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CHAPTER I 
 

 

Introduction 
 

 

In ancient time, the heart was assumed to be the foundation of intelligence, 

emotions, and spirit. Today we know that the brain is in fact what makes each 

individual a unique “being” and losing a tiny fraction of this brain may have 

enormous effects on the individual memories, morals, and emotions. But 

what is this brain, how a physical foundation can be responsible for dreams 

and thoughts? How can this 1.5 kg mass can be accountable for Einstein’s 

special relativity theory or Mozart’s amazing pieces? How can it be Garry 

Kasparov and defeat the smartest computers of our times in a fair chess 

game? The answer is not easy, our knowledge about the world inside our 

brain is much less than the world around us. The underlying mechanisms of 

simple tasks such as face recognition are not clearly understood yet, much 

less on understanding the thought process, decision-making or consciousness.  

Our current understanding of the brain was founded in late 19th century. At 

that time, there was a huge controversy on the gray matter structure between 

Santiago Ramóny Cajal and Camillo Golgi. While, Cajal believed that the 

brain is made of individual cells, Golgi saw it as a continuous, diffused 

network of axons that couldn’t be broken down to individual cells. 

Ironically, Cajal used the novel staining technique developed by Golgi and 
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showed that the brain is made of individual cells like any other organ. This 

revolutionary discovery transformed the field of neuroscience and brought 

Cajal and Golgi a shared Nobel prize in 1906 1,2,3. Today, we know that the 

brain consists of many different types of neurons with a wide range of 

structural characteristics and electrical properties. Despite all the differences 

neurons share a very similar job, which is to receive, integrate and transmit 

information 4. Our interaction with world inside and around us is based on 

the opportune activity of these different kinds of neurons. This precise 

activity of neurons can be thought as a musical symphony where each and 

every function is encoded in a specific piece. But what is it that orchestrates 

this symphony? Physicists try to explain this emergence of large-scale 

patterns of neural activity by the similarity between the dynamics of a 

neuron and an oscillator 5. Neural circuits could be modeled by a group of 

oscillators that are coupled together to coordinate different parts of the brain 

to perform diverse tasks. This, however, does not explain how these patterns 

of activity are translated to cognitive processes in the brain. The question 

remains how these neurons, slow units of information possessors (with an 

average firing rate of 15Hz greatly slower than any computer CPU), can 

result in this fast and efficient functioning brain.  

To this date with all the technological advancements, especially in the field 

of computer science, still no computer can simulate all the brain activities 

even for a short period of time. The mystery behind this incredible 

performance has brought many physicists, mathematicians, computer experts 

and neuroscientist together to found a relatively new field of research known 

as Computational Neuroscience.  Where computational techniques along with 

graph theory methods are used to create simple and realistic models of 
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individual cells and neural circuits of the brain 6. In 1907 Louis Lapicaque 

introduced the integrate-and-fire model, first and the simplest mathematical 

model that mimics in a very basic way the changes in neuron’s membrane 

potential 7,8. It was until around 1952 that Hodgkin & Huxley’s 

electrophysiological work on giant squid axon provided a very biological 

detailed model 9. This model links macroscopic changes of ionic currents to 

the conductance of sodium and potassium channels and successfully explains 

generation and propagation of action potential. These models revolutionized 

the traditional field of neuroscience and shed light on how the function 

emerges from underlying neural networks. 

In this chapter, I provide a brief introduction to the structure and function of 

neurons. I elucidate how the cell-to-cell interactions within these subunits 

form neural circuits. The underlying structure of these neural circuits is the 

key factor on shaping network dynamics and eventually the brain function. 

Unfortunately, our knowledge about the underlying structure of the brain is 

very limited. The undeniable dependency of the brain function on its 

structure attracted many scientists from diverse backgrounds to propose and 

optimize different models of neuronal connectivity. These proposed models 

are based on the anatomical evidence, the efficiency of information 

transmission and wiring cost. The brain structure, dynamics, and function are 

inseparable factors. Learning new skills could directly reflect on the physical 

structure of the brain, and, in turn, the brain structure could make it easier or 

harder to learn. The structure of the brain directly influences the formation of 

spatiotemporal patterns. These patterns on one hand determine the brain 

function while on the other they can adjust the structure through spike 

timing-dependent plasticity (STDP). Later, I discuss the formation of 
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different spatiotemporal patterns of activity, and how we can relate those to 

the function of the brain.  

 

1.1 Neuron  

1.1.1 Building block of the brain 

The brain is a very complex network, made of hundred billion interconnected 

neurons 4,10. Each of these neurons could be connected to as many as ten 

thousand other neurons. Thus, there are trillions of connections involved in 

forming the brain 11. The brain structure is inseparable from its function; the 

specific way this complex network is connected shapes our mind, thoughts, 

talents, memories and personality. Thus, to have a firm grasp of the brain 

function, first we need to understand how its subunits are designed and work. 

Neurons are the smallest units of the information processor, which their 

particular physical and electrical design enables them to receive, process and 

communicate synaptic signals. 

 

1.1.2 Neuron: structure and function 

A typical neuron consists of three main parts: dendrites, cell body, and axon. 

Dendrites are the most distinctive parts of a neuron structure; one can 

classify neurons based on the shape of their dendritic tree. Dendrites are 

branched extensions projecting from the cell body and their main duty is to 

receive and transmit signals from surrounding cells to the neuron’s cell 

body. The cell body or soma, contains the nucleus of the cell and produces 
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all the proteins needed for nerve cells’ function.  The incoming signals from 

dendrites are integrated at the cell body and if their summation is large 

enough it can generate an all-or-none electrical signal. This electrical signal 

is an action potential (AP) and it is generated at axon hillock, a specialized 

part of the cell body right before the axon. The axon is an elongated 

outgoing extension that transmits the generated action potential to the other 

cells, muscles, and glands. In human, axons may extend up to one meter, 

while their width does not exceed tens of micrometers. The giant squid axon 

that was used to study electrical properties of action potential was one-

millimeter in diameter 12. 

 

1.1.3 Neuron as an electrically excitable cell  

Neurons hold an electrical potential difference across their membrane. This 

potential difference is called membrane potential and at rest has a typical 

value of -70mV 13. The electrical activity of a neuron is linked to the 

fluctuation of the ions’ concentration across its membrane. The membrane is 

a semipermeable barrier that selectively is more permeable to some ions, for 

instance, K+ while others such as Na+ to transport across the membrane need 

special machinery. At rest, K+ has a high cytosolic concentration and Na+ 

holds a high extracellular concentration. This gradient of ion concentration is 

the driving force for generating an action potential. 

Action potentials are all-or-none transient electrical events that make the cell-

to-cell communication possible. The initial trigger of producing an action 

potential is receiving inputs from the other cells; these inputs are integrated at 
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the cell body and alter the membrane potential.  The incoming perturbations 

may elevate the membrane potential and result in opening the voltage-gated 

Na+ channels that are normally closed at rest (Voltage-gated channels are 

channels that their state is a function of the membrane potential). Upon the 

activation of sodium channels, Na+ ions rush into the cell to diminish this 

concentration gradient.  The elevated Na+ concentration inside the cell, in 

turn, raises membrane potential even higher; if the membrane potential 

surpasses certain threshold it opens, even more, sodium channels that could 

result in a huge, transient upswing in the membrane potential known as an 

action potential (Fig. 1.1). Shortly after an action potential is triggered, 

voltage-gated potassium channels open to allow drift of interior K+ ions to 

neuron’s exterior. This efflux of K+ ions shapes the falling part of membrane 

potential, that continues beyond the resting potential and hyperpolarize the 

membrane potential (Fig. 1.1). This hyperpolarization or the refractory period 

controls the maximum firing rate of neurons and last for a couple of 

milliseconds. Action potentials are generated at the axon hillock, where the 

membrane possessing the highest density of sodium channels. One can think 

of an action potential as a digital signal due to its all-or-none characteristics. 

Once action potentials are generated, it propagates through the axon toward 

axon’s terminal. Axon terminal is a place enriched with neurotransmitters 

embedded in synaptic vesicles. These vesicles release their content in the 

synaptic cleft, a hundred nanometer gap between presynaptic and 

postsynaptic neuron, upon the activation of voltage-gated Ca+ channels once 

action potential reaches the axon terminal 4.  
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Figure 1.1 Illustration of different phases of a typical action potential. (Image is 

adapted from https://psychlopedia.wikispaces.com/resting+potential 14) 

 

1.1.4 Synapse: As a bridge between digital and analog signal  

Cell-to-cell communication of neurons occurs at specialized junctions, 

known as synapses. A synapse is a special structure where the axon terminal 

of presynaptic neuron comes in close proximity of postsynaptic dendrites 

(hundreds of nanometers). The arrival of an action potential at the axon 

terminal triggers the release of presynaptic neurotransmitters into the 

synaptic cleft, which consequently influences the state of receptors (being 

open versus closed) on the membrane of postsynaptic neurons. Depending 

on the type of released neurotransmitters, excitatory or inhibitory, the 

postsynaptic cell is injected with a positive or negative continuous current. 

Through chemical mediums, synapses convert digital signals (all-or-none 

action potentials in the presynaptic neurons) to analog signals (continuous 

signals) depolarizing or hyperpolarizing the postsynaptic cell.   
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1.1.5 Neuromodulation controls activity of a large population of neurons  

Synapses allow neurons to directly influence each other’s activity, although 

interactions among neurons are not limited to cell-to-cell interactions. 

Neurons can control each other’s activity indirectly through 

neuromodulation. Neuromodulation is a mechanism where specific cells 

release certain chemicals (neuromodulators) in the extracellular space and 

through which regulate the activity of a diverse population of neurons. 

Acetylcholine, dopamine, norepinephrine, and serotonin are the most studied 

neuromodulators; they can diffuse to a large area of nervous system and 

regulate the brain dynamics. Specifically, Acetylcholine is a neuromodulator 

that controls neurons excitability, its has been shown that it’s in high 

concentration during wake and absent at sleep 15,16,17,18. Dopamine is another 

neuromodulator that controls the reward-motivated behavior and motor 

control 19,20. For example, Parkinson’s disease and depression are linked to 

the deficiency of dopamine, and their treatments involve specifically 

designed drugs to increase the dopamine level 21, 22.  

 

1.1.6 Classification of Neurons 

Neurons are similar in their function, which is to receive, process and 

transmit information via electrochemical signals; however, each neuron can 

be quite unique. Neurons can be classified based on (a) their direction of 

information transformation (afferent: travels from tissue to the brain; 

efferent: travels from the brain to tissues), (b) the effect they have on the 
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target neuron (excitatory or inhibitory), (c) neuron’s anatomical appearance 

(pyramidal: triangular soma, stellate: star-shaped dendrite tree, granule: 

small and round cell body), (d) or spiking patterns, (e) neuron’s structure 

(unipolar, bipolar or multi-polar) 4 and finally (f) based on their excitability 

profile. Neuronal excitability falls into one of two broad categories, 

depending on the bifurcation structure observed in the neuron’s transition to 

firing. In Type I neurons, repetitive spiking is initiated by a saddle-node on 

an invariant cycle (SNIC) bifurcation. These neurons act as integrators, with 

firing frequency increasing sharply from the arbitrarily low levels observed 

at firing threshold, and they exhibit a low propensity for synchrony when 

coupled by excitation.  Type II neurons transition to firing through an 

Andronov-Hopf bifurcation, leading to a discontinuous and shallow 

frequency-current curve, and higher propensity for synchronization when 

coupled together 23,24.    

Generally, these excitability types result in different profiles of the neuronal 

phase response curves (refer to chapter II for details of computing PRC), 

which capture the neuronal response to brief stimulation 25,26,27. Type I cells 

exhibit exclusively phase advances in response to stimuli arriving at 

different times during the firing cycle, while Type II cells display both phase 

delays and advances. Experimental results show that both of these cell types 

are present in the brain, with some neurons capable of switching types 28. 

 

1.1.7 Neuron as a simple RC circuit   

A cell membrane consists of phospholipid bilayers that separate intracellular 

and extracellular ions and transmembrane proteins (ion pumps and channels) 
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that regulate the passage of these ions across the membrane. Phospholipids 

are amphipathic molecules owning hydrophobic tail and a hydrophilic head. 

For the sake of minimizing structural energy consumption, they adopt a thin 

lipid bilayer where they hide the hydrophobic tail inside and sticking out the 

hydrophilic head. This arrangement results in an insulator layer, separating 

intracellular and extracellular charges across the membrane. Transportation 

of essential ions for nerve activity, across this lipid bilayer, is only possible 

via the specialized ion channels and pumps embedded in the membrane. 

This specific structure of the membrane enables neurons to function as 

timely and accurate as needed.  

 

Figure 1.2 Modeling a cell membrane using an RC circuit. (Image is adapted from 13) 

 

To mimic the electrical activity of a neuron, one can model neuron’s cell 

membrane by replacing its insulator lipid bilayer with a capacitor and its 

ions channels and pumps that actively control the passage of ions across the 

cell membrane with a resistor in a parallel fashion with the capacitor (Fig. 

1.2).  In an RC circuit if you inject current somewhere between resistor and 

capacitor, based on Kirchhoff law it splits into two parts while the sum 
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remains the same. A portion of this current departs to the resistor side (IR) 

and leaks while the remaining current set out to charge the capacitor (IC).  

Idrive=IR + IC          (1.1)  

The relationship between charge and voltage across a capacitor is as follow: 

Q= CVm               (1.2)  

where Q is the separated charge across the capacitor and C is the capacity. 

We can rewrite equation 1.1 by substituting IC with derivative of equation 

(1.2) and IR from Ohm’s law as follow: 

I!"#$% = C !"
!"
+ !

!
          (1.3) 

 

Figure 1.3 Membrane potential as a function of driving currents. Injecting positive 
current inside the cell, increases the voltage across the membrane in an exponential 
fashion and ceasing this current results in the exponential decay of this potential.  

 

This simple linear one-dimensional partial equation can capture the changes 

in the electrical potential across the membrane as a function of driving 

current. By assuming the initial condition of V(t=0)=0, the general solution for 

equation (1.3) is: 

Driving Current !

Membrane’s Potential!

(a) (b) 
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V = IR(1 − e!
!
!"  )         (1. 4)  

Where the RC is the time constant of the membrane, normally denoted with 

‘τM’ and shows how fast the exponential function changes with time. 

Relatively a long time after injecting the current, V reaches the steady state 

where V (t=∞) equals to IR and the RC circuit behaves like a resistor (Fig. 

