it may impact the numerical conclusions.

5.3.1 Anatomy of similarity graphs and topological interpretation

For concreteness in this study we first visualize the interconnectedness in networks’

malicious activities. For demonstration we adopt the following, highly intuitive correlation

measure to quantify similarity:

S∗i, j =
2(r∗i)T · r∗j
|r∗i |2 + |r∗j |2

, ∀i 6= j , (5.1)

where T in the superscript denotes transpose. There are many other ways of defining above

similarity measure, for example the cosine similarity:

S∗,ci, j =
(r∗i)T · r∗j
|r∗i | · |r∗j |

, ∀i 6= j . (5.2)

102

Its meaning is straightforward: it captures how similar in shape these two vectors are.

Given N prefixes, the collection of N2 similarity values can be represented in a similarity

matrix S∗ = [S∗i, j]. It is also straight-forward to see that 0 ≤ S∗i, j ≤ 1; the higher the value

the more similar the two prefixes. To convey what this similarity measure can tell us, we

note that S∗ may be interpreted as weighted adjacency matrices of an underlying similarity

graph G = (V ,E): V is the set of N prefixes, E the set of weighted edges, with weights

S∗i, j representing the closeness, i.e., similarity between two connected prefixes i, j ∈ V . In

this part of study, the signal window for calculating similarity is the entire horizon of RBL

data, i.e., a 18-month signal spanning January 2013 upto June 2014.

For each prefix i, its aggregate signal r∗i (t) has a temporal mean. Over the 18-month

period, a majority of the prefixes have very low presence on these RBLs (over 80% of

prefixes have < 2% of their IPs listed on average), while a small number (< 1%) has a

very high number of malicious IPs. For this as well as computational reasons, throughout

our analysis we will limit our attention to the top 5,000 most significant (or malicious by

this average measure) prefixes given a particular union list. Note that different union lists

result in different sets of top 5,000 most malicious prefixes, e.g., those heaviest in scanning

activities may not be the same as those in spamming, and so on. This sub-sampling strategy

makes computations feasible and does not impact the presentation of the methodology.

We shall try to do so on a 2D plane, wherein each point represents a prefix, and the pair-

wise Euclidean distance between every two points is approximately inversely proportional

to their edge weights. Thus the closer two points are, the more similar the corresponding

prefixes in their aggregate signals. Three such graphs are shown in Figure 5.2, using sim-

ilarity matrices Ssp,Sph and Ssc (calculated using Eqn. (5.1)), each generated by a union

list for one of the malicious types, respectively, using one-month data from 2013; the main

observations remain largely the same from month to month.

In inspecting Figures 5.2a to 5.2c, we note that these similarity matrices indeed capture

something quite interesting, especially in comparing the differences between the three ma-

103

licious types. There is obvious clustering in all cases; the difference in the nature of the

clustering is, however, striking. The spam data shows a prominent single cluster, though

it appears as a “belt”, rather than a “ball” – it shows a type of “continuity” in similarity

(i.e., successive neighbors are very close to each other but they collectively form a very

large neighborhood). This type of continuity similarly exists in the scanning graph, though

it appears that for scanning almost all prefixes belong to this single cluster, whereas in the

case of spam there is a significant number of prefixes that lie outside the cluster. This con-

tinuity is most strikingly seen in the phishing data, where the points form a clear set of

curves/lines. The most direct explanation for such formation is that a sequence of prefixes

share similar aggregate signals but with a progressive phase shift (or time delay).

We below offer a brief interpretation of the above observations. It is generally un-

derstood that spam activities are organized into a tiered system where workers obtain a

spam workload from a higher level proxy agent while at the same time optimizing the bot

structure by finding nearby nodes [34]. Therefore, we can expect that spam activities are

organized as distinct campaigns. This results in IP addresses of worker bots being listed

in various RBLs in a synchronized manner where nearby prefixes (most likely within the

same AS) would demonstrate a higher degree of similarity. This behavior stands out in

Figure 5.2a where we see a high degree of clustering due to each of the four highlighted

ASes. For phishing and malware spread, one of the most interesting phenomena common-

ly observed is fast-flux [29], whereby a single malicious domain is mapped to a constantly

changing IP address. This leads to a single malicious event propagating through different

prefixes over time with the result that these prefixes exhibit high similarity in their dynamic

behavior. In addition, Figures 5.2b shows that phishing activity is highly dominated by C-

AHP ASes. For the scanning graph, we observe that distributed SSH scanning has rapidly

gained popularity as a mechanism to side-step simple rate based blocking counter mea-

sures [33]. This is characterized by the use of a large number of un-related distributed IP

addresses to make only a few scanning attempts each at a time. In general the IP address-

104

es chosen are unlikely to be from a single or closely related set of prefixes so as to avoid

drawing attention to this activity.

5.3.2 Using similarity to enhance measurement

5.3.2.1 Using similarity to enhance temporal prediction (K-Learning)

As we have shown in earlier Chapters, knowing such similarity can improve learning

performance towards different goals. We now apply the online prediction technique we

studied in Chapter IV to our data and show indeed with similarity information we can

improve the day-ahead prediction of network maliciousness. We begin by describing how

to make temporal prediction on a network’s maliciousness using its historical information.

Specifically, we will model each prefix’s aggregate signal as a discrete-time Markov chain1.

The transition probability matrix of this Markov chain can be trained using past data r∗i (t)

with a state space of Ri and over a training window of size T as follows:

p∗x,y =
nx,y(T)

∑w∈Ri nx,w(T)
, ∀ x,y ∈ Ri (5.3)

where p∗x,y is the estimated probability of transition from state x to state y, and nx,y(T) the

number of transitions in the signal from x to y observed within this window. This can be

shown to be the optimal posterior estimate [21]. Subsequently we can predict the state of

the signal at time t using conditional expectation, given its state at time t−1:

r̂temp
i (t) = ∑

w∈Ri

p∗ri(t−1),w ·w . (5.4)

This will be referred to as the temporal prediction. While the above is shown over one

time step (i.e., day ahead in the aggregate signal), multi-step prediction can be easily ob-

tained using multi-step transition probabilities computed using p∗x,y, though the prediction

1The aggregate signal r∗i (t) takes on a finite number of values as the number of IP addresses in a prefix is
finite.

105

accuracy generally decays over longer periods.

We then implement (K-Learning) based temporal prediction as detailed in Chapter

IV, with taking label yi(t) as the next day feature xi(t + 1), and similarity information as

calculated above. We measure the prediction performance by the following error function,

ei = |r̂i(t)− r∗i (t)|2. (5.5)

Figure 5.3 compares the difference between using only temporal prediction (5.4) and

the (K-Learning), both for one day-ahead prediction. This is shown for all prefixes as a

CDF over the prediction error. We see quite clearly the improvement by using similarity

information. For instance, we can increase the number of predictions at < 5% accuracy by

about 20%.

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Error in prediction

C
D

F

K−Learning
Individual prediction

Figure 5.3: Prediction performance comparison.

5.3.2.2 Experiment results with (W-MF)

As we promised at the end of Chapter III, we are going to validate (W-MF) with the

measurement data we have, which is high rank. The experiments is done for 2014. We

use 2013 data to calculate network similarity. To validate our algorithm, we randomly omit

certain entries in our database (to emulate missing measurements) and keep O(logN ·T)

number of samples, as commonly done in matrix completion studies. To serve as a baseline,

we adopt the SVT algorithm as introduced in [8]. We sub-sample 100 waypoints. The

106

experiments are done for the union list data. First we show in Figure 5.4, the separated sub-

matrices enjoy a rank reduction for a majority of the cases. Simulation results for predicting

missing measurement data are shown in Figure 5.5. We see that our similarity aided matrix

completion algorithm achieves more than four times performance improvement. Similar

results hold when we separate the list to different type of malicious activities.

0 5 10 15 20 25 30
0

0.5

1

Rank

C
D

F

Figure 5.4: CDF of ranks of separated sub-matrices.

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Error

C
D

F

W−MF
MF

Figure 5.5: CDF of data filling errors. Separating networks. Average Error (AE) = 0.079
for direct matrix completion. AE = 0.0187 for (W-MF). Performance is more than 4 times
better.

5.4 From Maliciousness to Topological Similarity

In this section we present an application specific study of similarity, and we will explore

whether the similarity shown in the previous section is correlated with the set of spatial and

proximity features (topological similarity) outlined earlier. Empirically such correlation

appears to exist, as indicated in Figure 5.2. For instance, we see in Figure 5.2a that those

107

belonging to a few largest ASes (among all ASes represented by this set of prefixes) also

belong to the same cluster. Below we assess this correlation more quantitatively using

statistical inference.

5.4.1 An inference model over graphs

The correlation relationship that we seek to quantify is illustrated in Figure 5.6 (left

figure). On the left hand side (LHS) we have a set of latent (or relational) variables or

graphs; these are given by similarity matrices derived from known relationships between

the networks. In our case, these are derived from information on AS membership, AS

type, AS hop count, and country affiliation. These latent relational similarity matrices

were derived among N prefixes. All of these are N×N matrices being symmetric about

the diagonal. (1) A1 denotes the AS-membership similarity matrix. Entry A1(i, j) = 1 if

prefixes i and j belong to the same AS, and A1(i, j) = 0 otherwise. (2) A2 denotes the

AS-type similarity matrix. Entry A2(i, j) = 1 if prefixes i and j belong to ASes of the same

type (or belong to the same AS), and A2(i, j) = 0 otherwise. (3) A3 denotes the AS-distance

similarity matrix. Entry A3(i, j) = ξ h(i, j), where 0 < ξ < 1 is a scaling factor to make this

matrix consistent with others, and h(i, j) denotes prefixes i, j’s AS distance or hop count

defined earlier. (4) A4 denotes the country-affiliation similarity matrix. Entry A4(i, j) = 1 if

prefixes i and j are owned by entities (companies, organizations, etc.) residing in the same

country, and A4(i, j) = 0 otherwise.

On the right hand side (RHS) we have a set of observable variables/graphs given by the

similarity matrices derived from the aggregate maliciousness signals. We shall continue to

use the similarity matrix S given by simple correlation defined earlier, also known as dice

similarity; we will also consider the cosine similarity (denote by Sc in Figure 5.6).

The edges shown in the figure are directed; however, this does not mean, nor do we

claim any causal relationship between the two sides. The directionality merely suggests

that one side is latent, though known, factors that may act in known or unknown ways,

108

A 1

A 2

A n

S

S
c

.

.

.

A 1

A 2

A n

S

S
c

H

.

.

.

Figure 5.6: On the left, we attempt to establish the explanatory power of factors on the LHS
of observations shown on the RHS. The degrees of significance are given by inferred edge
weights. On the right, a multi-layer graphical inference model. A connector H (hidden
matrix) is introduced to simply the analysis.

while the other side is active (i.e., the manifestation seen in actual behavior). Our goal is

to infer, given the two sets of similarity matrices, the edge weights on all directed edges.

There are different interpretations for these edge weights. First, the weights convey the

relative strengths of the correlation between latent variables and observed variables, e.g.,

which relationship factor best explains, or resembles the most, the similarity seen in the

actual data. However, if causal relationship between the two sides could be established

via separate means, then these edge weights also indicate to what degree a latent variable

contributes to/cause the observation. Our goal in this study is to quantify the degree of

correlation, and not the determination of a causal relationship.

5.4.2 A multi-layer graphical inference model

We consider a multi-layer inference model, shown on the right side of Figure 5.6. Here

we have added a “hidden” similarity matrix H as an intermediate step between the two

sides. The idea is to separately establish correlation between the latent matrices and this

hidden H, and between H and the observed matrices. While this is certainly a simplifica-

tion, the hidden matrix H is not necessarily a mathematical construct solely for the purpose

of simplicity; it can have real physical interpretation as well. Take for instance the case

of spam. The observed spam activity of a given network is ultimately determined by how

109

many hosts in that network were taken over as proxies by a spam campaign. The number

of such hosts may be viewed as determined by the likelihood a network is targeted by the

spam campaign as well as its vulnerability in falling victim when targeted. The similarities

in these probabilities may be regarded as the hidden H matrix. In other words, the simi-

larity observed on the RHS can be ultimately attributed to the similarity in this probability

similarity matrix H. This reasoning also applies to the other types of malicious activities.

Therefore, we may correlate the set of spatial features with the observed matrices through

H.

The introduction of H allows us to solve the problem using the following decomposition-

matching procedure without having to assume priors commonly used in the literature (see

e.g., [60]):

1. The LHS problem: the inference of H using the latent variable matrices {Ai}→ H.

2. The RHS problem: the inference of H using the observed matrices S,Sc→ H. For

notational convenience S,Sc will also be collectively written as {S j} in the discussion

below.

In both cases H is unknown. To get around this, we will estimate H as a linear com-

bination of the Ai’s and of the S j’s, respectively, and then solve both problems simultane-

ously. Specifically, we shall estimate H from Ai’s as ∑i αiAi,∑i αi = 1, and from S j’s as

∑ j β jS j,∑ j β j = 1, respectively, and then solve the two sets of edge weights by minimizing

the difference between the two inferred versions. Physically this means to estimate H as its

projection onto the spaces spanned by {Ai} and {S j}, respectively. Although this is clearly

an approximation, under certain assumptions the linear model can indeed be shown to be

the optimal fit; more details are given in the Appendix.

The above inference problem is formally given by the following optimization problem

110

(P BI):

minα,β L (Hα ,Hβ)

s.t. Hα = ∑i αiAi, Hβ = ∑ j β jS j ,

∑i αi = 1,∑ j β j = 1 .

where L is a loss function measuring the discrepancy between Hα and Hβ , the inference

on both sides. We will take L to be the normalized Frobenius norm, L (Hα ,Hβ) = ||Hα−

Hβ ||F ; for an arbitrary matrix M = [Mi j] this norm is defined as ||M||F :=
√

∑i, j M2
i, j/N.

Note that the constraints are all linear in α,β , and the Frobenius norm is convex as an

objective function. Furthermore, Hα−Hβ is a linear operation over α,β . We thus conclude

that (P BI) is convex and can be solved efficiently.

5.4.3 Sensitivity analysis

In this section we derive a number of performance bounds concerning the sensitivity

of our inference approach to potential error/noise in the raw data used, as well as to a key

parameter choice in the method (the observation window).

Sensitivity to errors in the RBL data

Our RBL dataset is obtained from third parties; as such we do not have reliable means of

assessing their quality (i.e., false positive and miss detection rates) and have so far assumed

they are error-free. It is however extremely important to understand how potential errors in

the data may affect our method. In what follows we characterize the performance of our

inference algorithm in the presence of such errors.

Assume that both sides of the inference model, Ais and S js, contain errors (the latter

due to errors in the RBL data). Specifically, we consider two types of errors, one referred

to as the bounded additive error and the other flip error. Under the first type of error, each

entry of a similarity matrix is subject to an additive and bounded perturbation, which need

not be independent from one entry to another. This type of error is mostly applicable to S∗

and Sq,∗ on the RHS of the inference model since their entries are continuous in value. For

111

Ais with binary entries, the second type of error is more applicable, where values flip from

0 to 1 or 1 to 0 with a certain probability.

Consider first the case where bounded additive errors are present in both Ais and S js;

these noisy versions are denoted as Ãi and S̃ j. Denote the optimal solution to the problem

(P BI) solved using the error-free Ai and S j as ({αo
i },{β o

j }) and the corresponding ob-

jective function value L ; denote their noisy counterparts (i.e., solved using Ãi and S̃ j) as

({α̃o
i },{β̃ o

j }) and L̃ , respectively. We have the following results.

Theorem V.1. If ∀i, j and for any pair (k, l) we have

|Ãi(k, l)−Ai(k, l)| ≤ δ , |S̃ j(k, l)−S j(k, l)| ≤ δ ,

i.e., the per-element errors are uniformly bounded by some δ , then the noisy solution

({α̃o
i },{β̃ o

i }) satisfies

||({α̃o
i },{β̃ o

i })− ({αo
i },{β o

j })||2 ≤
√

2δ

C
, (5.6)

with positive constant C > 0.

In other words, the error in the inference result induced by the error in the data can be

precisely bounded. The proof of this result can be found in the Appendix. Key ingredients

of the proof are (1) the triangle inequality for the Frobenius norm, (2) the sub-gradient

inequality for the Frobenius norm due to its convexity.

Next consider the flip errors, and assume

Ãi(k, l) =

 Ai(k, l), w.p. 1− ε

1−Ai(k, l), w.p. ε ,
(5.7)

and that the flips are independent of each other. We have the following results that relate

the flip probability to the Frobenius norm.

112

α :[AS, Type, Ctry., Hop] β :[Raw, Quan.] || · ||F
Truth [0.40, 0.10, -, 0.50] [0.8,0.2] 0.1986

Solution [0.45, 0.05, -, 0.50] [0.7,0.3] 0.2118
Additive (δ = 0.05) [0.45, 0.15, -, 0.40] [0.7,0.3] 0.1697

Flip (ε = 0.05) [0.45, 0.05, -, 0.50] [0.7,0.3] 0.2167

Table 5.2: Simulation studies with error-free solutions, bounded additive and flip errors.

Lemma V.2. With probability at least 1−2e−2δ 2·N2−N
2

||Ãi−Ai||F ≤
√

2 · (ε +δ) ,∀i. (5.8)

With the above results, we have effectively converted the flip errors to bounded additive

errors, which then allows the same analysis used in Theorem V.1 to go through, resulting

in the following theorem; the proof is omitted for brevity.

Theorem V.3. Denote the number of feature matrices Ai as nA and assume only flip errors

are present in {Ai}. Then with probability at least 1−2nA · e−2δ 2·N2−N
2 , the noisy solution

({α̃o
i },{β̃ o

i }) satisfies

||({α̃o
i },{β̃ o

i })− ({αo
i },{β o

j })||2 ≤

√
2
√

2 · (ε +δ)

C
. (5.9)

Note that the two types of error can be easily combined to get a bound on when both

types exist at the same time, as shown below.

Theorem V.4. When both bounded additive error and flip error exist, with probability at

least 1−2nA · e−2δ 2·N2−N
2 , the noisy solution ({α̃o

i },{β̃ o
i }) satisfies

||({α̃o
i },{β̃ o

i })− ({αo
i },{β o

j })||2 ≤

√
2 ·max{

√
2 · (ε +δ),δ}
C

.

In Table 5.2 we repeat the same simulation performed earlier but with bounded additive

and flip errors, respectively.

113

Effect of finite observation window

We next characterize the effect of using a finite-length time series to construct S∗ and

Sq,∗ (in all our experiments the window size used is a month, which is a natural separation.).

We will do so by assuming the raw time series data r∗i (t) can be modeled as an ergodic

Markov chain with transition probability matrix Pi on the state space Ri, for otherwise

the variation in the time series itself over time can be arbitrary. Denote by Ri, a random

variable, the state of this Markov chain in steady state. Denote the number of observations

for each Markov Chain as τ . Our results are formally stated in the following theorem.

Theorem V.5. With high probability (being at least 1−O(e−τε2
)), the noisy solution

({α̃o
i },{β̃ o

i }) satisfies

||({α̃o
i },{β̃ o

i })− ({αo
i },{β o

j })||2 ≤
√

2max{ f1(ε), f2(ε)}
C

,

for small enough ε > 0 and f1(ε), f2(ε) are both bounded, continuous, and monotonically

increasing function in ε for ε small enough, and f1(0) = f2(0) = 0.

5.4.4 Inference on the RBL dataset

We now apply the multi-layer graphical inference model to the RBL dataset. We first

do so for each month of the measurement period using the aggregate signal obtained for

that month. A subset of the results (April-Nov 2013) are shown in Table 5.3; the rest is

omitted for brevity while noting that those results are very consistent with what’s shown

here.

