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1. Modeling intersection crash counts in relation to exposure 

1 .I The concept of exposure 

Comparing the annual number of crashes in California with that in Rhode Island simply 
shows the obvious consequence of California being much larger than Rhode Island, 
with many more motor vehicles that together travel many more miles. A coniparison 
that reveals something more has to account for the difference in scale. "Exposure" is 
such a scale factor. Dividing crash counts by an exposure measure gives an indication 
of crash risk relative to that exposure measure. 

Sometimes registered vehicle-years or insured vehicle-years are used as exposure 
measures. Such measures reduce the effect of large discrepancies in :'sizeM between 
states, or between various populations of vehicles, such as vehicle types, 01. vehicle 
makes and models. However, they are not fully satisfactory measures of exlposure 
because they do not control for differences in the annual miles traveled by dlifferent 
vehicles. Therefore, vehicle miles of travel (VMT) is a preferred exposure measure. 

VMT is a plausible exposure measure for studies of some crash types, such as running 
off the road or collisions with a roadside object. However, for other types of crashes, 
such as head-on collisions, VMT is not a good exposure measure. In the case of head- 
on crashes, an "exposure" to a collision is present only when a vehicle encounters an 
oncoming vehicle. The number of such encounters on a segment of highway will 
change proportionately to the square of VMT, not proportionately to VMT. C)n the other 
hand, if we compare several states with the same ratio of VMT to highway miles, then 
the number of such encounters will be proportional to the numbers of VMT in the 
states. 

The situation is different if specific locations on highways, such as intersections rather 
than aggregations of highways or larger areas, are considered. In principle, VMT 
within the intersection could be defined as an exposure measure. This would imply that 
the expected number of crashes should increase proportionately to the width of the 
intersecting highways. An alternative to this assumption is to use the number of 
vehicles entering an intersection as the exposure measure, and to include the width (or 
the number of lanes as an indicator of width) among the other factors to be studied. 
Thus, for a n-leg intersection, the exposure measure would have n compons!nts. 



First consider only intersections with crossing traffic streams and no turning 
maneuvers. In this case, the two traffic volumes on the crossing roads would suffice as 
exposure measures. If the intersection is uncontrolled, then the number of 
"encounters" between vehicles, where a crash could occur, is proportional to the 
product of the two volumes. 

However, in reality, vehicles turn at intersections and the numbers of the different types 
of turns determine the encounters in which certain types of crashes can occur. The 
situation is even more complicated when traffic at the intersection is controlled by signs 
or a traffic signal. In that case the number of encounters within the intersection is 
reduced, but the number of different types of encounters during which rear-end 
collisions can occur just outside the intersection is increased. The magnitude of this 
shift depends on the lengths of the phases of the traffic signal. Even in the simplest 
situation, it cannot be expected that the number of encounters, which represent 
exposure to the possibility of a crash, can be represented by relatively simple 
mathematical functions of the entering traffic volumes. 

Thus, ideally, exposure measures should be related to the potential conflicts between 
vehicles in the intersection, i.e., situations where more than one vehicle can occupy the 
same space at the same time.' In this study, we explore what can be achieved in 
modeling intersection crash counts using the readily available "exposure" measures of 
traffic volumes on the crossing roads. 

1.2 The purposes of modeling intersection crash counts 

The two major purposes for using models of intersection crash counts as functions of 
traffic volumes and intersection characteristics are: 

. to determine how the crash risk at intersections depends on various intersection 
characteristics, especially those that can be modified. 

'W.D. Glauz, D.I. Migletz, Application of T r m c  Conflict Analysis at Intersections. Transportation 
Research Board, NCHRP Report 2 19, 1980 



to determine whether a specific intersection has an "unusually" bad crash 
experience. 

For the first purpose, a population of intersections is selected and each intersection is 
treated as an "observation." The dependent variable is the crash count for some period 
of time, usually a year, and the independent variables consist of intersectior~ 
characteristics, including traffic volumes on the approaches to the intersecticrn. Of 
special interest are those characteristics that can be modified to reduce the crash risk 
at the intersection. Statistical methods are used to fit a model approximating the crash 
counts by a function of the independent variables. The form of the function is usually 
assumed on the basis of mathematical convenience, and typically is not empirically 
determined. 

For the second purpose, a model is applied to an individual intersection and the 
expected number of crashes is predicted and compared against the actual nlumber of 
crashes at the intersection. The difference between them is examined to determine if it 
is greater than that expected from random variations. If so, the intersection is studied 
to identify factors responsible for the elevated risk. 

When applying the model to determine if the intersection has an "unusually" bad crash 

experience, a distinction has to be made whether this intersection was or was not used 
to develop the model. 

If the intersection was used in the development of the model and "all" relevant factors 
were included in the model, and the mathematical form of the model is correct, then 
the crash counts at any individual intersection should not differ from the modeled value 
by more than random variation. In this case any differences between modeled and the 
actual values cannot be attributed to the factors included in the model. Thus, if an 
intersection's crash count differs from the modeled value by more than random 
variation, either the model is incomplete or it is mathematically incorrect. If this occurs 
the model should be revised. Factors other than those included in the original model 
must be sought to explain the discrepancy, or a better mathematical form of the model 
must be found. 

Unfortunately, there can be situations where influential factors are not included in the 
model or where the mathematical form is not correct, yet they are accepted as correct. 



For example, the data may be configured in a way that allows the model fitting process 
to include data points that should be outliers. This will bias, possibly dramatically, 
other coefficients of the model. 

These problems do not arise if the model is applied to an intersection that was not in 
the population used to develop the model. However, different problems can arise. 
Consider the situation where the assumed mathematical form of the model, while not 
correct, may still be good enough to represent the data over the range of the 
independent variables in the data set. If the "new" intersection is outside, or possibly 
just within the range, of the independent variables used in the development of the 
model, the actual crash count can deviate substantially from the modeled value. This 
occurs because model errors tend to increase toward the limits of the range over which 
it was calibrated, and may "explode" beyond it. Trying to explain such differences 

between new cases and an apparently satisfactory model can give completely wrong 
results. 

These examples should serve as a warning that it may not be possible to achieve the 
goal of modeling intersection crashes. 

1.3 Some critical assumptions 

The difficulties discussed in the previous section can arise when applying models. 
However, technical problems also can arise when basic assumptions of the modeling 
process are not satisfied in the development of models. 

One important point to remember is that safety features often are installed in response 
to a perceived "crash problem" that has been identified by high crash counts or by large 
deviations of crash counts from a model. Such safety features should be included 
among the variables describing intersection characteristics. Depending on the overall 
quality of the model, in terms of completeness and realism of its mathematical form, this 
can distort the model coefficients, and can sometimes show a crash increase effect 
from the safety feature. 