1.3a). Membrane’s time constant reflects on the pace of evolving 

membranes’ voltage in response to the driving current. When ‘τM’ is so short, 

changes on the membrane’s voltage is quick and manipulated by varying 

adjacent temporal events but when ‘τM’ is long it’s affected by the events 

happened while ago and develops some kind of memory (Fig. 1.3b). By 

ceasing the driving current the voltage decreases, again in an exponential 

fashion with τM, as below: 

V = IRe!
!
!"            (1.5) 

Here an external source is used to provide the injected current; in the brain, 

these driving current are due to the excitatory (positive driving current), and 

inhibitory (negative driving current) synaptic inputs. So we can replace the 

driving current with a battery (representing the resting potential of synaptic 

ion channel Esyn) and a resistor with the conductance of gsyn=1/R (for 

incoming synaptic currents) in parallel to the existing RC circuit (Fig. 1.4). In 

this case, we can rewrite equation 1.4, and for the sake of simplicity we 

replace R (resistance) with g (conductance) as follow: 
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V = (!!  !!!!!!!)
!!!!!  

(1 − e!
!(!!!!!)

!   )        (1. 6) 

 

Figure 1.4 RC circuit when driving current comes from a fast chemical synapse. 
(Image is adapted from 13) 

 

1.2 Neural networks in the brain 

1.2.1 Neural Circuits  

The brain is the most complex self-organized biological system. It is made 

of hundred billion neurons and each of these neurons can synapse to up to 

10000 other neurons 11.  The brain’s function as any other self-organized 

system cannot be solely encapsulated by its individual constituting units, but 

also, it’s highly affected by the way these units interact to each other 30,31. 

Thus, to gain insight into the brain function, we need to study the brain in 

the context of neural ensembles or neural circuits.  

1.2.2 Network connectivity 

The incredible performance of the brain is made possible via the interactions 

of neurons in neural networks 32,33. These interactions are mediated through 
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physical connections as well as dynamical properties on the interconnected 

cells. After many years of research started with Santiago Ramón Cajal 

drawings, until today with all the advanced techniques and parallel projects 

on mapping the brain (BRAIN initiative project 34, human connectome 

project 35, and clarity project 36,...) we still lack a well-defined brain 

connectivity map. 

When it comes to the brain connectivity paradigm, one can define two 

different connectivity paradigms: anatomical, and functional connectivity. 

Anatomical connectivity describes the existing physical connections in the 

brain.  If it’s not impossible, it will be extremely hard to obtain a 

comprehensive anatomical structure of the brain. It requires tracking hundred 

billions of neurons and each and every axon and dendrite radiating from their 

cell bodies. Even if we could acquire such a physical map, it’s not capable of 

delivering a realistic representation of the brains’ connectivity pattern. How 

do we know which synapses are active or silent? Or how strong is each 

synapse?  Even if we freeze the time and know all the synapses and their 

associated synaptic efficacy at one point of time, the brain function is 

entangled with constant change and plasticity that constantly form new 

synapses or modifies the synaptic efficacies of existing synapses 32.  

Functional connectivity, on the other hand, captures the functional 

dependencies of neurons to one another based on the statistics of their firing 

patterns. Relatively new imaging techniques such as functional magnetic 

resonance imaging (fMRI) 37,38 or electrophysiological recordings techniques 

such as electroencephalogram (EEG) 39,40 has made some progress in 

revealing the functional connectivity of the neuronal ensembles, but still lack 

enough resolution to detect single neuron activity 37. 



 

 15 

 

1.2.3 Analysis of network connectivity  

To shed light on the basis of the brain function, scientists employed graph 

theory to create a connectivity model that closely fits the anatomical and 

functional necessities of the brain’s connectivity 41. In graph theory, networks 

are built by using a group of ‘nodes’ (representing neurons) that are 

connected to each other via links called ‘edges’ (synapses), the way these 

edges are distributed among nodes shapes the structure and consequently 

function of each particular network. Among many different models suggested 

for the network structure from all-to-all connectivity to sparse random 

connectivity, some models are more realistic due to their low-energy cost, 

high speed of information transmission, and meeting anatomical needs.  

 

1.2.4 Optimizing network connectivity: Small world paradigm 

What is an optimal network design which brain could utilize? To answer this 

question we need to consider two important factors, wiring cost and efficient 

global information transfer. The wiring cost of the brain scales with the 

connection length, and favors local connections. This can be a driving force 

in the formation of distinguished functionally specialized neuronal 

assemblies across the cortex such as the primary visual system and 

somatosensory cortex. The primary connectivity profile in these areas are 

cortical-cortical, they are heavily locally connected and often connections 

are reciprocal-providing feed-forward and feed-back loops 42.  
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On the other hand, an efficient information transfer is an indispensable 

factor. The human brain is a very complex biological structure with a long 

synaptic distance (steps) between the initial sensation, cognition, and action. 

This long synaptic distance (steps) integrate information from different parts 

of the brain, therefore, a fast coordination of these regions are vital for a 

proper functioning brain.  This quick coordination is only possible through 

long-distance connections among these specialized regions. Previous studies 

on the connectivity of prefrontal, lateral temporal and limbic system 

identifies hubs connecting long-distance areas 43. In fact, the ratio of the 

number of long-distance connections to local connections is an indicator of 

evolution in cognitive functions such as language and reasoning 44. Taken 

these observations together, a proper model of the brain connectivity should 

be a combination of mostly local connections along with some long-distance 

connections. 

Small-world connectivity is one of the most appealing connectivity models 

due to its high clustering coefficient, short average path-length and low 

wiring cost 45. In this model network is comprised of mostly local and some 

random connections, which of its own accord suitably matches our gross 

knowledge of connectivity within the cortical columns 46,47,48. In this 

paradigm, we originally connect every neuron to its nearest neighbors in a 

radius of ‘R’, and then by defining a rewiring probability (P), we allow some 

of these connections to break and form a new connection to a randomly 

chosen neuron. This model provides an easy framework to interpolate 

between a locally connected network and a completely random network by 

changing rewiring probability (Fig. 1.5).  
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Figure 1.5 Schematic illustration of small-world connectivity paradigm. Depending 
on the defined rewiring probability, network structure could vary between a regular, 
lattice-like network and a random network. (Image is adapted from 45)  

 

1.2.5 Scale free and Rich Club connectivity  

Scale free connectivity paradigm is another attractive model to simulate the 

brain connectivity. Scale free model gained its fame after Albert-László 

Barabási study on the worldwide web structure, showing that the number of 

edges per nodes follows a power law distribution 49 as follow: 

P(k) ~ k –γ          (1. 7) 

Where P(k) is the fraction of neurons with k connections to the rest of the 

neurons. In this structure while the most of the neurons are sparsely 

connected, there are few neurons that are highly connected to the rest of the 

network (Fig. 1.6b). These neurons are called hubs and later many studies on 

the brain speculated on their role on coordinating different parts of the brain 

for cognitive tasks 49, 50,51. 

The rich-club is an interesting structure, in which aforementioned hubs found 
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a higher order structure by making many connections to the other hubs (Fig. 

1.6c). The brain has a tendency to minimize its wiring cost (proportional to 

the length of connections) both in cellular scale and mesoscale among 

functionally specialized regions. The particular structure of rich-club 

provides a low wiring cost and nicely fits the economic needs of brain 
52,53,54,55,56. 

 

Figure 1.6 Schematic representation of random, scale free and rich-club 
connectivity paradigms. a) Sparse random connectivity, b) scale-free connectivity 
includes few neurons that are richly connected to the rest of the network, while most of 
the neurons are sparsely connected. c) Rich-club is a higher order structure made of 
interconnecting hubs. (Image is adapted from 57)  

 

1.3 Spatiotemporal patterning  

Thanks to Hodgkin-Huxley 9 work on squid giant axon, today we have a 

clear understanding of an individual neuron’s dynamics. Simply, each 

neuron has two distinct dynamical states: quiescent or spiking, which can be 

explained based on Hodgkin-Huxley equations. Not only the activity state of 

neurons, spiking versus quiet is important, but also the temporal patterns of 

each neuron’s spike times contains hidden information that neuron commute 
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to the rest of the network. The key to understanding how the brain works is 

in decoding these spike times.  

 

1.3.1 Frequency coding versus temporal coding  

Neurons are simple units of information processors; they encode information 

and commute it to the rest of the network with spiking. But the question is 

how they encode information and how to retrieve this encoded information 

from spiking patterns? One can look at spike times in two distinct ways: a) 

frequency or rate coding and b) temporal coding. Frequency or rate coding is 

the simplest way to speculate about a stimulus. This scheme only considers 

the average firing frequency of a neuron, where the intensity of the stimulus 

is directly proportional to the firing frequency. Despite the over simplicity 

involved in this scheme, it has been exhibited some success in the case of 

particular nerve cells. For instance, the electrical activity of sensory neurons 

appears to be directly influenced by the strength of the stimulus 4. However, 

generally speaking, the brain diverse functions are too complicated to be only 

coded with the firing rate. Imagine you have two different time series; one 

looks like 0000011 and the other 1000001. Although, these time series share 

the same average firing rate but they could carry complete different 

information. Therefore, many neuroscientists believe that to decode neurons 

time series, one need to consider temporal patterns and the precise timings of 

spikes 58,59.  
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1.3.2 Brain from physicists’ point of view  

The complexity and mystery involved in the astonishing performance of the 

brain made it very attractive to the curious mind of a physicist. We, as 

physicists, understand complex systems such as the brain, by breaking it 

down to simplifying entities that can be explained by fundamental laws of 

physics.  Having said that, we see the building blocks of the brain these 

detailed biological units nothing more than simple oscillators that are 

coupled together to coordinate and synchronize different parts of the brain 

for different tasks. As György Buzsáki wrote in his Rhythms of the Brain 

book “This feature (synchrony) is built into their (oscillators) nature. In fact, 

oscillators do not do much else. They synchronize and predict. Yet, take 

away these features, and our brains will no longer work. Compromise them, 

and we will be treated for epilepsy, Parkinson’s disease, sleep disorders, 

and other rhythm-based cognitive maladies “ 5.  

 Oscillatory behavior can be seen in neuron’s individual activity such as 

membrane potential oscillations 60 or in the rhythmic firing patterns of 

neuronal network that produce different cortical rhythms in frequencies 

different than individual cells’ frequency 61. In many cases, these oscillations 

are the key for the certain brain’s function 62,63,64. There is a vast body of 

research devoted to the relationship of these rhythms and certain functions, 

examples of which are gamma rhythms recognized for its involvement in 

cognitive functions such as attention 65,66 and visual perception 67,68,69,70 or 

theta rhythms associated with memory formation and consolidation 71,72,73. 
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1.3.3 Synchrony in the brain  

The brain accomplishes different cognitive tasks, by integrating and 

coordinating enormous amount of information coming from different 

specialized functional regions. Previous studies debated that these super fast 

coordination is mediated via some transiently synchronized activity of 

functionally related neurons 74,75. But, what do we mean by synchronized 

activity of neural network? The synchronized activity of neurons can be 

defined by the simultaneous firing of a group neurons followed by a silence 

period 5. Hans Berger first detected the existence of the synchronous patterns 

of activity in 1929, after several years recording electrical activities of the 

brain in hopes of finding any scientific evidence that can prove/explain 

telepathy. Although he never proved electromagnetic transmission from one 

brain to another, he discovered brain rhythms in his recordings 5. Today we 

know of many brains rhythms and different roles that they play in the brain 

cognitive functions 5. 

 

1.3.4 In-phase versus out-of-phase synchrony  

There are different kinds of synchrony in the brain: a) In-phase synchrony or 

complete synchrony: all the neurons start and finish their cycles together, b) 

Out of phase synchrony: oscillators are synchronized by a certain phase lag 

that is maintained unchanged over time. For out of phase synchrony, one can 

think of two pendulums when the first one is at the maximum the second one 

is always at the minimum, and they constantly maintain a certain phase lag 

(π/2 ) throughout their activity. Technically these pendulums are phase-lock 
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to the same rhythm. Phase-locking is a more general form of synchrony, and 

could have a significant role in different brain’s functions. An example of 

which can be seen in hippocampal memory formation, where phase-locking 

to theta rhythm is essential for memory formation and consolidation 76. 

 

1.3.5 Synchrony in a pathological brain  

In spite of the great role of synchrony in diverse higher order cognitive 

functions, many neurological disorders such as epilepsy, Parkinson's disease, 

Alzheimer, and Schizophrenia have also been correlated to the abnormal 

synchrony 77. In Parkinson’s disease, thalamic neurons exhibit abnormal 

synchronous activity that disrupts the temporal coding of motor related 

activities and causes tremor and movement difficulties 78. Epilepsy is 

another neurological disorder, linked to the excessive synchronous activity 

of neural networks 79. Any brain under specific circumstances such as severe 

sleep deprivation or structural changes (as might happen after a head injury 

or tumor) can experience seizures. However, in the case of epilepsy patients, 

seizure starts exclusive of any physical indication, it just happens as the 

epileptic brain bears some alternations. EEG recordings from patients with 

epileptic seizures reflect a low amplitude high frequency during the pre-ictal 

period followed by high amplitude signals throughout the ictal period (Fig. 

1.7) 80. Previous studies have shown that this high amplitude recorded 

activity during the ictal period are not only hyperexcitable states due to the 

imbalanced interaction of excitatory-inhibitory neurons but also they are 

closely related to the enhanced degree of synchrony in neuronal circuits 
77,81,82. 
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Figure 1.7 EEG recordings from a patient with epilepsy. One can see high-frequency 
pre-ictal oscillations followed with high amplitude oscillations corresponding to seizure 
onset. (Image is adapted from 83) 

 

1.3.6 Understanding interaction between structure and dynamics in 

neural networks 

Brain structure, dynamics, and function are deeply intertwined. To 

understand how brain functions, it is crucial to uncover the links between 

network structure and its dynamics. To identify the link between structure 

and dynamics we take two different approaches. In the first approach we 

model simpler neural network that could potentially represent a part of the 

brain, then we study how this structure is linked to dynamics. We employ this 

approach in Chapter II and III of this dissertation. A simple example of which 

is in Chapter III where we change network structure by interpolating rewiring 



 

 24 

probability, which results in diverse range of dynamics from delayed 

propagating waves of activity to complete synchronous network activity 84.  

 

The second approach is to start with the experimentally recorded time series 

and try to decode and quantify dynamics. Ultimately we aim to link the 

dynamical changes to the brain function and speculate on the possible 

structural changes. To decode spike times we need to develop measures to 

detect statistically significant correlations. Ideally, such measures extract 

statistical significance of spatiotemporal correlations and identify emergent 

patterns in the dynamics to provide network’s functional connectivity. Such 

functional connectivity can be very beneficial to detect structural changes 

upon specific cognitive functions, for example, testing formation of new 

memories and their consolidation by creating new synapses 85,86. Where if a 

memory is formed in neuronal circuit, the consequence of strengthening 

some synapses and weakening others can manifest itself through increasing 

the functional connectivity of neurons involved in shaping the memory and 

decreasing functional connectivity of the others 32. Carla Shatz summarized 

the Hebbian learning theory as “ Cells that wire together fire together” 87.  