There are a number of interesting observations from Table 5.3. First of all, AS mem-

bership, AS type and country affiliation similarity are very minor compared to the strength

of the distance similarity as an indicator. It appears that the first three spatial features are

subsumed in the distance feature, or in other words, the distance information successfully

encodes the other features such that it becomes a near-sufficient descriptor for similarity

114

Month α : [AS, Type, Hop, Ctry.] β :[Dice, Cosine] || · ||F
Apr. [0.0, 0.1, 0.8, 0.1] [0.8, 0.2] 0.3612
May. [0.0, 0.1, 0.8, 0.1] [0.9, 0.1] 0.3604
Jun. [0.0, 0.1, 0.8, 0.1] [0.9, 0.1] 0.3443
Jul. [0.0, 0.1, 0.8, 0.1] [0.8, 0.2] 0.3270

Aug. [0.0, 0.1, 0.8, 0.1] [0.7, 0.3] 0.3344
Sep. [0.0, 0.1, 0.8, 0.1] [0.7, 0.3] 0.3485
Oct.. [0.1, 0.1, 0.8, 0.1] [1.0, 0.0] 0.4019
Nov. [0.0, 0.1, 0.8, 0.1] [0.6, 0.4] 0.3702

Table 5.3: Inference result. ξ is set to be 0.85.

Maliciousness α :[AS, Type, Hop, Ctry.] β :[Dice, Cosine] || · ||F
Spam [0.3, 0.1, 0.5, 0.1] [0.5, 0.5] 0.2506

Phishing [0.1, 0.1, 0.7, 0.1] [0.3, 0.7] 0.2479
Scan [0.5, 0.1, 0.3, 0.1] [0.9, 0.1] 0.2080

Table 5.4: Inference result along each malicious type separately.

in malicious activities. There are a number of reasons for why this may be true. Topo-

logical distance naturally contains AS membership information: those prefixes in the same

AS are considered most similar both in AS membership as well as in AS-distance. For

the same reason these prefixes with the closest AS-distance will also bear the same AS

type. Topologically close prefixes are also more likely to reside in the same country, so

any geo-political and macro-economic information embedded in the country affiliation is

also contained in the distance information. It is, therefore, not entirely unexpected that AS-

distance should be a relevant factor in assessing similarity in maliciousness. It is, however,

quite surprising how significant this factor is, so much so that one could arguably ignore

the other factors in describing the observed similarity in maliciousness.

We next repeat the same inference analysis along different malicious activity types,

i.e., by using Ssp,Sph,Ssc, respectively, as the similarity matrices on the RHS of the infer-

ence model. This is shown for the month of October 2013 (middle point in our database)

in Table 5.4. As before, the AS-distance remains a dominant indicator that dwarfs the

other spatial features for spam and phishing; however, the scan similarity depends more

on AS membership. This is likely due to the fact that a scanning campaign typically in-

volves acquiring/compromising a large number of hosts to use for scanning and these hosts

115

are often from the same networks; this results in networks within the same AS exhibiting

similar behavior. By contrast, a phishing campaign involves a much smaller number of

compromised hosts, but they move from network to network as the campaign tries to evade

takedown; this likely results in neighboring networks exhibiting similar behavior. Also

of note is when we view each malicious types separately, cosine similarity plays a more

significant role in phishing and spam signals, which suggests more synchrony (or coordi-

nation botsniffer) among activities of these two types. This is because the cosine similarity

captures similarity in shape rather than magnitude. For instance consider two vectors r∗i

and r∗j such that r∗j = n · r∗i (i.e., j is n times that of i component-wise). We would then

have S∗i, j = 2(r∗i)T · nr∗i /(|r∗i |2 + |n · r∗i |2) = (2n)/(n2 + 1), which approaches 0 as n be-

comes large. By contrast, the similarity between r∗i and r∗j would be preserved by cosine

similarity.

One other important observation is that the norm error is much lower in this case, sug-

gesting a highly accurate linear model in explaining the observed data. This translates into

very high accuracy in using spatial features to estimate the similarity in malicious behaviors

along each type.

5.4.5 Estimating maliciousness in the absence of measurement data

Consider the problem where we possess no information about a prefix’s maliciousness,

but only know its spatial relationship with some other prefixes whose aggregated signals

are known. The missing data may be caused by a variety of measurement errors. Below we

show how we can estimate the missing information using only topological similarity and

malicious activity data of a number of known entities.

Recall that as shown earlier, the similarity in maliciousness is most strongly correlated

with topological distance. Figure 5.7 shows how similarity measures are distributed for

prefixes within n hops of each other. Accordingly, we define a prefix i’s neighborhood

Ni as the set of prefixes within two hop, i.e., ∀ j such that h(i, j) ≤ 2, and these prefixes’

116

maliciousness signals are well measured. The choice of 2-hop neighbors is based on ob-

servations from Figure 5.7, which shows a clear drop in similarity beyond hop 2. We next

define the spatial similarity matrix A as follows, using the inference results obtained from

Table 5.3:

A = 0 ·A1 +0.1 ·A2 +0.8 ·A3 +0.1 ·A4 . (5.10)

We then calculate for each j ∈ Ni a weight ω j using Ai, j:

ω j =
eAi, j/σ2

∑k∈Ni eAi,k/σ2 .

The final estimate for an unknown prefix i’s signal is given by r̂i(t) = ∑ j∈Ni ω j · r j(t) .

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Similarity

C
D

F

Hop 0
Hop 1
Hop 2
Hop 3
Hop > 3

Figure 5.7: Similarity distribution w.r.t. AS hops

Note that we obtained the edges weights using data from 2013. We will use the above

model to estimate malicious activities in 2014 and compare it to the ground truth ri(t). This

is done on a monthly basis. For each month in 2014, we randomly select a set of prefixes

and remove their RBL data, and produce an estimate for them using data from their “neigh-

bors”. Generally we observe that about half of the prefixes have less than 10% estimation

error, defined as ∑
d
t=1 |ri(t)−r̂i(t)|

d , where d is the number of days for the corresponding month,

while about 80% of all prefixes have less than 20% estimation error. We present the results

in Figure 5.8. Also shown in Figure 5.8 are results obtained by performing the same type

117

of estimation for each malicious types by considering different types of aggregate signals.

For each type of maliciousness the similarity matrix A is calculated using the inference re-

sult corresponding to that type as given in Table 5.4. Since the inference are more accurate

when we consider each malicious type separately, improvement in estimation quality is to

be expected. It is nonetheless remarkable how accurate the estimation is based purely on

spatial features as shown in Figure 5.8, especially in the case of scan.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Error

C
D

F

SPAM
Phishing
Scan
Union

Figure 5.8: Estimation results for 2014 using topological similarity for different categories
of maliciousness, as well as a union of them.

5.5 Concluding remarks

We presented a study on analyzing the relationships between dynamic malicious activ-

ities of different network entities, and their correlation with a number of spatial relation-

ships, including their AS membership, AS type association, topological distances, as well

as country affiliations and we demonstrate the effectiveness of the results by applying them

to enhance prediction of networks’ future maliciousness. By adopting a simple similarity

measure we were able to capture hidden features in network malicious activities previously

unseen when only time-averaged quantities are used. Usefulness of such information is

demonstrated concretely via showing how to combine it with existing method to enhance

prediction results and measurement efficiency. We also concluded, by using statistical in-

ference, that within the set of spatial features considered, the topological distance between

118

two networks is by far the most significant indicator of their similarity in maliciousness.

We then showed how these results can be utilized by providing prediction where it would

otherwise have been impossible.

119

CHAPTER VI

Conclusion

In this dissertation we set out to rigorously study how diversity and similarity hidden

in disparate data sources (e.g., crowd-sourcing system) affect performances of a machine

learning system w.r.t. different objectives. Our general goal is to demonstrate methods of

quantifying and learning such information, and show in what ways they can help process

multi-source data within several broadly applicable problem settings. And we show with

appropriately designed algorithm, we can harness the power of such information to differ-

ent degrees. Besides a number of analytical results, we also delve into a set of real world

Internet measurement data to firstly reveal similarities among real Internet entities and then

present several applications utilizing such understanding.

The dissertation, as a whole, can be viewed as initial steps towards rigorously framing

the discussion of uncovering connectedness in a big data system. Big data system, instead

of simply implying a large volume of data, can potentially provide more opportunities due

to its complex data structures (that is with data being connected in certain way). This

dissertation provides several examples on how this hidden interleave may benefit various

learning objectives dealing with data systems with potentially multiple and diverse sources,

as well as challenges for uncovering them.

120

6.1 Future work

One interesting direction of extending the current dissertation is to utilize the results

generated from our learning methods to design better crowd-sourcing market and platform.

Despite its popularity and usability, most crowd-sourcing markets suffer from data qual-

ity issues, which most of times due to irresponsible behaviors of workers. Chapter II of

this dissertation provides one solution from task assigner’s point of view. We however hy-

pothesis it would be more efficient if the crowd-sourcing platforms can implement smarter

mechanisms, rather than leaving this to each individual task assigner. For instance with

an online learning process, crowd workers’ inserted efforts can be consistently monitored

and learned (through the contributed data); therefore based on such results, better bonus or

punishment schemes can be put into use for market design.

Another relevant study is to look into privacy preserving learning methods for crowd-

sourcing related topics. Throughout the current dissertation we have assumed the cleanness

of crowd-sourced data, that is crowd workers contribute their data voluntarily without ma-

nipulation. However this assumption may not hold completely, especially when the data

itself is sensitive (e.g., medical record data etc.) Then a very interesting question is when

users are malicious or privacy concerned, how to discern such maliciousness and incen-

tivize data report with truthfulness, or in another words, how to develop efficient learning

algorithm with potentially falsified data input.

On the application side, we would like to seek a better understanding of the similarity

in maliciousness and its implication for cyber security events. Similarity information is be-

lieved to be useful for semi-supervised learning when large amount of labels are missing,

which is the case for cyber security research as security events are largely under-reported.

We plan to leverage similarity information for uncovering such under-reported incidents

and combine it with semi-supervised learning algorithms to better predict malicious activ-

ities.

121

APPENDICES

122

APPENDIX A

Proofs for Chapter II

A.1 Proof of Theorem II.1

We prove by contradiction. Suppose m is even and we order all selected users by their

labeling capability in descending order p1 ≥ ...≥ pm. We now prove

π(p1, ..., pm−1)≥ π(p1, ..., pm) (A.1)

Consider the following. By adding pm, the gain for π(p1, ..., pm−1) is pm·P(T1)
2 , where

T1 = {# of correct labels = # of wrong labels−1}.

That is, only when the number of correct labels is exactly the same as the number of wrong

labels less one does adding a m-th correct label change the outcome of the majority vote (in

this case there is a tie so the label changes with probability 1/2); when the former number

is smaller or bigger, adding one more vote does not change the results. On the other hand,

the loss is (1−pm)·P(T2)
2 , where

T2 = {# of correct labels = # of wrong labels+1}.

123

We now compare pm ·P(T1) and (1− pm) ·P(T2). Within the set T2, each event is of

the form where some labeler i gives the correct label while the rest are half correct and half

wrong. Denote this event by ωi and by ω−i the event that the rest of the labels (given by

those other than i) are half right and half wrong. Note for each ωi there is a corresponding

event ω̂i ∈ T1 where i gives the wrong labels while the rest are half correct and half wrong.

Since pi ≥ pm we have

(1− pm)· pi ·P(ω−i)≥ pm · (1− pi) ·P(ω−i) . (A.2)

At the same time, P(ωi) = pi ·P(ω−i),P(ω̂i) = (1− pi) ·P(ω−i), i.e., (1− pm) ·P(ωi) ≥

pm ·P(ω̂i). This is true for all ωi. Therefore we have

(1− pm) ·P(T2) = (1− pm) ·P(∪i ωi)

= ∑
ωi

(1− pm) ·P(ωi)≥∑
ω̂i

pm ·P(ω̂i) = pm ·P(T1) . (A.3)

Therefore we have proved π(p1, ..., pm−1)≥ π(p1, ..., pm). Moreover

U({1,2, ...,m−1})−U({1,2, ...,m}) = π(p1, ..., pm−1)−π(p1, ..., pm)> 0. (A.4)

Therefore a selection of an even number of labelers can always be improved by removing

the least accurate labeler, resulting in an odd number of labelers in the selection.

A.2 Proof of Theorem II.2

Consider a m-set S. Suppose there is a i /∈ S and a j ∈ S such that pi > p j. Then the

probability of making a correct annotation is given by

PS(# of correct labels > # of wrong labels) = p j ·P(T1)+(1− p j) ·P(T2) ,

124

where

T1 = {# correct label > # wrong label−1 in S\ j} , (A.5)

T2 = {# correct label > # wrong label+1 in S\ j} . (A.6)

Now replace j with i and denote Ŝ = S\ j∪{i} we have

PŜ(# of correct labels > # of wrong labels) = pi ·P(T1)+(1− pi) ·P(T2) .

It follows that

PŜ−PS = (pi− p j) · (P(T1)−P(T2)) . (A.7)

If an event ω ∈ T2 we must also have ω ∈ T1, thus we have T2 ⊂ T1; therefore P(T1)−

P(T2)> 0, and we conclude that PŜ−PS > 0, completing the proof.

A.3 Proof of Lemma II.4

Denote by n(T) the number of times an exploration phase has been activated up to time

T . Since for labeler i there is at most D1(T) ·D2(T) number of exploration phases, we have

n(T) =
T

∑
i=1

1{at least one task in exploration phase at t}

≤
D1(t)

∑
k=1

T

∑
i=1

1{ task k in reassignment phase at t} ≤ D1(T) ·D2(T) ,

where the first inequality comes from union bound. Then

E[Re(T)]≤U(S∗) ·n(T) =U(S∗) · (D1(T) ·D2(T)) .

125

A.4 Proof of Lemma II.6

Firstly notice via union bound we have the following bound at any time t:

E[E1(t)]≤
M

∑
m=1

m odd

P(Ũ(Sm)≥ Ũ(S∗)) . (A.8)

Now consider each term in the above summation P(Ũ(Sm) ≥ Ũ(S∗)). We will use the

following fact to bound it.

Lemma A.1. The probability of using a sub-optimal selection Sm is bounded as follows,

P(Ũ(Sm)≥Ũ(S∗))≤ P(Ũ(Sm)>U(Sm)+ ε)

+P(Ũ(S∗)<U(S∗)− ε) , (A.9)

and for S ∈ {Sm,S∗} we have

P(|Ũ(S)−U(S)|> ε)≤ n(S) ·∑
i∈S

P(|p̃i− pi|>
ε

n(S) · |S|
) . (A.10)

We shall now use the above lemma; its own proof is given later in this appendix.

Consider each term P(|p̃i− pi|> ε

n(S)·|S|) in the lemma

P(|p̃i− pi|>
ε

n(S) · |S|
)

= P(|p̃i− pi|>
ε

n(S) · |S|
|

∑k:k∈E(t) 1{y∗k = 0}
|E(t)|

≤ α · ε
tz)︸ ︷︷ ︸

Term 1

·P(
∑k:k∈E(t) 1{y∗k = 0}

|E(t)|
≤ α · ε

tz)

+P(|p̃i− pi|>
ε

n(S) · |S|
|

∑k:k∈E(t) 1{y∗k = 0}
|E(t)|

>
α · ε

tz) ·P(
∑k:k∈E(t) 1{y∗k = 0}

|E(t)|
>

α · ε
tz)︸ ︷︷ ︸

Term 2

,

(A.11)

126

where 0 < z < 1 is a constant. This is different from the classical learning problem in the

sense we need to deal with extra errors associated with imperfect feedbacks. The first term

takes care of the event when the sum of error is lower than certain threshold while the

second term captures the other case.

For Term 1 the conditional probability is bounded as follows:

P(|p̃i− pi|>
ε

n(S) · |S|
|

∑k:k∈E(t) 1{y∗k = 0}
|E(t)|

≤ α · ε
tz)

≤ P(|p̃i− pi|> (
1

n(S) · |S|
− α

tz) · ε)

≤ 2 · e−2((1
n(S)·|S|−

α

tz)·ε)
2·D1(t) ≤ 2

t2 , (A.12)

since D1(t) = 1
(1

n(S)·|S|−α)2·ε2 · log t. Consider Term 2,

P(
∑k:k∈E(t) 1{y∗k = 0}

|E(t)|
>

α · ε
tz)≤

E[∑k:k∈E(t) 1{y∗k=0}]
|E(t)|
α·ε
tz

=

∑k:k∈E(t) E[1{y∗k=0}]
|E(t)|
α·ε
tz

, (A.13)

by the Markov inequality. Note more strict bound could be obtained via other bounding

techniques. Consider each term in the summation

E[1{y∗k = 0}] = P(y∗k = 0) = P(
N̂k(t)

∑
n=1

1{yk(n)}> 0.5 · N̂k(t))≤ e−2(amin−0.5)2·N̂k(t) ≤ 1
t2 ,

where N̂k(t) is the number of feedbacks received for task k upto time t; the inequality is

due to the fact that N̂k(t)≥ D2(t)≥ 1/(amin−0.5)2 log t. This means that for each labeler,

it has performed on at least D1(T) tasks, and each task must have at least D2(T) testing

results available.

Consequently we have

P(
∑k∈E(t) I{y∗k = 0}

|E(t)|
>

α · ε
tz)≤ 1/t2

α · ε/tz =
1

α · ε · t2−z .

127

The other two terms in the summation are bounded by 1 since they are probability measures.

Summing up, we have

P(|Ũ(S)−U(S)|> ε)≤ n(S) · |S| · (2
t2 +

1
α · ε · t2−z) . (A.14)

Summing over Sm,m odd completes the proof.

A.5 Proof of Lemma II.7

We have the following fact:

E[E2(t)]≤ P(∪i∈M |p̃i− pi|> ε)≤ ∑
i∈M

P(|p̃i− pi|> ε) .

This is because if |p̃i− pi| ≤ ε , ∀i then we must have for pi > p j,

p̃i− p̃ j ≥ pi− ε− p j− ε > 0,

which means there is no error in ordering. Similarly as above we have

P(|p̃i− pi|> ε)≤ 2
t2 +

1
α · ε · t2−z . (A.15)

Therefore,

E[E2(t)]≤M(
2
t2 +

1
α · ε · t2−z) . (A.16)

128

A.6 Proof of Lemma A.1

We first bound the inequality in Eqn.(A.9). To see why this inequality is true, consider

the following fact

{ω : Ũ(Sm)≥ Ũ(S∗)} ⊆ {ω : Ũ(Sm)>U(Sm)+ ε}∪{ω : Ũ(S∗)<U(S∗)− ε} , (A.17)

since if Ũ(Sm)≤U(Sm)+ ε, Ũ(S∗)≥U(S∗)− ε , we then have

Ũ(Sm)−Ũ(S∗)≤U(Sm)+ ε−U(S∗)+ ε ≤−∆min +2ε <−∆min +∆min = 0 ,

which contradicts the fact that Ũ(Sm)≥ Ũ(S∗). Thus

P(Ũ(Sm)≥ Ũ(S∗))≤ P(Ũ(Sm)>U(Sm)+ ε) ,

by the union bound. The bounding effort then reduces to bounding each of above probabil-

ities. Note that for any set S, plug in U(S) we have

|Ũ(S)−U(S)|= | ∑
S′ :S′⊆S, |S′ |≥d |S|2 e

(∏
i∈S′

p̃i ∏
S\S′

(1− p̃ j))−∏
i∈S′

pi ∏
S\S′

(1− p j))| . (A.18)

Therefore

P(|Ũ(S)−U(S)|> ε)

= P(∑
S′ :S′⊆S, |S′ |≥d |S|2 e

|∏
i∈S′

p̃i ∏
S/S′

(1− p̃ j)−∏
i∈S′

pi ∏
S\S′

(1− p j)|> ε)

≤ ∑
S′ :S′⊆S, |S′ |≥d |S|2 e

P(|∏
i∈S′

p̃i ∏
S\S′

(1− p̃ j)−∏
i∈S′

pi ∏
S\S′

(1− p j)|>
ε

n(S)
) ,

where the last inequality comes from the union bound. We further use the following results

(which can be proved separately but the proof of omitted): For k ≥ 1 and two sequence

129

{li}m
i=1 and {qi}m

i=1 and 0≤ li,qi ≤ 1,∀i = 1, ...,k., we have

|
m

∏
i=1

li−
m

∏
j=1

q j| ≤
m

∑
i=1
|li−qi| . (A.19)

Using this result, we have

|∏
i∈S′

p̃i ∏
j∈S\S′

(1− p̃ j)−∏
i∈S′

pi ∏
j∈S\S′

(1− p j)|

≤ ∑
i∈S′
|p̃i− pi|+ ∑

j∈S\S′
|(1− p̃ j)− (1− p j)|= ∑

i∈S
|p̃i− pi| .

