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Abstract 
  

The 2009 influenza A (H1N1) pandemic resulted in a renewed focus on non-

pharmaceutical interventions (NPI) due to a delay in the development of an appropriate 

vaccine. Having determined that co-occurrence with either bacterial or viral pathogens 

may influence susceptibility to acute respiratory illness (ARI), we conducted one 

methodological review of co-occurrence as well as three novel studies, using available 

data from NPI studies in the community setting. We sought to examine risk factors for 

co-occurrence and to assess associations between school closures and influenza-like 

illness (ILI), a type of ARI.  This research furthers knowledge regarding common 

respiratory agents, providing estimates of the prevalence of common viruses and bacteria 

as well as co-occurrence in a college-aged population. Additionally, we utilized 

surveillance data from the state of Michigan to provide a quantitative analysis of the 

effects of school closure. Our findings indicated a high prevalence of human 

coronaviruses during the season of interest among otherwise healthy adults with ARI, 

with coronavirus infected students having a decrease in symptomatic cough and chills 

over the 6-day illness episode measured, and runny nose increasing. A second finding of 

an association between viral infection and Streptococcus pneumoniae colonization 

suggests that ARI symptoms in young adults can be indicative of a viral and bacterial co-

occurrence, and the screening for both can provide a better understanding of the causes of 

ARI. The finding suggested that a variety of underlying infectious agents cause ARI 

among young adults living in residence halls, suggesting this environment is conducive to 
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ARI transmission. Finally, this dissertation found a minimal effect of reactive school 

closures on community levels of ILI during the 2009 H1N1 influenza A pandemic. While 

this finding does not disprove the effectiveness of school closure as an NPI, it does 

suggest that reactive school closures may not be effective once illness is already in the 

community. We discuss implications from these findings in order to better understand 

and address issues related to ARI in the real-world setting.  
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 Introduction Chapter 1:
1.1 Introduction 

This dissertation focuses on two areas relevant to the study of infectious disease within 

the field of public health: acute respiratory infections (ARIs) and non-pharmaceutical 

interventions. ARIs are common causes of illness during the winter months in the northern 

hemisphere [1]. Advances in molecular techniques, and the subsequent affordability of using 

these techniques, have allowed for an expansion beyond a single-agent, single-illness approach 

to ARIs. Using these techniques, this dissertation studies co-occurrence: the interaction between 

multiple agents detected from a single individual at a single time point. The second focus of this 

dissertation is analysis of the use non-pharmaceutical interventions, specifically the use of school 

closure, in order to prevent the spread of infectious agents. I specifically examined the 

effectiveness of steps taken by individual school districts during the 2009 H1N1 influenza A 

pandemic.  

 

Overview of Co-Occurrence 

Co-occurrence, also known as co-infection, is defined as an infection caused by more 

than one microorganism that interacts within a host [2-4]. In some cases, co-occurrence can 

either cause or prevent transmission of agents and subsequent infection. In other cases, it has no 

effect. As more viruses are being tested for, basic epidemiological research can be useful for 

identifying common co-circulating agents. Future research will be necessary to determine the 

effects of these interactions at the molecular or clinical level.  
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 The concept of co-occurrence is not new. Deaths resulting from the 1918 influenza A 

pandemic have long been attributed to secondary bacterial pneumonia [5, 6]. However, studies of 

interactions at the molecular level, without evident clinical or population level outcomes, have 

become more common[2, 7-12]. The ability to describe underlying infections or carriage of 

agents can help to explain patterns of disease. We hope that disease pattern information can be 

used to prevent transmission in at-risk populations where evidence of clinical severity is 

apparent.  

 

Overview of Non-Pharmaceutical Interventions  

Non-pharmaceutical interventions (NPIs) are commonly thought of as actions implemented 

to prevent the spread of illnesses without the use of drugs [13].  For influenza, they have been 

practiced since at least the 1918 influenza pandemic [14, 15], and take a myriad of different 

approaches. The Centers for Disease Control and Prevention (CDC) distributed a list of 

recommended NPIs during the 2009 H1N1 influenza A pandemic, which included both 

individual and community prevention recommendations. Individual interventions included 

covering the mouth and nose during coughs and sneezes, increasing hand hygiene through 

frequent washing or use of alcohol-based hand sanitizer, or staying home when sick. 

Community-level interventions suggested included temporary school closures, flexible sick-

leave policies for companies, and postponing mass gatherings [13]. While these interventions are 

suggested during any outbreak to reduce the risk of transmission, they are especially relevant 

during a novel pandemic, where the ability to vaccinate or treat with medication is limited [16-

18]. 
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School closure remains a popular option, primarily due to high rates of infection in children, 

who can then spread infection to caretakers in the household [17]. Several studies have modeled 

the effectiveness of school closure as an NPI to prevent the spread of ARIs, though few studies 

have taken a comprehensive look at the effects of school closure on community transmission 

[19]. Sequestration, or the voluntary isolation of an individual, has been utilized since 1918. The 

idea behind the intervention is to prevent sick individuals from being able to infect people with 

whom they would come in contact during the normal course of their day.  

Taken together, the study of co-occurrence and NPIs are areas of growing concern for public 

health researchers. Using two different datasets, the purpose of this dissertation is to 1) provide a 

framework for thinking about co-occurrence; 2) explain the role of viruses and virus co-

occurrence among young adults living in a university setting; 3) explain the role of viral and 

bacteria co-occurrence among young adults living in a university setting; and 4) quantify the 

effects of reactive school closure on circulating levels of influenza-like illness (ILI) in the 

community setting.  

 

1.2 Specific Aims and Hypothesis 

Aim 1: Provide a descriptive framework for conceptualizing co-infection between more than one 

agent at a molecular, clinical, and epidemiological level.  

 

Aim 2: Examine epidemiological characteristics of human coronaviruses among young adults 

with acute respiratory tract illness and their acute respiratory tract negative social contacts living 

in residence halls.  
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 Hypothesis 2a: We will observe a high prevalence of human coronaviruses and other 

respiratory in our young adult population. 

 Hypothesis 2b: The prevalence of the four human coronaviruses tested will be higher 

among subjects with acute respiratory illness compared to those without acute respiratory illness.  

 Hypothesis 2c: Symptoms associated with acute respiratory tract illness symptoms will 

be higher among our population with a human coronavirus infection compared to human 

coronavirus negative participants.  

 

Aim 3: Examine the associates of bacteria and viral co-occurrence among young adults with 

acute respiratory tract illness and their healthy contacts living in residence halls. 

 Hypothesis 3a: The presence of a viral infection will be associated with an increase in the 

likelihood of bacterial colonization. 

 Hypothesis 3b: We will observe a positive association between symptomatic upper 

respiratory tract infection and the likelihood of bacterial colonization.  

 

Aim 4: Estimate the effects of school closure on community levels of influenza-like illness in 

Michigan during the 2009 H1N1 influenza A pandemic. 

 Hypothesis 3a: For the period of three weeks leading to peak infection and four weeks 

following peak infection, school districts with a higher proportion of closure will result in a 

lower rate of influenza-like illness.  

 Hypothesis 3b: School closure during the 2009 H1N1 pandemic were reactive in nature 

based on peak rate of influenza-like illness within each school district.  

 



 

 
 

5 

 

1.3 Overview of Dissertation Studies 

This dissertation uses two different data sources to address the research questions related to 

acute respiratory illness. Aims 2 and 3, covered in chapters 3 and 4, examine the detection of 

several ARI viruses, and ARI and bacterial co-occurrence. These chapters use data from the eX-

FLU study, a prospective and novel study designed to assess the effect of sequestration on the 

transmission of infectious agents among social contacts living in university residence halls. The 

eX-FLU study was conducted within six residence halls on the University of Michigan campus. 

Participants were recruited beginning in October of 2012 and continuing through the start 

of the study on January 17, 2013. Participants were eligible if they lived in an approved 

residence hall, were at least 18 years of age, and were willing to participate in the study. The 

students were assigned to one of 117 clusters, with each cluster having an equal probability of 

being assigned to either of the intervention groups. This study was funded by the Centers for 

Disease Control and Prevention (CDC) and approved by the University of Michigan IRB.  

To answer the research questions for Chapters 3 and 4 on the burden of disease in college 

students, samples collected from symptomatic and asymptomatic eX-FLU participants were 

tested for common respiratory viruses and bacteria. If students experienced influenza-like illness, 

defined as cough plus one other constitutional symptom (body aches, feverishness, chills, or a 

temperature over 100.4°F), they were asked to provide three throat swabs over the course of their 

illness: the first within 24 hours of illness onset, the second within 72 hours of illness onset, and 

the final within 144 hours of illness onset. Using the most recent reported list of social contacts, 

an email invitation was sent automatically to a sick individual’s healthy contacts (i.e., a 

participant who had not been ill in the past two weeks). These healthy contacts were invited to 
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provide three samples over six days to assess bacteria and viruses among asymptomatic 

participants.  

Aim 4 of the dissertation, covered in Chapter 5, uses data collected during the 2009 

influenza A (H1N1) pandemic in the state of Michigan. This dataset looks at the effects of 

reactive short-term school closure on community levels of influenza-like illness (ILI), a type of 

ARI, measured through surveillance. The Michigan Department of Community Health (MDCH), 

with the assistance of the CDC, collected real-time data on schools that closed during the Fall 

2009 school semester. The location of the closed school, timing of closure and re-opening of the 

school was recorded for all known school closures.  

These data were then combined with a publically available databases of schools and school 

districts provided by the Michigan Department of Education and the Center for Educational 

Performance and Information, containing school-level variables related to the status of each 

school (public, private, or public charter), grade levels taught, and school district information for 

each school in the state. Private schools and public charter schools were given a geographical 

public school district, which, combined with the public school districts, amounted to 551 school 

districts and over 4,300 active schools in the 2009-10 school year.  

Finally, the outcome of interest in Chapter 5 came from surveillance data provided by the 

MDCH. Influenza-like illness reports were used from September 1 to December 31, 2009. The 

date of collection and date of onset were recorded, as was the zip code reporting the over 7,000 

suspected influenza cases. These data were aggregated at the zip code level and week of illness 

reporting, and a rate was assigned to each school district.  

School closure is considered an especially important NPI due to the ability for infection to 

spread within a school and then brought back into the household, and therefore the community 
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[13, 20]. The eX-FLU study was conceived to examine the effect of a NPI on reducing 

transmission without a pharmaceutical intervention, though was mined for this dissertation to 

provide an overview of the burden of viral and bacterial infection independent of the NPI. Taken 

together, both studies evaluate the role of NPIs with suggestions for preparing for future 

pandemic outbreaks where traditional vaccination and medication may be unavailable.  

 

1.4 Infectious Agents 

Chapters 3, 4, and 5 of this dissertation examine the role of infectious agents causing ARI. 

A general discussion of the main agents examined, as well as their clinical and epidemiological 

presentations, follows.  

 

Influenza A 

All aims of this dissertation report on influenza or influenza-like illness.  Influenza-like 

illness is a constellation of respiratory symptoms, and a more specific type of ARI. Influenza-like 

illness is frequently used as a proximate measure for influenza used for surveillance in the 

community, or for defining a flu-like illness without laboratory confirmation [21-23]. Here, we 

describe the epidemiology of influenza virus and its public health importance. Influenza is 

transmitted by respiratory droplets through either direct or indirect contact. Each year, seasonal 

influenza infects hundreds of thousands of people worldwide and accounts for an estimated 

36,000 deaths in the United States [24], with pandemic strains often causing greater mortality 

[25, 26]. Complications from influenza are most severe among the young, the elderly, and those 

with a compromised immune system [27]. In order to reduce morbidity and mortality associated 

with influenza, a seasonal vaccination is developed annually. Influenza vaccination aims to 
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protect individuals from the most common circulating strains of virus. However, the 

effectiveness of influenza vaccination has not approached levels that public health professionals 

would hope, and recent estimates suggest that age is a factor in effectiveness. Studies in young 

children show influenza vaccination to be efficacious in up to 90% [28, 29], though efficacy in 

young adults has ranged from 30 to 77%, depending on how the sample was identified and the 

type of vaccine (live attenuated compared to inactivated) [30]. The wide range in efficacy 

appears to depend on subtype and strain of influenza, method of identifying titers and positive 

samples, type of vaccine provided, and underlying health status of individuals in the study [31, 

32]. 

At the molecular level, influenza is a ribonucleic acid (RNA) virus with eight core 

genomes: PB2, PB1, PA, HA, NP, NA, M, NS [33]. There are two regions of the influenza A 

virus that determine subtype: the hemagglutinin (HA) and neuraminidase (NA) regions. 

Variations in these regions as a result of viral shift, (a significant change in either the HA or NA 

region), or viral drift, (a seasonal change within the HA or NA region), can result in a reduced 

innate immune response and an increase in the risk of infection. Specific HA and NA sites have 

also been linked to severity of disease in human populations.  

Influenza is an important global health problem, and one reason for this is the role of 

secondary infections. Severe complications from influenza include viral pneumonia or bacterial 

infections such as bacterial pneumonia, bronchitis, sinus infections, ear infections, or death [34, 

35]. These risks are especially pronounced among the elderly population, young children, and 

individuals with chronic diseases.  

 

Human Coronaviruses 
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 Chapter 3 of this dissertation focuses on four predominantly respiratory human 

coronaviruses (HCoVs): 229E, HKU1, NL63, and OC43. Two strains, HCoV-229E and HCoV-

OC43 were studied in the 1960’s as part of human challenge studies [36, 37]. These viruses were 

linked to the common cold and were not thought of as particularly harmful [36]. In 2003, a novel 

HCoV, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged, with a 10-50% 

mortality rate [37]. This lead to a renewed search for HCoVs, resulting in two more globally 

circulating viruses being identified: HCoV-NL63 found in the Netherlands in 2004 [38] and 

HCoV-HKU1 identified in China in 2005 [39]. Both viruses, subsequently discovered to 

circulate globally, had been present for years before identification [38-45].  

 Coronaviruses are enveloped RNA viruses from the family Coronaviridae ranging from 

70 to 120nm and encircled by spiked glycoproteins [37]. The family can be found in a wide 

range of animal species, and the lethal SARS-CoV and Middle East respiratory syndrome 

(MERS-CoV) were both believed to have evolved to cause human illness from animal reservoirs 

[37].  

The four HCoVs studied in this dissertation are often believed to cause the common cold 

in healthy individuals [36]. Recently, these viruses have been shown to cause pneumonia in 

immunocompromised patients [46]. They have also been associated with upper and lower 

respiratory tract infections including bronchitis, bronchiolitis, pneumonia and croup in 

hospitalized children and elderly patients [43, 47-49]. Concerns have been raised about the lack 

of vaccinations for the HCoVs, but without quality prevalence estimates it is difficult for policy 

makers to assess community level needs [37].  

 

Upper Respiratory Tract Bacteria 
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 Chapter 4 of this dissertation reports on the presence and co-occurrence with viruses of 

three different upper respiratory tract bacteria: Haemophilus influenzae, Staphylococcus aureus, 

and Streptococcus pneumoniae. Below is a brief overview of the three bacterial species.  

 Haemophilus influenzae is a gram-negative coccobacillary bacteria frequently colonizing 

in nasopharaynx region of children. There are six currently identified subtypes of H. influenzae, 

with serotype b (HIB), for which there is a vaccination. However, all strains of HIB are linked to 

bacteremia and pneumonia, specifically among children [50]. Non-typable H. influenzae 

infections colonize the upper respiratory tract and can cause illness in children and adults. These 

nontypeable serotypes are often causes of disease post-HIB vaccine [50]. 