Thus, the spike timings of functionally connected neurons, involved in the 

new experience/memory will have a close temporal correlation. Based on the 

changes on the functional connectivity we could deduce possible functional 

and structural changes. An example of this approach is in chapter IV, where 

we examine memory consolidation by assessing the stability of network-wide 

functional connectivity over time.  
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1.4 Outline   

The overall aim of this dissertation is to uncover some of the links between 

the network structure and its dynamics, to obtain a novel insight on how the 

brain functions. We explore key factors influencing the network structure, 

dynamics, and eventually function.   

In chapter II, I investigate how the interplay of cellular properties with 

network coupling characteristics could lead network dynamics toward 

synchronous or asynchronous dynamics. More specifically, I identify 

conditions that promote synchrony in mixed networks of Type I and Type II 

neurons under varying network connectivity topologies. We show that for 

similar network structures, network synchrony may change significantly 

depending on the distribution of a number of shortcuts among Type I, and 

Type II neurons. This result is robust with changing heterogeneity, rewiring 

probability, synaptic efficacy and different fractions of Type I and Type II 

neurons.  

 To examine this effect further, for a loosely connected mixed network of 

Type I and Type II neurons with completely asynchronous dynamics, we 

create cliques by interconnecting few Type I or Type II neurons. We show if 

this clique is made of highly rewired neurons with Type II excitability, 

network has a high chance of adopting synchronous activity, however, the 

same clique of Type I highly rewired cells does not improve synchrony. 

sleep/wake These results can be of high significance in respect to 

modulation of neuronal excitability in the brain. It was shown that intrinsic 

excitability of neurons can be modulated by acetylcholine levels in the brain. 

We show that relatively few neurons expressing receptor that are sensitive to 
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the Ach levels can dramatically change network-wide dynamics. Also, the 

synchronizing role of Type II cliques may be also important for the 

pathological brain function. It has been shown that upon an injury in the 

dentate gyrus, its circuits undergo architectural rearrangement including the 

formation of new connections among excitatory granule cells. These 

changes make its circuit hyperexcitable and prone to seizure. We show that 

if there are such rearrangements that create cliques of Type II excitability, 

these cliques have the potential to drive the networks dynamics to a highly 

synchronous state. This chapter was submitted for publication in January 

2016.  

Understanding spontaneous transitions from asynchronous to synchronous 

dynamics is vital since they may separate pathological and normal functions 

of the brain. In chapter III, I develop a set of measures that quantifies and 

predict these autonomous network transitions from asynchronous to 

synchronous dynamics under various conditions. The developed measures 

are potentially very interesting since it can be calculated in real time and 

therefore potentially applied in clinical situations. This chapter was 

published in PLOS ONE journal in 2015 88. 

Chapter IV of this dissertation is devoted to the analysis of mice brain 

activity experimentally recorded in Aton’s laboratory. In this chapter, we try 

to extract dynamical underpinnings of learning and memory consolidation 

from recorded spike times. Our laboratory has developed a set of tools 

capable of drawing underlying functional connectivity of network by 

extracting statistically significant temporal correlates of spike timings.  I 

employ these tools and later compute the stability of the obtained functional 

connectivity over time, and compare this to behavioral tests for learning and 
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memory consolidation. We observed that stability is a good predictor of 

memory consolidation. I further applied these analytical methods to 

characterize the importance of network-wide oscillations to mediate stability 

and memory consolidation and showed that reduction of theta power 

oscillations leads to decrease in network stability. This chapter is part of a 

manuscript that was submitted for publication in October 2015 89 
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CHAPTER II 
 

 

Interplay between excitability type and neuronal connectivity 

in determining neuronal network synchronization 
 

 

The interplay between neuronal excitability properties and global properties 

of network topology is known to affect network propensity for 

synchronization. Here, we identify conditions that promote synchrony in 

mixed networks composed of neurons having Type I and/or Type II Phase 

Response curves, and having varying connectivity statistics. Namely, we 

study small-world networks with fixed network-wide properties, but allow 

neurons to vary the number of re-wired connections they project. We show 

that even if the global connectivity properties of the network are the same, 

network synchrony may change significantly depending on the distribution 

of the number of re-wired connections among Type I and Type II neurons.  

clusters by linking cells with the We also show that establishing higher-order 

highest number of re-wired connections may elicit synchronous activity, 

depending on the excitability type of these neurons. The work presented in 

this chapter was submitted for publication to journal of Physical Review E 

(PRE), and it was performed in collaboration with Victoria Booth, Christian 
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G. Fink, and Michal Zochowski. I performed all the simulations presented 

here, and I was involved in the overall design of the project.  

 

2.1 Introduction  

Synchronization of neuronal networks has been associated with many brain 

functions, including attention and memory formation 90,91,92,76. Aberrant 

synchrony is implicated in many pathologies of the brain, such as epilepsy 
81, Parkinson’s disease 93,94 and schizophrenia 95, underscoring the need to 

better understand mechanisms generating synchronization of neuronal 

networks.  

The emergence of synchronous spatiotemporal patterns may be explained by 

two broad classes of mechanisms: 1) excitability properties of individual 

cells, and 2) characteristics of network coupling. As it was mentioned in the 

introduction, neurons can be classified based on the bifurcation structure 

observed in the neuron’s transition to firing. Type I neurons can be identified 

with high excitability and little tendency for synchrony when they are 

coupled to other excitatory neurons. While Type II neurons are known for 

low excitability and high propensity to synchronize their spikes with other 

coupled excitatory neurons.  

Different frameworks for network connectivity have been used to investigate 

the influence of network topology upon neuronal synchronization 47. Among 

these models small-world model and scale free architecture are particularly 

appealing. The small-world model features high clustering coefficient and 

small path length. This model uses a single parameter, the rewiring 
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probability, to interpolate between a locally connected network and a 

completely random network 96. The scale free architecture introduces richly 

interconnected neurons called hub cells, which have been shown to 

orchestrate synchrony in experimental models of epilepsy 49,51,50. The 

derivative of the later is the “rich club” structure 53,52,56,54,55 characterized by 

highly interconnected hubs. Previous work has shown that correlations 

between neuronal excitability type and network structure dramatically 

influence network synchrony 24.Recently we showed, for instance, 

synchronize much more readily when hub cells are Type II excitability, 

rather than Type I 97.  

In this chapter we investigate the effect of correlations between excitability 

type and connectivity structure in a network that is composed of neurons 

having varying connectivity properties with other cells. Specifically, we use 

small-world network models with different nodal distributions of re-wired 

connections to determine the effect of correlations between neuronal 

excitability type and the number of out-going re-wired connections. We 

show that long-tailed distributions, such as the exponential distribution, may 

have higher propensity for synchronization, indicating that few highly re-

wired cells might drive synchrony in a network as a whole. Furthermore, the 

networks in which Type II cells have a large number of re-wired connections 

synchronize much better than networks in which Type I cells are highly re-

wired. We also investigate the effect of forming clusters among the highly 

re-wired cells and show that interconnecting the most highly re-wired cells 

enhances synchronous dynamics when such cells are Type II, but not when 

they are Type I. 
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2.2 Methods  

2.2.1 Phase Response Curve 

We use the phase response curve (PRC) to identify excitability properties of 

the neurons.  It is a metric that characterizes the influence of a perturbation, 

upon the trajectory of an oscillator. The PRC of an individual neuron, 

measures the shift in spike timing due to a single synaptic input: 

 Δ(θ)=!!"#$#%&'!  !!"#$%#&"'  (!)
!!"#$#%&'

                (2.1) 

where θ is the phase at which the input is received, Toriginal is the period of 

the unperturbed oscillator, Tperturbed is the duration of the spike cycle during 

which the input is received,  and Δ can be positive (phase advance) or 

negative (phase delay).  

Neurons are classified based on their PRC properties (Fig. 1b): Type I PRCs 

feature phase advances regardless of the perturbation phase, while Type II 

PRCs are biphasic, showing phase delays for early synaptic input and phase 

advances for late synaptic input. The biphasic PRCs of Type II neurons 

provides them in some sense with more flexible spike timing control than 

Type I neurons, leading to enhanced propensity for synchronization in 

excitatory networks 25,26,27. 

2.2.2 Cortical Neuron Model 

We employed a Hodgkin Huxley type neuronal model with a fast inward 

Na+ current, delayed rectifier K+ current, and a leakage current. Cholinergic 

modulation has been experimentally shown to switch cortical neurons from 
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Type II to Type I PRC 28, and we model this effect with a slow, low 

threshold K+ current (gated by gKs) responsible for spike frequency 

adaptation. Decreasing gKs from 0.8 mS/cm2 to 0.1 mS/cm2 mimics the effect 

of ACh in switching neuronal PRC from Type II to Type I 98. Therefore 

equation governing neuronal dynamics is given by: 

 C !!!
!"
= −g!"m!

! V! h V! − V!" − g!"#n!   V! − V! − g!"s V! − V!  

−g! V! − V! + I!"#$% + I!"# ,                    (2.2)  

where C =1.0µF/cm2 and Ii
syn  is the synaptic current. The synaptic current 

from neuron ‘j’ to ‘i’ is governed by: 

 I!"
!"# = Wexp − !!!!

!
   (Vi  –Esyn),        (2.3) 

tj is the spike time of neuron j, and W is the synaptic strength which was kept 

constant for all the connections, and we fixed τ=0.5 ms and Esyn=0 mV.  I
drive

 

is an externally applied current that remains constant for each neuron within 

a simulation, but depending on the heterogeneity level needed for each 

simulation the spread of external current across neurons was set 

appropriately. In all the simulations in this chapter, I
drive

 was set to generate 

average of 15 Hz with frequency spread of 26.6%, Type I:  I
drive

 = 

0.158 ± 0.038, Type II:  I
drive

 =1.22 ± 0.18. This frequency spread kept the 

same for all the simulations except those associated with figure 2.5, where 

the frequency spread changes from 0% (0Hz) to 52% (8Hz), Type I:  I
drive

 = 

0.158 ± 0.076; Type II: I
drive

=1.22 ± 0.37. The value of constant parameters 

used in this model are the same for both Type I and Type II neurons except 
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gKs which is gKs=0.1 for type I and gKs=0.8 for Type II neurons: gNa = 24.0 

ms/cm2, gKdr = 3.0 ms/cm2, gL = 0.02 ms/cm2, VNa = 55.0 mV, VK = −90.0 

mV, and VL = −60.0 mV. 

In equation (2.2) m∞  and h are responsible for activation and inactivation of 

Na current, and their dynamics are governed by m∞(V ) = 1/(1 + e(−V − 

30.0)/9.5) and  dh/dt = αh(h∞(V ) − h)/τh(V ),with  h∞(V ) = 1/(1 + e(V + 53.0)/7.0) 

and τh(V ) = 0.37 + 2.78/(1 + e(V+40.5)/6.0).The dynamics of the gating variable 

for the delayed rectifier potassium current were given by dn/dt = (n∞(V ) − 

h)/τn(V ), with n∞(V ) = 1/(1 + e(−V − 30.0)/10.0) and τn(V ) = 0.37+ 1.85/(1 + e(V 

+27.0)/15.0). Finally, the gating variable for the slow, low threshold potassium 

current was governed by ds/dt = αs (s∞(V) − s)/75.0, and s∞(V ) = 1/(1 + 

e(−V − 39.0)/5.0). 

2.2.3 Network Structure 

We model networks of 1000 excitatory cortical pyramidal cells with 4% 

connectivity (40 outgoing connections per neuron), situated in a one-

dimensional ring with periodic boundary conditions. The Watts-Strogatz 

small-world network is a popular paradigm for generating network 

connectivity, with R specifying the initial radius of local, lattice-like 

connectivity and P specifying the probability of each connection being 

rewired to a randomly chosen neuron. 

Here we modify Watts–Strogatz‘s Small-world approach by first specifying 

the mean rewiring probability (P), and consequently total number of rewired 

connections in the entire network, then employ a specified distribution to 

assign the number of rewired connections projecting from individual 
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neurons. We used three different distributions: a)  ”No Variance” 

connectivity, in which all neurons shared the same number of rewired 

connections. With p=0.15, for example, every neuron has exactly 6 out of 40 

outgoing connections randomly rewired.  b) Uniform distribution with a 

defined average and fixed variance. For p=0.15, the average number of 

rewired connection per neuron was 6, with a range of 

±4  rewired  connections  c) Exponentially decaying distribution with a 

mean of 6. We compare these connectivity paradigms with conventional 

small-world topology, which features Poisson distribution.   

2.2.4 Synchrony Measure  

The Golomb synchrony measure was used to quantify network 

synchronization 99,100. This is a simple measure based on computing the 

mean population-averaged fluctuations over an extended period of time, 

normalized to the average of individual neurons’ fluctuations. In order to 

calculate the synchrony index (λ) from spike timings, they were convolved 

with a Gaussian (2ms width), averaged across all neurons at each time point, 

and the variance across time was computed (ℴ!!) . The variances of 

individual neuronal voltage traces across time were computed, and then 

averaged over all neurons(ℴ!"! ).  λ was then computed as: 

λ = ℴ!
!

!
! ℴ!!

!!
!!!

               (2.4) 

λ is bounded between 0 and 1, zero for asynchronous dynamics and 1 for 

complete synchrony across the network. 
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2.3 Results 

The aim of this chapter is to investigate, in mixed networks of excitatory 

Type I and Type II neurons, how various distributions of individual neuronal 

synaptic connectivity characteristics affect overall network dynamics. 

Neurons with Type I PRC exhibit purely positive phase shift and respond to 

small perturbations by advancing their phase, regardless of perturbation 

phase. Type II PRC neurons response to perturbation highly depends on the 

timing of the perturbation; if perturbation happens too early in the cycle it 

delays the next spike and if it happens later in the cycle it advances the next 

spike. Furthermore, Type I neurons are highly excitable, with low firing 

threshold and steep slope for their frequency-current (F-I) curve. Type II 

neurons, on the other hand, exhibit shallower F-I curve with high frequency 

threshold (figure 2.1a,b). We employed a modified version of Hodgkin 

Huxley to model these different types of excitability, where the conductance 

of a slow potassium current determined the excitability type 98.  

2.3.1 Network structure in respect to the excitability types  

Our connectivity paradigm extends the standard small-world protocol 96 to 

consider different local distributions of re-wired connections, given a fixed 

total number of re-wired connections throughout the entire network. In the 

standard small-world connectivity paradigm, each synaptic connection is 

assigned the same re-wiring probability, which determines whether its target 

will remain a neighboring cell or be re-wired to a random target cell in the 

network (independent of their distance).  This paradigm results in an 

approximately Poisson distribution for the number of re-wired outgoing 

connections per neuron (Fig. 2.1c top).  In our modified network 
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connectivity framework, we construct uniform and exponential distributions 

for the number of re-wired connections per neuron, as well as no variance 

(where all neurons share the same number of re-wired connections) in the 

distribution. 