Therefore using the union bound we have

P(|∏
i∈S′

p̃i ∏
S\S′

(1− p̃ j)−∏
i∈S′

pi ∏
S\S′

(1− p j)|>
ε

n(S)
)≤∑

i∈S
P(|p̃i− pi|>

ε

n(S) · |S|
) ,

and therefore sum up all above we have,

P(|Ũ(S)−U(S)|> ε)≤ ∑
S′ :S′⊆S, |S′ |≥d |S|2 e

∑
i∈S

P(|p̃i− pi|>
ε

n(S) · |S|
)

= n(S) ·∑
i∈S

P(|p̃i− pi|>
ε

n(S) · |S|
) . (A.20)

A.7 Proof of Theorem II.8

We prove by contradiction. Suppose there exists a pair (i, j), i ∈ S, j /∈ S such that

pi < p j. We discuss the following cases. First of all as we already noted we have log pi
1−pi

<

log p j
1−p j

. Consider the following fact the probability for correct labeling is given as,

Pc = pi ·P(T1)+(1− pi) ·P(T2)+
P(T3)

2
, (A.21)

130

where

T1 = {∑
u∈Sc

log
pu

1− pu
> ∑

e∈Sw

log
pe

1− pe
− log

pi

1− pi
} ,

T2 = {∑
u∈Sc

log
pu

1− pu
> ∑

e∈Sw

log
pe

1− pe
+ log

pi

1− pi
} ,

and

T3 = {A tie happens.} (A.22)

where Sc 6= Sw and Sc ∪ Sw = M −{i}, indicating the set of correct and wrong labelers

respectively. Essentially the first two events correspond to cases when there is a majority

group (including and excluding i respectively) and T3 corresponds to the case when there

is a tie.

Changing pi to p j since

P(T j
1)≥ P(T1), P(T2)≥ P(T j

2) ,

if pi > 0.5, where T j
q ,q ∈ {1,2} correspond to Tq,q ∈ {1,2} by replacing i with j. And we

have

p j ·P(T j
1)+(1− p j) ·P(T j

2)− pi ·P(T1)− (1− pi) ·P(T2)

≥ (p j− pi) · (P(T1)−P(T2))≥ 0 .

For T3. Consider the case pi is in Sc. Then changing pi to p j will break the equilibrium

and the probability of a correct output will become

p j ·P(Sc) ·P(Sw)> pi ·P(Sc) ·P(Sw) =
P(T3)

2
, (A.23)

131

where P(Sc),P(Sw) correspond to the probability from the correct and wrong labelers, i.e.,

P(Sc) = ∑
u∈Sc

pu, P(Sw) = ∑
e∈Sw

(1− pe) , (A.24)

and the last inequality comes from the fact that at the equal case the probabilities of the

label being either 0 or 1 are equivalent with each other.

A.8 Proof of Lemma II.10

P(W̃ (Ŝ)−W̃ (S\Ŝ)< ε)≤ P(W̃ (Ŝ)−W (Ŝ)<−ε/2)+P(W̃ (S\Ŝ)−W (S\Ŝ)> ε/2) .

Cause otherwise if

W̃ (Ŝ)−W (Ŝ)≥−ε/2, W̃ (S\Ŝ)−W (S\Ŝ)< ε/2 ,

we have

W̃ (Ŝ)−W̃ (S\Ŝ)≥W (Ŝ)−W (S\Ŝ)− ε ≥ ε . (A.25)

132

Consider each term above we have,

P(W̃ (Ŝ)−W (Ŝ)<−ε/2)

≤∑
i∈Ŝ

P(| log
p̃i

1− p̃i
− log

pi

1− pi
|> ε

2|Ŝ|
)

≤∑
i∈Ŝ

P(| log
p̃i

1− p̃i
− log

pi

1− pi
|> ε

2|Ŝ|
||p̃i− pi| ≥

ε

4C|Ŝ|
) ·P(|p̃i− pi| ≥

ε

4C|Ŝ|
)

+∑
i∈Ŝ

P(| log
p̃i

1− p̃i
− log

pi

1− pi
| ≥ ε

2|Ŝ|
||p̃i− pi|<

ε

4C|Ŝ|
) ·P(|p̃i− pi|<

ε

4C|Ŝ|
)

≤∑
i∈S

P(|p̃i− pi| ≥
ε

4C|Ŝ|
)≤ |Ŝ|(2

t2 +
1

α · ε · t2−z) ,

since

D1(t)≥ 1/(
1

maxm 4C ·m
−α) log t, α <

1
maxm 4C ·m

,

as well as the fact that when |p̃i− pi| ≤ ε

4C|Ŝ| and

C > max
i

max{1+ ε/4
pi

,
1− ε/4
1− pi

,
ε/4
pi

,
ε/4

1− pi
} ,

we have

| log
p̃i

1− p̃i
− log

pi

1− pi
| ≤ 2C · |p̃i− pi|<

ε

2|Ŝ|
,

where we have used the following results.

Lemma A.2. With p̃i, pi bounded away from 0 and 1 we have,

| log
p̃i

1− p̃i
− log

pi

1− pi
| ≤ 2C · |p̃i− pi| , (A.26)

133

where C is a constant satisfying,

C > max
i

max{ 1
pi
,

1
p̃i
,

1
1− pi

,
1

1− p̃i
}. (A.27)

Similarly we have

P(W̃ (S\Ŝ)−W (S\Ŝ)> ε/2)≤ |S\Ŝ|(2
t2 +

1
α · ε · t2−z) .

Combine above we have

P(W̃ (Ŝ))−W̃ (S\Ŝ)< ε)≤ |S| · (2
t2 +

1
α · ε · t2−z) .

For the other case when W (Ŝ)) =W (S\Ŝ) we have,

P(|W̃ (Ŝ)−W̃ (S\Ŝ)|> ε)≤ P(|W̃ (Ŝ)−W (Ŝ)| ≥ ε/2)

+P(|W̃ (S\Ŝ)−W (S\Ŝ)| ≥ ε/2)

≤ |S| · (2
t2 +

1
α · ε · t2−z) , (A.28)

where the second inequality is established similarly as in the first case.

134

A.9 Proof of Equation (A.19)

We prove the claim by induction. Notice when m = 1 the inequality holds trivially.

When m = 2 we have

|l1 · l2−q1 ·q2|

= |(l1−q1) ·
l2 +q2

2
+(l2−q2) ·

l1 +q1

2
|

≤ |(l1−q1) ·
l2 +q2

2
|+ |(l2−q2) ·

l1 +q1

2
|

= |l1−q1| · |
l2 +q2

2
|+ |l2−q2| · |

l1 +q1

2
|

≤ |l1−q1|+ |l2−q2| . (A.29)

The last inequality used the fact

| l1 +q1

2
| ≤ 1, | l2 +q2

2
| ≤ 1 .

Suppose the inequality holds for m.

|
m+1

∏
i=1

li−
m+1

∏
j=1

q j|= |
m

∏
i=1

li · lm+1−
m

∏
j=1

q j ·qm+1|

≤ |
m

∏
i=1

li−
m

∏
j=1

q j|+ |lm+1−qm+1|

≤
m+1

∑
i=1
|li−qi| , (A.30)

where the second inequality used the results for m = 2 which we proved, since

0≤
m

∏
i=1

li,
m

∏
j=1

q j ≤ 1 ,

and the last inequality used the induction hypothesis.

135

A.10 Proof of Lemma A.2

| log
p̃i

1− p̃i
− log

pi

1− pi
|

= | log p̃i− log pi + log(1− pi)− log(1− p̃i)|

≤ | log p̃i− log pi|+ | log(1− pi)− log(1− p̃i)|

≤ 2C|p̃i− pi| , (A.31)

since all four terms are bounded from 0 and the last inequality comes from classical in-

equality of log(·) functions.

A.11 Proof for Proposition II.12

Let’s ignore the o(1) quantity for now: as we could easily show π(·) is linear in each pi

so the o(1) change in each pi will only result in a o(1) change in π(·). First

π(
1
2
+δ ,

1
2
+ ε,

1
2
+ ε) =

1
2
+

δ

2
+ ε−2δε

2 .

Compare with 1−δ we know we can find a (δ ,ε) such that

1
2
+

δ

2
+ ε−2δε

2 <
1
2
+δ

⇔ ε <
δ

2
+2δε

2 .

Now with error probability Pe we have the change in perception for each labelers’ ac-

136

curacy as follows

p̃1 = (
1
2
+δ)(1−Pe)+(

1
2
−δ)Pe =

1
2
+δ (1−2Pe) ,

p̃2 = (
1
2
+ ε)(1−Pe)+(

1
2
− ε)Pe =

1
2
+ ε(1−2Pe) ,

p̃3 = (
1
2
+ ε)(1−Pe)+(

1
2
− ε)Pe =

1
2
+ ε(1−2Pe) .

First of all when Pe >
1
2 , we know p̃2 > p̃1, which will lead to the case that optimal set

of labelers will be different from the case with p1, p2, p3. When Pe =
1
2 , we will have

p̃1 = p̃2 = p̃3 = 1
2 . So the optimal solution does not equal to selecting labeler 1, which

again leads to unbounded regrets. Now consider the case with Pe <
1
2 :

π(p̃1, p̃2, p̃3) =
1
2
+

δ (1−2Pe)

2
+δ (1−2Pe)−2δ (1−2Pe)(ε(1−2Pe))

2 .

Compare it with 1
2 +δ (1−2Pe) we know

1
2
+

δ (1−2Pe)

2
+δ (1−2Pe)−2δ (1−2Pe)(ε(1−2Pe))

2 >
1
2
+δ (1−2Pe)

⇔ ε >
δ

2
+2δε

2(1−2Pe)
2 .

Depending on different Pe we know we could choose a pair of (ε,δ) such that

ε <
δ

2
+2δε

2 ,

ε >
δ

2
+2δε

2(1−2Pe)
2 ,

as above functions are all continuous in (ε,δ). So for any Pe we can find an example that

based on p̃1, p̃2, p̃3 the optimal solution set will be different from the one with p1, p2, p3.

Then following classical MAB results we will know the learning will converge to the sub-

optimal solution which will make the learning regret being at the order of O(T).

137

A.12 Proof for Proposition II.13

Now at each time t consider the hypothesis testing on whether a sub-optimal labeler is

better than an optimal one, based on collected samples. Upto time t the number of making

a wrong decision for above hypothesis is lower bounded by the summation of the event

when a wrong ordering of the labelers occurs; as in cases with the top labeler being the

optimal selection, a wrong ordering leads to a wrong selection.

Consider the following example with two hypothesis with parameters drawing from pa-

rameter space Θ. (Hypothesis Hi corresponds to parameter space θi.) Particularly suppose

θ0 = {p1, p2, p3 : p1 > p2 > p3} ,

θ1 = {p′1, p2, p3 : p2 > p′1 > p3} .

That is H0 believes p1 > p2 while H1 represents the hypothesis p2 > p1.

Denote by T (t) as the number of sub-optimal arm selection upto time t. Then we have

sup
θ

Eθ [T (t)] = sup
θ

t

∑
τ=1

Pθ (S(τ) 6= S∗)

≥
t

∑
τ=1

Pθ0(S(τ) 6= S∗)+Pθ1(S(τ) 6= S∗)
2

≥
t

∑
τ=1

e−I(Pτ
H0

,Pτ
H1

)

4
.

Denote the observation sequence as X1, ...,Xt . Now consider each term in the summa-

tion

I(Pτ
H0
,Pτ

H1
) = Eθ0

(
log(

f̃ (X1, p1)

f̃ (X1, p′1)
f̃ (X2, p1)

f̃ (X2, p′1)
· · ·

f̃ (XT (τ), p′1)

f̃ (XT (τ), p′1)
)

)

= Eθ0[
T (τ)

∑
t=1

log
f̃ (X1, p1)

f̃ (X1, p′1)
]

= Ĩ(p1, p′1)Eθ [T (τ)] .

138

Notice each distribution we have used f̃ to denote this is rather a noisy observation.

There we have (as similarly argued in [11])

St ≥
1
4
·

t

∑
τ=1

e−Ĩ(p1,p′1)Eθ0 [T (τ)]

≥ 1
4
·

t

∑
τ=1

e−Ĩ(p1,p′1)supθ Eθ [T (τ)]

=
1
4
·

t

∑
τ=1

e−Ĩ(p1,p′1)Sτ

≥ 1
4
·

t

∑
τ=1

e−Ĩ(p1,p′1)St

=
t
4

e−Ĩ(p1,p′1)St .

Take log on both sides and rearrange we know

St ≥
log t

Ĩ(p1, p′1)
+o(

log t
Ĩ(p1, p′1)

) . (A.32)

Now consider supPe
St and we start with bounding Ĩ(p1, p′1). Consider the following fact.

Ĩ(p1, p′1) = Eθ0(log
f̃ (x, p1)

f̃ (x, p′1)
)

= Eθ0(log
f (x, p1)(1−Pe)+(1− f (x, p1))Pe

f (x, p′1)(1−Pe)+(1− f (x, p′1))Pe
)

= Eθ0(log
f (x, p1)+

Pe
1−2Pe

f (x, p′1)+
Pe

1−2Pe

)

For each x ∈ {0,1}, consider each function log
f (x,p1)+

Pe
1−2Pe

f (x,p′1)+
Pe

1−2Pe
. Denote δ = Pe

1−2Pe
and

g(δ) = log
f (x, p1)+δ

f (x, p′1)+δ
,δ ≥ 0. (A.33)

By checking the second order derivative we can easily show that when f (x, p1) ≥

f (x, p′1), g(δ) is convex in δ while when f (x, p1) < f (x, p′1), g(δ) is concave. Therefore

139

we have when f (x, p1)≥ f (x, p′1),

g(δ)≥ g(0)+g′(0)δ

= log
f (x, p1)

f (x, p′1)
+

f (x, p1)− f (x, p′1)
f (x, p1) f (x, p′1)

δ .

While when f (x, p1)< f (x, p′1),

g(δ)≥ g(0)−g′(δ)(−δ)

= log
f (x, p1)

f (x, p′1)
+

f (x, p1)− f (x, p′1)
(f (x, p1)+δ)(f (x, p′1)+δ)

δ .

Denote

−C1 = min
x

f (x, p1)− f (x, p′1) ,

and

C2 = min
x,θ

f (x,θ) .

Since we cannot have a probability measure being strictly larger than another on each

outcome and for two different measures we know C1 > 0,C2 > 0. Then

g(δ)≥ g(0)− C1

(C2 +δ)2 δ . (A.34)

Then

Eθ0(log
f (x, p1)+

Pe
1−2Pe

f (x, p′1)+
Pe

1−2Pe

)≥ Eθ0(log
f (x, p1)

f (x, p′1)
)− C1

(C2 +δ)2 δ . (A.35)

140

That is

Ĩ(p1, p′1)≥ I(p1, p′1)−
C1

(C2 +δ)2 δ . (A.36)

Then

St ≥
log t

I(p1, p′1)−
C1

(C2+δ)2 δ
. (A.37)

We now see since

δ =
Pe

1−2Pe
, (A.38)

when Pe→ 0, δ → 0 and so is C1
(C2+δ)2 δ .

We can easily prove that I(p1, p2− x) is increasing in x; so the lower bound is again be

bounded by setting x = 0 that is by setting p′1 = p2. Combine above analysis we know we

can achieve a lower bound as log tD2(t).

A.13 Proof of Theorem II.14

The difference in selecting D2(t) (compared to setting D2(t) := O(log t)) lies in the

following factor for inferring the ground-truth label for each tester:

∑k:k∈E(t) 1{y∗k = 0}
|E(t)|

.

Also we already know,

E[1{y∗k = 0}]≤ e−2(p̄−1/2)2D2(t) .

141

Now consider the following events

ω1(t) := {
∑k:k∈E(t) 1{y∗k = 0}

|E(t)|
≤ αε} , (A.39)

and

ω2(t) := {
∑k:k∈E(t) 1{y∗k = 0}

|E(t)|
> αε} , (A.40)

We plug (A.39) as in proof II.6 we show we have the gap become

(
1

n(S) · |S|
−α)ε , (A.41)

with convergence rate being e−2(p̄−1/2)2D2(t). This part of analysis can go through similarly

as we argued for previous analysis. Now consider (A.40). By Chernoff bound

P(
∑k:k∈E(t) 1{y∗k = 0}

|E(t)|
> αε)

≤ P(
∑k:k∈E(t) 1{y∗k = 0}

|E(t)|
− e−2(p̄−1/2)2D2(t) > αε− e−2(p̄−1/2)2D2(t)) (A.42)

≤ e−2(αε−e−2(p̄−1/2)2D2(t))O(log t)

= O(
1
t2) ,

with appropriately selected parameter. Notice in order for inequality (A.42) to hold (to

enable Chernoff bound), we need

αε− e−2(p̄−1/2)2D2(t) > 0.

This is guaranteed to hold after a finite time T0 as e−2(p̄−1/2)2D2(t) is decreasing to 0 with

both α and ε stay as constants.

142

APPENDIX B

Proofs for Chapter III

B.1 Proof of Lemma III.1

For simplicity of presentation, in this proof we omit all sub- and super-scripts when

there is no confusion; and further denote by δ (t) the estimate at time t and δ ∗ the true

value. With a bit abuse of notation, throughout proofs we use r̂ j
k(l) to denote the estimated

log sample mean of user j for option k with l samples, instead of being at time l as we

defined earlier in the contexts. Also for simplicity of presentation we assume r̂ j
k(l), µ̂

j
k > 0.

Otherwise we could easily reverse the sign of r̂ j
k(l), µ̂

j
k and δ ∗ to make it consistent.

P(|δ (t)−δ ∗|> ε) = P(δ (t)> δ ∗+ ε)+P(δ (t)< δ ∗− ε) .

Consider P(δ (t)> δ ∗+ ε).

P(δ (t)> δ
∗+ ε) = P(

r̂i
k(l)

r̂ j
k(l)

> δ
∗+ ε)

= P(r̂i
k(l)> (δ ∗+ ε) · r̂ j

k(l)) .

143

Choose ξ := µ̂
j

k ε

2(δ ∗+ε) . And consider the following two events.