Other problems result from aggregation of data. The mathematical relationship 
between crashes within the intersection and traffic volumes and other intersection 
characteristics may be very different from the mathematical relationship between 



crashes on the approaches to the intersection and traffic volumes and intersection 
characteristics. However, crashes within the intersection and on its approacties are 
usually aggregated toget her as intersection crash counts because both are 
"intersection related." Even if the intersection and intersection approach cra.shes 
followed simple relationships such as 

where x and y are the volumes on the intersecting roads, their sum will usually not 
follow such a relationship. The same holds for aggregation across different crash 

types. 

The daily (and possibly weekly and seasonal) variation of traffic volumes causes 
another problem. For instance, let xi ... x, and yi...y, be the traffic volumes during n time 
intervals, e.g., of the day, and let x and y be their totals. Assume that for each time 
interval a relationship 

zi=a*xi*yi (1 -2) 

holds. Generally, a corresponding relationship 

will not hold for the sums over the time intervals. Rather, the relationship for the total is 

where R is the correlation coefficient between the Xi and y,. Usually, since traffic tends 
to be high, or low, on all approaches at the same time, R will be high, and the second 
term will not vanish. Thus, even if a relationship 



or a more complicated, similar relationship holds at any time, a similar one will not hold 
for aggregated traffic volumes if they vary and are correlated. 

1.4 The conventional statistical approach 

The conventional approach uses statistical techniques to fit an analytical model to the 

data. Examples of such models are: 

where x,, x, and x, are variables describing intersection characteristics, including 
traffic volumes on the approaches and possibly volumes of turning traffic. For 
qualitative characteristics, "dummy" variables with values of 0 or 1 are used. Statistical 
techniques to fit such models include regression on transformed variables and 
maximum likelihood estimates. 

If all assumptions underlying these statistical techniques are satisfied, valid estimates 
of the model parameters can be obtained and the effects of intersection characteristics 
on crash risk can be determined. However, some of the assumptions are often, if not 
always, violated. Basic assumptions are that the deviations between the model and the 
crash counts have expected values of zero and that they are independent. Both 
assumptions are violated if the model does not reflect the relationship correctly, which 
is likely, as discussed above. The second assumption is violated if the traffic passing 
through several intersections in the population is largely the same. Factors such as 
driver-age distribution, vehicle mix, and possibly trip purpose cause deviations from the 
average crash risk that are treated as random variations by the model. These 
deviations will be correlated over the intersections that are passed by largely the same 
traffic. 



Systematic deviations between the assumed mathematical forms of the model and the 
actual relationship between crash counts and intersection parameters, especially 
volumes, can have a serious biasing effect. This can occur if the majority of 
intersections has medium volumes, but a few intersections have high volumes. A 
similar effect also can occur if there are a few rare intersections with low volumes. In 

such cases, the model parameters for the volumes will be determined primarily by the 
majority of the intersections and will provide a good fit in the area covered by them, If 
the assumed model is not correct, the predicted crash counts for high-volume 
intersections would show large, systematic deviations. However, if there are 
characteristics that are mainly present at high-volume intersections, then the statistical 
algorithms may use the coefficients of these characteristics to reduce the systematic 
deviation. In extreme cases, a very significant parameter coefficient may appear that 
depends on a single intersection. To what extent this actually occurs has to be 
established in each case by a very detailed analysis. 

Standard statistical techniques assume that the independent variables are not subject 
to error. This does not hold for traffic volumes. Traffic volume data can be subject to 
large errors if  special counts are not available. Often, values of average daily traffic 
(ADT) are carried over long distances of roadway and used for several adjacent 
intersections. In that case, the errors of the independent variables also will be 
correlated, complicating an already complex situation even further. For linear 
regression, the problem has been studied and suitable approaches have been 
developed. However, this still has to be done for the nonlinear models used for 
intersection modeling. 

The simplest way of assessing the model fit is to test correlation coefficients or similar 
aggregate measures. This is wholly inadequate. First, the explicit or implicil: null 
hypothesis of such tests is that there is no relationship between the parametiers and 
crash counts. However, even if one of the included factors has a relationship with 

crash counts, the test will show a significant relationship, even though many terms of 
the model may contribute nothing but noise. To recognize this, more sophisticated 
tests, which separate the contributions of the independent variables, have to be 
applied. A second problem is that, even if a test shows a high significance level, the 
modeled relationship may have nonnegligible systematic errors. 



Many of these problems can be reduced and sometimes even avoided by using better 
than run-of-the-mill statistical techniques. Serious difficulties, however, can remain if 
the actual relationship between crash counts and intersection characteristics cannot be 
expressed by manageable mathematical functions. 

1.5 Smoothing techniques 

The difficulties arising from relationships that cannot be described by simple 
mathematical functions can be avoided by using smoothing methods. Smoothing 
techniques are based on the mapping of the data onto an n t l  dimensional space 
(where n is the number of independent variables), selecting a grid of appropriate 
spacing and fitting relatively simple "local" functions to the data points "near" each grid 
point. The values of these local functions at the grid point or at actual data points are 
the smoothed values. Smoothing techniques do not provide a relationship in 
mathematical form and work only for continuous relationships, such as those between 
crash counts and traffic volumes. Categorical variables must be treated as additive or 
multiplicative terms, or by splitting the data into subsets. 

Smoothing techniques are simple and the results can be easily interpreted if there are 
one or two continuous independent variables. Fitting the model is only slightly more 
difficult with more variables, but presenting and interpreting the results becomes 
complex. The results can be presented in a simple form only if the relations are 
additive or multiplicative with respect to the continuous variables. 

Estimating errors for a smoothed model is more laborious than for traditional analytical 
models. One approach is to use the error estimate obtained when calculating each 
smoothed value. Another approach is to split the data set and derive separate models 
for each part, with the differences between them providing error estimates. 
Bootstrapping is a similar technique, with an additional feature that allows the 
incorporation of the effect of "influential" observations into the errors. These 
approaches give error estimates for each grid point, or each data point. This makes 
these error estimates more realistic, but more cumbersome, than those obtained from 
analytical models. It also is possible to define overall error estimates for a smoothed 
model. Significance testing, however, if at all possible, is very complex. 



2. The smoothing technique used 

The purpose of smoothing is to describe empirical data that cannot be adequately 
approximated by simple analytical functions of the independent variables. Allthough the 
technique can be used with any number of independent variables, in this study it was 
applied to the case of only two variables. 

Let zi be the value of the dependent variable and xi and yi be the values of the 
independent variables at data point i. The process of smoothing calculates the 
smoothed values 4 for a number of grid points j with coordinates $ and rli . The 
technique used is "kernel smoothing," which uses a weight function w(dii), where dij is a 
measure of a distance between an observation i and grid point j. The weight function is 
so defined that it is largest for a distance zero between grid point and observation, and 
declines with increasing distance. 

The procedure fits a separate linear regression to each grid point, using the weight 
functions. This means that the model fits the data points near the grid points very well. 
while the fit at remote data points may not be as good. The value of this linear function 
at the grid point is the smoothed value. This procedure is repeated for each grid point, 
resulting in smoothed values at each grid point. In the case of two independent 

variables, the resulting smoothed function can be represented as a surface in a three- 
dimensional space by connecting the smoothed values with grid lines. 