In these frameworks, instead of assigning a constant rewiring probability for 

each connection, each neuron is randomly assigned the number of outgoing 

re-wired connections it projects. These random assignments are drawn from 

one of the aforementioned distributions, with all distributions sharing the 

same total number of re-wired connections.  

 
Figure 2.1 Excitability type and connectivity paradigm. a, b) Frequency-current (F-I) 
curve and phase response curve (PRC) for Type I (gKs=0.1, blue curve) and Type II 
(gKs=0.8, red curve) neurons. c) Histograms of the number of neurons with a specific 
number of rewired connections for the standard Poisson  (top panels), uniform (middle 
panels) and exponential (bottom panels) connectivity paradigms for both Type I and Type 
II  highly re-wired scenarios (for a mixed network of 50% Type I PRC and 50% Type II 
PRC). In Type I highly re-wired scenarios (left column of the panel c) neurons with the 
higher number of rewired outgoing connections have Type I excitability characteristics 
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(blue bars). Type II highly re-wired scenario is displayed in the right column of panel c, 
where Type II neurons have a higher number of rewired outgoing connections (red bars). 

 

The presented results are obtained primarily for networks that all have on 

average p=0.15 global re-wiring fraction. Smaller global rewiring fractions 

resulted in very narrow distributions of re-wired connections, while higher 

rewiring probabilities led to global synchrony irrespective of the cell 

distributions (see Fig. 2.3). 

Thus in the ‘no variance’ case, for a network of 1000 neurons with 4% 

connectivity density and average rewiring probability P=0.15, each neuron 

has exactly 6 re-wired connections.  In the ‘uniform distribution with a fixed 

variance’ case, the average number of re-wired connections per neuron is 6, 

but it can vary across neurons by ±4, resulting in a uniform distribution from 

2 to 10 re-wired connections per neuron (a range of ±4 was kept constant for 

other P values as well). In the ‘exponential distribution’ case, most neurons 

have none or few re-wired connections while a small fraction of neurons 

have the majority of their connections re-wired. 

 

2.3.2 Synchrony and synaptic weight  

To investigate the interplay between the statistics of network structure and 

cellular excitability in generating network dynamics, we compare two 

different regimes: (a) Type I PRC neurons Highly re-wired, in which 

neurons with higher rewiring probability are selectively assigned Type I 

excitability and those with lower rewiring probability have Type II 

excitability (Fig. 2.1c, left column), and (b) Type II PRC neurons highly re-

wired, in which neurons with higher rewiring probability are selectively 
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assigned Type II excitability and those with fewer rewiring connections are 

Type I (Fig. 2.1c, right column).   

Figure 2.2 shows results for these two cases in a network of 1000 excitatory 

cortical pyramidal neurons with 50% Type I and 50% Type II neurons. In 

figure 2.2a, the synchrony index (measured using the Golomb 99,100 

synchrony measure for a 1s simulations, see the Methods section) is depicted 

as a function of synaptic weight when the average global rewiring fraction is 

P=0.15 and the intrinsic cellular frequency is distributed over the interval 

15±2Hz. With each different connectivity architecture, the Type II highly re-

wired (red curves) scenario exhibits significantly higher synchrony in 

comparison with the Type I highly re-wired (blue curves) scenario. In other   

words, if Type II neurons have more re-wired connections, they can lead 

both populations of neurons to synchronous activity, whereas if Type I 

neurons are those with more long-distance connections, they inhibit the 

emergence of synchronous spatio-temporal patterns. Note that in all of these 

simulations the number of out-going connections per neuron is fixed (40 

connections) but neurons can have different numbers of re-wired 

connections. The biggest difference in synchrony for Type II highly re-wired 

versus Type I highly re-wired regimes occurs for the exponential 

distribution, which has the widest range of re-wired to local connections.  In 

this regime, the excitability type of the few neurons that have all or most of 

their connections re-wired results in dramatically different network 

dynamics (Fig. 2.2b). It is notable that excessive increase in the synaptic 

strength can drive both Type I highly re-wired and Type II highly re-wired 

networks out of synchrony. This is primarily due to the mismatch of Type I 

and Type II firing rate, because of their disparate F-I curves.  
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In contrast to these mixed cell networks, the dynamics of homogenous 

networks composed solely of either Type I or Type II neurons (Fig. 2.3) are 

much less sensitive to variations in network connectivity architecture.  

Figure 2.3a displays the synchrony index for homogenous networks of Type 

I and Type II neurons as a function of synaptic weight for Poisson, uniform, 

exponential and no variance connectivity paradigms. The homogenous Type 

I networks show no signs of synchrony for any of the connectivity patterns 

(Fig. 2.3a,b).  On the other hand, Type II networks show a significant 

tendency to synchronize, and increasing coupling strength leads to highly 

synchronous dynamics in all connectivity frameworks (Fig. 2.3a,b). 

 
Figure 2.2 Synchrony in a heterogonous network of Type I and Type II excitatory 
neurons as a function of synaptic weight. a) Synchrony in a heterogonous network of 
Type I (50%), Type II PRC (50%) neurons as a function of synaptic strength for no 
variance (black solid line), uniform variance (solid lines), Poisson (dotted lines) and 
exponential (dashed lines) distributions for both Type I highly re-wired (Type I HRW 
shown in blue traces) and Type II highly re-wired scenarios (Type II HRW, red lines). 
These simulations have a rewiring probability of P=0.15 and frequency distribution of 
15±2 Hz. b) Examples of raster plots (blue dot: Type I neurons, red dots: Type II 
neurons) for exponential distribution with synaptic strengths of W=0.0075, 0.01 and 0.02.  
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Here we see an extreme increase in the synaptic weight drives the network 

dynamics out of synchrony. The previously conducted studies have shown 

that increasing the firing rate of Type II neurons leads to the disappearance 

of the phase delay region of the PRC, adversely affecting network synchrony 
97.  

 
Figure 2.3 Synchrony in homogenous networks of Type I and II as a function of 
synaptic weight.(a) Type I PRC neurons display highly asynchronous dynamics, for all 
connectivity paradigms and for synaptic weight as high as w=0.02. Homogenous 
networks of Type II neurons, however, readily synchronize for small and intermediate 
synaptic strengths. (b) Examples of network activity for Type I (upper panel) and Type II 
neurons (lower panel). Note that time scales are different. Here the exponential 
connectivity paradigm was employed, with the same parameters for Type I and Type II 
simulations (P=0.15, frequency 15±2Hz, synaptic strengths of W=0.0075 (left side) and 
W=0.02 (right side)). 

2.3.3 Synchrony and rewiring probability  

These divergent effects on network synchrony are due to the interplay 

between individual neuronal properties and network architecture, and were 

robust for low values of average rewiring probability and for different 

fractions of cell types in the network. As illustrated in figure 2.4a, the 
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difference between Type I Highly re-wired and Type II highly re-wired 

scenarios (inset) is greatest for small values of average rewiring probability, 

namely P= 0.1-0.2, which is known to represent the small-world regime. As 

P increases further, synchrony increased overall, and the differences between 

scenarios decreased, due to the introduction of many random connections.  

Differences in network synchronization between rewiring scenarios were 

obtained when the fraction of Type II cells in the network was varied from 

50% (Fig. 2.4b), with the greatest differences occurring when less than half 

of the cells were Type II (inset).  

 
Figure 2.4 Synchrony as a function of rewiring probability and Type II fraction.  a) 
Synchrony of a mixed network of 50% Type I PRC and 50% Type II PRC as a function 
of rewiring probability for no variance, uniform variance, Poisson and exponential 
distributions for both Type I highly re-wired (blue traces) and Type II highly re-wired 
(red lines) scenarios. In these simulations the average spiking frequency is 15±2Hz, with 
synaptic weight w=0.01. (b) Synchrony for a mixed network of Type I and Type II 
neurons, for different fractions of Type II neurons, where 0% Type II is a homogenous 
network of Type I and 100% is a homogenous network of Type II neurons (P=0.15, mean 
spiking frequency15±2Hz, and synaptic weights of 0.01). The inset shows the difference 
of synchrony index for Type II highly re-wired and Type I highly re-wired (black: 
uniform distribution; red: exponential, and pink for Poisson). 
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2.3.4 Synchrony and frequency Spread  

We also examined the influence of heterogeneity in driving current on the 

difference in network synchrony between the Type II highly re-wired and 

Type I highly re-wired cases. While, the mean neuronal firing frequency 

remained 15 Hz, we varied its spread around that value. When heterogeneity 

is low, networks tend to synchronize regardless of their connectivity 

structure, but by increasing the heterogeneity, Type II highly re-wired 

networks show increased synchronization, with the greatest difference 

between cases occurring for a range of 12-18 Hz (spread of 40%) for 

intrinsic cellular frequencies.  For larger heterogeneity in firing frequencies, 

networks with either rewiring distribution are not able to synchronize (Fig. 

2.5a). The example raster plots for Type I highly re-wired and Type II highly 

re-wired cases for the exponential distribution and the Poisson distribution 

are displayed in figure 2.5b.  

2.3.5 Synchrony in networks with high connectivity clusters  

We also investigated the synchrony when clusters of either highly re-wired 

Type I cells or highly re-wired Type II cells were formed. We created a 

cluster from the predefined top fraction of highly re-wired neurons by 

interconnecting all neurons within that group. Here we set the initial network 

connectivity to be such that both types of networks, Type I highly re-wired 

and Type II highly re-wired (see Fig. 2.2a) do not show significant 

synchrony. We then added connections between preset fractions of the most 

highly re-wired group of neurons. In networks with Type I highly re-wired 

neurons, interconnecting up to 12% of the most highly re-wired cells did not 

appreciably change the degree of synchrony in the system (Fig. 2.6b left 
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middle panel). In the Type II highly re-wired networks, however, even a 

small fraction of additional connections induced increased network 

synchronization (Fig. 2.6b middle right panel). 

 

 
Figure 2.5 Heterogeneity in the driving current and the synchrony of mixed 
networks of Type I, and Type II. a) Synchrony of a mixed network of 50% Type I and 
50% Type II neurons as a function of heterogeneity in the driving current for no variance, 
uniform variance, Poisson and exponential distributions for both Type I highly re-wired 
scenarios (shown in blue) and Type II highly re-wired scenarios (red lines) scenarios.  
These simulations have a rewiring probability of P=0.15 and synaptic weights of 0.01. 
The inset of Fig 2.5a shows the difference between the synchrony level of Type I highly 
re-wired scenarios (shown in blue traces) and Type II highly re-wired scenarios (red 
traces). The exponential and uniform distributions have a bigger gap than Poisson 
distribution between these two situations (black: uniform distribution; red: exponential, 
and pink for Poisson). b) Raster plots for Type I highly re-wired (upper panel) and Type 
II highly re-wired (lower panel) are shown for exponential (left side) and Poisson 
connectivity (right side) with spread of 40% in frequency.  

 

Thus these results indicate that a clique consisting of a few Type II PRC 

neurons with long-distance connections can drive network dynamics toward 

synchrony, while a similar connectivity structure involving Type I neurons 
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does not facilitate the emergence of synchronous activity (Fig. 2.6a 

comparing red and blue lines).  

To explore whether the emergence of synchrony was due to interconnecting 

Type II neurons, regardless of their connectivity, or whether the long-range 

connections made a difference, we performed simulations in which we 

interconnected Type II and Type I neurons at the bottom of the rewiring 

distributions (Fig. 2.6a green and purple traces). The uniform distribution, 

and particularly the exponential distribution, exhibited a significant 

difference in synchronization (red and green lines in the middle and bottom 

panels of Fig. 2.6a, respectively). The Poisson distribution (Fig. 2.6a, top 

panel) shows no significant difference. For the exponential distribution, 

forming a cluster of lowly re-wired Type II neurons resulted in the formation 

of domains of local synchronous activity, but overall level of synchrony was 

lower as compared to the case when the most highly re-wired Type II 

neurons formed a cluster (see raster plots marked IV and V in Fig. 2.6b). 

 

In none of the distributions did interconnecting lowly re-wired Type I 

neurons result in higher synchrony (purple traces in Fig. 2.6a).  These results 

show that the excitability type of the neurons within clique as well as 

statistics of their connectivity play an important role in facilitating the 

emergence of global synchrony. 

 



 

 45 

 
Figure 2.6 Implementing a higher order structure. a) Synchrony for mixed network of 
50% Type I PRC and 50% Type II PRC with w=0.005, when we interconnect a fraction 
of most highly rewired (HRW, taken from the top of the rewired distributions) or lowly 
rewired (LRW, taken from the bottom of rewired distributions) neurons to form 
connected cliques in Poisson distribution (top panel), uniform (middle panel) and 
exponential (bottom panel) distributions for the both Type I highly re-wired and Type II 
highly Rewired cases.   b) (top) Example raster plots for exponential distribution for both 
the  Type I highly re-wired (left, marked I) and Type II highly re-wired (right, marked II) 
cases when no cliques are present.  b) (Middle) Network activity when the top 12% of 
highly rewired neurons are additionally interconnected: left - Type I highly re-wired case 
(marked III), right Type II highly re-wired case (marked IV). b) (bottom row), Network 
activity when neurons with the lowest number of rewired connections are interconnected. 
In the Type I HRW scenario (left, marked V), the clique has Type II excitability and 
generates scattered patterns of synchronous activity. In the Type II highly re-wired 
scenario, the clique has Type I excitability (marked VI) and increases the network firing 
rate without affecting network synchrony. 



 

 46 

2.4 Discussion 

In this study we explored the interaction between excitability properties and 

local connectivity characteristics of individual neurons in affecting network 

synchronization. Namely, we investigated how the effects of structural 

network heterogeneities coupled with varying cellular dynamics can lead to 

modifications in network-wide activity patterns. The neurons in the network 

were allowed to have varying numbers of re-wired connections, while at the 

same time their excitability exhibited Type I or Type II characteristics.  We 

varied the network distributions of re-wired connections per neuron between 

Poisson, uniform and exponential distributions. We show that highly re-

wired cells of Type II excitability facilitate increased levels of network-wide 

synchrony. They form a distributed backbone in the network driving other 

cells toward synchrony. This effect was exacerbated in the re-wiring 

distribution having the longest tail (namely the exponential distribution). 

This distribution exhibited the greatest change in synchrony when the 

excitability type of the neurons with highest degree of rewiring was changed 

from Type I to Type II. This indicates that relatively few super re-wired 

Type II cells can significantly increase the level of network-wide synchrony, 

however increased synchronization is not realized when these highly re-

wired cells have Type I excitability (see Fig. 4 a and b their insets). 

 

 

The effects on synchrony being mediated by a small population of highly re-

wired Type II cells is exacerbated when we allow these highly re-wired 

Type II cells to form connected clusters. In this case even a small Type II 

cluster, irrespective whether formed from highly re-wired cells or minimally 
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re-wired cells, drives a significant increase in network-wide synchrony. For 

exponential distribution networks, the difference in improved 

synchronization induced by clusters of highly re-wired compared to 

minimally re-wired Type II cells was greatest reflecting the large differential 

in the number of re-wired connections per cell at either end of the 

distribution.   