E1(t) = {ω : |r̂ j
k(l)− µ̂

j
k | ≥ ξ} ,

E2(t) = {ω : |r̂ j
k(l)− µ̂

j
k |< ξ} .

Clearly we have E1(t)∩E2(t) = /0 and E1(t)∪E2(t) = S , where S denotes the whole set.

P(r̂i
k(l)> (δ ∗+ ε) · r̂ j

k(l))

= P(r̂i
k(l)> (δ ∗+ ε) · r̂ j

k(l)|E1(t))P(E1(t))

+P(r̂i
k(l)> (δ ∗+ ε) · r̂ j

k(l)|E2(t))P(E2(t)) .

Using Chernoff-Hoeffding bound we know

P(E1(t))≤ e−2ξ 2·l . (B.1)

Consider the second term with E2(t). We have

P(r̂i
k(l)> (δ ∗+ ε) · r̂ j

k(l)|E2(t))

≤ P(r̂ j
k(l)> (δ ∗+ ε) · (µ̂ j

k −ξ))

= P(r̂i
k(l)−δ

∗ · µ̂ j
k ≥ µ̂

j
k · ε− (δ ∗+ ε) ·ξ)

= P(r̂i
k(l)−δ

∗ · µ̂ j
k ≥ µ̂

j
k · ε− (δ ∗+ ε) ·

µ̂
j

k ε

2(δ ∗+ ε)
)

= P(r̂i
k(l)−δ

∗ · µ̂ j
k ≥

µ̂
j

k ε

2
)≤ e−2(

µ̂
j
k ε

2)2l . (B.2)

The other part of proving P(δ (t) < δ ∗− ε) can be similarly done due to symmetry and is

thus omitted.

Now our task at hand is clear: we want to find the minimum number of samples that

are needed (that is a minimum l) such that we will have O(1
t2) probability bound for both

144

Eqn.(B.1) and Eqn.(B.2):

min l

s.t. e−2ξ 2·l ≤ 1
t2 , (B.3)

e−2(
µ̂

j
k ε

2)2l ≤ 1
t2 . (B.4)

We now prove the three claims according to the number of samples l, respectively.

(1) l = O(t). For this case suppose l =C1t. Take ε = 2
µ̂

j
k
·
√

log t
C1t , we have e−2(

µ̂
j
k ε

2)2l =

2
t2 . Moreover notice e−2ξ 2l = e−2(

µ̂
j
k ε

2(δ∗+ε)
)2C1t

, let ε = 2δ ∗

µ̂
j

k−2
√

log t
C1t

√
log t
C1t , we have e−2ξ 2l ≤ 1

t2 .

In all in order for above two conditions to hold simultaneously, take

ε = max{ 2δ ∗

µ̂
j

k −2
√

log t
C1t

√
log t
C1t

,
2

µ̂
j

k

·
√

log t
C1t
}

≤ 2max{δ ∗,1}

µ̂
j

k −2
√

log t
C1t

·
√

log t
C1t

.

Notice since µ̂
j

k −2
√

log t
C1t is readily lower bounded by a constant, we know with C1 being

a constant we can roughly achieve a
√

log t
t estimation error ε with O(1

t2) error rate.

(2) l = O(log t). Suppose l =C2 log t, from Condition (B.3) (and plug in ξ) we need to

have

C2(µ̂
j

k)
2
ε

2 = 4(δ ∗+ ε)2

⇔
√

C2µ̂
j

k ε = 2(δ ∗+ ε)

⇔ ε =
2δ ∗

√
C2µ̂

j
k −2

.

On the other hand, take ε = 2
µ̂

j
k ·
√

C2
, we have Condition (B.2) holds. Again we obtain a ε

145

satisfying both conditions as follows

ε = max{ 2

µ̂
j

k ·
√

C2
,

2δ ∗
√

C2µ̂
j

k −2
} ≤ 2max{δ ∗,1}

√
C2µ̂

j
k −2

.

Remember we have ignore the sign of µ̂
j

k so we put the | · | to upper bound it.

B.2 Proof of Theorem III.2

We first convert the estimation error in the distortion to that in the collected samples.

X j
k (t)

δ̃ = X j
k (t)

δ ·X j
k (t)

δ̃−δ .

First consider the case with ε := δ̃ −δ ≥ 0 we have

X j
k (t)

δ̃−δ ≤ 1+X j
k (t) · ε, (B.5)

∀ε ∈ [0,1]. The second inequality comes from the following fact

ε logX j
k (t)+(1− ε) log1≤ log(εX j

k (t)+1) ,

where the concavity of log function is used. The case with ε < 0 can be similarly proved.

The requirement of ε ≤ 1 will be clear when the regret bound is proved; the idea is when

number of samples is large enough, this criteria can be fairly easily achieved. Therefore

since the error with each sample is bounded by X i
k(t) ·X

j
k (t) · ε .

We follow the idea used in [5] where UCB1 is first introduced and analyzed, and bound

the number of times sub-optimal arms are played. Consider the total number of option

k ∈Ni
K has been used by user i up to time t and denote it by T i

k (t), and denote the following

biase term for user i on its index for option k when the option has been sampled ni
k times:

ci
ni

k
(t) =

√
2log t

ni
k
. We use ri

k(n
i
k) to denote the estimated sample mean (as defined in U-

146

FULL index with more details) with no distortion errors and the corresponding r̃i
k(n

i
k) to

denote the one with such error of option k for user i with ni
k local plays under our algorithm.

Then for any ζ ≥ 0 we have:

T i
k (t)≤ ζ +

t

∑
s=ζ+1

1{k ∈ ai(s),T i
k (s−1)≥ ζ}

≤ ζ +
t

∑
s=ζ+1

1{ min
0<ni

k∗<s
r̃i

k∗(n
i
k∗)+ ci

ni
k∗
(s−1)

≤ max
ζ<ni

k<s
r̃i

k(n
i
k)+ ci

ni
k
(s−1),∃k∗ ∈ Ni

K}

≤ ζ + ∑
k∗∈Ni

K

∞

∑
s=1

s−1

∑
ni

k∗=1

s−1

∑
ni

k=ζ

1{r̃i
k∗(n

i
k∗)+ ci

ni
k∗
(s)≤ r̃i

k(n
i
k)+ ci

ni
k
(s)} .

We will first show that at time t r̃i
k∗(n

i
k∗)+ ci

ni
k∗
(s)≤ r̃i

k(n
i
k)+ ci

ni
k
(s) implies that at least

one of the following must hold:

ri
k∗(n

i
k∗)≤ µ

i
k∗− ci

ni
k∗
(s), ri

k(n
i
k)≥ µ

i
k + ci

ni
k
(s),

µ
i
k∗ ≤ µ

i
k +2ci

ni
k
(s)+2X̄2

k ε . (B.6)

Otherwise if none of the three inequalities holds, we have

r̃i
k∗(n

i
∗)+ ci

ni
k∗
(s)≥ ri

k∗(n
i
∗)+ ci

ni
k∗
(s)− X̄2

k · ε > µ
i
k∗− X̄2

k · ε

> µ
i
k +2 · ci

ni
k
(s)+ X̄2

k · ε > ri
k(n

i
k)+ ci

ni
k
(s)+ X̄2

k · ε

> r̂i
k(n

i
k)+ ci

ni
k
(s) , (B.7)

which is a contradiction.

We now bound each of the three terms in (B.6). First via Chernoff-Holding bounds we

147

have

P{ri
k∗(n

i
k∗)≤ µ

i
k∗−
√

2

√
logs

∑ j∈U n j
k∗
} ≤ e−4logs = s−4 .

And similarly we have P{ri
k(n

i
k) ≥ µ i

k + ci
ni

k
(s)} ≤ s−4. For the last term, firstly we argue

at time t, w.h.p., ∀k ∈ Ni
K we have ni

k(t) = O(t). Suppose there exists a k ∈ Ni
K such that

ni
k(t) = o(t) we know there must exist a k̄ ∈ Ni

K , such that ni
k̄(t) = O(t). However the

probability of such event is bounded above by O(1
t2), as can be shown following classical

MAB results or can be adapted from this proof (that E[ni
k̄(t)] = O(log t)). Since we have

assumed Ni
K ∩N j

K 6= /0, select one k ∈ Ni
K ∩N j

K . Then we know min{ni
k(t),n

j
k(t)} = O(t).

Denote the number as C1t and based on results in Lemma 1 we have the estimation error

for δ trained via data samples collected for option k given by

εk(t) =
2δ i,∗

min j 6=i |µ̂ j
k |−2

√
log t
C1t

·
√

log t
C1t

.

Clearly εk(t) satisfies εk(t)≤ 1 when t is large enough.

Let’s set ζ = dL log te. Then we want a L such that

2
√

2 ·

√
log t

L · log t ·M
+2X̄2

k · εk(t)≤ ∆
i
k , (B.8)

which gives us L = 8
M(∆i

k−2X̄2
k ·εk(t))2 . With above L and ζ we have

µ
i
k∗−µ

i
k−2ci

ni
k
(s)−2X̄2

k ·
√

εk(t)≥ µ
i
k∗−µ

i
k−∆

i
k ≥ 0 .

Following similar steps used in proving UCB1 [5] we know the number of sampled

148

sub-optimal arm k is bounded by

E[Tk(t)]≤ d
8

M(∆i
k−2X̄2

k · εk(t))2 · log te

+K
∞

∑
s=1

s−1

∑
ni

k∗=1

s−1

∑
ni

k=ζ

(P{ri
k∗(n

i
k∗)≤ µ

i
k∗− ci

ni
k∗
(s)}

+P{ri
k(n

i
k)≥ µ

i
k + ci

ni
k
(s)})

≤ d 8
M(∆i

k−2X̄2
k · εk(t))2 · log te+K

∞

∑
s=1

s

∑
ni

k∗=1

s

∑
ni

k=1

2s−4

≤ d 8
M(∆i

k−2X̄2
k · εk(t))2 · log te+ const. ,

and by multiplying ∆i
k and adding up we have the regret of mistaking a sub-optimal for an

optimal arm is bounded by

Ri
CL-FULL(t)≤ ∑

k∈Ni
K

d
8δ

i,∗
k

M(∆i
k−2X̄2

k · εk(t))2 · log te+ const.

B.3 Proof of Theorem III.3

This part’s proof is similar to what we presented in last proof. Again at time t r̃i
k∗(n

i
k∗)+

ci
ni

k∗
(s)≤ r̃i

k(n
i
k)+ci

ni
k
(s) implies that at least one of the following must hold with probability

being at least 1−O(∑ j 6=i e−
(µi

k ·µ
j
k)

2ζ

4):

ri
k∗(n

i
k∗)≤ µ

i
k∗− ci

ni
k∗
(s), ri

k(n
i
k)≥ µ

i
k + ci

ni
k
(s),

µ
i
k∗ ≤ µ

i
k +2ci

ni
k
(s)+2 · 3

2
µ

i
k ·µ

j
k

√
ε . (B.9)

First we know by Chernoff bound

P(|∑
ζ

n=1 X i
k(n)X

j
k (n)

ζ
−µ

i
k ·µ

j
k | ≥

µ i
k ·µ

j
k

2
)≤ 2e−

(µi
k ·µ

j
k)

2ζ

4 (B.10)

149

And then otherwise if none of the three inequalities holds, we have

r̃i
k∗(n

i
∗)+ ci

ni
k∗
(s)≥ ri

k∗(n
i
∗)+ ci

ni
k∗
(s)− 3

2
µ

i
kµ

j
k ε > µ

i
k∗−

3
2

µ
i
kµ

j
k ε

> µ
i
k +2 · ci

ni
k
(s)+

3
2

µ
i
kµ

j
k ε > ri

k(n
i
k)+ ci

ni
k
(s)+

3
2

µ
i
kµ

j
k ε

> r̂i
k(n

i
k)+ ci

ni
k
(s) ,

which is a contradiction.

Again after setting ζ = dL log te what we are willing to show is

2
√

2 ·

√
log t

L · log t ·M
+3µ

i
kµ

j
k · εk(t)≤ ∆

i
k .

By the results of Lemma 1, since we have L log t samples,

εk(t) =
2δ

i,∗
k√

Lmin j 6=i |µ̂ j
k |−2

,

which gives us

2
√

2 ·

√
log t

L · log t ·M
+3µ

i
kµ

j
k ·

2δ
i,∗
k√

Lmin j 6=i |µ̂ j
k |−2

≤ ∆
i
k . (B.11)

Suppose
√

Lmin j 6=i |µ̂
j

k |
2 −2≥ 0, that is

L≥ 16

(min j 6=i |µ̂ j
k |)2

, (B.12)

which we will verify later with L. Then we have

2
√

2 ·

√
log t

L · log t ·M
+3µ

i
kµ

j
k ·

2δ
i,∗
k√

Lmin j 6=i |µ̂ j
k |−2

≤ 2
√

2 ·
√

1
L ·M

+3µ
i
kµ

j
k ·

4δ
i,∗
k√

Lmin j 6=i |µ̂ j
k |

.

150

Then set the following equality we have

2
√

2 ·

√
log t

L · log t ·M
+3µ

i
kµ

j
k ·

4δ
i,∗
k√

Lmin j 6=i µ̂
j

k

= ∆
i
k ,

we have

L =
(2
√

2
M +

12µ i
kµ

j
k ·δ

i,∗
k

min j 6=i |µ̂
j

k |
)2

(∆i
k)

2 .

Rest of the proofs is similar to the ones for Theorem 2. Now we verify the claim made in

Eqn.(B.12). Notice

L≥
(

12µ i
kµ

j
k ·δ

i∗
k

min j 6=i |µ̂
j

k |
)2

(∆i
k)

2 ≥ 16

(min j 6=i |µ̂ j
k |)2
·

9(µ i
kµ

j
k)

2(δ i,∗
k)2

(∆i
k)

2 . (B.13)

Since δ
i,∗
k ≥ 1 we know

L≥ 16

(min j 6=i |µ̂ j
k |)2
·

9(µ i
kµ

j
k)

2

(∆i
k)

2 ≥ 16

(min j 6=i |µ̂ j
k |)2

,

when 9(µ i
kµ

j
k)

2

(∆i
k)

2 ≥ 1, which is easy to satisfy.

Now consider εk(t) =
2δ

i,∗
k√

Lmin j 6=i |µ̂
j

k |−2
. Plug in L we have

εk(t)≤
4δ

i,∗
k

12(µ i
kµ

j
k)

2δ
i,∗
k

min j 6=i |µ̂
j

k |
min j 6=i |µ̂ j

k |
=

4

12(µ i
kµ

j
k)

2
< 1,

when µ i
kµ

j
k >

√
1
3 . Now for O(∑ j 6=i e−

(µi
k ·µ

j
k)

2ζ

4), in order to have a O(1
t2) rate, we need

L≥ 8
(µ i

k·min j 6=i µ
j

k)
2
. Combine all above we have the results.

151

B.4 Proof of Theorem III.4

Again denote ε := |δ̃ i, j
k − δ

i, j
k | as the estimation error for δ . Since for each converted

signal we have

|(X j
k (t))

δ̃
i, j
k −X i

k(t)| ≤ X̄2
k ε . (B.14)

Notice when X̄2
k ε ≤

∆
X i

k
2 there will be no error in the sample converting procedure. Again

via Lemma III.1 we know with L log t number of samples we have ε =
2δ

i,∗
k√

Lmin j 6=i |µ̂
j

k |−2
, and

after we set it to be equal to
∆

X i
k

2X̄2
k

we have

L = (
4X̄2

k δ
i,∗
k +2∆X i

k

∆X i
k

min j 6=i |µ̂ j
k |
)2 .

When the system is error free, following proofs for Theorem 3 we can similarly prove:

Ri
CL-FULL(t)≤ ∑

k∈Ni
K

d 8
M∆i

k
· log te+ const.

Then

Ri
CL-FULL(t)≤ ∑

k∈Ni
K

dmax{ 8
M∆i

k
,(

4X̄2
k δ

i,∗
k +2∆X i

k

∆X i
k

min j 6=i |µ̂ j
k |
)2

∆
i
k} · log te

+ const.

152

B.5 Proof for Theorem III.5

First by Hoeffding’s inequality when each user has L log t number of samples for option

k we have

P(|(r̂i
k(t)+∑

l 6=i
r̂l

k(t)δ̃
i,l
k)− (µ̂ i

k +∑
l 6=i

µ̂
l
kδ̃

i,l
k)| ≥ ε)≤ 2e

− ε2(ML log t)2

ML log tX̄2
k .

Set ε = X̄k√
ML

we have the RHS of above inequality reduces to 2
t2 . Similarly we have this ε

bound for the denominator.

Denote L
Φ0

k
and LA,LB as the matrix representation of operator defined on the quadratic

matrix equations as similarly defined in [40]. We further have the following results from

[40]:

|δ̃ i, j
k −δ

i, j
k | ≤∑

l
(|L−1

Φ0
k
LA(i, l)|+ |L−1

Φ0
k
LB(i, l)|)ε . (B.15)

When L−1
Φ0

k
LA and L−1

Φ0
k
LB are well conditioned such that each row sum is bounded up by a

constant,

∑
l

L−1
Φ0

k
|LA(i, l)|+∑

l
L−1

Φ0
k
|LB(i, l)| ≤C3, (B.16)

we have

|δ̃ i, j
k −δ

i, j
k | ≤C3 · ε . (B.17)

The rest of the proof is similar with the one for Theorem III.3. This result also implies

when ∑l |L−1
Φ0

k
LA(B)(i, l)| is unbounded in M, the perturbation of QME solution cannot be

bounded as desired, under which case we may not expect the M factor (but with a sub-linear

term in M being possible).

153

P(
t

∑
s=1

1{k ∈ ai(s)} ≥
t

∑
s=1

1{k∗ ∈ ai(s)})≤ P(
t

∑
s=1

1{k∗ ∈ ai(s)}< O(t))︸ ︷︷ ︸
Term 1

·P(
t

∑
s=1

1{k ∈ ai(s)} ≥
t

∑
s=1

1{k∗ ∈ ai(s)}|
t

∑
s=1

1{k∗ ∈ ai(s)}< O(t))

+P(
t

∑
s=1

1{k∗ ∈ ai(s)} ≥ O(t))

·P(
t

∑
s=1

1{k ∈ ai(s)} ≥
t

∑
s=1

1{k∗ ∈ ai(s)}|
t

∑
s=1

1{k∗ ∈ ai(s)} ≥ O(t))︸ ︷︷ ︸
Term 2

. (B.18)

B.6 Proof of Lemma B.6

The main idea is to bound the probability that the number of times sub-optimal options

are selected being higher than that of the optimal options by time t. Consider k ∈ Ni
K and

k∗ ∈ Ni
K we have Eqn.(B.18).

Now bound Term 1 and Term 2 separately. For Term 2,

P(
t

∑
s=1

1{k ∈ ai(s)} ≥
t

∑
s=1

1{k∗ ∈ ai(s)}|
t

∑
s=1

1{k∗ ∈ ai(s)} ≥ O(t))

≤ P(
t

∑
s=1

1{k ∈ ai(s)} ≥ O(t))≤ C
t2 .

Consider the following fact that when ∑
t
s=1 1{k ∈ ai(s)} ≥O(t) happens, there must exists

some time t∗ > O(tc),0 < c < 1 such that an error in mis-selection is made, and the prob-

ability of such an event, as shown in the proof of Theorem 2,3,4, can be bounded up by C
t2

for certain constant C. For Term 1,

P(
t

∑
s=1

1{k∗ ∈ ai(s)}< O(t))

≤ P(
t

∑
s=1

1{k ∈ ai(s)} ≥ O(t))≤ C
t2 .