Using a linear regression at each point has the disadvantage that real nonlinearities, 
such as maxima, edges, valleys, etc., also are smoothed and flattened. This can be 
avoided, to some extent, by using a quadratic local fit. We experimented with quadratic 
fits, but the results were unsatisfactory. If the fit represented larger nonlinearities, it 
also was overly influenced by individual points with very large or very small values. 
However, if the influence of such points was reduced, the nonlinear features were 
obscured by excessive flattening. 

We used the following Gaussian kernel as the weight function 



where we call (a x b) the size of the "window." The weight of a data point depends on 
the values of a and b; the larger a or b, the wider the range in x or y over which the 
data points have a large weight. The choice of the term "window" becomes clearer if 
we consider a generalization of the Gaussian kernel, where the exponent value of 2 is 
replaced by another number. Figure 1 shows the value of wij in equation (2-1) as a 
function of xi and yi, for fixed values of 6 and qnj , which represent the coordinates of the 
top of the surface. The values of a and b correspond to 4 and 2, respectively, the 
distances between grid lines. Figure 2 shows the values of wij with the exponent 2 
replaced by 10. The weight function shows a very steep drop at distances a in the x- 
direction and b in the y-direction, with approximately the value 1 within the i'frame" and 
zero outside the "frame." For larger values of the exponent, the drop becomes steeper, 
the frame narrower, and a moving average is approached. Therefore, (a x b) is called 
the size of the window. This is done for convenience since the actual size of the 
window is really ((2a) x (2b)). 

Several choices have to be made when fitting a model. These include the density of the 
grid, the exponent, the size of the window, and the option of varying the orientation of 
the window. We experimented to determine which values of grid density and window 
size and orientation eliminated irregular waves and patterns, likely to be noise, but still 
retained features of the surface that may reflect real effects. Though statistical criteria 
can be developed, they are cumbersome, and we did not use them. We varied the grid 
size until a clear picture of a continuous surface was obtained visually. We also varied 
the window size until the surface appeared to be smooth, with only low local "waves." If 
the surface showed a "ridge" or similar pattern, we tried varying the orientation of the 
window. This, however, did little to reveal a pattern and we decided not to vary the 
orientation of the windows in this study. 

The results of the smoothing process are shown as surfaces, formed by connecting the 
smoothed values at the grid points along the grid lines. The width of the lines is 
proportional to the number of cases in each cell. If the line was too narrow to be 
printable, it was printed as a dotted line. No grid lines are shown where there are no 
data points. Sometimes, a cell with no data points is surrounded by cells with data 
points. In that case two "sides" of adjacent cells will be seen through the "hole" in the 
surface at the location of the cell with no data points. 



Although there is some theoretical work on smoothing and a body of experirr~ental work 
exists,* additional development is desirable. For example, data points are usually not 
uniformly distributed over a surface. In areas covered densely with data points a small 
window suffices to average out the random variations, and reveal more details of the 
surface than a large window. However, in areas with sparse observations a large 
windows shows the general trend of the surface, but less detail. A procedure with 
adaptive window size, which would allow an analyst to make the best use of available 
information, still needs to be developed. 

3. The data 
3.1 Washtenaw County, Michigan 

Data from intersections in Washtenaw County, Michigan, were taken from a report by 
the Ann Arbor - Ypsilanti Urban Area Transportation Study Committee, Washtenaw 
County Intersection Crash Analysis, dated April 1991. It contains data for 134 
signalized urban or suburban intersections consisting of traffic volumes on the 
crossing streets, and crash counts for each of the years 1986-89. Only intersections 
with 10 or more crashes in at least one year were included. This biases the models 
derived from the data, and the findings should be interpreted with caution. In a few 
cases, data were not available for all four years. These counts were expanded by the 
appropriate factor to estimate a total for the four years. 

A careful inspection of the traffic volumes showed that they often remained constant 
over several adjacent intersections on the same road. While it may be the case that 
traffic volume varies little over longer stretches of certain roads, this has to be 
established. Simply carrying data from counting sites over several intersections not 
only biases the traffic volumes used, but also introduces a correlation between the 
errors of the volumes of these intersections. This invalidates error estimates obtained 
by standard statistical methods. 

Despite the limitations, the Washtenaw County data were studied because they were 
readily available early during the study. 

2T.J. Hastie, R.J. Tibshirani, Generalized Additive Models. Chapman & Hall, 1990. I.S. 
Simonoff, Smoothing Methods in Statistics. Springer 1996 



3.2 California data 

Data for the four-leg signalized urban intersections in California were those used by the 
Mid-West Research Institute in its study, Statistical Models of At-grade intersection 
Crashes, by K.M. Bauer and D.W. Harwood. The data were not modified or processed 
in any way. 

3.3 Minnesota data 

Minnesota data were obtained from the Highway Information System (HSIS) files. The 
Highway Safety Research Center of the University of North Carolina prepared the 
following files from the complete data set: 

a An intersection route file, which contained one record for each route passing 
through a given intersection. This record contained information for both the 
incoming and outgoing legs. It also contained an intersection identification 
number that allowed matching with the record of the other route crossing the 
same intersection. 

• A segment file, which contained cross-section data for each leg of each 
intersection. Legs were eliminated if they contained an extra intersection, 
including interchanges, grade crossings, etc. This was done to ensure that 
crashes linked with the legs are not related to any other intersection or 
interchange. 

A crash file, which contained records for all crashes anywhere on the legs 
retained, and corresponding vehicle and occupant files. Crash data for the year 
1993 were used. 

Route and segment files were processed to combine all data pertaining to a specific 
intersection into one record. Data for a total of 3,288 four-leg intersections were 
obtained. After selecting signal-controlled urban intersections that had volume 
information for all four legs, 71 intersections remained. Volume information was coded 
on both the route and segment files. The route file contained values of annual average 
daily traffic (AADT) for each of the two legs for up to five years. The segment file 



contained one value of AADT and the calendar year to which it pertained. Review of 
these values showed that the information on the route file was often old or incomplete. 
Therefore, information from the segment file was used when available. Otherwise 
volume information from the route file was used. 

A review of the volume data showed that the same values of volume were often carried 
over long distances and over several intersections. Furthermore, often the four 
volumes were so different that it appeared questionable whether they could result from 
physical maneuvers. Therefore, the analysis described in the next section vrras 
performed. 

3.4 Identifying unrealizable intersection approach volumes 

AADT values for all legs of many intersections were available in the Minnesota HSlS 
file. The question arose: Could all the given values have arisen from real traffic flows? 

As an example, we considered an intersection with the AADT values 13247, 13247, 
9488, and 13046 vehicles per day (vpd), shown in Figure 3A.1. At first glance it 
appeared questionable whether these values could have resulted from actual traffic: 
13247 vpd would have been the traffic between the first and second leg, 9488 vpd 
could have been traffic from the third to the fourth leg, leaving 3556 vpd on the fourth 
leg, which could be explained only by 1779 vpd entering the intersection from the fourth 
leg, making a U-turn in the intersection, and leaving it on the fourth leg. This pattern is 
shown in Figure 3A.2 and is very implausible. 