Thus, our results indicate that heterogeneity in cellular connectivity, and 

subsequently not only first moment but also second moment of connectivity 

statistics, are important for spatio-temporal pattern formation in the network. 

This result may have significant implications for characterizing real-world 

network connectivity patterns, since often connectivity statistics are known 

only for a few identified cells. We show that relatively few cells of specific 

dynamical and connectivity properties can significantly change spatio-

temporal patterning. 

For example, these results may be pertinent when considering the 

modulation of neuronal excitability in the brain during sleep and wake 

states. It has been shown that intrinsic excitability of neurons can be 

modulated by acetylcholine levels 28– high levels of acetylcholine (Ach), 

during waking and REM sleep, drives neuronal excitability towards Type I 

behavior, while the absence of Ach, during SWS sleep, pushes excitability 

towards Type II. We show that relatively few neurons expressing receptors 

that are sensitive to the Ach levels can dramatically change network-wide 

dynamics.  

The synchronizing role of the Type II clusters maybe also is important to 

understanding pathological brain activity. It has been shown that upon an 

injury to the dentate gyrus, its circuits undergo architectural rearrangements, 
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which include formation of recurrent connections among excitatory granule 

cells. These changes make its circuit hyperexciatable and prone to 

generating epileptic seizures 101,102,103. Morgan and Soltesz showed that even 

by keeping the number of connections constant throughout the network 

while assigning more connections to a few granule cells (GC) and 

interconnecting these hubs, they can create a circuit with hyper-excitable 

characteristics prone to generating seizure like activity 104. 
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CHAPTER III 
 

 

Measuring Predictability of Autonomous Network Transitions 

into Bursting Dynamics 

 
 

Understanding spontaneous transitions between dynamical modes in a 

network is of significant importance. These transitions may separate 

pathological and normal functions of the brain. In this chapter, we develop a 

set of measures that, based on spatio-temporal features of network activity, 

predict autonomous network transitions from asynchronous to synchronous 

dynamics under various conditions. These metrics quantify spike-timing 

distributions within a narrow time window as a function of the relative 

location of the active neurons. We applied these metrics to investigate the 

properties of these transitions in excitatory-only and excitatory-and-

inhibitory networks and elucidate how network topology, noise level, and 

cellular heterogeneity affect both the reliability and the timeliness of the 

predictions. The developed measures can be calculated in real time and 

therefore potentially applied in clinical situations. This chapter was 

published in PLOS ONE journal in 2015 88. 
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3.1 Introduction 

The complex dynamics of brain networks underlies information processing 

as well as various pathologies. Epilepsy 105,106 and/or Parkinson’s disease 93 

are the most prominent examples of rapid autonomous transitions of network 

level spatio-temporal patterning from normal, largely asynchronous behavior 

into episodes of synchronous pathological activity that constitute 

underpinnings of the pathology. While, in the case of epilepsy, a significant 

fraction of seizures can be treated with medications or invasively with 

surgery, there is still large number of cases in which patients have to deal 

with a threat of impending seizures.  

Therefore it becomes imperative to develop tools which, based upon online 

monitoring of brain dynamics can predict seizure, warn the patient, and/or 

optimally, take measures (through controlled drug infusion or electrical 

stimulation) to counteract dynamical changes in the network dynamics near 

the foci that lead to seizure onset.  

There is a wealth of research being conducted that is centered on developing 

metrics and algorithms that would monitor changes in the brain activity 

(usually EEG signals or intracranial recordings) and predict impending 

seizures 107,108,109,110. Existing measures have relatively low success rates 

providing a lot of false positives or false negatives 111,112,113,114. Others 

analyzed the activity of network and individual neurons around the epileptic 

onset 80,115, 116,117,118. 

In this chapter I take somewhat different approach. We developed a set of 

measures to study early spatial features of network reorganization upon 
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impending transition into bursting dynamics. Namely, we investigate 

whether and under what conditions we can identify and later detect early 

dynamical signs of transitions from synchronous to asynchronous dynamics 

in highly simplified settings. In loose terms we assume that the 

asynchronous mode of activity corresponds to interictal dynamics while 

synchronous activity corresponds to seizure itself. While this is clearly an 

oversimplification the goal of this chapter is to elucidate universal properties 

of transitions between those two modes of activity. 

 To make the settings at all relevant to possible clinical applications, the only 

information we utilize is the relative spatial positions of the neurons and 

their spiking activity patterns. This could in practice correspond to multiunit 

information obtained from two or more depth electrodes placed in the brain. 

We further assume that we have access to this information in the brain 

region corresponding to localized seizure foci and that transition in this 

region alone will generate distributed seizure dynamics. 

 We do not tackle the problem of how do synchronous dynamics spread 

throughout the brain. We investigate the aforementioned transitions within 

ring of excitatory only or excitatory- and-inhibitory integrate- and-fire 

neuronal networks. This model has been used for more than a century and 

still is widely used due to its low computational cost, broad range of 

applications, simplicity along with accuracy 7,119. Even though that the LIF 

model is one of the simplest models of neuronal dynamics it can reproduce 

number of biologically observed spatiotemporal patterns depending on the 

connectivity, synaptic weights, inhibitory feedback, noise and heterogeneity. 

In 1991 Abeles, showed that if network wires randomly, tight temporal 

synchrony in order of milliseconds could be easily attained 120. However, 
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Hopfield and Herz studied a network of locally connected integrate-and-fire 

oscillators neurons and they observed mostly asynchronous dynamics unless 

very late in the simulation (more than a hundred periods in a network) that 

invalidate any importance of synchrony in coding information comparing 

with biological short time scales of decision making 121. This result was 

partially explained by D. Hansel et al, who investigated dynamics of purely 

excitatory homogeneous and fully connected networks of LIF and Hodgkin-

Huxley model 122. They showed that depending on the type of neuronal 

Phase Response Curve (PRC) excitation for neurons with Type I 

characteristic is mostly desynchronizing, however in neurons with Type II 

properties, excitation can lead to synchrony. Campbell and Wang (1999) on 

the other hand showed that network can reach synchrony much faster than 

the original estimate (within a few periods), they showed that the time 

needed to reach this synchrony is a logarithmic function of the network size 
123. At the same time it was recently shown that noise statistics itself could 

dramatically change neural spiking properties 124. Brunel on the other hand 

investigated the effect of added inhibition into the excitatory oscillators 125. 

He studied the dynamical properties of a network of sparsely randomly 

interconnected excitatory and inhibitory spiking leaky integrate-and-fire 

neurons. He showed that the networks could switch between synchronous 

and asynchronous activity, consisting of the propagating waves of activity, 

depending on driving frequency and excitatory-inhibition inter- actions. 

Along these lines, Tsodyks, et al. showed that excitatory-inhibitory network 

of LIF neurons that are interconnected with nonlinear synapses can adopt a 

synchronous activity associated with population bursts intermittent with long 

periods of asynchronous activity 126. These types of transitions have been 

studied recently within the framework or extreme events 127. 
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3.2 Methods  

3.2.1 Spiking Neuron Model 

The Leaky integrate-and-fire (LIF) model was used to simulate network of 

excitatory and interacting excitatory-inhibitory neurons. The evolution of the 

voltage across the membrane of neuron ‘j’ is defined as follows: 

C !!
!

!"
= −𝛼! 𝑉! − 𝐸 + I!"# + 𝐼!"#

!           (3.1) 

Where Vj and C are the voltage and capacity across jth neuron’s membrane, 

respectively. The constant α is the leak conductance of the cell that is 

minimally different for each neuron and chosen from Gaussian distribution 

(µ=1, SD=0.05). Here Iext is an externally applied current to each cell. 

Depending on the network model studied (i.e. whether the transitions are due 

to the noise or to the significant firing frequency mismatch) it can be 

identical for all of the neurons’ external current that excitatory neuron 

receives: Ie
exc = 1.05 (the steady state is for most cells just above threshold), 

external current that inhibitory neuron receives: Ii
exc=0.95 (just below the 

threshold for most cells), or it can be taken from a uniform distribution 

(Ie
exc=1.05, SD=0.1 and Ii

exc=0.95, SD=0.05). After the electrical potential 

across the cell membrane achieves the threshold set to VT = 1, the cell fires 

an action potential and its membrane potential is reset to Vreset. We set 

resting-potential ‘E’ and reset-potential ‘Vreset’ equal to zero. Immediately 

after neuron spikes, the cell enters the refractory period (Tref =1.5ms). This 

synaptic input from presynaptic cell into the postsynaptic cell can be positive 

or negative depending on its excitatory or inhibitory character of the 

presynaptic cell and is defined as follows: 
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𝐼!"#
! = 𝜔∑𝐴!"(𝐻 𝑡 − 𝐻 𝑡 − 𝜏   )    (3.2) 

Where i and j are presynaptic and postsynaptic neurons, respectively. The ω 

is the efficacy of connection between presynaptic and postsynaptic neurons; 

A is the adjacency matrix, H (t)-a Heaviside function, and τ=1ms represents 

the spike duration. We used Euler method with step size h≈0.01ms 

(estimated from time duration of the spike) to integrate LIF equation for the 

network. For networks dynamics incorporating stochastic component, we 

defined noise as a lighting bolt arriving randomly at each cell with 

predefined probability. Its arrival at a given site caused the cell to fire 

instantaneously independent of the membrane voltage, unless the cell was 

currently spiking or in its refractory time. 

 

3.2.2 Networks Structures 

The excitatory only network is composed of 200 excitatory neurons forming 

a 1-D ring structure. The small-world framework was used to vary 

continuously the network connectivity depending on the rewiring probability 
45. This rewiring breaks a local connection that comes from presynaptic 

neuron and forms a new random connection to any other postsynaptic 

neuron that didn’t have connection before. Thus the network connectivity 

can vary from local connectivity (Pe=0), to the random connectivity (Pe=1). 

Every neuron establishes 8 connections to its neighbors (i.e. R=4). 

For interacting excitatory and inhibitory systems we added a corresponding 

network of 200 inhibitory cells. Thus here the network connectivity pattern 

is defined by two parameters (Pe and Pi). Every excitatory cell makes 8 
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connections to other excitatory and inhibitory cells, every inhibitory cells 

makes also 8 connections to both other inhibitory and excitatory neurons. 

The synaptic weight for connections originating from excitatory cells is 

ωe=2.2, while that of inhibitory neurons ωi=0.8. 

 

3.2.3 Analysis 

In order to identify type of the networks’ dynamics (asynchronous versus 

synchronous) and characterize their transitions, we created a measure based 

on the relative timing of each neuron’s with respect to other neurons in the 

system (TD). We divided time of simulation into number of equal length 

time-windows. The length of the time-window was set to be the average 

spike frequency in the network. At each time window, the minimum time 

difference between every neuron’s spike within that window and all other 

cells is computed (regardless whether the other cells spike within that time-

window). If there is more than one spike per neuron in a time window we 

choose the earliest spike’s time for the given neuron. This calculation is 

repeated for all the consecutive time windows. These times are then sorted 

based on the physical distance between neurons and the histogram of the 

mean times at every distance is resulting in distinct spatial vector TD 

generated for every time window. The example of TD is illustrated using a 

color plot on figure 3.4, where vertical axis represents the distance between 

two neurons; horizontal axis is showing the time of simulation. The color 

scale indicates the TD values. We define TM as (spatial) average of TD and 

use its value to detect temporal location of the transitions into and out of the 
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bursting regime. To characterize the properties of the TD vector near the 

transition point we calculate its spatial derivative d TD. Finally we calculate 

dTM, which is the average value of dTD and also variance of TD and d TD. 

 

3.2.4 Onset and slope of the transition 

We want to use measures characterizing properties of TD to detect 

precursors of the transitions into the bursting dynamics. We calculate the 

values of the abovementioned measures in the time windows immediately 

preceding the onset of the bursts (as defined by the TM). We then calculate 

the ratios of the measures progressing forward in time. Therefore we 

calculate RN=MN+1/MN), the ratio of the (generalized) measure ‘M’ 

calculated ‘N’ time-windows before the burst onset (N = 0, 1, 2, 3, 4, 5). If 

the RN is significantly different from unity we assume that spatial patterning 

within this time window is persistently and significantly different from that 

in the prior window. The lead-time is defined as the number of time 

windows prior bursting onset within which the spatio-temporal network 

pattern undergoes significant change with respect to the one observed in a 

window before. This lead-time is then averaged over many realizations of 

bursting transitions. 
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3.3 Results 

3.3.1 Characterization of network dynamics 

We first characterize the simplified neuronal network dynamics and 

investigate how distinctive network properties such as the connectivity 

structure, noise and inhibition can shape its dynamics and influence the 

properties of transitions between different modes of activity patterns. Here 

we generally differentiate transitions from/into bursting regime to be driven 

by noise (modeling uncorrelated input from other parts of the network) and, 

separately those generated internally by the network, caused by distribution 

of cell intrinsic frequency. 

 

3.3.2 Excitatory networks with deterministic and noise driven dynamics. 

First we investigated the dynamics of a network consisting of 200 integrate-

and-fire excitatory neurons in 1D ring structure and examine its spatio-

temporal patterning as a function of noise, external current and its 

underlying connectivity pattern. The neurons are set to fire spontaneously as 

they are driven by constant current or random input. The three stimulation 

types are intended to simulate cellular changes due to the intrinsic neuronal 

excitation (constant current), input coming from other brain modalities 

(random input), or both. 

It is well established that the dynamics of a neuronal network is highly 

dependent upon its structure; here we use small-world paradigm to vary 

network connectivity using excitatory rewiring probability Pe. Accordingly, 
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here we show three major classes of network activity pat- terns can be 

formed for local, small-world and random topology in figure 3.1a–d 

respectively. The panels depict raster plots (left column; blue dots denote 

action potentials) and histograms (right column) of interspike Intervals (ISIs) 

associated with fully deterministic dynamics (no noise) of networks having 

different connectivity patterns. For Pe=0 (Fig 3.1a), i.e. for networks having 

exclusively local connectivity, we observe low frequency propagating chains 

of activity. Given that there is no input noise in the network, and the fact that 

a constant external current initiates the activity, one can observe repetition of 

the traveling wave-forms over time. The corresponding ISI histogram is very 

narrow. 