154

The reason for the first inequality above is when an optimal option has been used less than

O(t) times, there must exist a sub-optimal option k that has been used O(t) times, because

the total number of selections K · t up to time t is fixed.

Proof of Theorem III.7

Denote for user i,

ĉi
ni

k
(s) =

√
2logs

ni
k

+α(s) · β̃ i
k(s)

√
logs
ni

k
,∀k ∈Ω,s,

which is a variant over ci
ni

k
(s) as introduced in Auer’s work [5]. Again following the logic

in the proof of full information case to bound the regret we need to bound the number of

times the sub-optimal arms are played. Suppose k ∈ NK we again have (similar as in the

proof of Theorem III.2)

T i
k (t)≤ ζ +

∞

∑
s=1

s−1

∑
ni

k∗=1

s−1

∑
ni

k=ζ

1{r̃i
k∗(n

i
k∗)+ ĉi

ni
k∗
(s)≤ r̃i

k(n
i
k)+ ĉi

ni
k
(s)} .

Again we have that r̃i
k∗(n

i
k∗) + ĉi

ni
k∗
(s) ≤ r̃i

k(n
i
k) + ĉi

ni
k
(s) implies that at least one of the

following must hold,

ri
k∗(n

i
k∗)≤ µ

i
k∗− ci

ni
k∗
(s), ri

k(n
i
k)≥ µ

i
k + ci

ni
k
(s),

µ
i
k∗ ≤ µ

i
k +2ci

ni
k
(s)−α(t) · (β̃ i

k∗(s)− β̃
i
k(s)) ·

√
logs
ni

k
. (B.19)

We bound each term as follows.

P{ri
k∗(n

i
k∗)≤ µ

i
k∗− ci

ni
k∗
(s)} ≤ e−2

√
2

2
logs = s−4 .

And similarly P{ri
k(n

i
k)≥ µ i

k+ci
ni

k
(s)}≤ s−4. Consider bounds on β̃ i

k∗(s) and β̃ i
k(s). Before

we get into the following proof we will first show w.h.p., NK = BK, that is the sample

155

frequency based estimation on the optimal set is the same as the ground-truth. This can be

similarly done as in Lemma B.6.

In particular following the proof from Theorem 2,3,4 (full information) we can prove

P(ni
k(t)>

log t
(
√

2−α(t))2
)≤ 2

t2 .

(from which we can see the rationale behind the requirement α(t)<
√

2)

Now consider the minimum over the whole crowd.

P(minni
k(t)>

log t
(
√

2−α(t))2
)

= P(∀i,ni
k(t)>

log t
(
√

2−α(t))2
)

= ∏
i

P(ni
k(t)>

log t
(
√

2−α(t))2
)

≤ (
1
t2)

Mi =
1

t2Mi
.

Clearly with crowd learning we have a much faster convergence rate. The independence

of second equality is due to the relaxation of condition such that we consider the simpliest

case when no recommendation information is taken account for. Or if we keep the same

error rate 1
t2 , we could have

P(minni
k(t)>

log t
Mi(
√

2−α(t))2
)≤ 1

t2 ,

where log t
Mi(
√

2−α(t))2 is a much smaller quantity when Mi is large. Then we know that w.h.p.,

for k ∈ NK ,

β̃
i
k(t)≤

log t
Mi(
√

2−α(t))2t
.

156

and for k∗ ∈ NK we know

β̃
i
k∗(t) =

1−∑k∈NK
β̃ i

k(t)
K

≥
1−∑k∈NK

log t
Mi(
√

2−α(t))2t

K

=
1
K
− N−K

K
log t

Mi(
√

2−α(t))2t
.

With this being ready now consider the bound invoking the use of β̃ :

4
(√

2−α(t)(β̃ i
k∗(t)− β̃

i
k(t))

)2

≤ 4
(√

2−α(t)(
1
K
− N−K

K
log t

Mi(
√

2−α(t))2t
− log t

Mi(
√

2−α(t))2t
)

)2

= 4
(√

2−α(t)(
1
K
− N

K
log t

Mi(
√

2−α(t))2t
)

)2

.

And we would like to minimize above term, which is equivalent to maximizing the follow-

ing one:

maxα α(t)(
1
K
− N

K
log t

Mi(
√

2−α(t))2t
)

s.t. 0≤ α(t)<
√

2 .

Notice the tradeoff obviously comes from the two terms α(t) and N
K

log t
Mi(
√

2−α(t))2t
. Solving

above maximization problem directly is hard. We however show a viable solution: let

α(t) =
√

2(1− γ)−
√

N · ε ,

with 0 < γ ≤ 1 being an arbitrarily small constant. Clearly we have 0≤ α(t)<
√

2, ∀t.

Let ζ = d
4

(
√

2−
√

2(1−γ)−
√

N·ε(t)
K ·(1− 1

Mi
)

)2

(∆i
k)

2 logse, we have the third term bounded as fol-

157

lows.

µ
i
k∗−µ

i
k− ĉi

ni
k∗
(s)− ĉi

ni
k
(s)

= µ
i
k∗−µ

i
k−2ci

ni
k
(s)−α · (β̃ i

k∗(s)− β̃
i
k(s)) ·

√
logs
ni

k

≥ µ
i
k∗−µ

i
k−∆

i
k ≥ 0 .

The rest of the proof follows that used in proving Theorem 2, with the key step being to

bound the number of times sub-optimal arms sampled.

B.7 Proof of Theorem III.8

This proof is also similar to the one for Theorem III.7. There are two key differences.

First we could again show w.h.p., NK = BK , that is the sample frequency based estimation

on the optimal set is the same as the ground-truth. This can be similarly done as in Lemma

B.6. Notice for each user i, when j’s top K option set does not align with user i, the sample

frequency estimation will not be skewed by much due to the discount factors. So the claim

holds in general.

The only subtle difference left is we are not screening out users that are completely

158

useless. Notice

P(min
j

n j
k(t)>

log t
(
√

2−α(t))2
)

= P(∀ j,n j
k(t)>

log t
(
√

2−α(t))2
)

= ∏
j

P(n j
k(t)>

log t
(
√

2−α(t))2
)

= ∏
j∈U i

P(n j
k(t)>

log t
(
√

2−α(t))2
) · ∏

j∈U i
k \U i

P(n j
k(t)>

log t
(
√

2−α(t))2
)

· ∏
j∈ else

P(n j
k(t)>

log t
(
√

2−α(t))2
)

≤ (
1
t2)

Mi
· ∏

j∈Uk\U i

P(n j
k(t)>

log t
(
√

2−α(t))2
) ·1

≤ (
1
t2)

Mi
k .

The rest of the proof follows the one for Theorem III.7, with the only difference being

replacing Mi with Mi
k.

B.8 Performance analysis of (W-MF)

In order to bound the performance we need to prove the following aspects. (1) First

we want to bound the error of a mis-association, that is we would like to associate users

that are indeed coming from the same cluster. (2) Then though the association is correct,

we do not want an imbalanced association to happen, i.e, consider two waypoints wi and

w j that come from same cluster Ck. We would like to see balanced associations for each

one of them instead of seeing majority of others from Ck associates with any one of them

(balance). (1) is quite clearly needed; to see the necessity of (2), consider the following

facts [37]: in order to achieve (sub-) optimality for MF, for a sub-sampled rating matrix M

159

the following condition must be satisfied:

(|M |−1)τ ≥c1 · τ · rank(M) ·
√
|M |

τ

·max{µ0 logτ,µ2rank(M)

√
|M |

τ
c2} ,

where c1,c2,µ0,µ are all positive constants. It is straight-forward to check the algebra that

above condition does not hold when |M | is small. In all, an imbalanced association or

partition may result in unexpected performance.

Denote the following for each cluster k,

sk = max
i, j∈Ck

Si, j, sk = min
i, j∈Ck

Si, j ,

i.e., sk,sk serve as upper and lower bound for in-cluster similarity. Similarly we have

sk,l = max
i∈Ck, j∈Cl

Si, j, sk,l = min
i∈Ck, j∈Cl

Si, j ,

i.e., sk,l,sk,l bound the inter-cluster similarities. We consider the case with tight clustering

as has been frequently adopted in literatures of clustering, e.g., [19]. So networks that are

from the same cluster are more similar with each other.

Assumption B.1 (Tight Clustering).

si > si, j,∀i & j 6= i. (B.20)

(1) Mis-association

We bound the probability of a mis-association. We first assume the raw time series

data r∗i (t) can be modeled as an ergodic Markov chain with transition probability matrix

Pi on the state space Ri, for otherwise the variation in the time series itself over time can

160

be arbitrary.1 Suppose we adopt the cosine similarity measure and we have the following

results:

Lemma B.2. For any user j ∈ Ci we bound the probability of mis-association as follows

P(j /∈W j)≤ O(logN · e−Dτ) , (B.21)

where D > 0 is a positive constant.

(2) Balanced association

Consider another user j ∈ Ck while j being not selected as Waypoint node. Then

j associates wi ∈Wk if : wi = argmaxl∈Wk
S j,l . (B.22)

Lemma B.3. The waypoints based association process is balanced w.h.p.

With above results, now suppose we have sampled C logN waypoints. Denote Ck as the

number of waypoints that are from cluster k. Then we have

E[Ck] = E[
C logN

∑
i=1

1{i ∈ Ck}] =
C logN

∑
i=1

E[1{i ∈ Ck}] =
C logN

∑
i=1

ρk = ρkC logN . (B.23)

Then we have by Chernoff bound

P(|Ck−E[Ck]| ≥ ε ·ρkC logN)≥ 1− e−
ε2ρiC logN

3 = N−
ε2ρiC

3 .

Denote these clusters with waypoint being from cluster k as the following Ck,1, ...,Ck,Ck .

We now want to bound the number of users in each Ck, j that are not from cluster k. Based

on the balanced association rule we have the following results (by symmetry we take Ck,1

1This is not an overly restrictive assumption as the data generally fits well to the Markov model.

161

for example)

E[|Ck,1|] = E[
nk

∑
i=1

1{i ∈ Ck,1}]

= E[E[
nk

∑
i=1

1{i ∈ Ck,1}|nk]]

= E[
nk

∑
i=1

E[1{i ∈ Ck,1}|nk]]

= E[nk ·
1

Ck
] =

ρiN
|Ck|

. (B.24)

Then w.h.p. we know the number of users within each cluster can be bounded at the order of

O(N
logN) which is sub-linear. Denote its order as O(Nz), where 0 < z < 1 is a constant. Also

for each of the sub-cluster above we have the probability of mis-association is bounded as

follows

P(j mis-associates with k)≤ P(S̃ j,k ≥maxS j,W j)

= ∏
j′∈W j

P(S̃ j,k ≥ S̃ j, j′) = O((logN · e−ετ)Nz
) , (B.25)

Then the expected number of mis-associated user becomes

E[#mis-association] = ∑
j

P(j mis-associates with k)

= O(N(logN · e−ετ)Nz
) .

following which the rank of each sub-matrix Mk can be bounded by the intrinsic rank of

subspace k plus the number of mis-associated user, which is a exponentially diminishing

term in N.

162

B.9 Proof of Lemma B.2

We take cosine similarity for example. The targeted similarity score is equivalent with

the following:

E[Si, j] =
E[XiX j]√

E[X2
i] ·
√

E[X2
j]
.

Notice in the above, when Xi = X j,a.s. we have E[Si, j] = 1; while for the other case when

Xi and X j being orthogonal to each other, we have the expected similarity score pinning

down to 0.

Denote the following gap: δ := mini, j 6=i |si− si, j|> 0 . First

P(j is mis-associated)

= P(∃k 6= i, j is mis-associated with Ck)

(e1)
≤

∑
k 6=i

P(j is mis-associated with Ck)

(e2)
≤

∑
k 6=i

P(∃k̂ ∈ Ck, î ∈ Ci, s.t. S̃ j,k̂ ≥ S̃ j,î)

(e3)
≤

∑
k 6=i

∑
k̂∈Ck

P(S̃ j,k̂ ≥
δ

2
+S j,k̂, S̃ j,î ≤−

δ

2
+S j,î)

(e4)
≤

∑
k 6=i

∑
k̂∈Ck

P(S̃ j,k̂ ≥
δ

2
+S j,k̂)+P(S̃ j,î ≤−

δ

2
+S j,î) . (B.26)

(e1) and (e4) are due to union bound. (e2) is due to the equality and tie broker. For (e3)

considering the following fact : if neither of the two argument is true we have

S̃ j,î >−
δ

2
+S j,î ≥−

δ

2
+ si ≥−

δ

2
+δ + si,k ≥

δ

2
+S j,k̂ > S̃ j,k̂ ,

which is a contradiction. Now bounding each term in the summation of Eqn.(B.26). By

163

Chernoff bound with n samples

P(|X̃2
i −E[X2

i]| ≥ ε)≤ 2e−2ε2n,

P(|X̃2
j −E[X2

j]| ≥ ε)≤ 2e−2ε2n,

P(|X̃iX j−E[XiX j]| ≥ ε)≤ 2e−2ε2n .

Denote the following shorthand terms

µ
2
i = E[X2

i],µ
2
j = E[X2

j],µi, j = E[XiX j] .

Denote the estimation terms as ε1,ε2,ε3, then w.h.p.

|ε1| ≤ ε, |ε2| ≤ ε, |ε3| ≤ ε . (B.27)

Also we have

|
E[X̃iX j]√

E[X̃2
i] ·
√

E[X̃2
j]
−

E[XiX j]√
E[X2

i]
√

E[X2
j]
|

≤ |
(µi, j + ε) ·

√
µ2

i

√
µ2

j −µi, j ·
√

µ2
i − ε

√
µ2

j − ε√
µ2

i

√
µ2

j

√
µ2

i − ε

√
µ2

j − ε

|

≤ ε√
µ2

i − ε

√
µ2

j − ε

+
µi, j√

µ2
i

√
µ2

j

√
µ2

i − ε

√
µ2

j − ε

(B.28)

· |
√

µ2
i

√
µ2

j −
√

µ2
i + ε1

√
µ2

j + ε2| . (B.29)

164

Not hard to notice

|
√

µ2
i

√
µ2

j −
√

µ2
i + ε1

√
µ2

j + ε2|

≤max{|
√

µ2
i

√
µ2

j −
√

µ2
i + ε

√
µ2

j + ε|,

|
√

µ2
i

√
µ2

j −
√

µ2
i − ε

√
µ2

j − ε|}

Not hard to validate
√

µ2
i + x

√
µ2

j + x is convex for x ≥ −min{µ2
i ,µ

2
j }. Denote it as

U(x). Then we have

√
µ2

i µ2
j −
√
(µ2

i + ε)(µ2
j + ε)≥−∂U(x)

∂x
|x=ε · ε =

µ2
i +µ2

j√
µ2

i

√
µ2

j

· ε ,

√
(µ2

i − ε)(µ2
j − ε)−

√
µ2

i µ2
j ≥−

∂U(x)
∂x
|x=0 · ε =

µ2
i +µ2

j

2
√

µ2
i

√
µ2

j

· ε .

Thus

|
√

µ2
i

√
µ2

j −
√

µ2
i + ε1

√
µ2

j + ε2| ≤
µ2

i +µ2
j√

µ2
i

√
µ2

j

· ε .

Choose ε such that

ε√
µ2

i − ε

√
µ2

j − ε

+
µi, j(µ

2
i +µ2

j)ε

µ2
i µ2

j

√
µ2

i − ε

√
µ2

j − ε

<
δ

2
,

we have

P(S̃ j,k̂ ≥
δ

2
+S j,k̂)≤ 2e−2ε2τ .

165

Also notice

∑
k 6=i

∑
k̂∈Ck

1 = O(logN) ,

and together we proved the results.

Proof of Lemma B.3

We assume within each cluster of users Ck, the similarity information between any two

pair of users Si, js are i.i.d. on the range [sk,sk]. Then we observe

P(wi = argmaxl∈Wk
S j,wi)

= P(S j,wi = max
wl∈Wk

{S j,wl})

=
∫

x
f (x) ·Fnk−1(x)dx =

Fnk(x)|10
nk

=
1
nk

. (B.30)

f (x),F(x) are the pdf and cdf for the similarity score between j and others in Ck. The

second equality is due to the i.i.d. assumption. With the expectation being bounded, we

could very well bound the probability that a imbalanced association happens.

P(|
∑ j∈Wk

1{ j⇒ wi}
nk

−E[
∑ j∈Wk

1{ j⇒ wi}
nk

]| ≥ ε)

= P(|
∑ j∈Wk

1{ j⇒ wi}
nk

− 1
nk
| ≥ ε)

≤ 2e−2ε2·nk , (B.31)

via Chernoff bound.

166

APPENDIX C

Proofs for Chapter IV

C.1 Example of S

We show Si, j = 1−maxx∈X ,y∈Y |Qi
x,y−Q j

x,y|2 while setting β1 := 2∑y∈Y y2 and β2 :=

2∑x∈X π i
x ·∑y∈Y Qi

x,y · (∑ŷ∈Y Qi
x,ŷŷ− y)2 is a feasible similarity measure according to our

definition. For squared loss the optimal predictor is given by the conditional expectation;

we thus have the following:

ri(f j) = ∑
x∈X

π
i
x · ∑

y∈Y
Qi

x,y · (∑
ŷ∈Y

Q j
x,ŷŷ− y)2

= ∑
x∈X

π
i
x · ∑

y∈Y
Qi

x,y · (∑
ŷ∈Y

Q j
x,ŷŷ− ∑

ŷ∈Y
Qi

x,ŷŷ+ ∑
ŷ∈Y

Qi
x,ŷŷ− y)2

≤ 2 ∑
x∈X

π
i
x · ∑

y∈Y
Qi

x,y · (∑
ŷ∈Y

Q j
x,ŷŷ− ∑

ŷ∈Y
Qi

x,ŷŷ)2

+2 ∑
x∈X

π
i
x · ∑

y∈Y
Qi

x,y · (∑
ŷ∈Y

Qi
x,ŷŷ− y)2

≤ 2 ∑
y∈Y

y2 · (1−Si, j)+β2 .

167

C.2 To complete proof of Theorem IV.1

As we already bind r1(·) with r̄IID
k(t)(·), we only need to bound r̄IID

k(t)(·) and consider the

case with IID data and the expected prediction error at time t when combine with data from

sources k(t) for training. Denote R|k(t)|t(F) as the Rademacher complexity of space F

with |k(t)|t samples and f ∗ the optimal classifier trained on the set of data. Since we only

have finite number of samples we first have the following lemma:

Lemma C.1. With probability being at least 1− 2
(|k(t)|t)2 ,

r̄IID
k(t)(f ∗)≤ min

f∈F
r̄IID

k(t)(f)+8y∗R|k(t)|t(F)+8(y∗)2

√
log(|k(t)|t)
|k(t)|t

.

The proof is standard following the VC theory and it can be derived from the re-

sults reported in [14]. Further we know from [14], for squared loss function we have

R|k(t)|t(F)≤ 2
√

2d
|k(t)|t · log(2e|k(t)|t

d). Therefore

r̄IID
k(t)(f ∗)≤ min

f∈F
r̄IID

k(t)(f)+8(y∗)2

√
log(|k(t)|t)
|k(t)|t

+16y∗ ·

√
2d
|k(t)|t

· log(
2e|k(t)|t

d
)

≈ min
f∈F

rIID
k(t)(f)+8y∗(2 ·

√
2d + y∗) ·

√
log(|k(t)|t)
|k(t)|t

,

when t is sufficiently large (to thus ignore the log2e in term
√

2d
|k(t)|t · log(2e|k(t)|t

d)). Then

r̄IID
1 (f ∗)≤ 2 ·min

f∈F
r̄IID

k(t)(f)+2β2 +
2β1

|k(t)|
· ∑

i∈k(t)
(1− si)

+8y∗(2 ·
√

2d + y∗) ·

√
log(|k(t)|t)
|k(t)|t

.