A slightly more complex traffic pattern, shown in Figure 3A.3, could explain the 
observed volume values. We assumed that 9488 vpd is the through traffic between the 
third and fourth leg. We interpreted the remaining volume of 3556 vpd on the fourth leg 
as a flow of 1778 vpd between the first and the fourth legs, and a flow of 1778 vpd 
between the second and fourth legs. A flow of 11 469 vpd = 13247 vpd -1778 vpd 
between the first and the second leg completed the pattern. Thus, the observed 
volume values could have originated from actual traffic, though the actual traffic pattern 
is likely to be different from that used to demonstrate the feasibility. 

Since it is not always obvious when a combination of volumes is realizable, a simple 
mathematical test was derived. We assume that only total volumes, without 



distinguishing directions are given, that no legs are one-way, and that there are no turn 
restrictions. It also is possible to derive tests for such conditions, but they would be 
more complicated. 

Figure 3 shows the flows we distinguish at a four-leg intersection. They must add up to 
the volumes u, v, w, and x on the legs: 

For the four volumes u, v, w, and x to be realizable by actual traffic flows, the system of 
equations (3-1) through (3-4) must be solvable by nonnegative values f;, (i = 1, 2, ..,6). 

To derive a condition for that, we represent the pattern of Figure 3 in a different manner 
in Figure 4. We assume that a realizable solution exists, and that x is the smallest of 
the four volumes. 

Figure 5 shows how the flows f1...f4 can be changed, so that a realizable solution 
remains. One can choose d so large that either fl-dor f3-d becomes zero, or that either 
f4-d or fl-d becomes zero. Since x was assumed to be the smallest of the four volumes, 
it can be shown that either f3-d=O, or f4-d=O can be obtained. This gives a new flow 
pattern. The case where f, is reduced to zero is shown in Figure 6. 

Again, the new flow pattern can be changed by adding and subtracting the same 
amount d to certain flows. This results in reducing f4-dor f,-dto zero, again because x 
is defined to be the lowest or one of the lowest volumes. Similarly, the other 
modifications of Figure 5 can be modified. All possible resulting flow patterns are 
shown in Figure 7. 

These three patterns can be transformed into a single pattern. In the first case, one 
sets f5=x, and replaces u by u,=v=x. In the second case, one sets f4=xand replaces u 
by ul=u=x, and in the third case one sets f,=x and replaces u by wl=w-x Thus, all three 
cases can be represented by the simple problems shown in Figure 8, where one of the 
ul,vl,wl is the modified one, and the other two have the original values. 



The conditions to be satisfied are: 

If they can be satisfied by nonnegative values fl,f, and f6, the original u, v, w, and x can 
result from real traffic flows. To obtain conditions for satisfying conditions (3-5) ...( 3-7) 
with nonnegative numbers, we solve for fl,f,, and f,. 

Since the f1 must be nonnegative, we have the conditions 

The u' ,vl ,wl could have originated in three ways: by subtracting x from u, from v, or 
from w. Thus, we actually have three sets of conditions: 



only one of which needs to be satisfied to ensure realizability of u, v, w, and x. It is 
possible to rename the variables so that 

Then, u+v 2 w+x holds. Therefore conditions (3-14) and (3-1 7) are satisfied, and 
since w+x r -v, condition (3-20) also is satisfied. Since u+w 2 v+x, conditions (3-16) 
and (3-22) hold, and because v+x 2 v-x, condition (3-19) is satisfied. What remains is 
that one of the conditions (3-15), (3-18), or (3-21) must be satisfied. Since the last two 
are identical, 

v+w 2 U-x 
and 

V+W 2 u+x 

remain. It is sufficient that one of the two is satisfied, If condition (3-24) is satisfied, a 
realizable flow pattern exists. If condition (3-24) is not satisfied, then condition (3-25) 
cannot be satisfied. Thus, the only effective condition for reliability of volume by flow 

patterns is that 

or that the largest volume on a leg must not be larger than the sum of the other three 
volumes. 

The condition for realizable traffic volumes for three-leg intersections, obtained in the 
same manner, requires that the largest volume cannot be larger than the sum of the 
two smaller volumes. 

The test was applied to four-leg intersections in the Minnesota data file. For signalized 
intersections, no unrealizable volume combinations were found. Among the 139 urban 
stop-controlled intersections with complete volume information, 2, or 1.4 percent had 
unrealizable volume combinations. Among the 438 rural stop-controlled intersections, 



17, or 3.9 percent had unrealizable volume combinations. The data for these 
intersections are shown in Tables 3.4-1 and 3.4-2. 



A closer look at the tables shows that, in some cases, condition (3-26) is nearly 
satisfied, whereas in others the discrepancy is very large. If the AADT values were 
obtained from a single 24-hour count, a plausible first approximation is to assume them 
to be Poisson - distribution, for which an estimate of the variance is equal to the actual 
count. If a seasonal adjustment factor is applied, its square must be applied to the 
variance of the actual count. If the AADT is calculated from the average of n 24-hour 



counts, then its variance is reduced by a factor of n compared with that obtained by a 
single 24 hour count, Therefore, without knowing the seasonal factor and the number 
of days of counting, we cannot realistically estimate the variance resulting from the 
random character of traffic. However, if one is willing to use the Poisson ass;umption 
for estimating the standard errors of an AADT figure, one can make some camparisons. 
In Table 3.4-1, the discrepancies are four and six times the standard deviation, which is 
too much to be acceptable as resulting from random variability, 

In Table 3.4-2, the discrepancies range from 0.2 to 128 times the assumed standard 
deviation. In five cases the discrepancies are less than twice the assumed standard 
deviation, indicating that least some of them may be due to random fluctuations of the 
traffic count. However, in the remaining 12 cases, the discrepancies are unlikely to 
have resulted from random variations. 

4. Selected Intersections in Washtenaw County, Michigan 

The list of Washtenaw County intersections used for this analysis contained only 
intersections that had at least 10 crashes in any one of the years 1986-89. 'The 
exclusion of intersections with no or few crashes biases our findings. Therefore, this 
analysis should be considered as exploratory only. We used data that give ;a fairly 
smooth surface, primarily to illustrate some statistical aspects. 

Figure 9 shows the distribution of traffic volumes for the 134 signalized four-leg 
intersections in Washtenaw County. Most are in the city of Ann Arbor, some in the city 
of Ypsilanti, and the others in essentially suburban areas. Two intersections with 
middle values of traffic volumes but extreme crash counts were omitted from the 
analysis. 

4.1 Smoothing for signalized four-leg intersections 

Figure 10 shows the results of smoothing with a (4,000 x 4,000) window. The surface 
shows some waves. The surface obtained with a wider window of (6,000 x 61,000)~ 
shown in Figure 1 1, appears smoother. Using a wider smoothing window resulted in a 
practically plane surface, which indicates that, over a wide range of traffic volumes, 
crashes vary essentially linearly with both the major and minor road volumes. 