The pathogenesis of infection among nontypeable strains of H. influenzae is through 

contagious spread, often from subjects colonized in the upper respiratory tract [50]. More than 

one half of children are colonized by the age of five, and transmission often occurs in day care 

centers [50]. Once colonized in the upper respiratory tract, H. influenzae infection has been 

associated with acute otitis media [51], and  sinusitis [52] among children. The advancement of 

the pneumococcal vaccine has resulted in an increase in sinusitis as a result of H. influenzae [53]. 

Staphylococcus aureus is a gram-positive coccal bacteria that can colonize both healthy 

and at-risk individuals. Longitudinal studies have suggested individual differences in 

colonization of the nares– 20 to 30% of individuals are persistently infected, 30% are 

occasionally colonized, and up to 50% are rarely colonized [54]. Colonization of the nares is 

common and of the greatest interest for our research purposes. Invasive illness, such as 

bacteremia, pneumonia, and meningitis can occur; however, illness risk is highest among young 

children, elderly adults, and immunocompromised individuals [55].  
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 Streptococcus pneumoniae is one of the most common colonizers of the upper respiratory 

tract among children and adults, and the most frequent cause of bacterial pneumonia [56]. A 

gram-positive bacteria, it is a leading cause of meningitis, otitis media, and bacteremia in the 

United States. Severe illness often targets young children, the elderly, or those with a suppressed 

immune system. S. pneumoniae is carried by an estimated 11% of the U.S. population [57], with 

a higher percentage of children being carriers. While there are over 90 strains of S. pneumoniae, 

few have been linked to invasive disease [58]. The most common strains have been targeted 

through vaccinations, such as the 7-valent and 23-valent vaccinations. 

   

1.5 Bacterial Co-Occurrence 

Chapters 2 and 3 of this dissertation deal with viral and bacterial interactions. Chapter 2 

lays out a method of conceptualizing bacterial and viral interactions using influenza and 

pneumonia as a model. In reviewing historical studies of 1918 pandemic, researchers have 

hypothesized that secondary bacterial infections played a large role in the high number of deaths 

recorded [5, 6]. However, the frequency and timing between infection has not been well 

established, which has implications for prevention and treatment, as well as policy 

recommendations for groups most at risk for co-occurrence [59]. The most common results of 

secondary bacterial infection following influenza include otitis media (OM) in children [2] and 

bacterial pneumonia in the elderly [60]. With over 90 serotypes identified, and multiple licensed 

vaccines, S. pneumoniae remains one of the best researched of the secondary infection bacteria 

and a good model organism to explain secondary bacterial infection following initial influenza 

infection (13).  
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Within an individual, response to influenza is believed to play a role in susceptibility to 

bacterial infections that cause pneumonia [61]. This idea was originally observed by reports 

following the 1918 influenza pandemic. A viral infection that damaged the mucosal lining in the 

lungs, providing an opportunity for bacterial infection to take root, was cited as a potential 

reason for the widespread observation of bacterial pathogens found upon death. As laid out by 

McCullers (2006), these changes in the respiratory tract can occur through multiple pathways, 

such as epithelial damage, decrease in airway functioning, and changes in receptors within the 

tract [35]. 

Bacteria that cause community-acquired pneumonia (CAP) are transmitted through 

person-to-person direct contact, but the infectivity and progression to bacterial pneumonia are 

thought to be lower than influenza, and many of the CAP-causing bacteria are found in healthy 

individuals. The most common causes of CAP are S. pneumoniae, S. aureus, H. influenzae, 

Mycoplasma pneumoniae, and Chlamydophila pneumoniae, although there are regional 

variations [57].  

A comprehensive understanding of co-occurrence requires examining the problem across 

different levels of measures: the molecular level, or what occurs between a virus and another 

virus or a virus and a bacteria within a system; the clinical level, or how two agents may interact 

to result in a more severe disease within an individual; and the population level, or how rates of 

disease in communities may be affected by the presence of multiple agents. Co-occurrence can 

also be thought of on axis of timing (whether one agent preceded another, of if the infection 

occurred simultaneously) and on an axis of effect (synergism or antagonism) [59].  
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1.6 Public Health Significance  

 Healthy young adults living in residence halls remain at risk for a variety of illness in the 

community setting. They are also transitioning from childhood, with high levels of bacterial and 

viral colonization and infections, to adulthood, where innate immunity reduces the risk of severe 

illness. Studying college-aged students will allow us to estimate prevalence of infectious agents 

in a previously understudied population. This dissertation will describe the rates of colonization 

and co-colonization observed in this population, with an impact in other university settings with 

large clusters of young adults, as well as other community situations in which young adults co-

mingle.  

 Coronaviruses in particular are under study, in the community as well as among adults 

[37, 62]. As interest in severe strains of coronaviruses grow, basic epidemiology about carriage, 

as well as co-occurrence, can provide researchers with important information both about 

vaccination targets and usefulness [37], as well as enlighten any risks for a viral shift that may 

occur through co-occurrence [62].  

 Identifying the prevalence of common respiratory tract bacteria in the university setting is 

a goal relevant to public health. Indeed, colds and upper respiratory infections have been shown 

to cause significant morbidity in the university setting [63]. The close contact that occurs 

between students, both in residence halls, and in classrooms, provides both an interesting study 

design for the transmission of illness [64], as well as an effective laboratory for testing non-

pharmaceutical interventions [65]. 

Studies on the link between school closure and community levels of influenza-like illness 

flourished following the 2009 influenza A (H1N1) pandemic, but no research has prospectively 

examined the extent of district level closure across a state. By identifying a novel approach to 
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measuring rates of ILI and school closures, we can use the natural experiment of school closures 

during the 2009 pandemic to assess the effectiveness of this NPI. Given the growing interest in 

school closure as a response to pandemic levels of influenza, this dissertation will provide 

invaluable information on reactive school closures that have major implications for containment 

of illness in a community environment. 

To address these issues, Chapter 2, entitled Influenza and Community-acquired 

Pneumonia Interactions: The Impact of Order and Time of Infection on Population Patterns, 

describes a theoretical framework for thinking through bacterial and viral co-occurrence. The 

chapter discusses the importance of timing of infection, and at what levels of public health 

research information is needed to have a better understanding of co-occurrence research.  

Chapter 3, High Prevalence of Human Coronaviruses in a University Setting, describes 

the prevalence of viral ARI infectious agents in a college setting. Using data collected over 6-

days from the start of illness onset, this chapter also examined the symptoms associated with 

frequently identified viruses, and how those symptoms changed over the course of the illness.   

Chapter 4, Viral infection is associated with increased Streptococcus pneumoniae 

carriage among otherwise healthy college students, used the premise discussed in Chapter 2 to 

look at the interaction with bacteria and viruses in college students, using measures of bacterial 

load and the presence or absence of viruses in the same college population.  

Chapter 5, The Effect of Reactive School Closure on Community Influenza-Like Illness 

Counts in the State of Michigan during the 2009 H1N1 Pandemic, stepped back from the 

previous studies of individuals with infection to look at community level differences in ARI. 

Using data collected during the 2009 influenza pandemic, school closures were linked to 

surveillance data of ILI in the state of Michigan. This study expressively looked at how effective 
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a NPI, part of the national dialogue on dealing with pandemic influenza, was as it implemented 

in real-time.  

Finally, Chapter 6 brings together the research and discusses future areas for research in 

ARI and NPIs.   
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 Influenza and Community-acquired Pneumonia Interactions: The Impact of Chapter 2:
Order and Time of Infection on Population Patterns  

 
2.1 Introduction 

Community-acquired pneumonia (CAP) often follows influenza infection. The 

hypothesized synergistic interaction resulting from co-infection with influenza and agents of 

CAP is thought to be a major factor in the severity of the 1918 influenza A pandemic [66, 67]. 

Today, up to 20% of persons who have CAP show evidence of recent exposure to the influenza 

virus [68], and pneumonia is a leading indicator of influenza severity [35]. Although 

Staphylococcus aureus is a relatively uncommon cause of CAP after influenza infection, 

methicillin-resistant S. aureus has been considered an important pathogen in deaths of co-

infected pediatric patients. Data from the Centers for Disease Control and Prevention on the 

2004–2007 influenza seasons showed that methicillin-resistant S. aureus was present in 60% of 

the 20 pediatric patients who died from S. aureus co-infection, with the highest rate during the 

2006–2007 season [69], which suggests that the problem of antibiotic resistance among children 

with CAP in this age group is growing.  

Influenza is transmitted via respiratory droplets, through either direct or indirect contact, 

and is highly infectious. Each year, seasonal influenza infects hundreds of thousands of people 

worldwide and accounts for an estimated 36,000 deaths in the United States [24], with pandemic 

strains often resulting in higher mortality rates [25, 26]. Complications from influenza are most 

severe in the young, the elderly, and persons with compromised immune systems [27]. Bacteria 

that cause CAP are transmitted through person-to-person direct contact; however, the rates of 

infectivity and progression to pneumonia are thought to be lower than those of influenza, and 
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many of the CAP-causing bacteria are found in healthy individuals. The most common causes of 

CAP are Staphylococcus pneumoniae, S. aureus, Haemophilus influenzae, Mycoplasma 

pneumoniae, and Chlamydophila pneumoniae, although there are regional variations [57]. 

Although investigators performing studies in which they used animals and experimental systems 

have begun to address how co-infection may enhance pathogenesis, there is little in the literature 

on the impact of co-infection on transmission of or susceptibility to bacteria. Perhaps most 

importantly, although population-level synergy has been observed, the timing of transmission 

related to the order of infection from each agent has not been definitively established [70, 71]. 

Understanding the order and timing of this synergistic relation and the resulting population-level 

effects is especially relevant to epidemiologists who are engaged in planning for pandemics.  

In the present commentary, we use S. pneumoniae, the most common cause of CAP, as a 

model organism to explore the relation between influenza A and CAP. With over 90 identified 

serotypes and multiple licensed vaccines, S. pneumoniae remains one of the best researched of 

the pneumonia-causing bacteria [58]. We present 3 pathways to co-infection and discuss the 

impact of order and timing of co-infection on what epidemiologic patterns might be observed. 

We close with a discussion of outstanding research questions and their implications for CAP 

prevention.  

 

2.2 Pathways to Co-Infection 

There are 3 possible pathways to co-infection: 1) infections with both etiologic agents 

occur essentially simultaneously; 2) S. pneumoniae colonization precedes influenza infection; 

and 3) influenza infection precedes S. pneumoniae colonization (Figure 2.1). Each of these 

pathways is possible (although they likely occur at different frequencies); however, we expect 
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the resulting population patterns to differ depending on the relative frequency of each pathway, 

as will the implications for control measures (discussed below).  

 
Figure 2-1: Schematic of 3 pathways of influenza and bacterial pneumonia exposure that 
lead to co-infection 
 
Simultaneous acquisition of influenza and S. pneumoniae  

Viruses and bacteria can be transmitted together through coughing or sneezing [71-74]. 

However, the extent to which simultaneous infections with influenza and S. pneumoniae lead to 

CAP is uncertain. In one of the few animal studies in which simultaneous infections were 

studied, investigators found no evidence of lethal synergy in mice infected with sub lethal titers 

of both influenza and S. pneumoniae [75]. In humans, influenza infection alone increases cough, 

potentially facilitating transmission of both viruses and bacteria [35]. Additionally, influenza 

replicates more rapidly than does bacteria, so even if the infections are acquired simultaneously, 

the clinical manifestations in an individual would appear sequentially. At the population level, 

we might expect little or no lag between peaks in influenza and pneumonia occurrence after 

simultaneous infection. Potential course-of-infection and research questions related to concurrent 

infection are presented in Table 2.1.  

how coinfection may enhance pathogenesis, there is little in
the literature on the impact of coinfection on transmission
of or susceptibility to bacteria. Perhaps most importantly,
although population-level synergy has been observed, the
timing of transmission related to the order of infection from
each agent has not been definitively established (11, 12).
Understanding the order and timing of this synergistic re-
lation and the resulting population-level effects is especially
relevant to epidemiologists who are engaged in planning for
pandemics.

In the present commentary, we use S. pneumoniae, the most
common cause of CAP, as a model organism to explore the
relation between influenza A and CAP.With over 90 identified
serotypes and multiple licensed vaccines, S. pneumoniae re-
mains one of the best researched of the pneumonia-causing
bacteria (13). We present 3 pathways to coinfection and dis-
cuss the impact of order and timing of coinfection on what
epidemiologic patterns might be observed. We close with
a discussion of outstanding research questions and their
implications for CAP prevention.

PATHWAYS TO COINFECTION

There are 3 possible pathways to coinfection: 1) infections
with both etiologic agents occur essentially simultaneously;
2) S. pneumoniae colonization precedes influenza infection;
and 3) influenza infection precedes S. pneumoniae coloniza-
tion (Figure 1). Each of these pathways is possible (although
they likely occur at different frequencies); however, we ex-
pect the resulting population patterns to differ depending on
the relative frequency of each pathway, as will the implications
for control measures (discussed below).

Simultaneous acquisition of influenza and
S. pneumoniae

Viruses and bacteria can be transmitted together through
coughing or sneezing (11, 14–16). However, the extent
to which simultaneous infections with influenza and
S. pneumoniae lead to CAP is uncertain. In one of the few
animal studies in which simultaneous infections were stud-
ied, investigators found no evidence of lethal synergy in
mice infected with sublethal titers of both influenza and
S. pneumoniae (17). In humans, influenza infection alone
increases cough, potentially facilitating transmission of both
viruses and bacteria (4). Additionally, influenza replicates
more rapidly than does bacteria, so even if the infections
are acquired simultaneously, the clinical manifestations in an
individual would appear sequentially. At the population level,
we might expect little or no lag between peaks in influenza
and pneumonia occurrence after simultaneous infection.
Potential course-of-infection and research questions related
to concurrent infection are presented in Table 1.

S. pneumoniae colonization preceding influenza

If S. pneumoniae colonization precedes influenza infection,
changes in the upper and lower respiratory tracts resulting
from the influenza infection would enable the colonizing
strain of S. pneumoniae to successfully avoid a host immune

response, invade the lung, and cause pneumonia. Although it
is assumed that bacteria that colonize the nasopharynx fre-
quently enter the lungs, the host immune response is usually
sufficient to prevent infection. The introduction of influenza
primes the lungs for bacterial colonization and adversely
affects the host response, leading to secondary pneumonia
(4, 11, 18). In this case, the endogenous bacteria exploit an
opportunity that may not have presented itself in the absence
of an influenza infection. The prevalence of S. pneumoniae
colonization ranges from 19% in children (19) to approxi-
mately 11% in adults in the United States (10). Thus, for
pneumonia caused by S. pneumoniae, the relative contribu-
tion of coinfection would be age-dependent and rely upon
rates of colonization among the elderly or adult interaction
with children who had an S. pneumoniae infection.

There have been few animal models in which this pathway
was studied directly. In one mouse model, the introduction of
influenza A 3 days after inoculation with S. pneumoniae led
to an increase in the presence of pneumonia and facilitated
influenza transmission to littermates (12). However, in a sec-
ond mouse model, investigators found that S. pneumoniae
colonization before influenza infection was protective com-
pared with influenza infection before S. pneumoniae coloni-
zation (17). These studies seem to suggest that S. pneumoniae
can facilitate transmission of influenza, but they provide
insufficient evidence for any synergy in terms of coinfection.

At the population level, we would expect a limited time
lag before the onset of bacterial pneumonia (Table 1). Because
the bacterial agent has had a chance to proliferate in the host,
wewould expect more rapid proliferation once the lungs were
no longer able to clear the bacteria. However, because acqui-
sition of a new bacterial isolate is required, we could anticipate
that the onset of coinfection would be much more variable
and would be associated with individuals with high risk of
exposure, such as those who had contact with young children.

Figure 1. Schematic of 3 pathways of influenza and bacterial
pneumonia exposure that lead to coinfection.