The last two terms are clear. In particular the 3rd term is a constant brought in by the dis-

parities between data sources while the 4th term is the bias with finite number of samplings.

168

Consider the 1st term we have,

min
f∈F

r̄IID
k(t)(f)≤ min

f∈F

∑i∈k(t)α · [rIID
i (f1)+ rIID

1 (f)]
|k(t)|

≤ 2β1

|k(t)|
· ∑

i∈k(t)
(1− si)+2β2 + ·min

f∈F
rIID

1 (f) .

Plug back the results we establish the theorem.

C.3 Proof of Proposition IV.3

Suppose i∈ k∗(t) and there exists a n< t such that i /∈ k∗(n). First consider the following

fact: let 0 < δ < 1 we have

|
√

logδ t
δ t
−
√

log t
t
|= 1
√

log t +
√

log t+δ

δ

· |(1−1/δ) log t−δ |√
t

.

Easy to see the first term is strictly decreasing. For the second term since
√

t is of a higher

order compared with log t we expect this term to be decreasing when t passes certain thresh-

old. Since i ∈ k∗(t) and i /∈ k∗(n) and the fact we proved earlier that the optimal selection

is always a continuous group we know |k∗(n)| < |k∗(t)| and denote δ := |k∗(n)|/|k∗(t)|.

Therefore reducing k∗(t) to k∗(n) will return a better strategy for time t : compared with

time n, the loss from the term
√

log t
t to

√
logδ ·t

δ ·t is smaller, while the gain in average similar-

ity is the same. Similar arguments hold for the term (λ i
2)

t , which is also strictly decreasing

with t. Proved.

C.4 Proof of Theorem IV.5

In order to prove the results, we analyze the error of mis-calculating k∗(t).

169

C.4.1 Error in ordering data sources

We have two steps towards calculating k∗(t) in our algorithm we first need to order data

sources {1,2, ...,K} in their similarity to user 1 to invoke the linear search. For simplicity

of following analyses we assume s1 > s2 > ... > sK, and denote by ∆min = mini, j |si− s j| .

The error of mis-ordering at time t is bounded by the following event

P(mis-ordering at time t)≤ P(ωm(t)) ,

where

ωm(t) = {∃i : |s̃i− si| ≥
∆min

2
} .

this is easy to verify : otherwise the inaccurate measurements are not enough to leverage a

sub-optimal option.

Then

P(ωm(t))≤
K

∑
i=1

P(|s̃i− si| ≥
∆min

2
)

= ∑
i≤K

P(max
x,y
||Q̃i

x,y− Q̃1
x,y|2−|Qi

x,y−Q1
x,y|2| ≥

∆min

2
)

≤ ∑
i≤K

∑
x

∑
y

P(|Q̃i
x,y−Qi

x,y|+ |Q̃1
x,y−Q1

x,y| ≥
∆min

4
) ,

where the first inequality is due to union bound and the last inequality comes from the

following fact

∣∣∣∣|Q̃i
x,y− Q̃1

x,y|2−|Qi
x,y−Q1

x,y|2
∣∣∣∣

=

∣∣∣∣|Q̃i
x,y− Q̃1

x,y|+ |Qi
x,y−Q1

x,y|
∣∣∣∣ · ∣∣∣∣|Q̃i

x,y− Q̃1
x,y|− |Qi

x,y−Q1
x,y|
∣∣∣∣

≤ 2
∣∣∣∣|Q̃i

x,y− Q̃1
x,y|− |Qi

x,y−Q1
x,y|
∣∣∣∣ .

170

Consider
∣∣∣∣|Q̃i

x,y− Q̃1
x,y|− |Qi

x,y−Q1
x,y|
∣∣∣∣.

|Q̃i
x,y− Q̃1

x,y|− |Qi
x,y−Q1

x,y|

= |Q̃i
x,y−Qi

x,y +Qi
x,y− Q̃1

x,y|− |Qi
x,y−Q1

x,y|

≤ |Q̃i
x,y−Qi

x,y|+ |Qi
x,y− Q̃1

x,y|− |Qi
x,y−Q1

x,y|

≤ |Q̃i
x,y−Qi

x,y|+ |Qi
x,y− Q̃1

x,y−Qi
x,y +Q1

x,y|

= |Q̃i
x,y−Qi

x,y|+ |Q1
x,y− Q̃1

x,y| (C.1)

and moreover we have

|Q̃i
x,y− Q̃1

x,y|− |Qi
x,y−Q1

x,y|

= |Q̃i
x,y− Q̃1

x,y|− |Qi
x,y− Q̃1

x,y + Q̃1
x,y−Q1

x,y|

≥ |Q̃i
x,y− Q̃1

x,y|− |Qi
x,y− Q̃1

x,y|− |Q̃1
x,y−Q1

x,y|

≥ −|Q̃i
x,y− Q̃1

x,y−Qi
x,y + Q̃1

x,y|− |Q̃1
x,y−Q1

x,y|

=−|Q̃i
x,y−Qi

x,y|− |Q1
x,y− Q̃1

x,y| (C.2)

From above two inequality we know

∣∣∣∣|Q̃i
x,y− Q̃1

x,y|− |Qi
x,y−Q1

x,y|
∣∣∣∣≤ |Q̃i

x,y−Qi
x,y|+ |Q̃1

x,y−Q1
x,y| (C.3)

Again via union bound we have

P(|Q̃i
x,y−Qi

x,y|+ |Q̃1
x,y−Q1

x,y| ≥
∆min

4
)

≤ P(|Q̃i
x,y−Qi

x,y| ≥
∆min

8
)+P(|Q̃1

x,y−Q1
x,y| ≥

∆min

8
) . (C.4)

Next we prove for each i ∈ D , ni,x(t) = O(t) w.h.p. We invoke the following result,

Theorem 3.3 from [46].

171

Lemma C.2. For finite-state, irreducible Markov chain Xi(t), t = 1,2, ... with state space

X i and transition probability Pi, initial distribution qi and stationary distribution π i, de-

note Ni
q = ||(

qx
πx
)x||2. Let P̂i = Pi,T ·Pi be the multiplicative symmetrization of Pi where Pi,T

is the adjoint of Pi on l2(π). Let κ = 1−λ2 where λ2 is the second largest eigenvalue of the

matrix P̂i. ε is often referred to as the eigenvalue gap of P̂i. Let f : X i→ R be such that

∑y∈X i π i
y · f (y) = 0, || f ||∞ ≤ 1 and 0 < || f ||22 ≤ 1. For any positive integer n and 0 < γ ≤ 1

we have

P(
∑

n
t=1 f (Xi(t))

n
≥ γ)≤ Nq · e−

nγ2κ

28 . (C.5)

Let f (Xi(t)) = −1{Xi(t) = x}+π i
x. Not hard to verify such f satisfies all conditions

required in Lemma C.2. Then we have

P(ni,x(t)≤ (π i
x− γ)t)≤ Nq · e−

tγ2κ

28 , (C.6)

which holds specifically for a constant γ < π i
x.

With above (by Chernoff-Hoeffding bound),

P(|Q̃i
x,y−Qi

x,y|> 2
∆min

8
)≤ 2e−2

∆2
min
16 ·O(t) .

Thus

P(ωm(t))≤ O(e−Ct) , (C.7)

for a certain constant C.

172

C.4.2 Error in finding the best crowd

Denote the estimated error bound as Ũ (t):

Ũk(t)(t) := Uk(t)(t;{s̃i}i∈k(t)) ,

Now consider we are with correct ordering of all sources. We then further consider the

following two events at step t:

ω1(t) = {∀k, |Ũ[k](t)−U[k](t)| ≤ O(

√
log t

t
)},

ω2(t) = {∃k, |Ũ[k](t)−U[k](t)|> O(

√
log t

t
)}.

ω1(t) is the event that estimation for U[k](t) is bounded by O(
√

log t
t) from its true value for

all k; while ω2(t) is its complement set, i.e., we consider two cases regrading the estimation

accuracy of the upper bound of prediction performance. Clearly ω1(t)∩ω2(t) = /0 and

ω1(t)∪ω2(t) = Ω. Then we have the following

r1(fk̃∗(t)(t)) =r1(fk̃∗(t)(t)|ω1(t))P(ω1(t))+ r1(fk̃∗(t)(t)|ω2(t))P(ω2(t)) .

We first bound P(ω2(t)). First via union bound we have

P({∃k,|Ũ[k](t)−U[k](t)|> O(

√
log t

t
)})

≤
K

∑
k=1

P(|Ũ[k](t)−U[k](t)|> O(

√
log t

t
)) .

Denote the mean of the top k similarities as s̄[k] := ∑
k
i=1 si
k and ˜̄s[k] as its estimated version.

173

Consider each term in the summation we have by Chernoff-Hoeffding inequality,

P(|Ũ[k](t)−U[k](t)|> O(

√
log t

t
))

= P(|˜̄s[k]− s̄[k]|> O(

√
log t

t
))

≤ ∑
i∈D

P(|s̃i− si|> O(

√
log t

t
))

≤ ∑
i∈D

(
P(|Q̃i

x,y−Qi
x,y| ≥ O(

√
log t

t
))+P(|Q̃1

x,y−Q1
x,y| ≥ O(

√
log t

t
))

)
,

as we have similarly argued in bounding ordering error. For each of the term above we

have (again by Chernoff bound),

P(|Q̃i
x,y−Qi

x,y|> O(

√
log t

t
))≤ 2e−2O(log t

t)·ni,x(t) = O(
1
t2) ,

with appropriately chosen constants.

When ω1(t) happens we know that the regret from choosing the incorrect maximum

U (t) is bounded at most by |Ũk̃∗(t)−Uk∗(t)| ≤ O(
√

log t
t) since when a sub-optimal set is

chosen, its regret is bounded away from its true value by at most O(
√

log t
t) and so is the

optimal set. We thus proved the theorem: to summarize with probability being at least

1−O(e−Ct)(mis-ordering)−O(
1
t2)(ω2(t)) = 1−O(

1
t2)

we have

r1(fk̃∗(t)(t)) = r1(fk̃∗(t)(t)|ω1(t),correct ordering)≤Uk∗(t)+O(

√
log t

t
) .

174

C.5 Proof of Theorem IV.6

Most of this Section’s proof is similarly to the ones in proving Theorem IV.5, but with

limited number of sampling.

C.5.1 Bounding E[∑t
n=1 1{O(n) 6= /0}]

We start with bound the exploration errors E[Re(t)]. In order to do so, we first establish

the bounded number of exploration phases. Specifically we prove E[∑t
n=1 1{O(n) 6= /0}]≤

O(tz) w.h.p.. First notice at time t we have for each state i we have most D(t) number

of samples from exploration. Denote τi,x(n) as the length of regeneration cycle for n-th

samples of each state x of user i. Then we have

t

∑
n=1

1{O(n) 6= /0} ≤ ∑
i∈D

∑
x∈X

D(t)

∑
n=1

τi,x(n) . (C.8)

Consider each sum ∑
D(t)
n=1 τi,x(n). Notice {τi,x(n)}n forms an IID process due to the renewal

properties of Markovian processes. And it is known E[τi,x(n)] = 1
π i

x
. Then we have for any

0 < γ < 1
π i

x
we have by Chernoff-Hoeffding inequality that

P(
∑

D(t)
n=1 τi,x(n)

D(t)
− 1

π i
x
<−γ)≤ e−2γ2D(t) , (C.9)

which finishes the proof.

C.5.2 Bounding exploration errors E[Re(t)]/t

Notice with training with data k∗(t), compared to using only user 1’s own data, the

benefits come from a faster converging term
√

log t
t , then

|U[1](t)−Uk∗(t)(t)| ≤ O(

√
log t

t
) . (C.10)

175

We then have

E[Re(t)]≤
t

∑
n=1

1{O(n) 6= /0}O(

√
logn

n
) . (C.11)

Since the number of explorations have been bounded at the order of O(tz) and combine this

with the fact that
√

log t
t is a decay function in t in general we have

E[Re(t)]≤
O(tz)

∑
n=1

O(

√
logn

n
)

≤ O(
√

log tz ·
O(tz)

∑
n=1

O(

√
1
n
)

≤ O(
√

z log t) ·O((tz)1−1/2)

= O(
√

z log t · tz/2) ,

which gives us

E[Re(t)]
t

≤ O(
√

z log t · tz/2−1) . (C.12)

C.5.3 Bounding exploitation error

Now consider the exploitation errors. Again we first separate our discussions according

two events.

ω1(t) = {∀k, |Ũ[k](t)−U[k](t)| ≤ O(

√
log t

tz)},

ω2(t) = {∃k, |Ũ[k](t)−U[k](t)|> O(

√
log t

tz)} ,

and

r1(fk1(t)(t)) =r1(fk1(t)(t)|ω1(t))P(ω1(t))+ r1(fk1(t)(t)|ω2(t))P(ω2(t)) .

176

Similarly we could prove that with O(log t · tz) number of samples

P(ω2(t))≤ ∑
1≤k≤K

P(|Ũ[k](t)−U[k](t)|> O(
1

tz/2))

≤ ∑
i∈[k]

∑
x∈X ,y∈Y s

P(|Q̃i
x,y−Qi

x,y|> O(

√
log t

tz))

≤ 2e−2O(log t
tz)·D(t) = O(

1
t2) ,

with appropriately selected constants.

Now we can focus on r1(fk1(t)(t)|ω1(t)). When ω1(t) happens we know that the regret

from choosing the incorrect set of data sources is bounded at most by |Ũk(t)− Ũk∗(t)| ≤

O(
√

log t
tz) since when a sub-optimal set is chosen, its regret is bounded away from its true

value by at most O(
√

log t
tz) and so is the optimal set, i.e.,

|Uk1(t)(t)−Uk∗(t)(t)| ≤ O(

√
log t

tz) .

This observations leads to:

r1(fk1(t)(t)|ω1(t))≤Uk∗(t)(t)+O(

√
log t

tz)+ |E[Ûk1(t)(t)−Uk1(t)(t)|ω1(t)]| , (C.13)

where

E[Ûk1(t)(t)|ω1(t)]≤ E[Ūk1(t)(t)|ω1(t)]+E[e(t)||ω1(t)] , (C.14)

and

Ūk1(t)(t) = 4 min
f∈F

rIID
1 (f)+6β2 +6β1

∑i∈k1(t) ni(t)(1− si)

Nk1(t)(t)

+ ρ̃k1(t)(t)+8y∗(2
√

2d + y∗) ·

√
logNk1(t)(t)

Nk1(t)(t)
. (C.15)

177

Notice the subtle difference between Ûk1(t)(t) and Uk1(t)(t). Ûk1(t)(t) is further bounded

by two terms: one is Ūk1(t)(t), the error bound with sub-sampled data and the other term

e(t) corresponds to the effects of dis-continuous samplings.

To make it more clear, we start the discussion by noticing that an incorrect calculation

of k1(t) not only has effects on the prediction at time t, but also affects the learning process

in all following steps due to this potential miss of collecting data. For details please refer to

the difference between Ūk(t)(T) and Uk(t)(t): when a wrong decision is made at time t and

data from the optimal sources have not been collected, the performance of the prediction for

all following stages will suffer from sub-sampling. Denote n̄i(t) as the number of missed

data up to time t for i ∈ k1(t) and we first address two questions with sub-sampling for

sequentially arriving Markovian data : 1). Under ω1(t), is n̄i(t) bounded above and how?

(which affects Ūk1(t)(t)) 2). due to the dis-continuous sampling, there will be extra bias

incurred for the distribution of sampled Markovian data. How to quantify this bias? (which

affects e(t)).

In the rest of the proof, we show the following.

E[Ūk1(t)(t)−Uk1(t)(t)|ω1(t)]≤ O(log t · t−2/3), E[e(t)||ω1(t)]≤ O(t−2/3) . (C.16)

Under ω1(t), we further consider two events defined as follows.

ω3(t) = {∀i ∈ k1(t) : n̄i(t)< tθ)} , (C.17)

ω4(t) = {∃i ∈ k1(t) : n̄i(t)≥ tθ)} , (C.18)

for a tunable constant 0 < θ < 1. Again ω3(t)∩ω4(t) = /0 and ω3(T)∩ω4(t) = Ω. Again

we have

E[Ūk1(t)(t)|ω1(t)] = E[Ūk1(t)(t)|ω1(t),ω3(t)]P(ω3(t))+E[Ūk1(t)(t)|ω1(t),ω4(t)]P(ω4(t)).

178

We first prove the boundedness of ω4(t). Since at any time t, for i∈ k∗(t), we know we have

i ∈ k∗(n),n < t except for a constant based on Proposition IV.3, this is true for all i ∈ k∗(t)

and is also true for i∈ k′(t) such that having estimated learning error bound Ũk′(t)(t) within

[Ũk∗(t)−
√

log t
tz ,Ũk∗(t)+

√
log t
tz]. Since as can be similarly argued in Proposition IV.3, if

i ∈ k′(t) then i ∈ k′(n) for n≤ t. Then due to the construction of k2(t) and under ω1(t)(with

appropriately selected constant), we know this also holds for k1(t). Denote the constant as

C. That suggests the fact as long as ω2(n) is NOT true, a data sources in the optimal set

k1(n) will not be missed, which suggests the following

E[n̄i(t)]≤ E[
t

∑
n=1

1{ω2(n)}]+C

≤
t

∑
n=1

P(ω2(n)+C

≤
t

∑
n=1

O(
1
n2)+C

≤C‘ +C.

Next we prove E[n̄2
i (t)] is also bounded above.

E[n̄2
i (t)]≤ E[(

t

∑
n=1

1{ω2(n)}+C)2]

= E[(
t

∑
n=1

1{ω2(n)})2]+2CE[
t

∑
n=1

1{ω2(n)}]+C2

≤ E[
t

∑
n=1

12{ω2(n)}]+2CC
′
+C2 .

Now consider the square term. First notice

E[1{ω2(t1)}1{ω2(t2)}]≤ E[1{ω2(max{t1, t2})}] .

179

We then have

E[(
t

∑
n=1

1{ω2(n)})2]≤ 2E[
t

∑
n=1

n1{ω2(n)}]

≤ 2
t

∑
n=1

nO(
1
n2)

≤ O(log t) .

Therefore we know var(n̄i(t))≤ O(log t). Then via Chernoff bound we know

P(ni(t)≤ t− tθ) = P(n̄i(t)≥ tθ)≤ O(
log t
t2θ

) .

Now we analyze |E[Ûk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]|. As argued earlier we have

|E[Ûk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]| ≤|E[Ūk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]|

+E[e(t)|ω1(t),ω3(t)] .

Notice

|E[Ūk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]|

≤ E
[

6β1 ∑
i∈k∗(t)

(1− si)|
ni(t)

Nk∗(t)(t)
− 1

k
|︸ ︷︷ ︸

D1(t)

+ |ρ̃k∗(t)(t)−ρk∗(t)(t)|︸ ︷︷ ︸
D2(t)

+ |8y∗(2
√

2d + y∗) · |

√
log |k∗(t)|t
|k∗(t)|t

−

√
logNk∗(t)(t)

Nk∗(t)(t)
|︸ ︷︷ ︸

D3(t)

∣∣∣∣ω1(t),ω3(t)] ,

We have the following lemma.

Lemma C.3. We have

• E[D1(t)|ω1(t),ω3(t)]≤ O(1
t1−θ).