Figure 3.1b depicts activity around the small-world regime (Pe=0.15), where 

most connections are local and few of them are rewired to form long 

distance connectivity. The Small-world regime is known for high clustering 

and short path lengths and has been shown that the brain possibly shares 

these connectivity features 46,48,128,129,130. 
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Figure 3.1 Dynamics of a network of 200 excitatory integrate-and-fire neurons with 
deterministic (left column) and noise-driven (right column) dynamics. (a-d) Raster 
plots and ISI histograms associated with deterministic dynamics of networks having 
Pe=0, 0.15, 0.4 and 1 respectively (blue dots denote timing of neuronal action potential). 
(e-h) Same as panels (a-d) for noise driven networks (noise frequency = 0.00005). (i) 
Changes of mean ISIs as a function of rewiring parameter for noise driven identical 
(Ieext=1.05, fN=0.00005 blue line), non-identical (Ieext=0.95–1.15, fN=0.00005, green 

line) and deterministic dynamics for non-identical neurons (Ieext = 0.95–1.15, red line). 
(j) Changes in mean ISI duration as a function of noise level for an excitatory network 
with Pe=0.15 for both identical (Ieext=1.05, blue line), and non-identical neurons (Ieext = 
0.95–1.15, green line)84.  

 

 

(a) 

(b) 

(c) 

(d) 

(i) 

(e) 

(f) 

(g) 

(h) 

(j) 
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The associated dynamics consists of two phases (Fig. 3.1b): 1) short 

irregular propagating waves of activity that collide occasionally and, 2) 

globally synchronous activity. At the same time, addition of few random 

connections causes ISIs to shift toward lower values reflecting the higher 

firing frequency. These kinds of dynamics were reported earlier and were 

also observed in various brain modalities during normal function and 

pathology 131,132,133,134,135. With Pe=0.4, random connections are frequent 

enough to transform the dynamics into a single synchronized phase. 

Interestingly in the ISI histogram we see two distant peaks the main peak 

corresponds to the dominating low-frequency synchronous activity patterns, 

whereas the small high-frequency peak is due to the asynchronous activity 

appearing sporadically.  

Finally, figure 3.1d illustrates networks with exclusively random 

connections (Pe=1). Where, we observe stable synchronous bursting with 

frequency much lower than the small-world regime. Figure 3.1e–h 

correspond to the same network structures as those presented in figure 3.1a–

d, respectively, but with the addition of the background noise (please refer to 

methods). Here, the spatio-temporal patterning is similar to the fully 

deterministic case, with generally shorter episodes of bursting dynamics, 

more rapid transitions into and out of those regimes and more pronounced 

episodes of asynchronous dynamics especially for those Pe values around 

the small-world region. 

Changes in the mean ISI values as a function of rewiring parameter are 

plotted for deterministic dynamics of non-identical neurons and noise-driven 

dynamics of both identical and non-identical cells (Fig. 3.1I). The general 
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pattern for all cases is similar, large ISI for local connectivity pattern 

(Pe=0.0), followed with a significant drop for small-world connectivity 

regime (Pe=0.15–0.2), and then increase of ISI values in more random 

network topologies (Pe>0.3). This data shows that firing rate is somewhat 

higher when both heterogeneity and noise present (green line) at Pe=0.15, 

and it reduced and shifted to Pe=0.2 either with eliminating the noise (red 

line) or heterogeneity (blue line). Albeit not surprising that the overall 

frequency increases with addition of noise (additional excitatory input), it is 

interesting that the frequency changes are more pronounced for random and 

local network connectivity than the small-world regime. The noise effect on 

ISIs values for both identical (Ieext=1.05, blue line) and non-identical 

neurons (Ieext=0.95–1.15, green line) are shown in (Fig. 3.1J). For the 

intermediate and low values of noise, the cell heterogeneity significantly 

lowers the average of ISI while for the higher levels of the applied noise 

there is no significant difference in the firing rates. 

Here we will be primarily interested in characterizing transitions between 

bursting and synchronous activity patterns for different network cellular and 

network properties. To better illustrate the transitions between the 

synchronous and asynchronous regime we plotted raster plot with and 

example of such transition (Fig. 3.2a) together with cumulative signal of 

network activity (Fig. 3.2b) and example of voltage traces (Fig. 3.1c) near 

the transition point.   
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Figure 3.2 Network activity and individual neurons’ voltage profiles before and 
after transition into synchronous dynamics. (A, B) An example of raster plot and 
cumulative network activity pattern for a system composed of 200 excitatory neurons, 
transitioning from asynchronous to synchronous dynamics. (C) Example of voltage traces 
of two pairs of neurons ([10, 11], [90,91]) where neurons in each pair are neighbors but 
the pairs are distant from each other84. 

 

Depicted example corresponds to the network where neurons obtain constant 

input. We observe, not surprisingly, that the pairs on neurons lying in spatial 

proximity are generally more synchronous that those positioned far from 

each other. Furthermore one can observe that during the asynchronous 

period the dynamics of the pairs is driven by mostly common asynchronous 

signal causing their activity to desynchronize, while during bursting they 

respond collectively to large network input. 

(a) 

(b) 

(c)  

 



 

 63 

3.3.3 Excitatory-Inhibitory networks with deterministic and noise 

driven dynamics. 

Next, we investigated how the various topologies of inhibitory connectivity 

affect the network’s spatio-temporal patterning. In order to do so, we created 

two corresponding rings of excitatory and inhibitory cells. The inhibitory 

neurons send same number of connections as excitatory neurons to other 

inhibitory and excitatory neurons, but their synapses are weaker than those 

originating from excitatory neurons. Inhibitory neurons are connected using 

the same framework as excitatory cells—initially these neurons are 

connected locally and then rewire part of those local connections based on 

the inhibitory rewiring parameter (Pi), figure 3.3a. To look at the effect of 

inhibitory network’s connectivity pattern on the excitatory dynamics, we 

kept the excitatory rewiring parameter (Pe) fixed and varied the inhibitory 

rewiring parameter (Pi=0–1). Figure 3.3 presents results for the case when 

Pe=0.15. In case of local inhibition (Fig. 3.3c) we observed a strong 

suppression of propagating chains of activity in excitatory network in 

comparison with the excitatory only network dynamics (Fig. 3.3b). This 

suppression is evident during asynchronous activity regimes. The shape of 

synchronous burst does not change significantly.The increase of the 

inhibitory rewiring parameter (Pi) causes complex changes to the spatio-

temporal firing pattern of the excitatory cells (Fig. 3.3c–e). The firing chains 

within the asynchronous dynamics increase in length, however at the same  
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Figure 3.3 Interaction of excitatory and inhibitory networks for varying inhibitory 
connectivity in networks with deterministic dynamics. (a) Topology of interacting 
network of excitatory and inhibitory neurons. Here Pe = 0.15 and inhibitory connectivity 
changes from local (Pi=0) to random (Pi = 1). (b) Excitatory only neurons with Pe = 0.15 
when there is no inhibitory feedback. (c) Pi = 0, (d) Pi = 0.2, the local propagating waves 
in the asynchronous regime are destroyed. (e) Random inhibitory connections (Pi=1), the 
firing frequency reduces significantly, while the propagating waves are longer and the 
synchronous bursting is suppressed. 

 

time the synchronous bursts become suppressed for high Pi values (see Fig. 

3.3e). Furthermore, the overall frequency of the firing tends to decrease with 

(a) 

(b) 

(c) 

(d) 

(e) 
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Pi. This is due to rapid spread and equalization of inhibition through out the 

network. 

 

3.3.4 Identification and quantification of observed dynamical regimes 

As we showed above, networks having different properties such as 

underlying structure, noise and different inhibitory connectivity pattern 

exhibit distinctive dynamics. In most regimes however we do observe 

periodic transitions from asynchronous (or less synchronized) to 

synchronous (or more synchronized) modes of activity. We set out to 

characterize these different patterns of activity and ultimately elucidate the 

predictive dynamical features of transitions between these dynamical 

regimes. In particular we want to investigate under what conditions (if any) 

these features can be identified sooner rather than later, and thus, reversing 

the question, can they tell us something about the underlying network 

properties. 

Since the changes in network activity patterns are rapid, we cannot apply 

measures that are based on long temporal averages, as this would obscure 

the transition detection. Thus, to characterize the dynamics we developed a 

set of measures based on assessment of instantaneous changes in adjacent 

spike-timings of neurons. Based on the observations reported in previous 

section, the underlying idea of the proposed measures is to analyze, instead 

of changes in temporal distributions, instantaneous properties of spatial 

distributions of neuronal activity in given time windows. The major 

advantage of the developed metrics is that they are simple to compute based 
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on the data that is readily available from recordings and thus can be applied 

directly to in vivo or clinical measurements. While the exact positions of the 

recorded cells are clearly unknown, one can ultimately divide the neural 

populations as coming from the same electrode (cells are nearby) and 

coming from other electrodes placed at various distances. 

The specific question we want to answer is if, and if so, how much before 

the ultimate synchronous state can we detect changes in spatial network 

activity patterns. Also, we want to elucidate nature of this transition (e.g. is it 

a nucleation of locally synchronized groups of neurons)? 

Here we divided the spiking data is divided into equal size time-windows 

with their duration matching the mean ISI observed in the network. Next, we 

calculate the time difference between closest (temporarily) spikes of every 

cell that fired within given window and every other cell in the network. 

These spike timings are then sorted based on the actual spatial distance of 

neurons (Fig. 3.4a)—below we will refer to this vector as TD. We then aim 

to statistically characterize the properties of this vector as a function of 

network state, and more importantly near the impending transition into 

bursting. 

Figure 3.4 shows an example of the raster plot (Fig. 3.4b) and computed TD 

vector for the consecutive time windows (Fig. 3.4c). The color scale denotes 

the time difference between the spikes (note that scales are significantly 

different for different network structures). Figure 3.4d depicts the spatial 

derivative of TD (dTD), while figure 3.4e is the mean of TD for a given time 

window (TM). We will use the TM to identify the onset and offset of the 

bursting regime. We do this by setting a threshold value of TM below which 
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we considered that the network dynamics is largely synchronous. While this 

is to some extend arbitrary the results presented below are (within a range) 

largely independent of the exact value of the threshold chosen. The dotted 

line on figure 3.4e denotes the threshold of transition between the two 

(asynchronous and bursting) regimes. One can easily observe, that the values 

of TD are highly dependent on the distance between the cells. The universal 

property for all network structures (except when Pe=1, see below) is the 

rapid loss of this distance dependence during the transition. We aim to 

statistically analyze and characterize properties of these transitions. 

The developed metric is quite sensitive to the changes in the network 

dynamics across various network structures and detects even small 

variations in the overall observed pattern of activity. An example of such is 

presented in figure 3.6. This figure depicts changes in relative neurons’ 

firing pattern as a function of their relative distance reported by the TD, for 

various connectivity structures of excitatory network (Pe=0; 0.15; 1.0). 

While the network spatio-temporal patterns are significantly different in the 

three cases, the metric picks up the bursting regime without difficulty. 

Moreover the internal structure of the TD vector can shed the light on the 

intra-burst dynamics of the network. 

The spatial extend of the changes in TD provides information about the 

correlation lengths between neuronal activities generated by propagating 

waves in the network. Thus when all connections are local and the average 

timing difference between spikes of neurons grows with their actual distance 

consistent with the long traveling chains of neuronal activities (Fig. 3.6a). 

On the other hand, when the network has small-world connectivity pattern 
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(Pe=0.15), we observe much more complex correlation structure with 

significantly decreased correlation length. 

 

 

 

Figure 3.4 Characterization of the spatio-temporal dynamics of the network. (a) To 
characterize instantaneous spatial patterning in the network, we calculate the minimum 
time interval between each neuron’s spike in the time-window (blue filled circles) with 
all other neurons’ spikes and sort these timings based on their spatial distance. The left 
side of panel A shows the calculation for the a time window that has a asynchronous 

(a) 

(b) 

(c) 

(d) 

(e) 
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activity with relatively large and highly variable time intervals; the right side panel 
depicts calculation for the time window with a synchronous activity and minimal time 
differences between the spikes. (b) An example of raster plot obtained from noise driven 
excitatory only network PE=0.15,noise frequency f=0.00005(c) Color plot of consecutive 
TD calculations; colors indicate the closest timing between spikes of neurons in the given 
window with all other neurons in the network. (d) Spatial derivative of TD (dTD) in each 
time window. (e) Mean of TD for consecutive time windows (to which we refer as TM). 
The dotted line is a cutoff, which we will use to identify the initiation of the bursting 
dynamics. 

The distribution of the local extrema in the TD again corresponds to the 

shorter chain lengths of activity in the raster plot (Fig. 3.6b). Finally, when 

all the connections are random (Pe=1), one can still observe changes in 

timing differences allowing for differentiation of dynamics between less and 

more synchronous network states. However there is no internal correlation 

within the given TD. In figure 3.6c we pick few time-windows and show 

how these relative timings change as a function of actual distance for 

different structures: local, small- world and random. In case of local 

connections these timings increase monotonically with in- creasing spatial 

distance while in small-world structure there are local maxima and minima 

corresponding to the size of broken traveling chains. Finally in case of solely 

random connections there is no clear relationship between spike timings and 

spatial distance. In figure 3.6d we showed changes in spatial derivatives for 

the same time windows. 

 

3.3.5 Characterization of dynamical regimes using the developed 

metrics. 

First we set out to investigate the duration of the two (asynchronous and 

bursting) network regimes. We use the evolution of TM to detect network 
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durations in respective regimes. The threshold defining the onset of the 

bursting regime is set arbitrarily, however its specific value did not influence 

significantly the obtained results. We studied duration of the bursting regime 

for both excitatory only and excitatory-inhibitory networks as a function  

 

 

Figure 3.5 Sorting temporal distances based on neuron ID. Here all the temporal 
distances are sorted based on the neuron ID, where deep blue represents synchronous 
activity and brighter colors for less synchronous activity (middle left). The average this 
temporal distances across neurons at each time-window it creates a measure 
distinguishing synchronous versus asynchronous dynamics (bottom trace).  However, the 
average of these temporal distances over time for each neuron distinguishes neurons that 
are initiating asynchronous dynamics (right trace).  
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Figure 3.6 Raster plots and corresponding TD and dTD for selected time windows 
in an excitatory network. Where the left, middle and right column are associated with 
Pe = 0, Pe = 0.15, Pe = 1 respectively. (a) Raster plots; (b) Spatio-temporal changes of 
TD; (c) Examples of TD evolution with distance for selected time windows (marked of 
b); (d) examples of derivative of TD at the same time points. 
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Figure 3.7 Characterizing the effect of noise level and connectivity structure on the 
dynamics of excitatory network. Characterizing the effect of noise level and 
connectivity structure on the dynamics of excitatory network. (A) Fraction of time 
network adopts synchronous dynamics as a function of rewiring parameter for noise 
driven identical (Ieext =1.05 for all neurons fN=0.00005, blue line), non-identical (Ieext 
= 0.95–1.15, fN = 0.00005, green line) and deterministic dynamics for network of non-

identical cells (Ieext =0.95–1.15, red line). (B) The effect of the increasing noise level on 
the dynamics for the excitatory-only network with Pe = 0.15 for noise driven identical 

(Ieext = 1.05 for all neurons, blue line) and non-identical (Ieext = 0.95–1.15, green line). 