364 Davis et al.

Am J Epidemiol. 2012;175(5):363–367

 at U
niversity of M

ichigan on July 1, 2014
http://aje.oxfordjournals.org/

D
ow

nloaded from
 



 

 
 

19 

 

S. pneumoniae colonization preceding influenza  

If S. pneumoniae colonization precedes influenza infection, changes in the upper and 

lower respiratory tracts resulting from the influenza infection would enable the colonizing strain 

of S. pneumoniae to successfully avoid a host immune response, invade the lung, and cause 

pneumonia. Although it is assumed that bacteria that colonize the nasopharynx frequently enter 

the lungs, the host immune response is usually sufficient to prevent infection. The introduction of 

influenza primes the lungs for bacterial colonization and adversely affects the host response, 

leading to secondary pneumonia [35, 61, 71]. In this case, the endogenous bacteria exploit an 

opportunity that may not have presented itself in the absence of an influenza infection. The 

prevalence of S. pneumoniae colonization ranges from 19% in children [7] to approximately 11% 

in adults in the United States [57]. Thus, for pneumonia caused by S. pneumoniae, the relative 

contribution of co-infection would be age-dependent and rely upon rates of colonization among 

the elderly or adult interaction with children who had an S. pneumoniae infection.  

There have been few animal models in which this pathway was studied directly. In one 

mouse model, the introduction of influenza A 3 days after inoculation with S. pneumoniae led to 

an increase in the presence of pneumonia and facilitated influenza transmission to littermates 

[70]. However, in a second mouse model, investigators found that S. pneumoniae colonization 

before influenza infection was protective compared with influenza infection before S. 

pneumoniae colonization [75]. These studies seem to suggest that S. pneumoniae can facilitate 

transmission of influenza, but they provide insufficient evidence for any synergy in terms of co-

infection.  

At the population level, we would expect a limited time lag before the onset of bacterial 
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pneumonia (Table 2.1). Because the bacterial agent has had a chance to proliferate in the host, 

we would expect more rapid proliferation once the lungs were no longer able to clear the 

bacteria. However, because acquisition of a new bacterial isolate is required, we could anticipate 

that the onset of co-infection would be much more variable and would be associated with 

individuals with high risk of exposure, such as those who had contact with young children.  

 

Influenza infection preceding S. pneumoniae colonization  

Clinically, it is assumed that bacterial pneumonia associated with influenza results from a 

bacterial infection that follows the influenza infection. Within an individual, the typical course of 

secondary bacterial pneumonia involves initial recovery from influenza followed by secondary 

symptoms, such as cough or fever, 4–14 days later [76]. Results from animal models support this 

clinical observation. When mice are exposed to both wild-type and laboratory influenza strains 

and various strains of S. pneumoniae and S. aureus, there is an increased number of pneumonia 

infections, as well as an increased likelihood of death, compared with when any agent is given 

alone [71, 75, 77-79]. In the aggregate, these experiments strongly support the idea of a 

synergistic interaction between influenza and S. pneumoniae (and S. aureus) when infection 

occurs sequentially.  

At the population level, we would expect to see a relatively long lag time between 

influenza infection and the presence of CAP because of the time needed for the influenza to 

reduce the ability of the lungs to clear a bacterial infection. This lag time would enable partial 

recovery before the bacteria could infect the individual. The bacterial agent would then have to 

proliferate within the host before the host began to show symptoms of CAP. This lag was 

observed when data from the 1918 pandemic were reanalyzed. A graph of the timing from 
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influenza infection to death found a lag period of 7–21 days [6], which suggests that affected 

individuals recovered before developing a more severe bacterial infection. Other research on data 

from the 1918 influenza A pandemic that suggests the role that secondary bacteria may have 

played has been supported by similar death curves created from data from infection with 

bacterial pneumonia alone through the 1920s and 1930s [5].  

 
Table 2-1: Examples of Relevant Research Questions for Each Pathway of Influenza and 
Bacterial Pneumonia Co-infection 
 
 

2.3 Research Questions and Implications 
Specifying the pathways to co-infection may help to identify new research questions 

about the interaction between influenza and CAP (Table 2.1) that can only be answered through 

basic science, clinical, and population studies. Basic laboratory science studies of the interactions 

within animal models have provided the most information to date for understanding the 

interactions between influenza and S. pneumoniae because unlike in human populations, 

experiments in laboratories can control the timing of exposure to influenza and secondary 

bacterial infection. Animal research has also shed light on specific cytokine pathways, such as 

mediation of infection with influenza by interleukin-10 [80] and inhibition of the pulmonary 

system’s ability to fight infection by interferon-gamma [81, 82], that provide testable hypotheses 

for an inflammatory response that might occur in humans. Further, in animal studies, 

investigators can explore what combinations of influenza strains and S. pneumoniae serotypes 

Influenza infection preceding S. pneumoniae
colonization

Clinically, it is assumed that bacterial pneumonia associated
with influenza results from a bacterial infection that follows
the influenza infection.Within an individual, the typical course
of secondary bacterial pneumonia involves initial recovery
from influenza followed by secondary symptoms, such as
cough or fever, 4–14 days later (20). Results from animal
models support this clinical observation. When mice are
exposed to both wild-type and laboratory influenza strains
and various strains of S. pneumoniae and S. aureus, there
is an increased number of pneumonia infections, as well as
an increased likelihood of death, compared with when any
agent is given alone (11, 17, 21–23). In the aggregate, these
experiments strongly support the idea of a synergistic inter-
action between influenza and S. pneumoniae (and S. aureus)
when infection occurs sequentially.

At the population level, we would expect to see a relatively
long lag time between influenza infection and the presence
of CAP because of the time needed for the influenza to reduce
the ability of the lungs to clear a bacterial infection. This lag
time would enable partial recovery before the bacteria could
infect the individual. The bacterial agent would then have to
proliferate within the host before the host began to show symp-
toms of CAP. This lag was observed when data from the 1918
pandemic were reanalyzed. A graph of the timing from influ-
enza infection to death found a lag period of 7–21 days (24),
which suggests that affected individuals recovered before
developing a more severe bacterial infection. Other research
on data from the 1918 influenza A pandemic that suggests
the role that secondary bacteria may have played has been
supported by similar death curves created from data from
infection with bacterial pneumonia alone through the 1920s
and 1930s (25).

RESEARCH QUESTIONS AND IMPLICATIONS

Specifying the pathways to coinfectionmay help to identify
new research questions about the interaction between influ-
enza and CAP (Table 1) that can only be answered through
basic science, clinical, and population studies. Basic laboratory

science studies of the interactions within animal models
have provided the most information to date for understanding
the interactions between influenza and S. pneumoniae be-
cause unlike in human populations, experiments in labora-
tories can control the timing of exposure to influenza and
secondary bacterial infection. Animal research has also shed
light on specific cytokine pathways, such as mediation of
infection with influenza by interleukin-10 (26) and inhibi-
tion of the pulmonary system’s ability to fight infection by
interferon-gamma (27, 28), that provide testable hypotheses
for an inflammatory response that might occur in humans.
Further, in animal studies, investigators can explore what com-
binations of influenza strains and S. pneumoniae serotypes may
result in greater risks to human populations (11, 13, 29, 30).

Seasonal influenza and pneumococcal vaccinations can
protect elderly populations against hospitalization for either
influenza or pneumonia, and the effects are additive. We see
the fewest hospitalizations among individuals who have
had both vaccinations, but persons with either the influenza
vaccine or the Streptococcus vaccine have lower rates of
hospitalization than do unvaccinated individuals (31). The
novel 2009 hemagglutinin type 1 and neuraminidase type 1
influenza (commonly known as H1N1 or swine flu) pan-
demic provided a natural experiment in a naive population
not previously exposed to the influenza strain. Specifically,
the lethality of the strain in an unexposed population and
potential immunity among the elderly who had been pre-
viously exposed to an H1N1 strain provided information
about risk of coinfection (8, 32, 33). The pandemic also
started a robust debate about when it is appropriate to pro-
vide antibiotics to prevent secondary infection and how to
ration them (34–36). Because etiology is determined in only
30%–50% of patients with CAP who are tested (16) and
antibiotics are often given without identifying the bacterial
agent, clinical research studies will need to include bacterial
surveillance. Additionally, determining the effectiveness of
neuraminidase inhibitors and specific age groups to target
to prevent a secondary pneumonia infection is needed to
provide evidence of which populations will benefit the most
from limited resources.

Historical research into the role that bacterial infections
played in the deaths from the 1918 influenza A pandemic

Table 1. Examples of Relevant Research Questions for Each Pathway of Influenza and Bacterial Pneumonia Coinfection

Pathway Relevant Research Questions Population Implications

Cotransmission Is a cough or sneeze sufficient for simultaneous
infection, or must fomites play a role?

Short or no lag observed between peak of influenza
infection and peak of bacterial pneumonia infection

Does bacterial survival depend upon droplet size?

Bacterial colonization followed
by influenza infection

Does the body exert more effort to keep certain
bacteria in check? If so, is an individual with
those bacteria more likely to become infected
after influenza infection?

Short lag between peak of influenza infection and
peak of bacterial pneumonia infection

Can probiotics or prebiotics be used to prevent
colonization with pneumonia-causing bacteria?

Influenza infection followed
by bacterial colonization

What role do children play in transmitting bacteria
to influenza-infected adults?

Long lag between peak of influenza infection and
peak of bacterial pneumonia infection

How can we prime the immune system to prevent
secondary infection from bacterial pathogens?
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may result in greater risks to human populations [58, 71, 83, 84].  

Seasonal influenza and pneumococcal vaccinations can protect elderly populations 

against hospitalization for either influenza or pneumonia, and the effects are additive. We see the 

fewest hospitalizations among individuals who have had both vaccinations, but persons with 

either the influenza vaccine or the Streptococcus vaccine have lower rates of hospitalization than 

do unvaccinated individuals [85]. The novel 2009 hemagglutinin type 1 and neuraminidase type 

1 influenza (commonly known as H1N1 or swine flu) pandemic provided a natural experiment in 

a naive population not previously exposed to the influenza strain. Specifically, the lethality of the 

strain in an unexposed population and potential immunity among the elderly who had been 

previously exposed to an H1N1 strain provided information about risk of co-infection [26, 86, 

87]. The pandemic also started a robust debate about when it is appropriate to provide antibiotics 

to prevent secondary infection and how to ration them [88-90]. Because etiology is determined in 

only 30%–50% of patients with CAP who are tested [72] and antibiotics are often given without 

identifying the bacterial agent, clinical research studies will need to include bacterial 

surveillance. Additionally, determining the effectiveness of neuraminidase inhibitors and specific 

age groups to target to prevent a secondary pneumonia infection is needed to provide evidence of 

which populations will benefit the most from limited resources.  

Historical research into the role that bacterial infections played in the deaths from the 

1918 influenza A pandemic provides a baseline for our understanding of co-infection at the 

population level [5, 6, 91] but little insight into the role of order and timing of the infections. 

Although current recommendations to stay home after influenza infection have been suggested to 

prevent secondary influenza infections, following the same advice may also prevent subsequent 

exposure to novel bacteria (pathway 3 in Figure 2.1) that can cause secondary pneumonia—a 
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major cause of death in 1918. More recent data on the timing between influenza infection and 

bacterial pneumonia are needed to determine whether antibiotic and antiviral treatments have 

changed the basic timing and relation at the population level.  

We described 3 pathways to CAP associated with influenza and the biologic evidence 

that supports the potential for each of these pathways to lead to co-infection. By exploring the 

implications of each pathway and examining co-infection at the biologic, clinical, and population 

levels, we should be able to identify key signals for predicting and preventing CAP. Although 

most animal models are currently used to test and support a sequential infection with influenza 

followed by exposure to bacteria, translating that research to a human model is not 

straightforward. The interaction between colonization with bacteria and infection, as well as real-

life variability in the timing to transmission, means that much further research needs to be 

conducted for a true understanding of how this co-infection occurs in humans. However, by 

thinking about the interaction between influenza and pneumonia-causing bacteria in terms of 

timing of transmission, we are able to raise questions about where to target future human 

research. Creation of public health recommendations to reduce transmission among at-risk 

populations and determination of the effectiveness of vaccinations and treatments can be guided 

by using results from current animal models with a goal of shaping population-level studies. 

With the majority of historical deaths from influenza pandemics attributable to bacterial infection 

[67], sorting out the relative contribution of each pathway to disease is a project too important to 

ignore.   
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 High Prevalence of Human Coronaviruses in a University Setting Chapter 3:
 
3.1 Introduction 

As demonstrated by the 2012 discovery of the Middle East Respiratory Syndrome 

coronavirus (MERS-CoV) in Saudi Arabia, [92] human coronaviruses continue to emerge and 

may become significant public health problems. MERS-CoV followed closely on the 2003 

identification of severe acute respiratory syndrome coronavirus (SARS-CoV) [93]. Both viruses 

originated from animal reservoirs and cause significant mortality [37, 93, 94]. By contrast, four 

other human coronaviruses (HCoVs) 229E, HKU1, NL63 and OC43 - already circulate globally, 

but generally have low fatality rates [43, 47-49, 95, 96]. These four HCoVs also are believed to 

have originated from zoonotic sources, including bats (NL63, 229E) or cattle (OC43), although 

the origins of HKU1 remain uncertain [97-99].  

Human coronavirus 229E, HCoV-NL63, and HCoV-OC43 [38, 39, 95, 96] are linked to 

common cold symptoms, while HCoV-HKU1 is associated with respiratory and, less 

definitively, gastrointestinal symptoms [45, 100]. HCoV-HKU1 and HCoV-NL63 can cause 

severe diseases, including bronchitis, bronchiolitis, and/or croup [43, 47-49, 101, 102], among 

pediatric and adult hospitalized patients. However, due to the relatively mild course of illness in 

the majority of otherwise healthy individuals, HCoV-229E, HCoV-HKU1, HCoV-NL63, and 

HCoV-OC43 are thought to be underreported [103].  

Our current understanding of the epidemiology of HCoV-229E, HCoV-HKU1, HCoV-

NL63, and HCoV-OC43 outside of clinics is extremely limited. The prevalence, severity, and co-

occurrence of HCoVs with other respiratory viruses are not yet established [37]. Data are 
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primarily from outbreak reports, case studies, and clinical studies focusing predominantly on 

children [38, 42, 45, 47, 49]. Here, we begin to address this gap by estimating the prevalence, 

shedding duration, symptom progression, and codetection with other respiratory viruses - 

HCOV-229E, HKU1, NL63 and OC43 - among a cohort of college-aged students.  

 
3.2 Methods 
 We collected demographic, clinical data, and throat and anterior nasal specimens from 

students as part of a previously described large social network study of acute respiratory 

infection (ARI) among university students [64]. In brief, a total of 590 students living in one of 

six on-campus residence halls were recruited through a chain referral method between October 

2012 and January 17, 2013. For a 10-week period from January 17 until April 9, 2013, enrolled 

participants experiencing respiratory symptoms were asked to complete an online screening 

survey to self-report illness symptoms. All enrolled participants were asked to identify other 

enrolled social contacts through searching a list of enrolled contacts or through suggestions 

based on the underlying social network on a weekly online survey.  

Participants reporting symptoms meeting the ARI case definition (cough plus at least one 

of: body aches, chills, or fever/feverishness) were asked to provide up to three specimens over a 

6-day period following ARI onset. In order to reduce the likelihood that any two-illness episodes 

were linked to the same etiology, symptom-onset dates were required to be at least two weeks 

apart for an ARI participant to provide more than one set during the study period. This allowed 

us to consider each illness episode as an independent event. 