180

• E[D2(t)|ω1(t),ω3(t)] decays exponentially fast.

• E[D3(t)|ω1(t),ω3(t)]≤ O(
√

log t
t3/2−θ

).

• E[e(t)|ω1(t),ω3(t)]≤ O(1
t1−θ).

Adding up the terms we have

|E[Ûk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]| ≤ O(
log t
t2θ

)+O(
1

t1−θ
)+O(

√
log t

t3/2−θ
) ,

and the optimal upper bound occurs when 2θ = 1− θ which gives us θ ∗ = 1/3 and the

optimal bound follows as

|E[Ûk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]| ≤ O(
log t
t2/3) .

C.6 Proof for Lemma C.3

C.6.1 Bound on E[D1(t)|ω1(t),ω3(t)]

Shorthand |k∗(t)| as k. Take the difference between the coefficients for each term 1− s1

satisfies the following,

t
Nk∗(t)(t)

− 1
k
=

kt−Nk∗(t)(t)
k ·Nk∗(t)(t)

≥ 0 .

For all others i 6= 1, we have

ni(t)
Nk∗(t)(t)

− 1
k
=

kni(t)−Nk∗(t)(t)
k ·Nk∗(t)(t)

.

181

Therefore we have

|∑i ni(t) · (1− si)

Nk∗(t)(t)
− ∑i(1− si)

k
| ≤

kT −Nk∗(t)(t)
k ·Nk∗(t)(t)

· (1− s1)

+∑
i≥2
|
kni(t)−Nk∗(t)(t)

k ·Nk∗(t)(t)
| · (1− si) . (C.19)

Notice under ω3(t), Nk∗(t)(t)≥ kt− k · tθ and we know

kt−Nk∗(t)(t)
k ·Nk∗(t)(t)

· (1− s1)≤
ktz

k(kt− k · tθ)
· (1− s1)

=
tθ

k(t− tθ)
· (1− s1) , (C.20)

and moreover

|
kni(t)−Nk∗(t)(t)

k ·Nk∗(t)(t)
| · (1− si)

≤∑
j

|ni(t)−n j(t)|
k(kt− k · tθ)

· (1− si)

≤ k · tθ

k(kt− k · tθ)
· (1− si)

=
tθ

kt− k · tθ
· (1− si) = O(

1
t1−θ

) (C.21)

here we have used the fact that if t− tθ ≤ ni(t) ≤ t and t− tθ ≤ n j(t) ≤ T we must also

have |ni(t)−n j(t)| ≤ tθ . So is the expectation bounded. Proved .

C.6.2 Bound on E[D2(t)|ω1(t),ω3(t)]

This one is fairly simple to prove. Consider each of the difference term.

|(λ i
2)

t− (λ i
2)

ni(t)| ≤ |(λ i
2)

ni(t)| ,

182

since ni(t)≤ t. However

|(λ i
2)

ni(t)| ≤ (λ i
2)

t−tθ

,

as ni(t)≥ t− tθ . Proved.

C.6.3 Bound on E[D3(t)|ω1(t),ω3(t)]

Denote function g(x) :=
√

logx
x and by mean-value theorem we have

|g(x−δ)−g(x)| ≤ |δ | · max
y∈[x−δ ,x]

∂g(y)
∂y

.

Notice

∂g(x)
∂x

=
1
2
· 1√

logx
x

· |1− logx
x2 | .

For x≥ 3 we have

∂g(x)
∂x

≈ 1
2e
· 1√

logx
x

· logx
x2 =

1
2e
·
√

logx
x3 ,

Since
√

logx
x3 is a strictly decreasing function when x≥ 3, we have (under ω3(t)) the worst

case bound is given by

|

√
log(kt− (k−1) · tθ)

kt− (k−1) · tθ
−
√

logkt
kt
|

≤ (k−1) · tθ · 1
2e
·

√
log(kt− (k−1) · tθ)

(kt− (k−1) · tθ)3 ,

183

which is decreasing sub-linearly as long as θ < 1. Moreover when t is large enough we

have √
log(kt− (k−1) · tθ)

(kt− (k−1) · tθ)3 ≤
√

log t
t3 ,

which leads us to the fact that

|

√
log(kt− (k−1) · tθ)

kt− (k−1) · tθ
−
√

logkt
kt
| ≤ O(

√
log t

t3/2−θ
) .

So is the expectation bounded. Proved.

C.6.4 Bound on E[e(t)|ω1(t),ω3(t)]

Due to discontinous sampling of Markovian data (the fact that ni,x(t)> 0) the resultant

data collection, in the form of its empirical distributions π̃ i
x will be biased. To see this more

clearly. Suppose f̃ is trained on a dataset D̃ and f is on D, where D̃ is a biased version

of D. Then we have E[e(t)|ω1(t),ω3(t)] bounded as follows (we omit the conditioning on

ω1(t),ω3(t) for brevity)

Ez∼D[L (f̃ ,z)]−Ez∼D[L (f ,z) = Ez∼D̃[L (f̃ ,z)]−Ez∼D̃[L (f ,z)]

+(Ez∼D[L (f̃ ,z)]−Ez∼D̃[L (f̃ ,z)])+(Ez∼D[L (f ,z)]−Ez∼D̃[L (f ,z)])

By definition of f̃ (also optimality) we know Ez∼D̃[L (f̃ ,z)]− Ez∼D̃[L (f ,z)] ≤ 0. For

Ez∼D[L (f̃ ,z)]−Ez∼D̃[L (f̃ ,z)] we have

|Ez∼D[L (f̃ ,z)]−Ez∼D̃[L (f̃ ,z)]| ≤maxL · ∑
x∈X

E[|π̃ i
x−π

i
x|] .

184

Notice under ω3(t),

E[|π̃ i
x−π

i
x|]≤ O(

tθ

t− tθ
) = O(

1
t1−θ

) ,

where the upper bound comes from the extreme cases all missed samples are from one

specific state transition. Therefore we proved

|Ez∼D[L (f̃ ,z)]−Ez∼D̃[L (f̃ ,z)]| ≤ O(
1

t1−θ
) ,

and similar analysis applies to (Ez∼D[L (f ,z)]−Ez∼D̃[L (f ,z)]). Proved.

C.7 Proof of Theorem IV.7

We now analyze the difference in cost for requesting additional data. There are mainly

two sources for this extra cost : 1). first of all, we know the there is unnecessary cost for

exploration phases. This is the cost mainly for requesting enough samples to train or learn

the similarity information between user 1 and any other users. 2). second is the unnecessary

cost at exploitation phases when bad decisions are made (requesting data from a source that

is outside the optimal set). More rigorously we have

E[Rc(t)] = cE[
t

∑
n=1

K

∑
i=1

1{i /∈ k∗(n), i ∈ k2(n)}]

= cE[
t

∑
n=1

K

∑
i=1

1{i /∈ k∗(n), i ∈ k2(n)} ·1{O(n) 6= /0}]

+ cE[
t

∑
n=1

K

∑
i=1

1{i /∈ k∗(n), i ∈ k2(n)} ·1c{O(n) 6= /0}]

Consider the first term above we have

E[
t

∑
n=1

K

∑
i=1

1{i /∈ k∗(n), i ∈ k2(n)} ·1{O(n) 6= /0}]≤ KE[
t

∑
n=1

K

∑
i=1

1c{O(n) 6= /0}]≤ O(ctz) .

185

The last inequality is due to the fact number of exploration rounds are bounded above by

O(tz).

Now consider the second term. For exploitation phases, consider the possibility of

requesting redundant samples. We again decompose our discussion into the cases corre-

sponding to events ω1(t) and ω2(t) (as defined in the proof for Theorem IV.6). Then

E[
t

∑
n=1

K

∑
i=1

1{i /∈ k∗(n), i ∈ k2(n)} ·1c{O(n) 6= /0}]

=
t

∑
n=1

E[
K

∑
i=1

1{i /∈ k∗(n), i ∈ k2(n)} ·1c{O(n) 6= /0}|ω1(n)]P(ω1(n))]

+
t

∑
n=1

E[
K

∑
i=1

1{i /∈ k∗(n), i ∈ k2(n)} ·1c{O(n) 6= /0}|ω2(n)]P(ω2(n))] .

As we showed probability for cases ω2(t) is bounded above and the cost regret associ-

ated with the case is also bounded above:

t

∑
n=1

E[
K

∑
i=1

1{i /∈ k∗(n), i ∈ k2(n)} ·1c{O(n) 6= /0}|ω2(n)]P(ω2(n))]

≤
t

∑
n=1

K ·O(
1
n2) = O(1) .

Now consider the case with ω1(t). Clearly at time t, if k2(t) ⊆ k∗(t) there would be

no extra cost for redundant data. Consider the case k∗(t) ⊂ k2(t). Based on our sampling

policy, with bounded probability as long as we have

Uk2(t) > Uk∗(t)+O(

√
log t

tz) , (C.22)

there will be no error in requesting data from users in the set k2(t) by observing the follow-

186

ing fact

Ũk2(t) > Uk2(t)−O(

√
log t

tz)> Uk∗(t)+O(

√
log t

tz)−O(

√
log t

tz)

= Uk∗(t)+O(

√
log t

tz)≥ Ũk∗(t)+

√
log t

tz ,

with appropriately chosen constants. So is

Ũ tr
k2(t)

> Ũ tr
k∗(t)+

√
log t

tz .

Since ∑
k2(t)
i=1 si
|k2(t)| <

∑
k∗(t)
i=1 si
|k∗(t)| as k∗(t) ⊂ k2(t), there exists a constant T0 such that the Eqn.(C.22)

holds (the gain in Term 4 becomes less than the loss in similarity Term 2.). Therefore the

cost regret with over-sampling is bounded up by cKT0 . Again summing up all above we

have the bounds for E[Rc(T)]. Proved.

187

APPENDIX D

Proofs for Chapter V

D.1 Justification of Linear Fitting for Multi-layer Inference

We start by introducing an underlying factor selection/controller random variable Z

that determines the generation of H from {Ai} by acting as a random switch, and consid-

er this simplified model. This is a method commonly employed in Bayesian inference,

see e.g., [60]. This model typically comes with the conditional independence assumption

Pz(Ai|H) = Pz(Ai),∀i 6= z. The rationale is that H is in general a random matrix due to the

unknown nature of its generation. This randomness may be captured by a random variable

Z, that controls whether each of the latent variables is active. By doing so, the role of

each Ai is completely determined by Z, and not by H if observed; this is the conditional

independence assumption given above.

With this simplification, the posterior probability distribution of H after observing {Ai}

is given by:

P(H|{Ai}) ∑
Z=z

P(H,Z = z|{Ai}) = ∑
Z=z

ηz ·Pz(H|{Ai},Z = z) .

188

where ηz = P(Z = z|{Ai}). Based on our assumption on conditional independence, we

have:

Pz(H|{Ai},Z = z) =
P(H,{Ai},Z = z)

∑H̃ P(H̃,{Ai},Z = z)

=
P(H)Pz(Az|H)∏z̃ 6=z Pz(Az)

∑H̃ P(H̃)Pz(Az|H̃)∏z̃ 6=z Pz(Az)

=
P(H)Pz(Az|H)

Pz(Az)
. (D.1)

Let γz =
ηz

Pz(Az)
. Then:

P(H|{Ai}) = ∑γzP(H)Pz(Az|H) . (D.2)

Assuming that the prior on H is uniform, the maximum a-posteriori probability (MAP)

estimation rule reduces to:

argmaxH ∑γzPz(Az|H) , (D.3)

which is also the same as the maximum likelihood problem. Similarly, we can reduce the

RHS of the inference problem to:

argmaxH ∑ψzPz(Sz|H) ,

with a possibly different number of states z.

In general, solving these problems is hard without assuming the conditional distribu-

tions of the observations {Ai} and {S j}. However, we can make the analysis more tractable

by assuming that these matrices follow an isometric Gaussian distribution, as is commonly

done in the literature, see e.g., [60], i.e.,

Pz(Az|H) = N (H,σ2
z I), Pz(Sz|H) = N (H,σ2

z I) .

189

Denote the objective function in the MAP problem (D.3) as f (x). Take an arbitrary

x ∈ Rn, and project x onto the following sphere (here we are using three latent matrices

A1,A2,A3 to illustrate):

Sλ = A1 +λ2(A2−A1)+λ3(A3−A1) , (D.4)

where λ2,λ3 ∈ R. Denote x∗ as the projection of x onto Sλ , and let x̃ be the orthogonal

component. By plugging in the multivariate Gaussian distribution in (D.3), each term Ai

appears in an argument of an exponential function. To solve the MAP problem, these terms

need to be minimized. Consider for instance the term associated with A1. We have:

(x̃+x∗−A1)
T (x̃+x∗−A1) = (x∗−A1)

T (x∗−A1)+2x̃(x∗−A1)+ x̃T x̃ . (D.5)

Notice that due to orthogonality, x̃(x∗−A1) = 0, and therefore:

(x̃+x∗−A1)
T (x̃+x∗−A1)≥ (x∗−A1)

T (x∗−A1) . (D.6)

The other two terms can be similarly analyzed. We can then conclude that f (x∗) ≥ f (x).

It is also easy to show (by geometry or induction) that the optimum must be between

A1,A2,A3, i.e., λ2,λ3 ∈ [0,1], as f (·) decreases when the distance between x and A1,A2,A3

increases. In other words, under the assumptions stated earlier, the optimal inferences of H

from both sides are given by a linear model.

D.2 Proof of Theorem V.1

Since the per-element error is bounded by δ , by the definition of the Frobenius norm

(with the normalization), we have ||Ãi−Ai||F ≤ δ . For any ({αi},{β j}) we have

||H̃α − H̃β ||F = ||Hα −Hβ +Nα −Nβ ||F ≤ ||Hα −Hβ ||F + ||Nα −Nβ ||F , (D.7)

190

where Nα ,Nβ are the error terms

Nα = ∑
i

αi(Ãi−Ai), Nβ = ∑
j

β j(B̃ j−B j), (D.8)

and the inequality is due to the triangle inequality of norm. Repeating the triangle inequality

we have

||Nα −Nβ ||F ≤ ||Nα ||F + ||Nβ ||F

≤∑
i

αi||Ãi−Ai||F +∑
j

β j||B̃i−Bi||F

≤∑
i

αi ·δ +∑
j

β j ·δ = 2δ , (D.9)

i.e., ||H̃α − H̃β ||F −||Hα −Hβ ||F ≤ 2δ . Similarly we can prove

||H̃α − H̃β ||F −||Hα −Hβ ||F ≥−2δ . (D.10)

Therefore, the difference between the two optimal objective values are bounded as follows:

∣∣||H̃α − H̃β ||F −||Hα −Hβ ||F
∣∣≤ 2δ . (D.11)

Then we can further show the following:

∣∣∣||H̃α̃o− H̃
β̃ o||F −||Hαo−Hβ o||F

∣∣∣≤ 2δ , (D.12)

for otherwise a new optimal solution could be found for either of the optimization problems

which is a contradiction.

191

Suppose ||({α̃o
i },{β̃ o

j })− ({αo
i },{β o

j })||2 ≥ ε . Notice we have

|L (H̃α̃o, H̃
β̃ o)−L (Hαo,Hβ o)|

= |L (H̃α̃o , H̃
β̃ o)−L (Hα̃o,H

β̃ o)+L (Hα̃o,H
β̃ o)−L (Hαo,Hβ o)|

≥ |L (Hα̃o ,H
β̃ o)−L (Hαo,Hβ o)|− |L (H̃α̃o, H̃

β̃ o)−L (Hα̃o,H
β̃ o)|

≥ |L (Hα̃o,H
β̃ o)−L (Hαo ,Hβ o)|−2δ , (D.13)

where the last inequality is due to (D.11).

By the sub-gradient inequality we have

|L (Hα̃o,H
β̃ o)−L (Hαo,Hβ o)|

≥ OL T |({α̃o
i },{β̃ o

j })
·
(
({α̃o

i },{β̃ o
j })− ({αo

i },{β o
j })
)
.

Consider |OL |({α̃o
i },{β̃ o

j })
|. Denote na as the number of matrices As (LHS) and nb as the

number for Ss (RHS). Since ∑i αi = 1, choose one dummy variable as αna . By taking

derivative we could easily show

OL |α̃o
i
=
||Ai||2F α̃o

i −||Ana||2F(1−∑ j 6=na α̃o
j)

C1
,

where C1 > 0 is some bounded (from below) constant. Similar observation holds for βis.

Now denote each perturbation in solution as δ i, that is δi = α̃o
i −αo

i ; then we have

OL |α̃o
i
=
||Ai||2Fδi + ||Ana||2F ∑ j 6=na δ j

C1
,

since OL |αo
i
= 0. Then we have

OL |α̃o
i
·δi =

||Ai||2Fδ 2
i + ||Ana||2F ∑ j 6=na δ jδi)

C1
.

192

Summing up we have

OL T |({α̃o
i },{β̃ o

j })
·
(
({α̃o

i },{β̃ o
j })− ({αo

i },{β o
j })
)

≥
min{mini ||Ai||2F , ||S j||2F}∑δ 2

i +(∑ j δ j)
2 min{||Ana||2F , ||Snb ||2F}

C1
≥Cε

2 ,

for certain constant C > 0.

However, earlier we have shown in (D.12)

|L (H̃α̃o, H̃
β̃ o)−L (Hαo,Hβ o)|=

∣∣∣||H̃α̃o− H̃
β̃ o ||F −||Hαo−Hβ o||F

∣∣∣≤ 2δ .

Therefore ε ≤ ||({α̃o
i },{β̃ o

j })− ({αo
i },{β o

j })||2 ≤
√

2δ

C .

D.3 Proof of Lemma V.2

||Ãi−Ai||F can be written as follows.

||Ãi−Ai||F =

√
∑k,l(Ãi(k, l)−Ai(k, l))2

N2 =

√
2∑k<l(Ãi(k, l)−Ai(k, l))2

N2 , (D.14)

where the second equality holds due to the adjacency matrices {Ai} being symmetric and

with zero diagonal entries. Since

(Ãi(k, l)−Ai(k, l))2 =

 0, w.p. 1− ε

1, w.p. ε ,
(D.15)

we have E[(Ãi(k, l)−Ai(k, l))2] = ε ,k 6= l. Noting the errors are independent, using the

Chernoff-Hoeffding bound we have

P(|∑k<l(Ãi(k, l)−Ai(k, l))2

(N2−N)/2
− ε| ≥ δ)≤ 2e−2δ 2·N2−N

2 . (D.16)

193

Noting N2 ≥ N2−N
2 (for N ≥ 2), we have

||Ãi−Ai||F ≤

√
2

∑k 6=l(Ãi(k, l)−Ai(k, l))2

N2−N
=

√
2

∑k<l(Ãi(k, l)−Ai(k, l))2

(N2−N)/2
, (D.17)

and the lemma follows immediately.

D.4 Proof of Theorem V.5

We start with bounding the errors in estimating the similarity measures. The true simi-

larities between i and j are given by

Si, j =
2E[RiR j]

E[R2
i]+E[R2

j]
,

and

Sq
i, j =

E[RiR j]√
E[R2

i] ·
√

E[R2
j]
.

Let µ2
i := E[R2

i] and µi, j := E[RiR j]. We have the following.