 

of topologies of both networks and also as a function of noise level. Figure 

3.7 shows the fraction of time spent in the bursting regime for excitatory 

only networks as a function of these parameters. Figure 3.7a reports this 

fraction as a function of network connectivity (Pe) for three types of 

networks. The first are the networks composed of identical neurons (same 

driving excitatory current Ie=1.05; see methods) having transitions between 

synchronous and asynchronous dynamics driven by the noise (fN=0.00005). 

The second network type is not driven by noise, but at the same time its 

elements are not identical in terms of their driving current and thus their 

(a)                   (b)         
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intrinsic firing frequency (Ie=0.95–1.15; note that the mean Ie = 1.05). 

Eventually the third one is driven by noise and its neurons are non-identical 

in terms of the driving current (fN=0.00005, Ie=0.95–1.15; mean Ie=1.05, 

green line). As observed earlier (Fig. 3.1) the fraction of time spent in 

synchronous regime increases significantly with increasing Pe. At the same 

time, for small-world regime, heterogeneity of neurons along with noise 

(Fig. 3.7a, green line) considerably lowers the fraction of time spent in 

synchronous dynamics. However, there is no significant difference between 

noise driven transitions and those cause internally by cell heterogeneity. For 

higher Pe values (Pe>0.3), the neuronal heterogeneity nor/and noise does not 

change the duration of bursting dynamics significantly. 

On the other hand the effect of noise on the dynamics for the excitatory 

network is illustrated in figure 3.7b. Here we vary the noise level (i.e. the 

probability of occurrence of random spikes) for the two networks: those 

having identical driving current applied to all cells (blue line) and those 

having driving current randomly chosen from a distribution Ie = 0.95–1.15 

(green line). The fraction of time spent in synchronous dynamics is 

suppressed with the increased levels of noise, but also depends strongly on 

cellular heterogeneity. 

We analyzed in similar fashion the effect of the inhibitory topology on the 

spatio-temporal dynamics of the excitatory network (Fig. 3.8). As before we 

investigated the dynamics of three types of networks—the noise driven 

dynamics of networks composed of either identical neurons, non-identical 

neurons and fully deterministic dynamics of networks composed of non- 

identical cells (both excitatory and inhibitory). The mean driving current of 
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the inhibitory cells was set to be Ii =0.95—effectively below spontaneous 

firing threshold. Thus their firing was driven only by the excitatory network 

and/or noise. The connectivity of the excitatory networks was kept constant 

at Pe=0.15 and we varied the inhibitory connectivity (Pi=0.0–1.0). 

Interestingly the small-world regime of inhibitory connectivity corresponds 

to the largest fraction of time spent in synchronous dynamics (Fig. 3.8). As 

expected overall fraction of time that network spent in synchronous 

dynamics is lower in the presence of both noise and heterogeneity (green 

line). It is interesting to note that network spends most time in synchronous 

bursting regime when Pi=0.15 (small world topology) and it significantly 

decreases for random inhibitory network structure. This could indicate that 

changes in overall inhibitory network structure for example due to axonal 

sprouting could lead to network more prone to bursting. 

 

Figure 3.8 Fraction of time that the network spent in the synchronous regime. The 
synchronous fraction of dynamics as a function of inhibitory connectivity when 
excitatory connectivity is in small-world regime (Pe = 0.15), for: 1) noise driven identical 
neurons (fN = 0.00005, Ie = 1.05,Ii = 0.95; blue line), 2) non-identical neurons (fN = 
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0.00005, Ie = 0.95–1.15, Ii = 0.9–1.0; green line), and 3) deterministic dynamics of non-
identical neurons (no noise, Ie = 0.95–1.15, Ii = 0.9–1.0; red line). 

 

3.3.6 Network transitions from asynchronous to bursting regime.  

The ultimate goal of this chapter is to characterize network transitions and 

their predictability from asynchronous activity into the bursting regime. 

Here we limit the meaning of predictability to identification of first signs of 

transition to bursting dynamics before the transition itself takes place. Thus, 

we setout to identify the predictive dynamical features of the transitions as 

well as their first occurrence relative to the closest transition time, through 

further analyzing of the TD vector near the transition points. Specifically we 

utilize measures such as TM (mean value of all TD values), variance from 

the mean of TD values and variance of dTD (the spatial derivative of TD, 

see figures 3.4 and 3.6) to detect precursors of the transition preceding the 

bursting onset. As we will show below, we observed systematic changes in 

these measures prior to the onset of transitions into the bursting. These 

changes can be interpreted as the early features of incoming transition (or 

beginnings of the transition itself) and based on that we can obtain lead-time 

estimate to the in- stance when fully synchronous state takes hold (see 

methods). We characterize this transition predictability as a function of 

topologies of both excitatory and inhibitory networks, heterogeneity of cells 

and noise levels. 
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Figure 3.9 The effect of inhibitory connectivity on the lead-time, TL. (a) the ratio of 
measures (TM: blue line, Variance Of TM: red line, Variance Of dTM: green line) before 
and after the onset of the transition into the bursting is shown for Pi=0.2 (top) and Pi=1 
(bottom), respectively; Pe=0.15, fN=0.00005. (b) Based on these ratios, TL is calculated 
as a function of the inhibitory connectivity pattern. TL peaks for Pi=0.2 and then 
decreases for more random inhibitory topologies. 

 

We want to use measures characterizing properties of TD to detect 

precursors of the transitions into the bursting dynamics and calculate the 

lead-time TL (or predictability) to the transition, as a time period before the 

transitions, during which we can detect significant changes in dynamics, as 

reported by the developed metrics. First, we measure the values of the 

aforesaid metrics in the time windows immediately preceding the onset of 

the bursts (as defined by the TM). We then calculate the ratios of these 

values obtained in the consecutive time windows. Thus, we calculate RN = 

MN+1/MN, where RN denotes the ratio of the (generalized) measure ‘M’ 

(a)                    (b)  
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calculated ‘N’ time-windows before the burst onset (N = 0, 1, 2, 3, 4, 5). We 

then average the ratios over all the realizations of transitions for given 

network type.   

 

 

Figure 3.10 TL varies as a function of inhibitory connectivity (Pi) for excitatory 
networks with different values of Pe. (a) Pe = 0.0, (b) Pe = 0.15 and (c) Pe = 1.0 where 
blue, red and green lines are standing for obtained TL based on the TM, variance of TM 
and variance of dTM measures respectively. 

 

If the RN is significantly different from unity we assume that spatial 

patterning within this time window is persistently and significantly different 

from that in the prior window. At the same time, the lead-time is defined as 

the number of time windows prior bursting onset within which the spatio-

temporal network pattern undergoes significant change with respect to the 

one observed in a window before. We defined “predictability” or Lead-time 

as a number of windows prior to the onset of bursting when the ratio is 

significantly different from one. 

Figure 3.9 depicts estimation of the lead-time as a function of inhibitory 

(a)            (b)          (c)  
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network connectivity. The vertical dashed line (Fig. 3.9a-top and bottom) 

denotes the transition point into bursting dynamics. We report the ratios of 

three derivative measures of the TD vector (TM, spatial variance of TD and 

its spatial derivative, dTD vector, for given time-window) calculated in the 

times windows N+1 and N before and after the transition (N=0, 1, 2, 3, 4, 5). 

Figure 3.9b shows lead-time (TL). All three measures used show significant 

changes before the transition to bursting. The changes in variance of both 

TD and of dTD show the largest changes before the transition point. 

However in terms of estimated lead-time TM performs somewhat better (see 

also figures 3.10 and 3.11). The excitatory network topology is fixed 

(Pe=0.15) and neurons are identical (Ie=1.05) driven by noise (fN=0.00005). 

The connectivity pattern of the inhibitory network is being changed from 

local (Pi=0) to random (Pi=1). The examples of the ratios of the three 

metrics at the consecutive time-windows are depicted for Pi=0.2 (Fig. 3.9a) 

and Pi=1 (Fig. 3.9b). We observe that depending on the inhibitory topology 

all three measures report different predictability intervals—with longer ones 

being reported for Pi=0.2. Figure 3.9c reports the lead-time as a function of 

the inhibitory network connectivity. As mentioned before the size of time 

windows depends on spiking frequency. If we assume that the mean spiking 

rate is around 10-20Hz the lead-time can be estimated to be up to 200-400ms 

(4 time-windows). While not a lot, this maybe enough to provide electrical 

stimulation to disrupt pathological pattern. 
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Figure 3.11 The effect of noise on the lead-time of the transitions for both excitatory 
and interacting excitatory-inhibitory networks. (a) Excitatory networks (Pe=0.15); (b) 
excitatory and inhibitory networks (Pe=0.15, Pi=0.0). Solid lines denote simulations in 
which all neurons receive identical external current (Ie=1.05, Ii=0.95), while dashed-lines 
are representing simulations with distribution of external currents (Ie= 0.95–1.15, Ii 
=0.9–1.0). 

 

To better understand the interaction of the excitatory and inhibitory 

topologies on the lead- time (TL), we explored the effect of inhibition on 

networks with three excitatory connectivity patterns Pe =0.0, 0.15 and 0.4 

having deterministic dynamics (Ieexc =0.95–1.15, Iiexc =0.9–1, Fig. 3.10). 

Here the general trend is less clear, but there is a moderate decrease of the 

lead-time for more random inhibitory topologies, with shift of the 

predictability peak towards values where Pe≈Pi, as reported by TM. 

We next used the measures described above to characterize the effect of 

noise and variability of neuronal firing frequency on the transition lead-time 

(a) (b) 
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for both, the excitatory (Fig. 3.11a) and interacting excitatory-inhibitory 

(Fig. 3.11b) networks. The solid-lines are for the case when neurons are 

receiving the same external current, while dashed lines are for the case when 

the neurons have significantly different intrinsic firing frequencies as their 

driving current varies between Ie=0.95–1.15 for excitatory cells and Ii =0.9-

1.0 for inhibitory cells. Obtained results suggest that predictability is much 

higher for the networks in which neurons have similar intrinsic firing 

frequencies, however as expected the lead-time decreases with the 

increasing noise level. 

 

3.4 Discussion 

In this chapter we investigated predictability of network transitions into 

bursting regime as a function of network structure, cell variability and noise. 

Initially, we characterized the dynamics for different parameter sets and then 

we used the developed measures to predict transitions to synchronous 

activity using spike timings. The networks, as predicted exhibit different 

types of dynamics, ranging from propagating waves of activity, through 

coexistence of two phases with short waves of activity and bursting, and 

finally synchronous dynamics. Addition of inhibition to network shortens 

the propagating waves, with the transition to bursting suppressed for random 

inhibitory topologies. 

Over the last few decades amount of research is associated with finding 

robust measures that can detect synchron109,100,136. In general these measures 

require relatively long time series, making them not applicable to measure 
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relatively rapid transitions in network patterning, such as the onset of 

seizure. The metrics that we propose here aims to detect instantaneous 

changes in spatial statistics of spiking coincidence. 

The introduced measures centered on analysis of relative spike timings of all 

firing cells within a given time window. The metrics characterized 

instantaneous spatial correlations between the cells as a function of their 

physical distance. The systematic changes in the introduced measures in the 

time windows preceding the bursting onset were able to predict transition 

into bursting within few time windows of its onset. It is important to note 

however that the approach taken does not allow estimating the false 

positives (i.e. when observed change does not lead to bursting transition), 

resolving these changes from the ones leading to bursting onset is a subject 

of ongoing research. The performance of the metrics depended on network 

topology, noise level and distribution of cellular firing rates. The constructed 

metrics provide an alternate approach toward gaining an insight on 

transitions between asynchronous and bursting dynamics. Their advantages 

are that they can be computed rapidly and thus applied online in clinical use. 
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CHAPTER IV 
 

 

Parvalbumin-expressing interneurons drive hippocampal 

network oscillations and coordinate neuronal communication 

to facilitate memory consolidation 
 

 

This chapter is devoted to analysis of the brain activity of mice, which were 

experimentally recorded in Aton’s laboratory. Here, I employ measures to 

extract the neuronal functional connectivity patterns and its stability upon 

rapid learning during contextual fear conditioning. The work presented in 

this chapter was performed in collaboration with Nicolette Ognjanovski, 

Samantha Schaeffer, Daniel Maruyama, Michal Zochowski, and Sara J. 

Aton. Nicolette Ognjanovski and Samantha Schaeffer in Aton’s laboratory 

have done all the experimental work presented in this chapter and I 

employed Functional Clustering Algorithm (previously developed in 

Zochowski laboratory) and stability measure to analyze this data. This 

chapter is part of a manuscript that was submitted to Neuron Journal in 

October 2015 89.  
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4.1 Introduction  

Memories can be stored in neural networks by rearranging the network 

structure through the formation of new connections or varying the efficacy 

of interactions 137. These structural changes directly influence the spiking 

patterns of neurons and introduce heterogeneity in the spatiotemporal 

patterns of the network. Such heterogeneity in spiking patterns of a network 

is a reflection of forming new functional connectivity within the network 

due to new memory storage and consolidation (see figure 4.1a,b).  

 

Figure 4.1 Schematic representation of the structural and dynamical reformation 
due to the learning and memory formation. a) Represent the structure of network 
before learning and b) Exhibit the structural and dynamical changes due to learning and 
memory formation. Neurons in red are functionally connected, and their spike timings are 
very similar. 

 

Therefore developing tools capable of drawing such network-wide 
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functional connectivity based on the recorded dynamics is vital. Due to the 

importance of functional connectivity, there have been many measures 

designed to extract the temporal correlations of recorded time series, for 

example, cross-correlation and mean phase coherence (MPC). Where cross-

correlation defines how closely two signals are changing together and MPC 

determines the degree of phase locking between the two signals. These 

measures have a very limited success due to their shortcoming in 

determining a threshold for the significance of temporal correlations.  Here, I 

employ a functional connectivity method (previously developed in 

Zochowski lab: Sara Feldt, Daniel Maruyama, Michal zochowski) and 

extract the functional connectivity based on the statistical correlates of 

neural firing patterns. Namely, we compute functional connectivity based on 

the temporal nearness of neurons’ spike times - “neurons that wire together 

fire together“ 87. Based on the temporal evolution of the functional 

connectivity we introduce a notion of network stability. We use this notion 

to investigate how memory consolidation changes overall network dynamics 

and what specific role do the oscillations play in this process. 