4.2 Analytical models 

Because the relation in Figure 11 appeared so smooth and simple, attempts were made 
to fit analytical models to the data. The simplest model is linear in both volumes. A 
standard linear regression analysis resulted in 

where standard errors are shown in parentheses below the coefficients, and the major 
volume x and minor volume y are in thousands. The intercept is so small and uncertain 
that for all practical purposes the function is a plane though the origin, that is, crashes 
increase independently and proportionally with x and with y. Figure 12 shows this 
plane. 

The simple linear model is not commonly used because it does not reflect an 
interaction of two traffic streams and is therefore implausible. Most models used are 
refinements of the model 

which is often fitted to the data in the log-linear form such as, 

Analytically, these models are equivalent. Statistically, however, they are different. 

Fitting a model of type (4-3) by linear regression to the logarithm of the data gives 

It is noteworthy that both exponents agree well within their errors. This means that the 
function is symmetric in both volumes. Figure 13 shows the corresponding surface. 



Comparison with Figure 12 shows that the log-linear model "predicts" more crashes 
than the linear model for low volumes, and fewer crashes for high volumes. 

Fitting a model of type (4-2) using a nonlinear regression routine results in the 
following: 

Here, the exponents of x and y differ well beyond their standard errors. The exponent 
of x differs very noticeably from that in model (4-4), whereas the exponent of y differs 
only by about the standard error of their difference, 0.077. 

Figure 14 shows the surface representing model (4-5). Comparison with Figure 13 
shows that for low volumes the log-linear model "predicts" more crashes, whereas it 
"predicts" fewer crashes for higher volumes. For actual intersections, the differences 
are large at the extreme values. In areas without intersections where the model truly 
"predicts," the differences are dramatic. This raises the question of what is 1:he reason 
for these discrepancies between models of the same analytical form? 

Assume that the value zi of observation i has a standard error of Ui. Then, the standard 
error of ui = log (z,) is T =  a,/zi. The corresponding weights to be used in the analyses 
are vi=l/ai2in the nonlinear regression and w ~ = I / ~ ~ z ~ / c T ~  in the log-linear case. In 
the simple nonlinear regression, the standard errors of all observations are assumed 
to be equal. Similarly, in simple log-linear modeling one assumes that the standard 
errors of the logarithms of the observations are equal. If, in fact, the standard errors of 
the observations were equal, then the nonlinear regression techniques would provide 
the correct fit. If simple log-linear models were used, the result could be wrong, 
because wrong weights were used. The correct weights would have to be proportional 
to z2, which means observations with high values of z are underweighted. The correct 
model could be obtained if a weight proportional to z2 was used in the log-linear 
analysis. The reverse holds if, in fact, the variances of the logarithms of the 
observations are constant. 

How does this relate to the well-known theorem that coefficients of weighted and 
unweighted models have the same expected values under fairly general conditions? 



First, though the expected values may be the same, the actually computed values from 
a finite sample are usually different. Second, the theorem assumes implicitly that the 
model is "correct," i.e., that it has no systematic errors. In our situation, it is very likely 
that the arbitrarily selected simple analytical model has some systematic errors. 

A practical question then is: What are the "correct" or at least "good" weights to be 
used in model fitting? The simplest model for crash counts is the Poisson distribution, 
which assumes that if a crash count z has an expected value m, then its variance is 
also m. We used this in the fourth model where we fitted a nonlinear model (4-2), but 
used weights proportional to llm. Since the value of m is not known, we proceeded 
interactively by starting with equal weights and fitting a model. We then used the fitted 
values of this model as weights for fitting a second model, and so on until the 
coefficients no longer changed. This procedure is asymptotically equivalent to fitting a 
maximum likelihood model to the data, using likelihood functions derived from the 
Poisson distribution. 

The result of our iteratively weighted nonlinear modeling is 

The coefficients are between those for models (4-4) and 4-5). Figure 15 shows the 
corresponding surface. 

This model should not be interpreted as being "better" or more "realistic" than the other 
models. The reason is that the Poisson assumption accounts for only the random 
component of the residual variance. Even here probably only part of the variation is 
accounted for because empirical distributions of crash counts tend to be broader than 
the Poisson - distribution. Very likely there may be systematic-error components, 
resulting from factors not included in the simplistic models, and from differences 
between the assumed simple relationship between volumes and crash counts and any 
"real" relationship. Such potential differences are the reasons why comparing overall 
measures of goodness of fit, such as R2, or likelihood ratio are not sufficient. They rely 
heavily on the large number of cases concentrated in certain areas of the x-y plane, 
and relatively little on the few points outside of these areas. These points, however, 
may be of greatest interest because the differences between the various model are 



greatest there. Therefore, in the following section we will visually look at the differences 
between the models, and between the models and actual data. 

4.3 Visual comparison of actual data and models 

Figures 16 and 17 show cross-sections through the surfaces shown in Figures 11, 12, 
13, and 14, at minor volumes of 4,000 vpd and 14,000 vpd, and at major volumes of 
16,000 vpd and 30,000 vpd. The locations for these cross-sections were chosen 

because they touched a wide range of cells that contained intersection data. 

Figure 16 shows cross-sections across major volumes. There is a consistent 
discrepancy between the smoothed curve, approximating the actual values, and the 
analytical models, except the linear model, at a minor volume of 4,000 vpd. The 
smoothed curve is convex from below and the models are convex from above. For low 
values of the major volume, most models predictions are below the actual values; for 
middle values all are above the actual values; and for the highest values of imajor 
volume, all models are below the actual values. None of the models appear clearly 
superior. At a minor volume of 14,000 vpd, the smoothed curve is convex from below 
(except for a short piece at high volumes on the major road). All models show nearly 
straight lines. Again, none of them is consistently better than the others, and none is 
really "good." 

Figure 17 shows cross-sections at a major volume of 16,000 vpd across minor volumes. 
The smoothed relationship is close to a straight line, the linear model is a nearly 
parallel line, and the nonlinear models are slightly convex from above. The portion of 
the line below 2,000 vpd should be ignored because there are only 10 intersections 
with minor volumes between 1,000 vpd and 2,000 vpd, and the curves rely heavily on 
extrapolation or are forced to zero at zero volume. Aside from this area, the modeled 
curves are above the smoothed curve nearly everywhere. In this case, the simple 
unweighted nonlinear model tends to be closest to the smoothed values. At a major 
volume of 30,000 vpd, the smoothed relationship shows a nearly linear increase with 
minor volume up to 14,000 vpd. It then levels off and increases above 20,000 vpd. If 
we again ignore minor volumes below 2,000 vpd, the log-linear model is always much 
too low, and the unweighted nonlinear model nearly always too high. Overalll, the 
iteratively weighted nonlinear model appears to be the best. 



No clear picture emerges from these comparisons, except that the predictions of crash 
counts from the simple log-linear model are consistently too low. 