Lemma D.1. Denote by S̃i, j the similarity measure computed using a length-τ time series

r∗i (t) and r∗j (t), both in steady state. Further assume (Ri,R j) form a two-dimensional

Markov chain. Then

P(|S̃i, j−Si, j| ≥ f1(ε))≤ ∑
ri∈Ri,r j∈R j

Nq · e
− τε2·κ

28·(|Ri|·|R j |·ri·r j)2 + ∑
ri∈Ri

Nq · e
− τ·δ2·κ

28·(|Ri|·ri)2 , (D.18)

P(|S̃q
i, j−Sq

i, j| ≥ f2(ε))≤ ∑
ri∈Ri,r j∈R j

Nq · e
− τε2·κ

28·(|Ri|·|R j |·ri·r j)2 + ∑
ri∈Ri

Nq · e
− τ·δ2·κ

28·(|Ri|·ri)2 , (D.19)

for constant κ > 0 and ∀ε > 0 and f1(ε), f2(ε) are both monotonically increasing function

in ε and f1(0) = f2(0) = 0.

Proof. For the analysis we suppress ∗ for each signal and use ri(t) to denote any of the

194

aggregate. Define the following two functions g1,g2

g1 :(Ri,R j)→ Ri ·R j ,g2 : Ri→ R2
i . (D.20)

We first prove the following.

P(|g̃1(Ri,R j)−E[g1(Ri,R j)]| ≥ ε)

= P(| ∑
ri∈Ri,r j∈R j

∑
τ
t=1 Iri,r j(ri(t),r j(t))

τ
· ri · r j− ∑

ri∈Ri,r j∈R j

πri,r j · ri · r j| ≥ ε)

≤ ∑
ri∈Ri,r j∈R j

P(|
∑

τ
t=1 Iri,r j(ri(t),r j(t))

τ
−πri,r j | ≥

ε

|Ri| · |R j| · ri · r j
)

≤ ∑
ri∈Ri,r j∈R j

Nq · e
− τε2·κ

28·(|Ri|·|R j |·ri·r j)2 . (D.21)

where the last inequality is due to Lemma C.2 with

f (ri,r j) =
∑

τ
t=1 Iri,r j(ri(t),r j(t))

τ
−πri,r j , (D.22)

and Iri,r j(ri(t),r j(t)) is the indicator function for any pair of observations (ri,r j). The

required properties of f can be easily verified. Similarly

P(|g̃2(Ri)−E[g2(Ri)]| ≥ ε)

= P(| ∑
ri∈Ri

∑
τ
t=1 Iri(ri(t))

τ
· ri− ∑

ri∈Ri

πri · ri| ≥ ε)

≤ ∑
ri∈Ri

P(|∑
τ
t=1 Iri(ri(t))

τ
−πri| ≥

ε

|Ri| · ri
)

≤ ∑
ri∈Ri

Nq · e
− τ·ε2·κ

28·(|Ri|·ri)2 . (D.23)

195

We then have

∣∣∣∣∣ E[R̃iR j]

E[R̃2
i]+E[R̃2

j]
−

E[RiR j]

E[R2
i]+E[R2

j]

∣∣∣∣∣
≤

∣∣∣∣∣(µi, j + ε) · (µ2
i +µ2

j)−µi, j · (µ2
i +µ2

j + ε + ε)

(µ2
i +µ2

j) · (µ2
i +µ2

j − ε− ε)

∣∣∣∣∣
≤

µ2
i +µ2

j +2µi, j

(µ2
i +µ2

j) · (µ2
i +µ2

j −2ε)
· ε , (D.24)

where ε is sufficiently small. Denote

f1(ε) :=
µ2

i +µ2
j +2µi, j

(µ2
i +µ2

j) · (µ2
i +µ2

j −2ε)
· ε .

Similarly for S̃q
i, j−Sq

i, j, following the arguments in Proof B.9 and we could show

|
E[R̃iR j]√

E[R̃2
i] ·
√

E[R̃2
j]
−

E[RiR j]√
E[R2

i]
√

E[R2
j]
|

≤ ε√
µ2

i − ε

√
µ2

j − ε

+
µi, j(µ

2
i +µ2

j)ε

µ2
i µ2

j

√
µ2

i − ε

√
µ2

j − ε

.

Denote

f2(ε) :=
ε√

µ2
i − ε

√
µ2

j − ε

+
µi, j(µ

2
i +µ2

j)ε

µ2
i µ2

j

√
µ2

i − ε

√
µ2

j − ε

,

we finish the proof.

The bias terms introduced by limited sampling can thus be uniformly bounded. Noting

that the RHS of both the inequalities D.18 and D.19 approaches 0 when τ→∞, and apply-

ing the same technique used in Theorem V.1 we can bound the difference in the solutions.

196

BIBLIOGRAPHY

197

BIBLIOGRAPHY

[1] Adams, T. M., and A. B. Nobel (2010), Uniform Convergence of VapnikChervonenkis
Classes Under Ergodic Sampling, The Annals of Probability, 38(4), 1345–1367, doi:
10.1214/09-AOP511.

[2] Agrawal, R. (1995), The Continuum-Armed Bandit Problem, SIAM journal on control
and optimization, 33(6), 1926–1951.

[3] AMT (2014), AMT dataset, http://tamaraberg.com/importanceDataset/.

[4] Anantharam, V., P. Varaiya, and J. Walrand (1986), Asymptotically Efficient Allo-
cation Rules for the Multiarmed Bandit Problem with Multiple Plays Part I: I.I.D.
Rewards, Part II: Markovian Rewards, Tech. Rep. UCB/ERL M86/62, EECS Depart-
ment, University of California, Berkeley.

[5] Auer, P., N. Cesa-Bianchi, and P. Fischer (2002), Finite-time Analysis of the Multi-
armed Bandit Problem, Mach. Learn., 47, 235–256, doi:http://dx.doi.org/10.1023/A:
1013689704352.

[6] Bishop, C. M., et al. (2007), Pattern Recognition and Machine Learning, vol. 1,
springer New York.

[7] Bonchev, D., and G. A. Buck (2005), Quantitative Measures of Network Complexity,
in Complexity in Chemistry, Biology, and Ecology, pp. 191–235, Springer.

[8] Cai, J., E. Candès, and Z. Shen (2010), A Singular Value Thresholding Algorithm for
Matrix Completion.

[9] Candès, E. J., and B. Recht (2009), Exact Matrix Completion via Convex Optimiza-
tion, Foundations of Computational mathematics, 9(6), 717–772.

[10] CBL (2013 - 2014), Composite Blocking List, http://cbl.abuseat.org/.

[11] Chandramouli, S. S. (2011), Multi armed bandit problem: some insights.

[12] Chapelle, O., V. Sindhwani, and S. S. Keerthi (2008), Optimization Techniques for
Semi-supervised Support Vector Machines, The Journal of Machine Learning Re-
search, 9, 203–233.

[13] Choffnes, D. R., F. E. Bustamante, and Z. Ge (2010), Crowdsourcing Service-level
Network Event Monitoring, SIGCOMM Comput. Commun. Rev., 40(4), 387–398, doi:
10.1145/1851275.1851228.

198

[14] Crammer, K., M. Kearns, and J. Wortman (2008), Learning from Multiple Sources,
The Journal of Machine Learning Research, 9, 1757–1774.

[15] Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009), ImageNet: A
Large-Scale Hierarchical Image Database, in IEEE Conference on Computer Vision
& Pattern Recognition (CVPR).

[16] Dhamdhere, A., and C. Dovrolis (2008), Ten Years in the Evolution of the Internet
Ecosystem, in Proceedings of ACM IMC, pp. 183–196, ACM, New York, NY, USA,
doi:10.1145/1452520.1452543.

[17] DShield (2013 - 2014), DShield, http://www.dshield.org/.

[18] Du, N., B. Wu, X. Pei, B. Wang, and L. Xu (2007), Community Detection in
Large-scale Social Networks, in Proceedings of the 9th WebKDD and 1st SNA-
KDD 2007, WebKDD/SNA-KDD ’07, pp. 16–25, ACM, New York, NY, USA, doi:
10.1145/1348549.1348552.

[19] Eriksson, B., G. Dasarathy, A. Singh, and R. Nowak (2011), Active Clustering: Ro-
bust and Efficient Hierarchical Clustering Using Adaptively Selected Similarities,
arXiv preprint arXiv:1102.3887.

[20] Galesic, M., and D. Barkoczi (2014), Wisdom of Small Crowds for Diverse Real-
World Tasks, Available at SSRN 2484234.

[21] Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2003), Bayesian Data Analy-
sis, Second Edition, 2 ed., Chapman and Hall/CRC.

[22] Ghosh, A., S. Kale, and P. McAfee (2011), Who Moderates the Moderators?: Crowd-
sourcing Abuse Detection in User-generated Content, in Proceedings of the 12th ACM
Conference on Electronic Commerce, EC ’11, pp. 167–176, ACM, New York, NY,
USA, doi:10.1145/1993574.1993599.

[23] Goldstein, D. G., R. P. McAfee, and S. Suri (2014), The Wisdom of Smaller, Smarter
Crowds, in Proceedings of the fifteenth ACM conference on Economics and computa-
tion, pp. 471–488, ACM.

[24] Guille, A., H. Hacid, C. Favre, and D. A. Zighed (2013), Information Diffusion in
Online Social Networks: A Survey, ACM SIGMOD Record, 42(2), 17–28.

[25] Haklay, M., and P. Weber (2008), Openstreetmap: User-generated Street Maps, Per-
vasive Computing, IEEE, 7(4), 12–18.

[26] Hao, S., N. A. Syed, N. Feamster, A. G. Gray, and S. Krasser (2009), Detecting Spam-
mers with SNARE: Spatio-temporal Network-level Automatic Reputation Engine, in
Proceedings of the 18th Conference on USENIX Security Symposium, SSYM’09, pp.
101–118, USENIX Association, Berkeley, CA, USA.

199

[27] He, M., L. Yang, J. Zhang, and V. Vittal (2014), A Spatio-temporal Analysis Ap-
proach for Short-term Forecast of Wind Farm Generation, IEEE Trans. Power Syst,
pp. 1–12.

[28] Ho, C.-J., and J. W. Vaughan (2012), Online Task Assignment in Crowdsourcing
Markets, in AAAI’12.

[29] Holz, T., C. Gorecki, K. Rieck, and F. Freiling (2008), Measuring and Detecting Fast-
Flux Service Networks, in In Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08), ISOC.

[30] hpHosts (2013 - 2014), hpHosts for your pretection, http://hosts-file.net/.

[31] Hua, G., C. Long, M. Yang, and Y. Gao (2013), Collaborative Active Learning of a
Kernel Machine Ensemble for Recognition, in Computer Vision (ICCV), 2013 IEEE
International Conference on, pp. 1209–1216, IEEE.

[32] Hyup Roh, T. (2007), Forecasting the Volatility of Stock Price Index, Expert Systems
with Applications, 33(4), 916–922.

[33] Javed, M., and V. Paxon (2013), Detecting Stealthy, Distributed SSH brute-forcing, in
Proceedings of the 2013 ACM SIGSAC conference on Computer and communications
security, pp. 85–96, ACM.

[34] Kanich, C., C. Krebich, K. Levchenko, B. Enright, G. Voelker, and V. Paxon (2008),
Spamalytics: An empirical analysis of spam marketing conversion, in Proceedings of
the 15th ACM conference on Computer and communications, pp. 3–14, ACM.

[35] Karger, D. R., S. Oh, and D. Shah (2011), Iterative Learning for Reliable Crowdsourc-
ing Systems, in Advances in neural information processing systems, pp. 1953–1961.

[36] Karger, D. R., S. Oh, and D. Shah (2013), Efficient Crowdsourcing for Multi-class
Labeling, in ACM SIGMETRICS Performance Evaluation Review, vol. 41, pp. 81–92,
ACM.

[37] Keshavan, R. H., A. Montanari, and S. Oh (2010), Matrix Completion from a Few
Entries, Information Theory, IEEE Transactions on, 56(6), 2980–2998.

[38] Kim, K.-j. (2003), Financial Time Series Forecasting using Support Vector Machines,
Neurocomputing, 55(1), 307–319.

[39] KONECT (2014), Movielens 1m network dataset – KONECT.

[40] Konstantinov, M., D. Gu, V. Mehrmann, and P. Petkov (2003), Perturbation Theory
for Matrix Equations, Studies in Computational Mathematics, Elsevier Science.

[41] Koren, Y. (2008), Factorization Meets the Neighborhood: a Multifaceted Collabora-
tive Filtering Model, in Proceedings of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pp. 426–434, ACM.

200

[42] Koren, Y., R. Bell, and C. Volinsky (2009), Matrix Factorization Techniques for Rec-
ommender Systems, Computer, (8), 30–37.

[43] Kulis, B., S. Basu, I. Dhillon, and R. Mooney (2009), Semi-supervised Graph Clus-
tering: a Kernel Approach, Machine learning, 74(1), 1–22.

[44] Lai, T. L., and H. Robbins (1985), Asymptotically Efficient Adaptive Allocation
Rules, Advances in Applied Mathematics, 6, 4–22.

[45] Langford, J., and T. Zhang (2007), The Epoch-Greedy Algorithm for Multi-armed
Bandits with Side Information, in NIPS.

[46] Lezaud, P. (1998), Chernoff-type Bound for Finite Markov Chains, The Annals of
Applied Probability, 8(3), 849–867, doi:10.1214/aoap/1028903453.

[47] Liu, X., and K. Aberer (2013), SoCo: A Social Network Aided Context-aware Rec-
ommender System, in Proceedings of the 22Nd International Conference on World
Wide Web, WWW ’13, pp. 781–802, International World Wide Web Conferences S-
teering Committee, Republic and Canton of Geneva, Switzerland.

[48] Liu, Y., and M. Liu (2013), Group Learning and Opinion Diffusion in a Broadcast
Network, in Communication, Control, and Computing (Allerton), 2013 51st Annual
Allerton Conference on, pp. 1509–1516, doi:10.1109/Allerton.2013.6736706.

[49] Liu, Y., and M. Liu (2014), Detecting Hidden Propagation Structure and its Applica-
tion to Analyzing Phishing, in Data Science and Advanced Analytics (DSAA), 2014
International Conference on, pp. 184–190, IEEE.

[50] Liu, Y., and M. Liu (2015), Crowd-Learning: Improving Online Learning Using
Crowdsourced Data, submitted.

[51] Liu, Y., and M. Liu (2015), An Online Learning Approach to Improving the Quality
of Crowd-Sourcing, in Proceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’15,
pp. 217–230, ACM, New York, NY, USA, doi:10.1145/2745844.2745874.

[52] Liu, Y., and M. Liu (2016), Finding One’s Best Crowd: Online Learning By Exploit-
ing Source Similarity, in AAAI’16, to appear.

[53] Liu, Y., J. Zhang, M. Liu, M. Karir, and M. Bailey (2014), Enhancing Multi-source
Measurement Using Similarity and Inference: A Case Study of Network Security
Interdependence, submitted.

[54] Long, C., G. Hua, and A. Kapoor (2013), Active Visual Recognition with Expertise
Estimation in Crowdsourcing, in Computer Vision (ICCV), 2013 IEEE International
Conference on, pp. 3000–3007, IEEE.

[55] Lu, T., D. Pl, and M. Pal (2010), Contextual Multi-Armed Bandits, Journal of Ma-
chine Learning Research, 9, 485–492, doi:http://www.jmlr.org/proceedings/papers/
v9/lu10a.html.

201

[56] Massoulié, L., M. I. Ohannessian, and A. Proutière (2015), Greedy-Bayes for Target-
ed News Dissemination, in Proceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’15,
pp. 285–296, ACM, New York, NY, USA, doi:10.1145/2745844.2745868.

[57] Natarajan, N., I. Dhillon, P. Ravikumar, and A. Tewari (2013), Learning with Noisy
Labels, in Advances in Neural Information Processing Systems, pp. 1196–1204.

[58] Ng, A. Y., M. I. Jordan, and Y. Weiss (2001), On Spectral Clustering: Analysis and
an algorithm, in NIPS, pp. 849–856.

[59] OpenBL (2013 - 2014), OpenBL, http://www.openbl.org/.

[60] Oselio, B., A. Kulesza, and A. Hero (2014), Multi-layer Graph Analytics for Dynamic
Social Networks, Selected Topics in Signal Processing, IEEE Journal of, 8(4), 514–
523.

[61] PhishTank (2013 - 2014), PhishTank, http://www.phishtank.com/.

[62] Prelec, D. (2004), A Bayesian Truth Serum for Subjective Data, Science, 306(5695),
462–466, doi:10.1126/science.1102081.

[63] Prelec, D., and H. S. Seung (2006), An Algorithm that Finds Truth Even If Most
People Are Wrong.

[64] Rea, L. M., and R. A. Parker (2012), Designing and Conducting Survey Research: A
Comprehensive Guide, John Wiley & Sons.

[65] RIPE (2014), RIPE Routing Information Service (RIS) Raw data Project, http://
www.ripe.net/data-tools/stats/ris/ris-raw-data.

[66] Rosenthal, J. S. (1995), Convergence Rates for Markov Chains, SIAM Review, 37(3),
pp. 387–405.

[67] Russell, B. C., A. Torralba, K. P. Murphy, and W. T. Freeman (2008), LabelMe: A
Database and Web-Based Tool for Image Annotation, Int. J. Comput. Vision, 77(1-3),
157–173, doi:10.1007/s11263-007-0090-8.

[68] Sheng, V. S., F. Provost, and P. G. Ipeirotis (2008), Get Another Label? Improving
Data Quality and Data Mining Using Multiple, Noisy Labelers, in Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 614–622, ACM.

[69] SpamCop (2013 - 2014), SpamCop Blocking List, http://www.spamcop.net/.

[70] SPAMHAUS (2013 - 2014), The SPAMHAUS project: SBL, XBL, PBL, ZEN Lists,
http://www.spamhaus.org/.

[71] Spirtes, P., C. Meek, and T. S. Richardson (2013), Causal Inference in the Presence
of Latent Variables and Selection Bias, CoRR, abs/1302.4983.

202

[72] SURBL (2013 - 2014), SURBL: URL REPUTATION DATA, http://www.surbl.
org/.

[73] Tekin, C., and M. Liu (2012), Online Learning of Rested and Restless Bandits, Infor-
mation Theory, IEEE Transactions on, 58(8), 5588–5611.

[74] Tekin, C., and M. Liu (2013), Online Learning in a Contract Selection Problem, CoR-
R, abs/1305.3334.

[75] Tsybakov, A. B. (2008), Introduction to nonparametric estimation, Springer Science
& Business Media.

[76] UCEPROTECTOR (2013 - 2014), UCEPROTECTOR Network, http://www.

uceprotect.net/.

[77] University of Oregon (), Route Views Project, http://www.routeviews.org/.

[78] Vapnik, V. N. (1995), The Nature of Statistical Learning Theory, Springer-Verlag New
York, Inc., New York, NY, USA.

[79] Wang, C.-C., S. R. Kulkarni, and H. V. Poor (2005), Bandit Problems with Side Ob-
servations, IEEE Transactions on Automatic Control, 50, 338–355.

[80] WPBL (2013 - 2014), WPBL: Weighted Private Block List, http://www.wpbl.

info/.

[81] Xu, K. S., M. Kliger, and A. Hero (2010), Tracking Communities of Spammers by
Evolutionary Clustering , ICML.

[82] Zhang, J., A. Chivukula, M. Bailey, M. Karir, and M. Liu (2013), Characterization of
Blacklists and Tainted Network Traffic, in Proceedings of PAM, Hong Kong.

[83] Zhong, E., W. Fan, and Q. Yang (2012), Contextual Collaborative Filtering via Hier-
archical Matrix Factorization, in SDM’12, pp. 744–755.

[84] Zhu, X., and A. B. Goldberg (2009), Introduction to Semi-Supervised Learning, Syn-
thesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool
Publishers.

203