 

Social Contacts 
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Once an ARI case was identified through our online screening survey, an email was 

automatically sent out to the individual’s network contacts, inviting presumed “healthy” social 

contacts to provide a specimen. The social network was identified through a list of contacts that 

each enrollee generated over the course of the study. Social contacts were eligible if: 1) they had 

recent face-to-face contact within the previous calendar week with an ARI participant, and 2) 

they had not been an ARI participant during the previous two weeks. Social contacts that elected 

to provide specimens were scheduled for up to three specimen collections: 1) day 0 specimen 

captured as close as possible to the illness onset of their linked cased; 2) specimen captured 3 

days after the first; and 3) final specimen captured 6 days after the first specimen.  

Although healthy social contacts were not experiencing ARI when they were asked to 

provide a specimen, some of the social contacts reported symptoms of illness, such as cough or 

sneezing, at the time of specimen collection. Changes in symptoms among social contacts were 

calculated as the time from the first specimen collection to illness onset. Any social contact 

symptomatic on any one or more of the specimen collection days was defined as a “social 

contact with symptoms.” Any social contact remaining healthy on specimen collection days 0, 3, 

and 6 was defined as an “asymptomatic social contact.”  

The University of Michigan Institutional Review Board (IRB) (HUM00054432) 

approved the study protocol and the Centers for Disease Control and Prevention’s Human 

Subjects Research Office reviewed and approved deferral to the University of Michigan’s IRB. 

 

Symptom Assessment 

All participants providing specimens reported information on 13 acute symptoms: 

abdominal pain, body aches, chills, cough, diarrhea, ear ache, feverishness, headache, nasal 
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congestion, runny nose, sneezing, sore throat, and vomiting. Symptoms were collected using a 

standardized questionnaire administered by trained staff during the sample collection visit, and 

severity was reported as: not present, mild, moderate, or severe. 

 

Specimen Collection and Testing 

For each ARI illness participant and invited social contact, we aimed to collect up to 

three samples from each study participant as follows:  

ARI Participants  

Day 0 specimen – Within 24 hours of illness onset 

Day 3 specimen – Between 25 and 96 hours after illness onset 

Day 6 specimen – Between 97 and 144 hours after illness onset 

Social Contacts 

Day 0 specimen – Time of first specimen collected, as close to illness onset for 

ARI contact as possible 

Day 3 specimen – Approximately 72 hours after initial specimen collection 

Day 6 specimen – Approximately 144 hours after initial specimen collection 

If a social contact reported symptoms consistent with our ARI definition, either through 

the online screening survey or during specimen collection, they were considered an ARI 

participant and their next scheduled specimen was considered a day 0 ARI specimen. The 

collection of any combination of day 0, day 3, and day 6 specimens for any participant was 

defined as a “set” of specimens.  

Trained staff collected specimens at each participant’s residence. Swabs were taken from 

two locations: the anterior nares and along the uvula. Both specimens were placed in Copan 
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Universal Transport Media (Copan, Murrieta, California) and then stored at -70° C prior to 

testing.  

All specimens were tested for 13 respiratory viruses: coronaviruses 229E, HKU1, NL63, 

and OC43; adenovirus; human metapneumovirus (hMPV); influenza A and B; parainfluenza 1, 

2, and 3; rhinovirus; and respiratory syncytial virus (RSV). For all viruses except influenza A/B, 

aliquots from the throat and nasal swab were combined prior to testing. Influenza A/B testing 

was performed separately on throat and nasal swabs, and participants were considered positive 

for influenza if either swab tested positive.  

The number of specimens collected per episode ranged from 1-3 per set. For each illness 

episode, participants and each of their social contacts received an incentive of $15 for their first 

specimen, $20 for their second, and $25 for their third specimen within a collection period.  

Tests for all respiratory viruses were performed in the laboratory using real-time reverse-

transcriptase polymerase chain reaction (RT-PCR). Primers and probes were developed by the 

Centers for Disease Control and Prevention (CDC) and obtained from the Division of Viral 

Disease, Gastroenteritis, and Respiratory Viruses and the Influenza Division. Additional 

information about the RT-PCR process and RNA/DNA extraction can be found elsewhere [104]. 

We assessed the type and number of viral pathogens in each of the day 0, 3, and 6 specimens. A 

participant was considered positive for a particular virus (or viruses) if at least one of the three 

specimens within an illness episode had a positive RT-PCR result.  

 

Statistical Analysis 

We used Fisher's χ2 tests and t-tests to compare demographic differences between study 

participants providing and not providing specimens, as well as the virus prevalence between 
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three groups: 1) ARI participants, 2) social contacts with symptoms and 3) healthy social 

contacts. Symptoms were analyzed as present or absent, except for cough, which, as a required 

symptom for the ARI case definition, was defined as absent/mild compared to moderate/severe. 

To assess changes in symptoms over time, we compared the proportion of participants who 

reported each symptom on day 0, 3, and 6 for each illness episode, testing for trends by virus 

with the Cochran-Armitage test. We assessed the change in illness symptoms over the 6-day 

period separately for ARI participants (with a defined symptom-onset date) and social contacts 

with symptoms (with no defined symptom-onset date). Due to sample size constraints, the four 

human coronaviruses were combined for symptom analysis. All statistical analyses were 

calculated using SAS 10.1 (Cary, NC).  

 

3.3 Results 

Of the 590 enrolled participants, 176 (29.8%) provided specimens as an ARI participant, 

a social contact, or as both an ARI participant and social contact. A total of 250 sets, the 

collection of 1 to 3 specimens over an illness episode, were collected: 81/176 (46.0%) 

participants provided 96 sets of specimens after meeting the ARI case definition; 70/176 (39.8%) 

participants provided 88 sets of specimens as social contacts; and 25/176 participants (14.2%) 

provided 66 sets of specimens (31 sets as an ARI case and 35 sets as social contacts); 115 ARI 

reports were eligible for specimen collection, of those 96/115 (83.5%) provided a specimen. A 

mean of 1.6 specimens were collected per set. Compared to enrolled students who did not report 

ARI or did not provide specimens as a social contact, those providing specimens were slightly 

older (19.5 years vs. 19.1 years; p=0.0006), had parents who were less well-educated (p=0.04), 

and were less likely to have received a 2011/12 seasonal influenza vaccine (37.7% vs. 51.2%; 

p=0.01) (Table 3-1).  
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Table 3-1: Demographic Information for the 590 Participants Enrolled in the eX-FLU 
Study. 

 

Participants Providing 
Specimens (N=176) 

Participants Not 
Providing Specimens 

(N=414) p-value 
Male 75 (42.6) 160 (41.9) 0.87 
Age; Mean, SD 19.5 (1.2) 19.1 (0.9) 0.0009 
Race 

  
0.36 

     White 110 (64.7) 254 (68.7) 
      Black 13 (7.7) 34 (9.2) 
      Other 47 (27.7) 82 (22.2) 
 Parental Education 

  
0.04 

     <College 43 (25.0) 62 (16.7) 
      College 49 (28.5) 99 (26.6) 
      >College 80 (46.5) 211 (56.7) 
 Seasonal Influenza Vaccination 

2012-13 58 (37.7) 104 (51.2) 0.01 
 

Virus Prevalence 

Half (127/250; 50.8%) of the specimen sets were from ARI participants, 78 (31.2%) from 

social contact with symptoms, and 45 (18.0%) from asymptomatic social contacts. Overall, 76 

(30.4%) of the 250 sets were positive for at least one of the 13 viruses included in our assay; a 

total of 101 viruses were identified (11 dual infections, one triple infection). The overall 

prevalence of virus from ARI participants was 46.5%, compared to 28.3% for social contacts 

with symptoms, and 13.3% for asymptomatic social contacts (p=0.001). The most common virus 

identified was HCoV-NL63 (10.0%; 25/250), followed by rhinovirus (7.6%; 19/250), influenza 

A (6.4%; 16/250), and RSV (3.2%; 8/250). Influenza A was the only virus that appeared 

statistically significantly by a test of heterogeneity among the three classes more frequently in 

ARI cases than social contacts with symptoms or asymptomatic social contacts (ARI participants 

10.2%; social contact with symptoms 2.6%; and asymptomatic social contacts 2.2%; p=0.05). No 

specimens tested positive for parainfluenza 2 (Table 3-2). 
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Table 3-2: Prevalence of RT-PCR Viral Detection Among 176 Participants with 250 
Specimen Sets Using Symptom Status from the eX-FLU Study in the University Setting. 

 Social Contacts  
Identified Virus ARI Participanta 

n=127 
With Symptoms 

n=78 
Asymptomatic 

n=45 p-value 

HCoV-229E 5 3.9% 2 2.6% 1 2.2% 0.90 
HCoV-HKU1 1 0.8% 2 2.6% 0 0.0% 0.58 
HCoV-NL63 17 13.4% 6 7.7% 2 4.4% 0.20 
HCoV-OC43 4 3.1% 1 1.3% 0 0.0% 0.58 
Influenza A 13 10.2% 2 2.6% 1 2.2% 0.05 
Influenza B 2 1.6% 0 0.0% 0 0.0% 0.68 
Adenovirus 2 1.6% 1 1.3% 0 0.0% 1.00 
Human Metapneumovirus 4 3.1% 1 1.3% 1 2.2% 0.86 
Parainfluenza 1 0 0.0% 1 1.3% 0 0.0% 0.49 
Parainfluenza 2 0 0.0% 0 0.0% 0 0.0% -- 
Parainfluenza 3 1 0.8% 4 5.1% 0 0.0% 0.09 
Respiratory Syncytial Virus 6 4.7% 2 2.6% 0 0.0% 0.40 
Rhinovirus 13 10.2% 4 5.1% 2 4.4% 0.38 
Any detected virus 59 46.5% 22 28.2% 6 13.3% 0.0001 
aARI: Acute respiratory illness consists of a cough plus at least one of: body aches, chills, and 
fever/feverishness 
 
Viral Co-Detection 

The overall prevalence of co-detection (i.e., detection of > 1 virus per illness episode) in 

our population was 4.8% (12/250) (Table 3-3). There were 11 two-virus codetections and one 

triple codetection in our population (positive for HCoV-HKU1, influenza A, and rhinovirus). 

Rhinovirus occurred most frequently as a codetected agent (8/12 specimens; 66.7%), while 

HCoV-NL63 was present in 50% of the codetected specimens (6/12). The viral positive counts in 

any one group were too small to draw conclusions about the statistical associations between 

codetection and clinical symptoms. 
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Table 3-3: Frequency of 12 Laboratory-identified Codetected Viruses within a Single 
Specimen among 250 Specimen Sets Collected from the eX-FLU Study in the University 
Setting. 

 
Human Coronaviruses    

 Identified Virus 229E NL63 OC43 Influenza A RSV Rhinovirus 
HCoV-229E -- 2 0 0 0 1 
HCoV-NL63  -- 0 1 1 2 
HCoV-OC43   -- 0 0 1 
Influenza A    -- 0 1 
Respiratory 
Syncytial Virus     -- 2 

Rhinovirus      -- 
aOne specimen tested positive for HCoV-HKU1, influenza A, and rhinovirus 
 
Persistence of Virus Shedding Over Time 

Among ARI participants, the prevalence of all viruses detected decreased from time of 

symptom onset to follow-up. Influenza A (16.9%) was the most frequently detected virus on the 

day of illness onset, followed by HCoV-NL63 (15.3%). Human coronavirus NL63 was the most 

frequent virus detected 6 days following illness onset (8.9%), followed by rhinovirus (6.7%). 

Parainfluenza viruses 1 and 2 were not detected in any specimens collected from ARI 

participants (Table 3-4).  

 
Table 3-4: Persistence of Virus Detection by RT-PCR among 127 Specimen Sets from 
Participants with ARIa from the ex-FLU Study in the University Setting. 

 
Day 0 (n=59) Day 3 (n=98) Day 6 (n=90) 

Identified Virusb 
Viral 

Positive 
% 

Positive 
Viral 

Positive 
% 

Positive 
Viral 

Positive 
% 

Positive 
HCoV-229E 2 3.4% 4.1% 7.3% 1 1.1% 
HCoV-HKU1 1 1.7% 0.0% 0.0% 0 0.0% 
HCoV-NL63 9 15.3% 15.3% 23.8% 8 8.9% 
HCoV-OC43 2 3.4% 2.0% 3.6% 3 3.3% 
Influenza A 10 16.9% 10.2% 10.2% 3 3.3% 
Influenza B 2 3.4% 1.0% 1.0% 1 1.1% 
Adenovirus 2 3.4% 1.0% 1.8% 1 1.1% 
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Human Metapneumovirus 0 0.0% 2.0% 3.7% 2 2.2% 
Parainfluenza 3 0 0.0% 1.0% 1.9% 1 1.1% 
Respiratory Syncytial 
Virus 

3 5.1% 4.1% 7.0% 3 3.3% 

Rhinovirus 7 11.9% 10.2% 16.7% 6 6.7% 
aARI: acute respiratory illness is defined as a cough plus at least one additional symptom: body 
aches, chills, and feverishness 
bNo ARI participants tested positive for parainfluenza 1 or parainfluenza 2 

 
Symptoms Present During Specimen Collection 

Of the 127 participants with ARI, 56 provided a specimen on day 0, 98 provided a 

specimen on day 3, and 90 provided a specimen on day 6. The most frequent symptoms on day 0 

were moderate/severe cough (87.5%) and sore throat (83.9%). By day 3, the most frequent 

symptoms were moderate/severe cough (80.6%), nasal congestion (73.5%), and runny nose 

(72.4%). Finally, six days following illness onset, the most frequent symptoms were nasal 

congestion and runny nose (both 73.3%) (Figure 3-1).  
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Figure 3-1: Frequency of Symptoms Present Among ARIa Participants (N=127) on Day 0 
(n=56 specimens), Day 3 (n=98 specimens), and Day 6 (n=90 specimens). 
aARI: acute respiratory illness is defined as a cough plus at least one additional symptom : 
body aches, chills, and feverishness. 
 

Of the 78 social contacts with symptoms, 78 provided a specimen on day 0, 67 on day 3, 

and 60 on day 6. The most frequent symptoms across the 6-day specimen collection time frame 

were runny nose (43.4% on day 0, 43.3% on day 3, and 50.0% on day 6) and nasal congestion 

(39.5% on day 0, 41.8% on day 3, and 45.0% on day 6) (Figure 3-2).  
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Figure 3-2: Frequency of Symptoms Present among Social Contacts with Symptoms (N=78) 
on Day 0 (n=78 specimens), Day 3 (n=67 specimens), and Day 6 (n=60 specimens) following 
the Initial Specimen Collectiona. 
aARI: acute respiratory illness is defined as a cough plus at least one additional symptom : 
body aches, chills, and feverishness. 

 
Looking over all the specimens collected in a set, 67.2% (203 out of 302 social contact 

specimens) of specimens collected from social contacts were associated with at least one 

symptom and 32.8% (98 out of 302 social contact specimens) were associated with no 

symptoms.  

 

Change in symptoms over time 

Among ARI participants with HCoV and multiple specimens (n=19), the most common 

symptom within 24 hours of symptom onset was moderate/severe cough (12/12; 100%), 

followed by sore throat (11/12; 91.7%) and nasal congestion (9/12; 75.0%). Three days 
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following symptom onset, moderate/severe cough (17/18; 94.4%) and sore throat (15/18; 83.3%) 

were the most common symptoms. Six days following symptom onset, the most common 

symptoms among ARI patients with HCoV were runny nose (16/17; 94.1%) and nasal 

congestion (14/17; 82.4%). Moderate/severe cough (p = 0.04), chills (p = 0.01), and headache (p 

= 0.03) decreased in prevalence from day 0 to day 6. Only the reports of rhinitis (p = 0.02) 

increased over the 6-day period (Figure 3-3).  