4.4 Stop-controlled intersections 

The range of volume on the major road for stop-controlled intersections was the same 
as that for signal-controlled intersections. Volumes on the minor road ranged up to the 
volume of the major road up to 20,000 vpd. At volumes of the major road higher than 
20,000 vpd, volumes on the minor road tended to be much lower. 

Figure 18 shows the smoothed crash counts using a window of (3,000 x 3,000). Except 
for a "spike" at very high major, and very low minor volumes, the surface shows no 
trend. Figure 19 shows the data smoothed with a (6,000 x 6,000) window. Aside from 
the "spike" that remains, there is no apparent trend of crashes with major volume. At 
low values of major volume, crashes show a slightly increasing trend with minor 
volume. This trend disappears at higher values of the major volume. 

The "spike" is due to a single intersection with 100 crashes, which is not balanced by 
other intersections with low crash counts. If the effect of this intersection is ignored, the 
data show such a pattern of variation over a relatively narrow range of crash counts 
that cannot be represented by the conventional models of the form z = a*#' ye. 

5. Signalized four-leg urban intersections, California 

5.1 Distribution of intersections by traffic volumes 

Figures 20 and 21 show the distribution of signalized four-leg urban intersections by 
volume on the major and minor roads. Figure 21 shows the same distribution in a form 
that can be more easily compared with the figures showing smoothed crash counts and 
other variables. The height of the blocks is always the same, but the width of the lines 
indicates the number of cases in each cell. If there are no cases, no block is shown. A 
few isolated cases are outside the range of this diagram. 



5.2 Total crash counts 

Figure 22 shows total crash counts, as given in the California intersection file, 
moderately smoothed with a window size of (5,000 x 5,000). While the surface is 
somewhat "wavy," a distinct though not simple pattern is recognizable. This pattern is 
clearer in Figure 23 where a greater window size of (10,000 x 5,000) was used. This 
surface is more smooth and the waves essentially disappear. 

The most obvious feature of the surface is the "ridge," at minor volumes of about 
20,000 vpd, which becomes a "hump" beyond a major volume of about 50,000 vpd. Up 
to this ridge, crash counts increase with minor volume. Beyond it they decline and at 
even higher volumes they tend to rise again, but not to the height of the ridge. 

Crash counts increase with increasing major volume. However, above about 20,000 
vpdlthe increase is much slower than for lower volumes. Indeed, there is very little 
change for low values of the minor volume. For major volumes above 60,000 vpd, data 
become scarce and the pattern becomes complicated. In some areas crash counts are 
higher and in other areas much lower than for lower volumes. 

This complicated surface cannot be represented, or even reasonably approximated, by 
a simple mathematical function. This contradicts the intuitive expectation that crash 
counts should vary in a relatively simple way with traffic volumes, and that ir~tersection 
crash counts should deviate from it only because of their individual characteristics, 
including safety features. If these characteristics were randomly distributed over the 
intersections, then the shape of the relationship between crash counts and volumes 
should be only slightly affected. If, however, the presence of such features was related 
to the two volumes, then the combined effects of these features and of the pure volume 
effect could result in an apparent relationship between crashes and volumes that is 
very different from the pure crash-volumes relationship. 

In our case, the complicated surface could be the result of a combination of a volume 
effect, and the effects of features that become increasingly common with minor volume 
once a value of 20,000 vpd is exceeded. There might also be intersection features that 
are more common for major volumes above 60,000 vpd. Another potential explanation 
is that different crash types may depend in different ways on the 



two traffic volumes. Adding several simple functions can easily result in a much more 
complex function. 

Before we explore these possibilities, we want to make sure that the overall shape 
shown in Figure 23 is "real" and not an artifact of the smoothing procedure. It must be 
emphasized that artifacts can also be produced by analytical models. We separated 
the intersections into three groups. The first group included all intersections with major 
volumes less than or equal to 60,000 vpd and minor volumes less than or equal to 
20,000 vpd, which represents most intersections. The second group included 
intersections where the major volume exceeded 60,000 vpd, which has no intersections 
with minor volume greater than 32,500 vpd. The third group included all intersections 
where the major volume was less than or equal to 60,000 vpd and the minor volume 
exceeded 20,000 vpd, which is beyond the ridge. The data for each group were 
smoothed separately. 

Figure 24 shows the smoothed surface for the first and largest group of intersections. 
Comparing it with the corresponding part of Figure 23 shows that the pattern is 
qualitatively very similar, though quantitatively different. Note that the vertical scale is 
different, to accommodate the higher peak. The increase of crash counts toward the 
ridge is steeper, and the "hump" in Figure 23 is now a much higher "peak." It is not 
surprising that such features are softened in Figure 23 since this is the normal effect of 
smoothing. This effect is usually desired, except if there are theoretical or empirical 
reasons to assume that there are lines where the function is discontinuous, or has 
discontinuous derivatives. 

Figures 25 and 26 show the smoothed surfaces for the other two groups of 
intersections. Figure 27 shows the smoothed surface for all intersections with the part 
for the first group "cut out" to make the comparison of the second and third groups to all 
intersections easier. The overall shape of the surfaces for both groups is very similar 
to that for all intersections, but there are differences in the details. For instance, the 
surface for the third group shows a steeper increase for high values of the major 
volume than does the smoothed surface for all intersections. 



5.3 Crashes within and near the intersection 

The crash data file shows whether a crash occurred within the curb lines of 1:he 
intersection, on a major approach leg, or on a minor approach leg. 

Figure 28 shows the smoothed surface for crashes within the intersection. C:omparison 
with Figure 23, representing total crashes, shows that crashes within the intersection 
proper are only a relatively small proportion of all crashes. The comparison ;also shows 
that the relationship between crash counts and volumes appears much weaker. There 
are more "local" patterns. One is that intersections with both volumes around 40,000 to 
50,000 vpd have many more crashes than most other intersections, and that there are 
a few intersections with very high crash counts at major volumes of about 77,500 vpd 
and minor volumes of about 25,000 vpd. Furthermore, the hump at a major volume of 
60,000 vpd and a minor volume of 20,000 vpd is more pronounced. This suggests that 
individual intersection characteristics have a strong influence on crash counts. 

Figure 29 shows the smoothed surface of crashes on the major approaches. 
Comparison with Figure 23 shows that these crashes account for a high percentage of 
all crashes, and that the shape of the surface is very similar to the surface for all 
crashes. 

Figures 30,31, and 32 also show the same surface as Figure 29, but cut off at major 
volumes of 20,000, 40,000, and 60,000 vpd, respectively. These cuts show the nature 
of the ridge clearly. For low major volumes the ridge is near a minor volume of 15,000 
vpd and is a soft maximum. For roads with higher major volumes the ridge olccurs at 
minor volumes of about 20,000 vpd and is much sharper. 

Figure 33 shows smoothed crash counts on the minor approaches. There is a clear 
pattern for major volume up to 60,000 vpd and minor volume up to 20,000 vpd, which 
consists of a nearly plane surface, increasing in a roughly proportional rate with minor 
volume, and with relatively little or no increase with major volume. The cross - sections 
shown in Figures 34,35, and 36 clearly show the initial nearly proportional increase 
with minor volume. For higher major road volumes, however, the nearly proportional 
increase stops abruptly and reverses. 