 

4.2 Experimental background 

Research in Aton lab focuses on understanding the structural and dynamical 

mechanisms underlying learning and memory consolidation in the 

hippocampus. There is some evidence indicating that hippocampal 

oscillations play an important role in reactivation and consolidation of 

memories following learning138. Ognjanovski and Aton suggest that 

parvalbumin-expressing (PV+) interneurons mediate theta band oscillation 
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in CA1 and coordinate hippocampal network activity during contextual fear 

memory (CFM) consolidation. They investigate this hypothesis by 

employing single-trial training paradigms to examine the effect of PV+ 

interneurons on the memory consolidation 139. More specifically, they design 

contextual fear conditioning (CFC) for mice where animals are transferred 

into a novel environment and shortly after the replacement they receive a 

foot shock. This conditioning could result in a long-lasting fear memory 

(contextual fear memory), with a proper memory consolidation. They record 

neuronal activities of CA1 area in hippocampus before and after CFC in two 

groups of animal: a) vehicle-treated mice (DMSO) and b) Mice that were 

administered the hM4Di ligand clozapine-N-oxide (CNO), which 

pharmacogenetically inhibits PV+ interneurons. They show that 

pharmacogenetic inhibition of these neurons immediately following single-

trial contextual fear conditioning impairs memory consolidation. Here for 

DMSO and CNO animals we investigate the recorded spike times before and 

after CFC. Initially, we compute the Average Minimum Distance (AMD) of 

populations spike times and from that deduce the functional connectivity. 

Then we calculate the stability of the functional connectivity for CNO and 

DMSO groups. Interestingly, in animals that belong to DMSO group, CA1 

neuronal functional connectivity patterns become increasingly stable. While 

in CNO animals, these CFC-induced changes are eliminated by PV+ 

interneuron inhibition. 

 

4.2.1 Single-neuron recordings 

In Aton’s laboratory, single-neuron data were discriminated (Offline Sorter; 
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Plexon) and tracked throughout each experiment. This differentiation was 

mainly based on the spike waveform, and the relative spike amplitude on the 

adjacent electrodes 89,86,140. The analysis was only performed on those 

neurons that were reliably discriminated, tracked, and continuously recorded 

during each experiment. 

 

4.2.2 Contextual Fear Conditioning (CFC) 

The CFC was performed after 24 h baseline recording, by placing mice into 

a novel conditioning chamber where they received a small foot shock via the 

grid floor. A couple of seconds later, each mouse was injected with either 

clozapine-N-oxide (n = 5) dissolved in DMSO or DMSO vehicle alone 

(vehicle; n = 5). Then mice were transferred to their home cage and 

remained there for the following 24 h. Next, for assessing the memory 

consolidation, they were placed into the same conditioning chamber and 

video monitored (see Fig. 4.2) 86,141. The increase in the freezing period 

(comparing to the pre-shock baseline) was quantified as a behavioral 

measure of memory consolidation 89. 
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Figure 4.2 Experimental paradigm. The baseline activity of mice is recorded for 24-h 
in their home cage, and then they were transferred into a novel recording chamber 
(Context A) for single trial contextual fear conditioning (CFC). After receiving the foot 
shock, they were administered with CNO and returned to their home cage. Memory 
consolidation was measured by context-specific freezing that was assessed 24 hours after 
the CFC. The hM4Di-expressing mice again underwent CFC (after two weeks in a 
different context, Context B), and next they were administered vehicle (DMSO) 90. 
(Image is adapted from Ognjanovski 89) 

 

4.3 Methods  

4.3.1 Measures to detect functional connectivity 

How to determine the functional connectivity of two neurons? Two neurons 

are functionally connected, if their spike timings coincide or occur in close 

temporal proximity from each other. This simple definition is the foundation 

of developed measures to detect specific correlations within the chaotic 

network’s dynamics. Our laboratory has developed a novel Functional 

Clustering Algorithm (FCA) that could identify the functional connectivity 
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within a population of recorded neurons 86. In this measure similarity 

between two spike trains is estimated by averaging over the temporal 

nearness of their spike times, this measure is called ‘Average Minimum 

Distance (AMD)’ 142 and can be calculated as follow:
  
 

𝐴𝑀𝐷!" =
!
!!

∆𝑡!!! ,                                       (4.1) 

Where  ‘i’ and ‘j’ correspond to neuron ‘i’ and ‘j’ spike trains and  ∆t
k

ij is the 

least temporal distance between kth spike of neuron ‘i’ with neuron’s j spike 

times (an example is depicted in Fig. 4.3). This measure gives an estimate of 

how similar two spike trains are. However, this measure needs a frequency 

adjustment so that the high frequency spiking would not be mistaken with the 

high temporal closeness.  

To adjust for the frequency effect, an expected AMD distribution is estimated 

for each pairs of neurons. The significance of the original AMD, from 

unperturbed spike times, is assessed against this expected AMD value as 

below: 

𝐹𝐶!" =
!!!!"#!"
!!/ !!

            (4.2) 

Where FCij  stands for the functional connectivity between i and j spike 

trains, and µj, σj  represent the expected AMD average and its standard 

deviation. 



 

 89 

 

Figure 4.3 Average Minimum Distance measure. Here for four neurons, we calculate 
the minimum temporal difference between spikes of each pairs of neurons at a specific 
time-window.  

 

To calculate the average and standard deviation of expected values, (µj and 

σj), we take an integral over the sampling minimum distance distribution of 

neuron’s ‘j’ spike train (Sj) 
86. 

 

4.3.2 Stability of functional connectivity 

Here we take a rather different approach and instead of focusing on the 

specific properties of functional connectivity between individual cells we 

investigated how network-wide functional connectivity evolves with time. 

This approach can give us a general lead to animal function (learning/ or not 

learning). Therefore we employ stability measure to see how the network-

wide functional connectivity changes over time, is it stable, unstable or 

follows some specific pattern? 
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 To capture stability of functional connectivity over time, we compute the 

cosine similarity of the functional connectivity vector at time t and at time t+ 

Δt, where Δt is our time-window (kept constant, 1minute for all analysis). 

The cosine similarity measure is one of the simplest ways to calculate the 

similarity of two signals by computing their inner product space that reflects 

the cosine of their angle: 

  C!" = cos θ!" =
!!,!!

!!,!!∗!!,!!
           (4.6) 

The result of this cosine similarity is a number between -1 and 1, where 1 

represents complete similarity and no change in the network-wide functional 

connectivity. This similarity measure could also be applied for each time-

window against any other time-window to extract possible patterns in 

network-wide functional connectivity.  In figure 4.4, you can see examples 

of similarity calculations for adjacent data segments, and in figure 4.5 for all 

to all periods of data. 

 

Figure 4.4 Similarity of functional connectivity in consecutive time windows. (Image 
is adapted from Ognjanovski 86) 
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Figure 4.5 Schematic illustration of functional similarity matrix (FSM). Forming 
FSM matrix using cosine similarity of calculated functional connectivity for each two 
time-windows. 

 

4.4 Results 

Using individual neurons’ spike trains, functional connectivity was assessed 

among the population of stably recorded CA1 neurons (refer to figure 4.2 for 

the experimental details, and figure 4.3 for calculating functional 

connectivity). The stability of network-wide functional connectivity was 

calculated by comparing minute-by-minute network-wide functional 

connectivity at baseline and following the CFC for both CNO and DMSO 

animals.  
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Figure 4.6 The similarity/stability between adjacent data segments. Here we show the 
stability of functional connectivity for each two adjacent one-minute time windows for 
DMSO (left column) and CNO (right column) mice prior (top row) and following 
(bottom row) single-trial contextual fear conditioning (CFC). The background colors 
denote behavioral states: green denotes wake, pink REM sleep and yellow SWS. 

 

In figure 4.6, we depict the stability of functional connectivity for each two 

adjacent one-minute time windows for DMSO (Fig. 4.6 left column) and 

CNO (Fig. 4.6 right column) mice prior (Fig. 4.6 top row) and following 

(Fig. 4.6 bottom row) single-trial contextual fear conditioning (CFC). Here 

colors reflect different sleep phases; green for wake, pink for rapid eye 

movement sleep (REM) and yellow for slow-wave sleep (SWS). In vehicle-

treated mice, the average of the CA1 network stability was enhanced 

following CFC; this stabilization was present in both post-CFC NREM sleep 

and wake, and was blocked by PV+ interneuron inhibition in CNO. 

Statistical significance of this progressive increase in stability is depicted in 

figure 4.7 that matches properly with the freezing behavior of the animal. 
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Figure 4.7 Change in stability following CFC. a) The mean minute-to-minute CA1 
network stability increases during both NREM and wake. b) Memory consolidation was 
assessed based on the freezing behavior of animal. Here we can clearly see the inhibition 
of PV+ interneurons interferes with learning and memory consolidation (Image is 
adapted from Ognjanovski 89) 
 

In figure 4.8 we depict the functional similarity matrix (FSM), which 

represents the patterns of the similarity of the network-wide functional 

connectivity at each time point (one-minute time window) with any other 

time window. This FSM shows how the stability of functional connectivity 

in CA1 networks evolves with time. In figure 4.8 FSMs of a control and 

hM4Di-expressing mouse at baseline, and over the first six h post-CFC 

(vehicle and CNO conditions) is shown. Color in the body denotes the 

degree of similarity between functional connectivity of any given two time 

points in the recording. The formed temporal patterns in the FSM might 

convey information regarding animal’s function. For example in the CNO 

case in baseline when the animal is awake we see repetitive patterns of high 

stability (periods of higher intensity colors), these repetitive similarities to 

some extent stay intact after CFC and CNO injection but weakened. These 
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repetitive patterns might be associated with a specific task or location in the 

cage. However, the CNO animal does not show any particular temporal 

pattern in SWS state (their stability scores are not significant). In the case of 

animal treated with DMSO, we could clearly see the formation of episodes 

of high stability regions (shown with higher intensity colors) associated with 

SWS sleep postconditioning. We can see that there is a reoccurring pattern 

of high stability episodes over time especially during SWS state. This 

repetition could be associated with retrieving the fear memory that is 

successfully stored in DMSO animals and manifest itself by a high degree of 

similarity/stability in network-wide firing pattern. This reoccurrence of high 

similarity events during SWS, postconditioning, are explicit for DMSO 

animals where the behavioral scores also show successful learning and 

memory consolidation. 
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Figure 4.8 Functional Similarity Matrix (FSM). The FSM displays the similarity of 
functional connectivity patterns across time. Here we illustrated the CA1 network FSMs 
for DMSO and CNO animal at baseline, and over the first 6 h post-CFC. Where the 
degree of similarity between functional connectivity patterns at any given time point with 
all other time points is represented with a color. The two outermost color bars represent 
the behavioral state of the animal (outer, blue - wake, red – NREM and REM) and the 
relative firing frequency (inner, blue - low, red - high). 

 

4.5 Discussion 

In this chapter, I analyzed the data taken from Aton’ lab and investigate the 

role of PV+ interneurons in learning and memory consolidation by analyzing 

the spatiotemporal patterns of neuronal network of CA1 area. To analyze the 

 



 

 96 

data, the similarity between two spike trains is measured by averaging over 

temporal nearness of their spike times; this measure is called Average 

Minimum Distance (AMD). Pairwise AMD values were calculated based on 

spike trains from the entire population of stably recorded neurons in each 

mouse. From these values, a functional connectivity matrix is generated, 

which represents the pattern of functional connectivity at any time point. 

Pairs with smaller AMD values are more likely to be functionally connected. 

We compute the stability of the functional connectivity over time for two 

distinct groups of animals, DMSO (vehicle) and CNO (animals that were 

administrated the hM4Di ligand clozapine-N-oxide that inhibits the activity 

of PV + interneurons).  

Our collaborators in Aton’s lab assessed the memory consolidation in 

animals by behavioral tests, and showed that in CNO animals this memory 

consolidation was disrupted. Interestingly, we could show that stability of 

calculated functional connectivity increases in the normal CFC and 

decreases in case of CNO animals. This result suggests that PV+ 

interneurons activity is essential for memory consolidation in agreement 

with our collaborators findings in Aton’s lab.   
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CHAPTER V 
 

 

Summary and conclusions 
 

 

The brain is the most complex biological structure, made of hundred billions 

of tightly interconnected neurons. The incredible computational power and 

degree of complexity involved in the brain structure and function is the 

biggest mystery of the modern time. Its roots can be traced back to the 

mutual interactions of neurons that construct this entangled network. The 

focus of this dissertation is to shed light on how the interactions among these 

entities lead to the different dynamics and eventually determine the brain 

function.  

In Chapter II, I studied the structural foundation of the different brain’s 

dynamical modes of activities based on the interplay between cellular 

properties and network coupling characteristics. More specifically, I 

identified conditions that promote synchrony in mixed networks of Type I 

The and Type II neurons under varying network connectivity distributions. 

obtained results indicate that not only overall connectivity topology in the 

networks matters but also statistical distributions of cell connectivity 

properties, I showed that relatively few highly rewired Type II cells can 

significantly increase the level of network-wide synchrony, however, this 
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degree of synchrony is not realized when these highly rewired cells have 

Type I excitability. I also showed that establishing specifically connected 

might cause the emergence of globally synchronized activity cliques 

depending on the excitability type of these neurons. This result could have 

significant implications when characterizing real-world network 

connectivity patterns, where statistic of cell connectivity is usually limited to 

only a few identified cells, as we showed that relatively few cells of specific 

dynamical and connectivity properties could significantly change 

spatiotemporal patterning. 

 In chapter III, I took a step further and developed a set of measures to 

quantify and predict spontaneous network transitions from asynchronous 

dynamics to the synchronous dynamics. These spontaneous transitions into 

the synchronous activity of the network may correspond changes of neural 

activity at the onset of epileptic seizures. Namely, I investigated whether and 

under what conditions we could identify and later detect early dynamical 

signs of transitions from asynchronous to synchronous dynamics in a highly 

simplified setting. Our developed measures are capable of capturing early 

spatial features of network reorganization upon impending transition into 

bursting dynamics. These results may be important for the development of 

improved techniques for detection of seizure onset in clinical devices.  

Following the study of structural foundations in shaping different modes of 

dynamics in chapter II and developing measures to predict spontaneous 

transitions from one to another in chapter III, in chapter IV, I explored 

dynamical network changes associated with memory consolidation. 

Specifically, I analyze in vivo experimental data obtained from Aton 

laboratory to show that increase of stability of functional network 
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representation predicts successful memory consolidation. Further, both the 

increase stability and behavioral performance are linked to the presence of 

theta band oscillations indicating that these could play a central role in the 

dynamics of memory consolidation.   

In summary, this dissertation highlights the importance of understanding 

neuronal structure and dynamics to elucidate the brain function.  We 

developed and employed computational and statistical tools to detect 

emerging patterns and correlations in network dynamics in both simplified 

simulated networks and experimentally recorded data.  

 

Today with all the advances in spectroscopy, imaging and electrophysiology 

recordings we are experiencing an explosion in producing experimental data 

- data, that ten years ago we would not dream of. Thus, it is crucial to 

develop analytical tools and measures that can quantify experimental data, 

shed light on the hidden patterns and allow building predictive theories of 

the brain function. This dissertation provides one of many needed building 

blocks in this direction.  
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