 

 
Figure 3-3: Frequency of Symptoms Present among 19 ARIa Participants Positive for at 
Least One of the Four HCoVs on Day 0 (n=12), Day 3 (n=18) and/or Day 6 (n=16) 
Following Illness Onsetb,c. 
aARI: acute respiratory illness is defined as a cough plus at least one additional symptom : 
body aches, chills, and feverishness. 
bCough defined as moderate or severe vs. mild or absent; all other symptoms were either 
present or absent. 
cP-values calculated by the Cochran–Armitage test for trend over the day 0, 3, and 6 
specimens. 
 



 

 
 

37 

For ARI patients with influenza A and multiple specimens (n=12), moderate/severe 

cough at was the most prevalent symptom during the illness episode, followed by sore throat on 

day 0 and nasal congestion and runny nose on days 3 and 6 of the illness. Body aches (p=0.02) 

and feverishness (p=0.02) were the only symptoms with a significant difference in the prevalence 

of symptoms over time (Figure 3-4).  

 

 
Figure 3-4: Frequency of Symptoms Present among 12 ARIa Participants Positive for 
Influenza A on Day 0 (n=10), Day 3 (n=12) and/or Day 6 (n=10) Following Illness Onsetb,c. 
aARI: acute respiratory illness is defined as a cough plus at least one additional symptom : 
body aches, chills, and feverishness. 
bCough defined as moderate or severe vs. mild or absent; all other symptoms were either 
present or absent. 
cP-values calculated by the Cochran–Armitage test for trend over the day 0, 3, and 6 
specimens. 
 

Among ARI participants with rhinovirus and multiple specimens (n=9), nasal congestion 

was present in all participants at all three collection times. Runny nose was the second most 
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common symptom, decreasing over the illness period from 100% on day 0 to 71.4% 6 days after 

symptom onset; there were no significant changes in the prevalence of symptoms over time 

among ARI participants with rhinovirus (Figure 3-5).  

 

 
Figure 3-5: Frequency of Symptoms Present among Nine (ARIa Participants Positive for 
Rhinovirus on Day 0 (n=7), Day 3 (n=8) and/or Day 6 (n=7) Following Illness Onsetb. 
aARI: acute respiratory illness is defined as a cough plus at least one additional symptom : 
body aches, chills, and feverishness. 
bCough defined as moderate or severe vs. mild or absent; all other symptoms were either 
present or absent. 
  

Symptoms among social contacts were compared at day 0, 3, and 6 for HCoV (n=9 

participants), as this was the most prevalent type of virus identified in this group. 

Moderate/severe cough, nasal congestion, and sore throat were the most frequent symptoms on 

day 0 and day 3 of specimen collection. Six days after the initial specimen collection, nasal 

congestion (37.5%; 3/8) was the most common symptom, followed by sore throat (25%; 2/8) 
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among HCoV-positive social contacts with symptoms. There were no symptoms with significant 

changes in the prevalence over time among HCoV-positive social contacts with symptoms 

(Figure 3-6).  

 
Figure 3-6: Frequency of Symptoms Present among Nine Social Contact Participants 
Positive for at Least One of the Four HCoVs on Day 0 (n=9), Day 3 (n=9), and/or Day 6 
(n=8) Following Initial Specimen Collectiona. 
aCough defined as moderate or severe vs. mild or absent; all other symptoms were either 
present or absent. 
 

3.4 Discussion 
There are few prospective non-clinic-based studies describing the epidemiology of 

human coronaviruses 229E, HKU1, NL63 and OC43 and the changes in symptoms over time. 

Among the otherwise healthy young adults with ARI symptoms and a sample of their social 

contacts participating in this study, the prevalence of the four HCoVs combined was 19.7% 

among specimens from participants with ARI, 14.1% among social contacts with symptoms, and 
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6.7% among asymptomatic social contacts. Codetection of viruses was found in 12 specimens 

collected during the study period, including one triple codetection with HCoV-HKU1, influenza 

A, and rhinovirus. Influenza A was the most commonly detected virus among specimens 

collected from ARI participants, while HCoV-NL63 was the most frequent virus detected 6 days 

following illness onset. We found that moderate/severe cough, chills, and headache decreased in 

frequency over the 6-day period among students with HCoV infections, while runny nose 

increased in frequency over the 6-day period; no similar frequency trends were observed among 

symptomatic social contacts with HCoV.  

Our prevalence estimates are higher than estimates for a previously conducted study 

examining these four HCoVs in adult and asymptomatic populations, potentially due to the close 

contact within the residence halls. In that retrospective study conducted over 9 years in São 

Paulo, Brazil, the prevalence of HCoVs tested by RT-PCR was 8% among 50 adults living in the 

community with influenza-like illness [10]. An additional 50 asymptomatic adults were tested, 

and no positive HCoV specimens were detected. By contrast, we found that 6.7% of our 

asymptomatic contacts were positive for HCoVs. A household study that used similar RT-PCR 

methods conducted over the same period as our study in southeast Michigan found a prevalence 

of 16% of HCoVs among individuals with ARI, but they did not examine the prevalence among 

non-ARI contacts [104].  

The high prevalence of HCoV, compared to the 12 other viruses in our testing panel, 

could be attributed to the timing of our study. Human coronaviruses are most frequently found 

during December through May, and long-term cohort studies suggest a cyclical pattern in the 

presence of the four HCoVs over multiple years [105]. However, without multi-year data, we are 

unable to determine whether the high prevalence of the HCoVs found was due to the cyclical 
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nature of the virus or a result of testing ill individuals in close quarters. Unpublished data from a 

pilot study conducted among an independent sample of 574 students followed from February-

April 2011, resulted in few patients with ARI providing specimens (25), but we found a similar 

prevalence for HCoVs (16%; 4/25) in a similar young adult population. Further long-term annual 

studies of HCoVs in this community are needed to determine whether there is a seasonal effect 

or whether there is consistently higher prevalence among young adults in the university setting.  

A total of 4.8% (12/250) of specimens were positive for more than one virus, and 

coronaviruses were found in 44% of the detected codetection. Due to the small sample size, we 

were unable to assess which characteristics contributed to co-detection, including the one 

individual with three detected viruses. Other clinic-based studies, predominantly among children, 

have reported the occurrence of codetected viruses [42, 49, 106, 107]. However, studies outside 

of the clinical setting are rare. A study of healthy preschool-aged children in Australia reported 

twice the prevalence of codetection (56%), but their sample size was smaller (n=18) and young 

children tend to have higher rates of respiratory illness than young adults [62]. These studies 

suggest that viral codetection is frequent in children. More research is needed on adults to 

determine risk factors for co-infections among relatively healthy individuals with developed 

immune systems.  

HCoV-NL63 and rhinovirus had the highest proportion of specimens positive after illness 

onset. A study examining the viral load of HCoV in children in a daycare setting found an 

average shedding duration of 6.4 days, with a range of 2.8-10.1 days [108], while a previous 

rhinovirus challenge study reported patients shedding for at least 4 days, suggesting our findings 

are not unusual [109]. These findings could influence infection control practices in schools, as 

well as elsewhere in the community. 
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Our findings of persistently high prevalence of runny nose over the 6-day period in ARI 

cases with HCoV corresponds with common symptoms found in historical challenge studies of 

these viruses [105]. However, we were unable to find any other studies presenting a change in 

symptoms observed over time for the four globally circulating HCoVs outside of human 

challenge trials. The statistically significant decrease in cough, chills, and headache and increase 

in runny nose over the 6-day period for the HCoV observed in our study suggest that symptoms 

change significantly over the course of natural infection, making it difficult to delineate between 

viral etiologies associated with common ARI. The similarity of our findings with those of 

another study conducted in the region during the same season [104] suggests that university 

students were under similar regional viral pressure. Due to the low level of severe illness, and the 

lack of treatment sought among the students, screening for these viruses in a university setting 

does not seem necessary. However, it does seem likely that increased testing in the university 

setting, even among those with mild symptoms, would result in a high number of viruses 

detected.  

Because we used a chain-referral methodology for enrollment, our study population was 

not randomly recruited. It is unlikely that this would bias the estimates of viral prevalence among 

those with ARI; however, it is possible that the estimates for seropositivity from healthy contacts 

may be elevated compared to the prevalence found in the general population. Further, our testing 

for viruses was not exhaustive; the 13 viruses included were selected for their frequency of 

appearance as upper respiratory viruses in the population, as well as their clinical importance. 

However, additional respiratory viruses may have been present; as a result, the number of 

codetected viruses identified in this study is likely underestimated. Finally, seasonality may have 
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influenced our findings. By recruiting and testing patients January-April of 2012, we were more 

likely to see respiratory viruses compared to other circulating viruses [1].  

HCoVs are common, even among those without respiratory symptoms, and specific 

symptoms may change over the course of an illness that can mirror symptoms ranging from 

influenza to rhinovirus. Further social contact studies are needed in community settings to better 

understand the epidemiology and clinical significance of codetection within large prospective 

studies, helping to uncover important transmission characteristics that could inform measures for 

addressing more deadly coronavirus outbreaks in the community setting, should they emerge. 
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 Viral Infection is Associated with Increased Streptococcus pneumoniae Carriage Chapter 4:
among Otherwise Healthy College Students 

 
4.1 Background  

Commensal bacteria colonize the upper respiratory tract, and occasionally cause invasive 

disease. One such occasion is otitis media or pneumonia due to commensals Streptococcus 

pneumoniae, Haemophilus influenzae, and Staphylococcus aureus secondary to an acute 

respiratory infection (ARI) caused by a virus [110]. While the mechanisms of this viral-bacterial 

interaction have been explored in animal models [71, 111], relatively few studies have examined 

how human nasopharyngeal commensal bacteria change in response to viral infection [12, 112].  

We address this gap in the literature by estimating the colonization rates and relative 

abundance of three common upper respiratory bacteria in an otherwise healthy college-aged 

population with and without ARI due to a virus. We compared the prevalence of H. influenzae 

(HI), S. aureus (SA), S. pneumoniae (SP) colonization by presence of ARI symptoms, timing 

between symptom onset and timing of specimen collection, detection of selected viruses, and 

bacterial load by viral status.  

 

4.2 Methods 

Study population 

We used samples collected as part of the eX-Flu Study, a randomized controlled 

intervention study designed to estimate the effects of sequestration on influenza transmission to 

social contacts [64]. Briefly, 578 college students aged 18 and older living in one of six 
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dormitories were enrolled using a social network referral model during the 2012-13 influenza 

season. Participants completed weekly surveys about their enrolled social contacts and reported 

respiratory symptoms using a separate survey, available 24 hours a day, at the time of symptom 

onset. We limited this analysis to the 39.4% of the enrolled population that provided specimens 

during the course of the study (a total of 176 participants; 99 participants who met the case 

definition for ARI and 77 non-ARI participants).  

The study protocol was approved by the university’s IRB (clinical trial number: 

HUM00054432). The Centers for Disease Control and Prevention’s IRB approved deferral to the 

university’s IRB for this study. 

 

ARI case definition 

Participants were considered ARI positive if they had cough, and one of the following: 

fever/feverishness, chills, or body aches. 

 

Specimen collection 

Trained study staff collected throat and nasal swabs from participants with ARI on date 

of onset or as close to symptom onset as possible, and on day 3, and day 6 following ARI onset. 

Using the same collection methods, throat and nasal swabs were collected from social contacts of 

ARI patients who had not been ill in the previous 14 days (i.e., non-ARI participants) as close to 

the date of onset of symptoms in their ill social contact as possible. Swabs were stored in 

universal transport media (Copan, Murrieta, California). The current analysis is limited to results 

from the first sample provided. 
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Bacterial testing 

Total bacterial DNA from throat specimens were extracted using a commercially 

available protocol (Qiagen DNeasy) with modifications and stored at -20°C. We performed 

quantitative PCR (qPCR) using species-specific probes designed to target specific genes for each 

species of interest using the SYBR green fluorescent detection system. qPCR reactions were 

carried out using a commercially available SYBR green PCR master mix (Ssofast EvaGreen 

Supermix, Bio-Rad, CA), primers specific to each species, and genomic DNA as template. For 

each bacterial species, a gene fragment obtained from PCR was cloned into a commercial vector 

(TOPO TA cloning kit, Invitrogen, CA) and used to generate standard curves. A 10-fold dilution 

series of the cloned plasmid insert from the different bacteria was generated and qPCR was 

determined to be linear between 102 rrn copies/ul and 108 rrn copies/ul. Specific genes for each 

of the bacteria were targeted: the housekeeping gene fumarate reductase iron–sulfur gene B 

(frdB) was used for HI, the pneumolysin gene (ply), which is a species-specific protein toxin 

unique to SP produced by nearly all clinical isolates and which has been shown to be well 

conserved was targeted, and the well conserved and specific nuc gene for S. aureus detection 

[113]. The qPCR assays were performed as previously described [114, 115].  

 

Viral testing 

Aliquots from the nasal and throat swab were combined for viral testing except for 

influenza A/B. Influenza A/B were tested separately on throat and nasal swabs; a positive sample 

for either was used to define a participant as influenza positive. Samples were considered 

influenza positive based on the TaqMan System (Applied Biosystem, Foster City, CA) using 

primers and probes developed by the CDC influenza branch and approved for use in our lab 
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[104]. A total of eleven other viruses were tested in this study on a combined sample: 

adenovirus; coronaviruses 229E, HKU1, NL63, and OC43; human metapneumovirus (hMPV); 

parainfluenza 1, 2, and 3; rhinovirus; and respiratory syncytial virus (RSV). Additional 

information about the viral testing and primers were previously described [104].  

 

Data analysis 

To assess whether differences between groups were statistically significant we used chi-

square for categorical variables and student’s t test for continuous variables. We used time of 

symptom onset and self-reported severity of illness measured across 13 individual symptoms to 

evaluate the association between viral status and bacterial colonization. To assess whether there 

were differences in presence of a particular bacterial species by time of symptom onset we used 

the Cochran–Armitage test for trend. All analyses were conducted in SAS (version 10.1, Cary, 

North Carolina).  

 

4.3 Results  

Study participants were relatively young (mean of 19 years), predominately Caucasian, 

with highly educated parents (Table 4-1). Among the 176 participants, 60 (34.1%) tested positive 

for at least one of the 13 viruses in our screen, most commonly coronavirus NL63 (8.5%), 

influenza A/H3N2 (5.7%), and rhinovirus (4.5%)(Table 4-2). Overall, 51 (29.0%) tested positive 

for at least one of the three bacteria of interest, most commonly SP (15.9%)  (HI: 7.4%; SA: 

11.9%)(Table 4-1). More than half of the viral-positive and viral-negative participants were 

vaccinated against influenza for the 2012-13 season.  
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Table 4-1: Demographic and pathogen status of project participants from large university 
during the 2012-13 influenza season, comparing laboratory confirmed infection by a 
respiratory virus participants to laboratory confirmed negative participants. 
 