5.4 Crash types within the intersection 

Crashes that occurred within the curb lines of an intersection were further classified. 
Those involving a single vehicle were excluded, because they do not directly result 
from the intersection of two traffic streams. Crashes involving pedestrians, bicycles, 
and animals also were excluded. Although some of these crashes result from 
crossings of the road at an intersection, and thus are typical intersection crashes, their 
study requires additional exposure measures for pedestrians, bicyclists, and even 

animals. 

We distinguished the following crash types indicated in the crash data file: 

• rear-end collision 
• angle collision 
a right-turn collision 
• left-turn collision (or U-turn) 

and combined head-on, sideswipe, and other multiple-vehicle collision into 
"other" collisions. 

Figure 37 shows the smoothed surface for left-turn collisions within the intersection. 
This surface is very similar to that for all crashes within the intersection, shown in 
Figure 28, but the dependence on the major volume appears to be slightly weaker. 

Figure 38 shows the smoothed surface for right-turn collisions. The pattern also is 
similar to that of all crashes though the isolated "peaks" at the right side, outstanding in 
the surfaces for all within-intersection and left-turn crashes, are missing. 

The smoothed surface for rear-end collisions, Figure 39, shows an unusually simple 
pattern, consisting of a roughly linear increase with the major volume up to about 
60,000 vpd, and a general tendency to increase with minor volume, albeit with some 
waves. 



Figure 40 shows the smoothed surface for angle collisions. There is no clear pattern, 
except for the hump similar to the one seen for all within-intersection crashes, and the 
"spike" nearby, which also appears for all within-intersection crashes and lee-turn 
crashes. 

The smoothed surface for "other" collisions, shown in Figure 41, is the only surface that 
has a ridge, similar to the surface for all intersection crashes, but in a slightly different 
position. 

These surfaces were smoothed with the same windows as those shown in the earlier 
figures, so that potential similarities could be recognized. However, because of the 
smaller number of cases, the surfaces are more "wavy." Therefore, in Figures 42, 43, 
44, 45, and 46 we also show the surfaces for the various crash types, smoothed with a 
larger window size of (1 5,000 x 10,000). The general patterns are more easily 
recognizable in this set of figures. 

As seen in Figure 42, the number of left-turn crashes at low volumes on the minor road 
is practically constant and independent of the major volume. That the surface shows 
two collisions for no traffic is a consequence of smoothing, which extrapolates to this 
point. The same can occur with an analytical model if it does not force the number of 
crashes to be zero for major and minor volumes equal to zero. For low major volumes, 
left-turn crashes vary very little with minor volume. For larger values of the niajor 
volume they increase only slowly with minor volume, except for high values of the minor 
volume, where they increase rapidly. 

The smoothed surface for right-turn collisions in Figure 43 shows a soft ridge at a minor 
volume of about 12,500 vpd, and a relatively simple surface, except for intersections 
with middle values for both the major and minor volumes. 

The smoothed surface for rear-end collisions in Figure 44 is nearly a plane i ~ p  to major 
volumes of about 60,000 vpd, and minor volumes of about 20,000 vpd. The surface 
shows that rear-end crashes decline rapidly for larger values of the major volume. For 



larger values of the minor volume they level off and even decline somewhat if the minor 
volume becomes even larger. 

The smoothed surface for angle collisions in Figure 45 is smooth, but not simple. 

The familiar ridge is evident in the smoothed surface for "other" collisions shown in 
Figure 46. The ridge is located at a minor volume of 20,000 vpd for low values of the 
major volume, and at a minor volume of 25,000 vpd for high values of the major volume. 
Up to the ridge, the increase with minor volume is roughly linear. 

The patterns that appear in the proportions of the different types of crashes may be 
missed if only the smoothed surfaces of crash counts are examined. Since the 
proportions of crash type showed greater variations than crash counts, a larger 
smoothing window size of (15,000 x 15,000) was used. Figures 47,48,49, 50, and 51 
show the smoothed surfaces for proportions of different crash types. The smoothed 
surface for the proportion of left-turn collisions in Figure 47 initially declines with 
increasing volumes, but changes relatively little when volumes are greater, except 
when the volumes on the major and minor roads are in the middle range. The surface 
for the proportion of right-turn collisions increases rapidly with both volumes, but levels 
off later and shows relatively little change, except at the highest volumes on the major 
road. The smoothed surface for the proportion of rear-end collisions shows an initial 
increase with both volumes. For higher volumes on the major road there is relatively 
little change, and there is a slight decline with increasing volume on the minor road. 
There is a decrease in the proportion of rear-end collisions at the highest volumes on 
the major road. Figure 50 shows that the proportion of angle crashes is fairly constant, 
although there is a slight increase when both the major and minor volumes are in the 
middle range. The smoothed surface for the proportion of "other" crashes shown in 
Figure 51 also increases initially with both volumes, but then remains fairly constant, 
except for a group of intersections with the highest volumes on the major road. 

Care must be taken when trying to interpret such figures. For instance, left-turn 
collisions usually occur with oncoming vehicles on the same road. Therefore, it is 
expected that their occurrence depends primarily on the volume of the road the 
vehicles are traveling on and not on the volume of the crossroad. However, the same 
holds for vehicles on the crossroads. Thus, the total number of left-turn collisions is the 
sum of the left turns on both roads, each separately determined by its own volume. 



Similar arguments hold for rear-end collisions. However, the occurrence of angle and 
right-turn collisions is expected to be determined by an interaction of both volumes. 

5.5 Intersection characteristics 

lntersection characteristics, especially those reflecting crash ~~~~~~~~~~~~~~es are 
expected to have an effect on the occurrence of crashes. Then, intersectioris with a 
certain, safety related feature would have fewer crashes than otherwise coniparable 
intersections without this feature or characteristic. Comparing otherwise co~mparable 
intersections with and without the feature should allow the effect of the feat~~re on 
crashes to be estimated. 

The common way to overcome this problem is to use all available intersections to 
develop an analytic model. Such a model would have the crash counts as the 
dependent variable, the traffic volume or continuous independent variables, and other 
intersection characteristics, including the presence or absence of certain 
countermeasures, or categorical independent variables. Because such a model is 
based on much greater case numbers than those available for "matched" comparisons, 
the standard error of the coefficient, including those reflecting countermeasures, tend 
to be lower. 

However, even this may not resolve the problem of lacking comparable intersections. 
For instance, many features reducing the crash risk will also improve traffic flow. 
Therefore, they are more likely to be installed at high-volume intersections. This 
means that there is a correlation between the independent variables volumes and 
presence of the feature. If the correlation is high enough, no statistical technique can 
separate the two effects. Furthermore, the estimate effect of a feature depends 
completely on the assumed mathematical form of the relation with the volum~es. There 
is no theoretical basis for the mathematical form of this function. Those mathematical 
functions used are arbitrary, though often plausible. 