 

Laboratory 
Confirmed Infection 

by a Respiratory 
Virus* (n,%) 
n=60 (34.1) 

Laboratory Confirmed 
Negative* (n,%) 
N=116 (65.9) 

p-value 

Age (mean, SD) 19.2 19.7 0.006 
Male 28 (46.7) 14 (40.5) 0.43 
Race   0.43 

 White 38 (66.7) 72 (63.7)  
 African American 6 (10.5) 7 (6.2)  
 Other 13 (22.8) 34 (30.1)  Parental Education   0.76 

 <College 16 (26.7) 27 (24.1)  
 College 15 (25.0) 34 (30.4)  
 Post Graduate 29 (48.3) 51 (45.5)  Flu Shot 2012-13 37 (71.2) 59 (57.8) 0.11 
Contact Type   0.008 

 
 Participant meeting 
ARI** definition 42 (70.0) 57 (49.1)  

 
Participant not 
meeting ARI** 
definition 

18 (30.0) 59 (50.9)  

H. influenzae 6 (10.0) 7 (6.0) 0.37 
S. aureus 11 (18.3) 21 (18.1) 0.97 
S. pneumoniae 14 (23.3) 14 (12.1) 0.05 
*Tested for influenza A/B; adenovirus; coronaviruses 229E, HKU1, NL63, and OC43; 
human metapneumovirus; parainfluenza 1, 2, and 3; rhinovirus; and respiratory syncytial 
virus 
**Acute respiratory infection (ARI) defined as cough plus at least one of the following: 
fever/feverishness, chills, or body aches  
 
 

Those who met our case definition of ARI were significantly more likely than those 

without ARI to test positive for a respiratory virus (p=0.008), and laboratory confirmation of a 

respiratory virus was significantly associated with an increase in SP carriage (p=0.05) but not HI 

or SA carriage (Table 4-1). Among the 42 participants with ARI and a laboratory confirmation of 

a respiratory virus, 13 (31.0%) were SP positive, compared to only 7 (12.3%) among the 57 with 

ARI who tested negative for virus  (p=0.04). Of the 18 in the non-ARI group with laboratory 

confirmation of a respiratory virus, 1 (5.6%) was SP positive compared to 7 (11.9%) of the 59 in 
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the non-ARI group who tested negative for virus (p=0.74). HI and SA prevalence were not 

associated with ARI. The numbers of individuals positive for any one virus were too small for 

meaningful analysis (Table 4-2).  

 
Table 4-2: Frequency and percent of the 13 laboratory confirmed respiratory viruses 
participants tested positive for in the eX-FLU study based on their first samples provided. 
Total positive specimens = 60. Samples collected from 99 ARI participants and 77 non-ARI 
participants from a large university during the 2012-2013 influenza season. 

Identified Virus Positive Specimens (n=60) Prevalence of Virus 
Influenza A/H3N2 10 5.7 
Influenza B/Yamagata 1 0.6 
Adenovirus 2 1.1 
Coronavirus 229E 3 1.7 
Coronavirus HKU1 1 0.6 
Coronavirus NL63 15 8.5 
Coronavirus OC43 2 1.1 
Human Metapneumovirus 4 2.3 
Parainfluenza 1 1 0.6 
Parainfluenza 2 0 -- 
Parainfluenza 3 3 1.7 
Rhinovirus 8 4.5 
Respiratory Syncytial Virus 2 1.1 
Coronavirus 229E and 
Coronavirus NL63 

2 1.1 

Coronavirus NL63 and 
Influenza A/H3N2 

1 0.6 

Coronavirus NL63 and 
Rhinovirus 

2 1.1 

Coronavirus NL63 and 
Respiratory Syncytial Virus 

1 0.6 

Influenza A/H3N2 and 
Rhinovirus 

1 0.6 

Rhinovirus and Respiratory 
Syncytial Virus 

1 0.6 

 
To assess if there is an association between bacterial colonization and ARI symptoms, we 

examined the time between symptom onset and collection of a specimen positive for HI, SA or 

SP for participants that met our ARI case definition (n=60). There were no detectable trends in 

symptom onset date and collection of a specimen positive or HI or SA (Cochran-Armitage test, 

p=0.22; p=0.26). However, a higher proportion of day 0 samples (collected on the day that 
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symptoms were first reported) were positive for SP than samples collected 3 or 6 days after 

symptom onset (p=0.01) (Figure 4-1). The proportion of ARI participants positive for SP on day 

0 (35.1%), was significantly higher than the proportion of ARI negative participants positive for 

SP (12.1%; p=0.02).  
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Figure 4-1: Proportion of each throat specimen positive for bacteria based on time from 
onset for ARI participants, and p-value comparing each bacteria over the three time points 
(Day 0: n=27; Day 3: n=44; Day 6: n=17) based on Cochran-Armitage test for trend, among 
176 participants from large university during 2012-2013 influenza season. There were no 
statistically significant differences based on time from onset and positive samples for H. 
influenzae (p=0.22) or S. aureus (p=0.26), but a higher likelihood of positive S. pneumoniae 
closer to illness onset (p=0.01). 

 
SP and HI bacterial loads were similar between participants with and without laboratory 

confirmation of a respiratory virus. By contrast, SA bacterial load was significantly lower among 

those with a laboratory confirmation of a respiratory virus (4.1 log genomic copies/mL vs. 5.1/ 

log genomic copies/mL p=0.03) (Figure 4-2). We observed some evidence of competition 

between SA and SP: the mean SA bacterial load was significantly higher in the absence of SP 

(n=27; mean = 4.83 log genomic copies/mL) than in the presence of SP (n=5; mean = 4.12 log 

genomic copies/mL; p=0.05). But the mean SP load did not differ by presence of SA: (SA 
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positive, n=5; mean = 5.15 log genomic copies/mL; SA negative, n=23; mean=4.86 log genomic 

copies/mL; p=0.39). 

 

 
Figure 4-2: Relative abundance of Haemophilus influenzae, Staphylococcus aureus, and 
Streptococcus pneumoniae, in Log CFU/ml of sample by laboratory confirmation status of a 
respiratory viral infection.* Difference between viral load for S. aureus was significant 
(p=0.03). 
 

4.4 Discussion 

SP colonization, but not HI or SA colonization, was more common in the presence of 

ARI (cough, and one of the following: fever/feverishness, chills, or body aches) and in the 

presence of a respiratory virus. This association was strongest for specimens collected on the 

date of symptom onset. By contrast, SA bacterial load was decreased in the presence of virus, 

and in the presence of SP, but there was no association of SP bacterial load with viral or SA 

colonization.  

In this cohort of college students, we found that the prevalence of three common bacteria 

was similar to those found among young adults using RT-PCR methods [116]. A study 
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conducted among Portuguese children 4 months to 6 years old in the community setting looked 

at the association between symptoms, bacterial carriage, and viral status. The authors showed an 

increase in SP with increasing symptom severity, and with viral detection [12]. However, the 

study did not measure or compare bacterial load.  

Many models of co-infection assume that viral infection primes the immune system, in 

part by changes in the lung, increased inflammation, or immune system modulation [117]. Using 

influenza as a model, bacteria are hypothesized to proliferate over the first three days of 

infection, as the immune system responds the viral threat. Due the cross sectional nature of our 

study, we were unable to directly address this model. However, the three day period for bacterial 

proliferation falls within the two to five day incubation period for influenza, which could explain 

the why the highest proportion of SP colonization found from participants came from those who 

provided specimens on the day of symptom onset [117]. A second study directly examined the 

effect of rhinovirus inoculation on nasopharynx microbiota, and found that rhinovirus did not 

consistently change the prevalence or bacterial loads during infection compared to the microbiota 

during the wellness period [112]. Building on these findings, additional studies with serial 

samples are needed to firmly establish the timing of infection, while also further understanding 

how different viruses interact with colonizing bacteria. Further research into the effect that HI, 

SA, or SP can have on the immune response when colonizing an individual is also needed [117]. 

We relied on a chain-referral sample method for recruitment of students into our study, 

limiting our ability to generalize our results to the broader young-adult community. The social 

network was used to identify non-ARI participants, meaning not all non-ARI participants were 

given the opportunity to provide specimens. However, the high level of colonization observed in 
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the non-ARI population suggests, at least in regard to bacterial colonization, that the targeted 

sampling method was not dependent upon ARI symptoms.  

In conclusion, we identified an increased SP presence by laboratory confirmed infection 

with a respiratory virus and ARI presence among young adults. These findings add to a growing 

literature on the role of co-infection between viruses and bacteria in human disease. Further 

research should establish the temporal course of viral and bacterial co-infection, how specific 

bacteria are able to flourish with viral infection, and the role of the microbiome in the acquisition 

of co-infections [117]. If confirmed in larger studies, these findings have both clinical and public 

health implications, including changes in therapy and vaccination strategies to target co-

occurring agents.  
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 The Effect of Reactive School Closure on Community Influenza-Like Illness Chapter 5:
Counts in the State of Michigan during the 2009 H1N1 Pandemic 

 
5.1 Introduction 

At the start of the 2009 influenza A (H1N1) pandemic, the Centers for Disease Control and 

Prevention (CDC) recommended proactive school closures as a non-pharmaceutical intervention 

(NPI) whenever a confirmed or probable case of 2009 influenza A (H1N1) was identified in a 

school [118]. On May 5, 2009, the CDC modified its guidelines, emphasizing local decision-

making and recommending school closures only when high absenteeism interfered with a 

school’s educational mission [119]. Over 3,000 schools in the United States closed during the 

spring and fall waves of the 2009 influenza A (H1N1) pandemic. 

We studied retrospective data on 559 school closures in the state of Michigan during the 

fall wave of the 2009 influenza A (H1N1) pandemic. Most were reactive and occurred late in 

these school districts’ pandemic experience [120]. We hypothesized that late school closures 

would not result in a significant difference in influenza-like illness (ILI) rates in these 

communities. 

 

5.2 Methods 

We used data from the Michigan Department of Community Health (MDCH) collected 

during the fall of 2009. The MDCH proactively recorded information on school closures from 

559 public traditional, public charter and private K-12 schools during the fall term in response to 

2009 influenza A (H1N1). Several schools issued multiple closures during the period, for a total 
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of 567 separate school closure incidents. This study was considered an activity not regulated by 

the University of Michigan Health Sciences and Behavioral Sciences Institutional Review Board 

(HUM #00091632). 

 

Influenza-like Illness Outcomes 

The primary outcome of interest was the weekly ILI count for each school district. In 

addition to schools closed, MDCH provided a list of all ILI cases reported from September 1 

through December 31, 2009. Of 7,000 reports to the Michigan Disease Surveillance System 

(MDSS) containing zip codes, 1,248 had dates for both referral and symptom onset. To more 

accurately reflect what the unreported onset may have been for the 5,752 individuals without 

onset date, we calculated the median days between referral and onset among the 1,248 with 

complete information. We then subtracted that value from those with only a referral date, by 

week, to estimate the date of onset. We adjusted our reported onset time to allow for an 

assessment of how additional epidemiological information over that time period may have 

changed reporting practices.  

To determine the time period for analysis, we calculated a weekly ILI rate for each 

district by summing the ILI cases per week and dividing them by the total population in each 

school district. The peak ILI rate was based on two different methods: districts that had three or 

more weeks of ILI data were assigned a peak week based on the maximum rate of ILI per 

100,000 persons. Districts with less than three weeks of ILI data, or a peak week occurring prior 

to October 10th, were assigned a peak week value based on their public health region. After 

accounting for a one-week lag to assess closure impact on ILI, we set the peak week for each 
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school district as our 0 week, and looked at ILI counts three weeks preceding and four weeks 

following peak ILI rate in our models (See Figure 5-1).  

 

 
Figure 5-1: Illustration of Centering of Our Peak Week of Influenza-Like Illness for 
Comparisons, as well as Example of our Relevant Outcome. 
  

School Districts  

Information about individual schools and districts were accessed electronically from the 

Michigan Department of Education’s Center for Educational Performance and Information 

(CEPI). During the 2009 – 2010 academic year, all schools in the CEPI database could be 

geographically assigned to 551 public school districts. One district contained no open and 

eligible schools during our study period, and two school districts contained population sizes that 

skewed ILI rates; these were dropped from analysis. The final dataset analyzed contained 548 

districts. We considered a school district “closed” if at least one school closed and “open” if no 

schools in the district closed at any point during the study period.  
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Closed Schools 

The CEPI database contains information on 10,145 school districts, non-classroom 

facilities, non-school recipients, unique education providers, and public, public charter, and 

private schools [121]. We limited our analysis to schools only, leaving us with 6,469 unique state 

institutions. We removed from our dataset 2,038 schools that were not in session during the fall 

2009 semester; 100 schools that encompassed special education, adult education, juvenile 

detention and other facilities not under normal closure pressure; 28 schools with no grade 

information; and 8 online/virtual schools. Of these 4294 remaining schools, 559 reported at least 

one closure during the fall wave of 2009 influenza A (H1N1). 

 

Statewide Geographical Data 

We used two statewide geographical shape files to assign population size and outcome of 

ILI counts, and to assess peak ILI rates in the greater community. We used the US 2010 Census, 

which contained school district information with associated housing density. Next, a shape file 

for each of the 988 Zip Code Tabulation Areas (ZCTAs) in Michigan was accessed to delineate 

population by age; ZCTAs are used to combine census blocks with US Postal Service data and 

are often coterminous with zip code-defined areas, although boundary differences sometimes 

occur in rural areas [122]. This allowed us to calculate the proportion of the school-aged 

population (5-17 years of age) and total population within each ZCTA, and provide a geographic 

area for our ILI cases.  

 We then overlaid a statewide shape file (provided by the Geodata Services section of the 

Michigan Department of Technology, Management, and Budget) containing polygons 
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representing each of the public school districts in Michigan. The shape file represented school 

districts as of 2011, when 551 school districts covered the state.  

 These two shape files were read into ArcGIS 10.1 (Redlands, CA) in order to determine 

which ZCTAs were contained within each school district. An intersect merge of the two layers 

enabled an identification of ZCTAs for each school district that provided the school-aged and 

total populations. These data were then exported to the statistical software package for additional 

analysis.  

  

Statistical Methods 

School district level data from the CEPI dataset was summarized using SAS 10.1 (Cary, 

NC). Select data was aggregated across individual school levels into district-wide variables: 

proportion of students eligible for the National School Lunch Program (NSLP), which we used 

as a proxy measurement for district socio-economic level; type of school (public, private, public 

charter); and eligible grade levels. We derived the main predictor – the proportion of schools 

closed in a district varying over time – using the total number of schools closed by week over the 

total number of schools in the district. Due to the asymmetric distribution of our raw data 

describing the proportion of schools closed in each district, we consolidated this value into three 

levels of closure:  

Level 1: 0% of all schools in a district close for a given week;  

Level 2: 1 to 50% of all schools in a district closed for a given week; 

Level 3: 51 to 100% of schools in a district closed for a given week.  
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 To assess the effect of closure timing, we examined characteristics of individual schools 

and districts. Grade level and number of days closed were assessed among districts that closed 

prior to the week of peak infection and districts that closed at or following peak infection, 

determined by measuring the weeks of closure for each school district and subtracting that week 

value from the peak week of infection. Differences between categorical and quantitative 

variables were calculated using chi-squared and t-tests. 

The outcome of interest for our analyses was weekly ILI counts per district.  We used a log 

population per district offset to account for differences in the size and population density of the 

school districts, with a one-week lag to allow assessment of closure impact. To accommodate the 

ILI count data and offset while accounting for clustering within school districts over time, we fit 

a longitudinal model examining changes in the counts of ILI using PROC GENMOD with a 

negative binomial link statement in SAS 10.1. Negative binomial models are often appropriately 

used for count data when the variance exceeds the mean, as was the case in our study [123]. The 

full model was adjusted for additional covariates, including whether the school was public or 

private, the percentage of NSLP-eligible students, the number of enrolled students, and the 

density of houses per square mile in the district. We calculated estimates for differences between 

school districts, comparing level 1 (0% closed), level 2 (1-50% closed) and level 3 (51-100% 

closed). Figure 5.1 illustrates the time frame and comparison groups used to estimate ILI rate 

ratios (RR).  

 

5.3 Results 

 We analyzed 559 schools that closed in 548 school districts active during the 2009 

academic year; 170 school districts had at least one school that closed, compared to 378 districts 
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in which all schools remained open. These districts accounted for 1434 and 2882 closed and 

open schools, respectively. Closed districts had a high percentage of Junior/Senior high schools 

and K-12 schools, more private schools, but fewer houses per square mile (Table 5-1). We found 

no statistically significant difference between average total students per district or our proxy 

socioeconomic measure of NSLP eligibility ratio.  

Table 5-1: Descriptive Information About School Districts with at Least One School 
Closure Compared to No School Closure During the Fall 2009 Term in the State of 
Michigan. 
  
  

Closed Districts 
N=170 

Open Districts 
N=378 P-value 

Total Number of Schools 1434 2882  
School Level   0.003 

Elementary 841 (58.7) 1695 (58.8)  
Jr. High School 151 (10.5) 329 (11.4)  
Jr. Sr. High School 97 (6.8) 156 (5.41)  
Sr. High School 221 (15.4) 536 (18.6)  
K-12 124 (8.7) 166 (5.8)  

School Type   0.002 
Public School 1057 (73.7) 2186 (75.9)  
Public Charter School 79 (5.5) 208 (7.2)  
Private School 298 (20.8) 488 (16.9)  

Average Number of ILI Cases Over 
Study Period 5.42 6.33 0.06 
Average Houses per Sq. Mile per 
District 182.9 397.3 <0.0001 
Average Proportion of Population 5-
17 per District 0.167 0.174 0.0002 
Average Total Students per District 3056.3 3179.2 0.80 
Average Free and Reduced Lunch 
Ratio per District 0.43 0.42 0.45 
Average Schools per District 8.44 7.62 0.48 
Average Closed Schools per District 3.28 -- -- 
Overall Proportion of Closed 
Schools per District 0.64 -- -- 

 
 Open districts had a slightly, though not statistically significant, higher average number 

of cases than closed districts (6.33 versus 5.42, p=0.06), and a statistically significant higher 

proportion of the total population that were school-aged (17.4 versus 16.7, p = 0.0002). On 
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average, there were 8.44 schools in closed districts (districts with at least one school that closed), 

compared to 7.62 schools per open district (p=0.48). Among closed school districts, there was an 

average of 3.28 closed schools, or 64% of the schools per district. This value was skewed due the 

large number of school districts (n=67) where all schools closed (Table 5-1).  A map of open and 

closed districts, peak week of infection, and public health regions can be found in Figure 5-2.  

In the district-specific analysis, the rate of ILI peaked for public health regions 1, 2S, 3, 5 

and 6 during the week of October 17, 2009. Regions 7 and 8 peaked the week of October 24, 

while region 2N peaked the week of October 31. Regions 1, 6 and 8 had the highest attack rate 

(approximately 4 cases per 100,000 persons), with the smallest peak for 2S, with approximately 

2 cases per 100,000. A high of 250 Michigan schools closed the week of October 24. An 

animated graphic of changes in the rate of ILI per school district can be accessed online 

(http://cid.oxfordjournals.org/content/suppl/2015/04/17/civ182.DC1/civ182supp_video1.mp4).  
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Figure 5-2: Map of 8 Public Health Regions and 551 School Districts in the State of 
Michigan with District Level Peak Week of Infection 
  

The results from our demographic analysis of factors related to school closure are 

outlined in Table 5-2. We found no statistically significant differences between closed and open 

schools with respect to school grade level or school type, though public schools had a higher ILI 

rate per 100,000 individuals than e private schools or charter schools. Housing density was found 
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to be statistically significant, with a reduction in the number of houses per square mile associated 

with a higher rate of ILI (Rate per 100,000 = 0.88; p<0.0001).  

Table 5-2: Demographic Factors at the District Level Related to School District Closures 
and Rates of Influenza-like Illness. 

  
  

Estimated Rate 
per 100,000 

persons 95% Confidence Interval p-value  
Percent of Schools Closed by 
Week     
School Level     

Elementary 1.14 0.69 1.87 0.61 
Jr. High School 0.98 0.34 2.83 0.97 
Jr. Sr. High School 1.06 0.37 3.06 0.91 
Sr. High School 1.12 0.43 2.91 0.81 
K-12 1.00 0.36 2.82 1.00 

School Type     
Private School 0.96 0.77 1.20 0.73 
Public Charter School 0.96 0.91 1.01 0.15 
Public School 1.30 0.32 5.24 0.71 

Average Houses per Sq. Mile per 
District 0.88 0.86 0.91 <.0001 
Average Proportion of 
Population 5-17 per District 1.15 0.62 2.13 0.66 
Average FR Ratio* per District 1.08 0.95 1.22 0.31 
*FR ratio is the ratio of students receiving free or reduced lunch out of all students in a school 
 

 We observed similar patterns in the time-varying unadjusted model and the model 

adjusted for grade levels, school type, and housing density, although the fully adjusted model 

was attenuated towards the null RR or 1.0 (Table 5-3). No significant differences were observed 

across any of the weeks in relation to the peak week of infection, comparing level 1 (0% closed), 

level 2 (1-50% closed) and level 3 (51-100% closed).  However, level 2 had a lower RR when 

compared to level 1 or level 3 over the study period. In contrast, level 3 showed higher RR over 

the study period compared to both level 1 and level 2.   

Table 5-3: Adjusted Model Predicting Rates of Influenza-Like Illness based on Proportion 
of Schools Closed per Week. 
 Unadjusted  Fully Adjusted 
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Rate 
Ratio 95% CI 

P-
value   

Rate 
Ratio 95% CI P-value 

Peak Week -3          
   1-50% Closed v. 
0%  0.60 0.07 5.31 0.64  0.75 0.08 6.83 0.80 
   51-100% Closed 
v. 0% 2.19 0.13 35.74 0.58  1.73 0.13 23.82 0.68 
   51-100% Closed 
v. 1-50% 3.13 0.09 

110.6
1 0.53  1.78 0.06 57.44 0.75 

Peak Week -2          
   1-50% Closed v. 
0%  0.53 0.14 2.02 0.35  0.60 0.16 2.31 0.46 
   51-100% Closed 
v. 0% 2.15 0.33 14.20 0.43  1.75 0.30 10.31 0.54 
   51-100% Closed 
v. 1-50% 4.06 0.40 41.17 0.24  2.90 0.31 26.88 0.35 
Peak Week -1          
   1-50% Closed v. 
0%  0.53 0.22 1.25 0.15  0.59 0.24 1.42 0.24 
   51-100% Closed 
v. 0% 1.85 0.54 6.36 0.33  1.55 0.49 4.95 0.46 
   51-100% Closed 
v. 1-50% 3.52 0.78 15.86 0.10  2.64 0.61 11.31 0.19 
Peak Week 0          
   1-50% Closed v. 
0%  0.59 0.31 1.09 0.09  0.69 0.38 1.28 0.24 
   51-100% Closed 
v. 0% 1.61 0.63 4.09 0.32  1.36 0.57 3.29 0.49 
   51-100% Closed 
v. 1-50% 2.75 0.89 8.43 0.08  1.97 0.67 5.73 0.22 
Peak Week 1          
   1-50% Closed v. 
0%  0.65 0.37 1.14 0.13  0.82 0.47 1.45 0.49 
   51-100% Closed 
v. 0% 1.40 0.71 2.76 0.33  1.20 0.62 2.31 0.58 
   51-100% Closed 
v. 1-50% 2.14 0.89 5.15 0.09  1.47 0.62 3.46 0.38 
Peak Week 2          
   1-50% Closed v. 
0%  0.65 0.36 1.17 0.15  0.80 0.43 1.47 0.47 
   51-100% Closed 
v. 0% 1.21 0.74 1.97 0.46  1.06 0.65 1.74 0.81 
   51-100% Closed 
v. 1-50% 1.86 0.88 3.95 0.11  1.33 0.62 2.87 0.47 
Peak Week 3          
   1-50% Closed v. 0.58 0.15 2.18 0.42  0.64 0.16 2.60 0.54 
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0%  
   51-100% Closed 
v. 0% 1.03 0.28 3.83 0.96  0.94 0.27 3.29 0.93 
   51-100% Closed 
v. 1-50% 1.79 0.28 11.38 0.54  1.47 0.23 9.43 0.69 
Peak Week 4          
   1-50% Closed v. 
0%  0.46 0.03 6.73 0.57  0.43 0.02 7.64 0.56 
   51-100% Closed 
v. 0% 0.88 0.06 13.21 0.92  0.84 0.07 10.92 0.90 
   51-100% Closed 
v. 1-50% 1.91 0.04 85.41 0.74   1.98 0.04 92.24 0.73 
*Adjusted for grade level, school type, free and reduced lunch ration, and housing density 
 

  The timing of district and school closures in relation to peak ILI is displayed in Table 

5.5. Of 171 school districts with at least 1 closure, only 19 (11.2%) closed prior to the peak week 

of infection. This represented a total of 60 (10.8%) of all closed schools, with an average closed 

duration of 3.74 days (Table 5-4). Most school closures occurred during either the ILI peak in the 

corresponding state public health region, or within the two weeks following peak infection; 363 

individual schools (65.1%) closed one or two weeks following the highest ILI rate.  

Table 5-4: Average Duration, in Weeks, Between Peak ILI for a Public Health Region 
Where for Each School District and When School Districts and Schools Were Closed. 
Weeks Between Max 
ILI Rate for region 
and School Closure 

Total Districts 
Closed 

Total Closed 
Schools 

Average Days 
Closed 

Proportion of 
Total Schools 

Closed 
-3 1 3 4.67 1.00 
-2 4 14 6.57 0.77 
-1 14 43 4.79 0.63 
0 32 96 4.75 0.62 
1 73 249 4.45 0.62 
2 38 114 4.52 0.53 
3 18 31 5.35 0.52 
4 7 8 4.75 0.34 

 

An assessment of the schools that closed prior to the peak week of ILI compared to those 

that closed the week of peak infection or after is shown in Table 5-5. We found no differences 
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between school districts with closure before peak infection and closure during or after peak 

infection among school level, school type, total number of students enrolled, or NSLP eligibility 

ratio. We did observe a statistically significant greater number of days closed among schools that 

closed early compared to schools that closed at or following peak infection (pre-peak closure 

mean days closed 3.74, peak or post peak closure mean days closed 2.95, p=0.04). 

  



 

 
 

68 

Table 5-5: Characteristics of closed schools based on early closure (anytime before peak 
week of infection) and reactive closure (from peak week of infection to four weeks following 
peak week of infection). 
  
  Pre-Peak Closure 

Peak or Post-Peak 
Closure P-value 

Total Number of Schools 57 501  
School Level   0.36 

Elementary 28 277  
Jr. High School 8 54  
Jr. Sr. High School 8 42  
Sr. High School 11 87  
K-12 2 41  

School Type   0.60 
Public School 51 50  
Public School Academy 3 29  
Private School 3 422  

Average Total Students 334.40 346.70 0.71 
Average Free and Reduce Lunch 
Ratio 0.48 0.48 0.93 
Average Days Closed 3.74 2.95 0.04 
 

In the district-specific analysis, the rate of ILI peaked for public health regions 1, 2S, 3, 5 

and 6 during the week of October 17, 2009. Regions 7 and 8 peaked the week of October 24, 

while region 2N peaked the week of October 31. Regions 1, 6 and 8 had the highest attack rate 

(approximately 4 cases per 100,000 persons), with the smallest peak for 2S, with approximately 

2 cases per 100,000. Around 250 schools across the state closed the week of October 24, the 

highest in our study.  

 

5.4 Discussion  

 We retrospectively analyzed 559 Michigan schools that closed at least once during the 

2009 influenza A (H1N1) fall wave. An analysis of the timing of school closure compared to 

peak ILI suggests that closure was a reactive decision in 83% of the schools. Based on previous 

studies, it is likely that the remaining school districts had ILI cases that were not reported 
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through MDSS and that all closures were reactive in nature [120, 124]. We found that schools 

that closed earlier did so, on average, for a slightly higher number of days than those that closed 

during the peak week of infection or thereafter (Table 5-4). This may reflect either the severity of 

illness within the schools that closed early (resulting in a longer duration of school closure), or 

uncertainty related to district closure guidelines during the fall term.  

Our findings suggest that districts with 1 to 50% of schools closed had a lower ILI RR 

than school districts with 0% of schools closed or 51 to 100% of schools closed. This could be 

explained by differing demographics of 1-50% closed versus open districts (Table 5-1). School 

districts with 1-50% closures may have experienced lower ILI rates than open schools due to 1) 

differences in underlying population size or density, at-risk populations; or 2), timing of the ILI 

peak wave.   

In contrast, districts with schools closed at the highest level (51-100%) had the highest 

ILI rate ratio. While more ILI cases occurred in open school districts than closed, these also had 

a higher proportion of school-aged children. ILI rates better address the underlying influence of 

population; a significant association of lower housing density with higher ILI correlates with 

findings that less-populated areas of the state were heavily impacted and had high rates of 

reactive school closures. These ILI rates also suggest that the school closures may have been 

implemented too late to be an effective NPI. Indeed, a recent survey of Michigan school closures 

during the fall wave of 2009 influenza A (H1N1) found that the most likely reason given for 

school closure was high absenteeism, suggesting a reactive rather than proactive intervention 

[120].   

Brief reports, modeling, historical epidemiological analyses, and observational studies of 

seasonal and pandemic influenza events support our findings.  A growing number influenza 
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outbreak studies suggest that, although proactive school closures may help slow the course of a 

pandemic [125-127], reactive or short-term closure show little to no effect [128, 129] on ILI, or 

reduce illness only in school-aged populations [130, 131].  

Due to the nature of the data, there were some limitations to our research. First, there is 

the probability of underreporting of ILI cases and incomplete MDSS surveillance data. The high 

sensitivity of ILI definition increases the number of cases identified. However, ILI is an 

imprecise measure of influenza, and select individuals with symptoms matching the ILI case 

definition may not be infected with influenza. Further, a majority of the cases were identified 

through school reporting, and were not medically-attended. Second, we were unable to assess the 

effect of absenteeism in this study. We had limited access to the number of absent students 

among schools that closed, and no information on schools that remained open, resulting in our 

inability to control for the number of number of students out of school. Previous studies have 

shown that absenteeism was an important factor in school closure [120]. Third, our data is 

limited by a lack of complete information for available zip codes. Fourth, the small number of 

districts with school closures prior to peak week of infection made it difficult to assess whether 

any of these closures were truly preemptive, or whether early school closures can translate to a 

reduction in rates of illness in the population. Fifth, the categorization of school districts as 

“open” versus “closed” is likely too coarse to address actual differences between the schools; 

however, the designation was chosen to simplify complications related to the time-varying nature 

of the school closures, and to attempt to determine if there were any non-varying demographic 

differences between open and closed districts. Finally, the 2009 pandemic may not be an 

appropriate context to test the effectiveness of school closures as an NPI; the CDC deemphasized 
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proactive school closures when it became clear that the 2009 influenza A (H1N1) pandemic was 

less severe than initially feared. 

Still, our study is the first to link ILI surveillance data with reports of school closures 

captured in real time across an entire state. Our findings suggest that school closures employed in 

Michigan during the fall wave of 2009 influenza A (H1N1) pandemic had little effect on 

circulating levels of ILI. Our findings also demonstrate that reactive school closures did not 

significantly reduce the rate of illness compared to schools that remained open. We observed a 

small number of districts that implemented closure prior to peak infection, as measured by 

surveillance data, also fit this trend. Whether this was a result of undetected circulating disease 

or late reporting is unknown; more intensive disease surveillance in the community setting is 

required. Nevertheless, this study combined information at the school district level with ILI 

surveillance data to provide a quantitative analysis of the effect of reactive school closure during 

fall of 2009. Further studies that explore the impact of school closure as an NPI on ILI are 

recommended. 
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 Conclusion Chapter 6:
 

This dissertation identified novel finding regarding the co-occurrence of human 

coronaviruses and other viruses as well as co-occurrence between bacteria and viruses.  We also 

addressed the impact of school closure by analyzing a real-time response to pandemic influenza.  

In order to provide a common language for discussing co-occurrence in this population, 

this dissertation established a framework for the study of co-occurrence. Specifically, we 

described the various ways in which pathogens may interact across three different axes: timing of 

the interaction between pathogens, the level at which the interaction is observed (i.e., molecular, 

clinical, or epidemiological), and whether the observed inaction resulted in a synergistic or 

antagonistic outcome. The commentary also included a discussion of future steps to be taken in 

research, from the laboratory to the epidemiological level, to provide a better understanding of 

co-occurrence that occur.  

 

6.1 Acute Respiratory Illness in College Students 

Key Findings 

Chapters 3 and 4 described the burden of ARI among otherwise healthy young adults 

living in residence halls. The first of which examined the prevalence and co-occurrence of four 

human coronaviruses (HCoV-229E, HKU1, NL63, and OC43) and 9 other viruses (influenza 

A/B; adenovirus; human metapneumovirus; parainfluenza 1,2, and 3; rhinovirus; and respiratory 

syncytial virus). The prevalence of the four HCoVs combined among participants that provided 

specimens ranged from 6.7% of completely asymptomatic participants to 19.7% among 
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participants with meeting our case definition of ARI, and HCoV-NL63 was the most frequent 

virus detected among all participants. This finding was likely a result of the seasonality of 

viruses in our population. Co-occurrence of viruses was found in 12 specimens collected during 

the study period, including one participant with three viruses co-occurring at the same time. We 

found that moderate/severe cough, chills, and headache decreased in frequency over the 6-day 

period among students with HCoV infections, while runny nose increased in frequency over the 

6-day period. 

The second paper using the eX-FLU dataset examined co-occurrence among the eX-FLU 

study between viruses and three bacteria that commonly cause disease (Haemophilus influenzae, 

Staphylococcus aureus, and Streptococcus pneumoniae). We found that viral presence was 

significantly associated with an increase in S. pneumoniae carriage, but not with the other 

bacteria in our study. We also found that these results persisted among participants who were 

experiencing symptomatic illness, but not among those without symptomatic illness. Finally, we 

found that a viral positive sample statistically significantly reduced the viral load of S. aureus, 

but not for any of the other viruses.  

 

Implications and Future Directions 

These novel findings offer a timely contribution to the current epidemiological literature 

because they establish estimates of common diseases in previously understudied populations and 

age groups. Research from this dissertation highlights the limitations in our knowledge of the 

human coronaviruses. Previous epidemiological studies examining HCoV outside of the clinical 

or outpatient setting have not found high levels of coronaviruses among completely 

asymptomatic individuals, making this finding especially noteworthy. Symptoms associated with 
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the viruses followed along with earlier studies: feverishness has previously been associated with 

influenza [132-134], and upper respiratory symptoms have been associated with rhinovirus [135, 

136]. We observed too few positive specimens to make any conclusions about co-occurrence of 

viruses within this population.  

 The bacterial co-occurrence study was the first to report on bacteria and viruses among 

young adults living in close quarters. A recent review of co-occurrence has found a cooperative 

relationship between S. aureus and influenza [137]. This relationship, in which influenza 

enhances the adherence and growth of S. aureus, may account for the higher prevalence of S. 

aureus that we observed among viral positive specimens.  However, additional research is 

needed to confirm our findings. In terms of the association between virus and S. pneumoniae, 

while there is strong evidence of an increased risk of severe clinical disease, there is increasing 

evidence that colonization with S. pneumoniae can protect against influenza infection [138]. Due 

to the temporal relationship that we were able to assess, we were unable to test any specific 

mechanisms that occur between the viruses we tested for and colonization. We were, however, 

able to report on an association between viral infection and colonization. The finding suggests 

that bacteria take advantage of a viral attack to proliferate within a host. While we did not 

observe severe illness as a result, this finding could provide a biological pathway for the 

observation of severe bacterial illness, such as pneumonia, following viral infections. From a 

public health perspective, this could provide additional evidence of the importance of viral 

vaccinations to prevent infection, therefore assisting with reducing severe bacterial illness, and to 

alert clinicians working with at-risk populations of the need to monitor patients diagnosed with 

viral disease for an opportunistic secondary bacterial infection.  
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 Both of these studies suffer from temporal ambiguity. Since we had insufficient sample 

size to examine individuals who provided specimens while not experiencing ARI symptoms, we 

were unable to make any conclusions about what likely caused transmission in this population. 

Additionally, among the few co-occurrences that we identified, we were unable to determine 

which of the agents infected an individual first, or whether both were transmitted at the same 

time. This limitation was especially true when looking at associations between bacteria and 

viruses. As we only assessed bacterial colonization at a single time point, we were unable to 

determine whether an individual was infected with a virus prior to colonization, or vice versa. As 

such, we can provide information on associations observed, but we are unable to causally test the 

relationship with the available data.  

 

Methodological Considerations for Co-Occurrence 

 Additional methodological research could advance the field of co-occurrence research. 

While were we able to test a large number of the most common known causes of ARI, the list of 

13 viruses and 3 bacteria were specifically targeted based on a priori assumptions of what causes 

symptomatic illness in young adults. However, certain agents, such as human bocavirus, have 

been identified in large populations of symptomatic individuals, and may have driven some of 

the illnesses observed in our population. Additionally, the availability for in-depth sequencing 

would allow for the identification of agents that are not commonly tested in our population. 

This study design did not allow for us to determine whether an infection could have 

occurred prior to the testing nor how long shedding of HCoVs apply. As a descriptive study, we 

are unable to ascertain any causal relationship in our data. As such, questions remain about why 

the prevalence of coronaviruses was so high among this group. Previous studies have pointed to 
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the HCoVs as being underrepresented outside of the clinical setting [104]. Since these viruses 

often cause illness no more severe than the common cold, infected individuals tend not to seek 

treatment in traditional health care systems; as a result, they are rarely tested for an identifiable 

agent. Given that we found such high levels of coronavirus in our population, future studies 

should consider testing for HCoVs as a likely cause of acute respiratory illness. 

 

Future Research on Co-Occurrence 

The question of co-occurrence and the interaction between bacteria and viruses is 

continually being studied. In aim 1 of this dissertation, we examined the different levels at which 

co-occurrence may happen. This study was able to show a synergistic effect in college-aged 

students at the epidemiological level. The presence of a viral infection was associated with a 

higher prevalence of S. pneumoniae. We were unable to address the two other axes of co-

occurrence in this study. Due to the cross-sectional nature of the study, we were unable to 

determine the timing of co-occurrence. As such, we cannot tell whether symptomatic disease 

increased the likelihood of either viral infection or bacterial colonization, or whether the co-

occurrence led to symptomatic illness at a higher level. We were also unable to determine 

whether colonization occurred prior to viral infection, whether the virus and bacteria were 

transmitted together, or whether S. pneumoniae took hold after viral infection. We were also 

unable to assess whether the interaction occurred at the molecular level. Molecular based studies 

are needed to determine whether, for example, S. pneumoniae and influenza directly interact with 

each other independent of the host response. Finally, since our population consisted of otherwise 

healthy young adults and our sample size was too small, we did not observe any clinical 
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outcomes that could elucidate whether disease was more severe among those with co-occurrence 

compared to those without co-occurrence. 

The university setting has been tied to multiple disease outbreaks in the past [139, 140], 

but these findings may not be applicable to all young adults. As such, future epidemiological 

studies among young adults are needed in order to see whether virus and S. pneumoniae 

colonization remains linked. Future studies would also benefit from the ability to ascertain the 

timing of the co-occurrence. A study design that would allow for the sampling of asymptomatic 

adults at the beginning of the study, and following them until they get sick may shed some light 

on the timing of infection.  

Interesting corollaries remain as areas of research, including the questions of what 

pathogens are, as raised by Pirofski and Casadevall [141]. In their commentary on the nature of a 

pathogen, they touched on questions of opportunistic infections, commensals, and the importance 

of host response in defining a pathogen, including pathogenicity caused by immune response 

rather than pathogens. In doing so, they highlighted the importance of understanding pathogens 

across different levels of interactions, as well as how host-microbe interactions are key to 

understanding pathogenicity. Taken together, these commentaries have implications in the fields 

of both bacteriology and virology. 

Future virology studies are needed to examine the relationship among viruses within 

asymptomatic individuals, the effects of secondary viral assault, and timing of infection. 

However, recently published articles have raised the question of human bocavirus, which may 

occur in humans with no symptoms, or only cause more severe symptomatic illness when present 

with a second pathogen [142]. We did not have the sample size necessary to examine this 

relationship; future community based studies which examine coronaviruses in the community 
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over multiple years, such as those published when identifying the spread of HCoV globally, will 

be necessary to determine whether HCoV may fall under similar aspects.  

 

6.2 School Closures during the 2009 H1N1 Pandemic 

Key Findings 

 The final paper of this dissertation examined school closure responses to the 2009 H1N1 

influenza A pandemic. We found that most of the school closures were reactive compared to the 

peak week of infection determined by surveillance data. Within the reactive closures, we 

identified three categories for each school district – 0 percent of schools closed during a given 

week, 1-50% of schools closed for a given week, or 51-100% of schools closed for a given week.  

Across these three categories, we observed no reduction in the rate of ILI as observed through 

surveillance data. This lack of significant results persisted with both our unadjusted and fully 

adjusted models.  

 

Implications and Future Directions 

This study was the first study that we found to link ILI surveillance outcomes with school 

closures across such a large geographical region. Our findings supported previous research, 

including hypothetical models, that reactive school closures would not be effective in reducing 

the spread of ILI. Brief reports, modeling and observational studies of season and pandemic 

influenza outbreaks in the United States, Japan and Hong Kong suggested that while proactive 

school closures may result in effective slowing of a pandemic [125-127], reactive and short-term 

closure show little to no effect [128, 129], or school-aged specific effects [130, 131].  Other 

natural experiments have supported these findings. For example, school closures due to seasonal 
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influenza Hong Kong in 2008 had no effect on community transmission [143]. However, studies 

in Israel [144] and France [130] related to school closures for holidays and teacher strikes found 

a reduction in transmission, specifically among school-aged children. Historical analyses of the 

1918 influenza pandemic suggested early, sustained, and layered NPI had a significant impact on 

pneumonia and influenza mortality [14].  

Results from modeling studies examining school closures have been mixed.  At least one 

study has found that longer school closures (up to 16 weeks) and coordinated area-wide closures 

of multiple schools have been found to be effective in preventing intensive care units from 

reaching capacity [127].  Another model found that closures of entire school systems were not 

more effective than closures of individual schools, but added that longer closures (8 weeks) 

would be most effective [128].   Estimates using a reproduction number of 1.5 (consistent with 

early findings from Mexico of an R0 of 1.4 to 1.6) found that a one-week school closure had a 

minimal effect on the attack rate of influenza [129].  The authors concluded that school closures 

should be combined with other NPIs such as reducing close contacts and household prophylaxis 

to provide the best prevention to reduce the impact of a pandemic.  Finally, one study based on 

school holiday data suggests that closures during a pandemic could reduce the transmission of 

illness among children, but would have little effect on adults [130].  Additionally, the sustained 

social distancing of children required to make the NPI effective would be difficult to maintain.  

Taken as a whole, modeling studies seem to support our findings that both reactive and short-

term school closures are likely to have little impact on community levels of influenza.  

 

Methodological Considerations for School Closure 
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 There are two main methodological areas in which the findings from the school closure 

study could be strengthened.  The first problem relates to reporting of the illness and the second 

to the timeliness of decisions to close schools. In terms of illness reporting, there were two 

limitations to the Michigan Department of Community Health’s Michigan Disease Surveillance 

System (MDSS) surveillance data that were used. The first of these was the use of ILI as an 

outcome instead of confirmed influenza cases. Among the cases that were reported to the 

surveillance system, it seems likely that other agents could be causes at least some of the cases. 

As such, not all of the reported cases of ILI were likely attributable to pandemic influenza. 

However, the second problem is likely a larger factor that results in under-counting of influenza 

in the community: most of the cases that are reported to MDSS were medically attenuated. As a 

result, a number of probably influenza cases were not captured in our data, resulting in a limited 

sample size, especially when stratifying over time.  

The second methodological consideration to consider for school closures is the timeliness 

of available data for making decisions to preemptively close schools. Multiple modeling studies 

have suggested that early and prolonged school closures are the most effective method of 

slowing down transmission. However, without timely surveillance data to indicate the extent of 

the spread of infection, school administrators will be unable to make timely decisions regarding 

school closure. A potential solution is discussed below.  

 

Future Research on School Closure  

School closure as a NPI remains controversial. School closures may burden caregivers 

who work outside the home [19, 127, 145]. Moreover, approximately 21.5 million children 

receive free or reduced-price meals at school, an important source of nutrition for this 
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population. School closures, particular lengthy ones, interfere with students’ educations, and 

closures that extend past the allotted emergency days represent a significant cost to school 

districts (e.g., salaries, building maintenance, supplies, and energy). Furthermore, the 

information necessary to make a decision about when the timing of a closure could be most 

effective is difficult to predict in real time as an influenza pandemic is unfolding [19, 127, 145-

147].  

A recent study from sentinel data suggested a potential way forward. The Chinese region 

of Hubei set up a school absenteeism surveillance system in 17 primary schools. Over two and a 

half years, the system generated 52 signals from school absenteeism and successfully three 

different outbreaks, resulting in excess protection rates for two of them [148]. Paired with timely 

surveillance data collected by the state, school based absenteeism surveillance may be an 

effective method for preventing the transmission of infectious diseases within the community 

setting.  

 

6.3 Final Thoughts 

Using prospective data from the eX-FLU study, this dissertation reported on the 

prevalence of respiratory viruses and bacteria among University of Michigan students during the 

2012-2013 influenza season. This is the first study to report on HCoVs among young adults in 

the community setting, and also addressed the carriage of common bacteria in the same 

population. Further studies can build on this research using the social network design to examine 

the mechanisms that influence transmission in close quarters.  

The design of the eX-FLU provided the opportunity to answer some of the questions 

raised in the commentary about how co-occurrence occurs. Through the use of social network 
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information, we were able to sample study participants who did not meet our case definition for 

an acute illness, a difficult population to sample from.  The prospective study design, and 

multiple days of sample collection for each individual, also allowed for us to assess changes in 

laboratory status of specimens over time. However, even with a study design that would allow 

for answering questions about transmission and timing, the limited number of participants and 

specimens impeded our ability to make strong conclusions about shedding or co-occurrence. We 

see a great deal of promise in the social network model used in this study. However, future 

studies of this type might be improved by a larger population size and the ability to sample all 

participants prior to the illness season. 

Using retrospective surveillance data from the 2009 H1N1 influenza A pandemic in 

Michigan, we were able to look at the effect of school closure on community ILI. This is the first 

study to look at community level effects at the state level. This wider scope allowed us to assess 

more clearly the larger-scale geographical effects of school closure. Future research can build on 

this approach to study the effectiveness of school closures as a NPI, though the recommended 

approach from modeling studies of early and extended closures are likely to remain politically 

untenable. 

The school closure study also suffered from sample size issues. As described in the 

limitations above, the data did not capture all of the cases of ILI in Michigan during the 

timeframe of the study. Further, when breaking down the reported cases by week, and looking at 

so many counties, we ran into model fitting issues when looking at our data. In future studies, 

more comprehensive reporting from the state could address that issue. A second lesson from the 

study was the difficulty of matching data that comes from different sources. Since individual 

school districts do not make available either absenteeism information or the total number of 
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cases in a district, we had to combine many different sources of data at different levels, such as 

summing county level information within each district.  

This dissertation has been a multi-disciplinary effort, incorporating a wide range of data 

including laboratory results and surveillance information. Throughout the process, I have had the 

opportunity to strengthen my analytical skills, ranging from basic descriptive epidemiology to 

more complex models. Future studies can build upon the basic descriptive information to 

incorporate the complex study design, and further the available research on NPIs and co-

occurrence.  
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