Therefore, we explored whether the unexpected complicated relation between crashes 
and traffic volumes could be explained by the presence of intersection characteristics 
related to the two traffic volumes. 



The California intersection file contains a number of intersection characteristics that 
may have an effect on crashes. These include: 

- design speed 
- traffic control type 
- lighting type 
- major road left-turn channelization 
- major road right-turn channelization 
- major road traffic regulation 
- major road number of lanes 
- crossroad left-turn channelization 
- crossroad right-turn channelization 
- crossroad traffic regulations 
- crossroad number of lanes 
- median on major road 
- information on shoulders 
- details on the median 
- road bed dimensions 

We selected the following characteristics that are most likely to have an effect on 
crashes: 

- design speed 
- traffic control type: 

2-phase signal or multi phase signal 
- major road left-turn channelization 
- major road provision for free right turn 
- minor road left turn channelization 
- minor road provisions for free right turn 
- major road number of lanes 
- minor road number of lanes 
- median on major road 

We also considered using the presence of turn restrictions, distinguishing intersections 
where left turns were not permitted or were restricted during peak hours. However, 



only 13 intersections had such restrictions on the main road, and nine intersections had 
such restrictions om the crossroads. 

Figure 52 shows the average design speed in relation to the two volumes. The design 
speeds are mostly between 80 and 100 kmlh and no clear pattern is seen. It should be 
noted that this is the design speed and not the speed limit or actual travel speed. 
Thus, no conclusions on relations between speed and traffic volume and indlirectly on 
relations between design speed and crashes can be drawn from our data. 

Figure 53 shows that the proportion of intersections with multi-phase signals; is very 
high with no simple pattern. The figure clearly shows that there is no consistent 
increase in multi-phase signals with traffic volumes. 

The proportion of intersections with left-turn channelization on the main road is shown 
in Figure 54. It is very high and shows only minor variations with volume. 

The corresponding proportion of intersections with channelization on the minor road is 
shown in Figure 55. The proportion varies only slightly with volume of the major road, 
but strongly with the volume of the minor road. This variation is roughly linear up to 
minor volumes of around 20,000 to 25,000 vpd. Beyond that it levels off ancl even 
reverses in one part of the diagram. 

This surface bears some similarity to the smoothed surface of crash counts on the 
minor approaches shown in Figure 33. Both crashes and the presence of left-turn 
lanes increase with increasing volume. Thus, while left-turn lanes may possibly reduce 
collisions within the intersection, they may increase crashes on approaches. This is 
well known to traffic engineers. However, the pattern in Figure 37 gives no indication 
that left-turn crashes on any approach are inversely related to left-turn chanrielization 
on the minor approach. 

Figures 56 and 57 show the proportions of intersections with provisions for free right 
turns on the major and minor roads, respectively. There is some similarity between the 
surfaces, especially since free right turns become rarer with increasing volurne on the 
minor road. However, there are local deviations from these patterns. One of these is a 
slight local "hump" near major volumes of 60,000 vpd and minor volumes of 20,000 
vpd, which appears in several graphs. 



These two surfaces show no similarity to any of the crash surfaces. Figure 58 shows 
the number of lanes on the major road. As expected, it increases from an average of 
three lanes for the lowest-volume roads to six lanes for the highest. There is relatively 
little variation with the volume of the minor road, except for an area where both roads 
have middle-range volumes. 

Figure 59, showing the number of lanes on the minor approach, reveals the 
complementary pattern with little variation with the volume of the major road and a 
roughly linear increase with minor road volume. These is no similarity to any crash 

pattern. 

Figure 60, showing the presence of a median on the main road, yields an interesting 
pattern. The main feature is that the presence of medians increases rapidly with 
volumes on the main road up to about 30,000 vpd. Beyond 30,000 vpd, medians are 
nearly always present. However, for high values a "valley" appears near a minor 
volume of about 20,000 vpd. This is more recognizable in Figures 61 through 63. That 
means that at these volumes a median is less common than at other volumes. One 
might speculate that this could allow relatively more collisions on the main approach, 
accounting for the "ridge" that appears for crashes on this approach. However, it would 
not explain the less sharp ridge that appears for crashes on the minor approach except 
if presence of a median on the major road is related to presence of a median on the 
minor road. 

To determine whether a high number of crashes on the relatively many intersections 
with undivided main approaches creates the ridge andlor hump, we separated 
intersections by divided and undivided main approach. We had to use the term "main" 
approach, rather than the "major," because division was given for only one approach. 
Thus, these surfaces are not strictly comparable with the other surfaces in this study. 
Figure 64 shows the smoothed crash counts for the major approaches for divided 
intersections. Comparing this figure with Figure 29 shows that the overall patterns, with 
the ridge and to some extent the hump, are similar. Figure 65 shows the smoothed 
surface of crash counts for undivided highways. There are indeed a few intersections 
with very high crash counts in the area with main volumes of 50,000 to 55,000 vpd and 
crossroad volumes of about 25,000 vpd. However, they are already beyond the ridge 
and do not substantially contribute to it. Consideration of these two figures and Figure 
33 indicates that division of the major highway, or lack of it, cannot explain the ridge. 



Comparing Figure 64 with Figure 65 shows another interesting feature. In the area of 
low volumes where there are sufficient numbers of intersections with divided and 
undivided main approaches, the surface for undivided approaches terids to be below 
that for divided approaches. This contradicts the intuitive expectation that divided 
highways should have fewer crashes than undivided highways. Other factors must 
have a stronger effect than the separation of traffic streams, and the divisions may 
have been made in response to high crash counts without reducing them to the level of 
those intersections where the approach remained undivided. 

5.6 The length of the influence zone 

Crash counts on intersection approaches depend not only on intersection 

characteristics and traffic - flows, but {also on the length of the "influence zones." These 
zones are defined by convention or judgment and are not a specific function of other 
intersection characteristics. Therefore, they have to be considered when studying 
crashes on intersection approaches, as well as intersection crashes that include those 
within the influence zones. 

The California data base always had values for the length of an influence zone for the 
main approaches. The value for the length of influence zone on the crossroiad 
approaches was usually zero and only had positive values for a few cases. Fifty-three 
percent of the intersections have influence zones of 75 meters. The next most frequent 
value is 45 meters for 8 percent of the zones, followed by 60 meters and 30 meters for 
4 percent of the zones. The maximum length of the influence zone is 350 feet and the 
minimum is 7 feet. Nine percent of the influence zones are less than 100 feet. While 
one would not expect the crash count to be proportional to the length of the influence 
zone, one would expect it to increase with the length. Therefore, if the length of the 
influence zone is related to traffic volumes, which is not implausible, a relationship 
between crash counts and traffic volumes is expected. Indeed, the length of the 
influence zone determines the "exposure" on the approaches. 

A simple relationship between the length of the influence zone and traffic volumes 
should be recognizable in Figure 66, which shows the smoothed average length of the 
influence zone on the main approach in relation to the two traffic volumes. There could 



be more subtle relations, e.g., in some areas of the diagram the lengths might be equal 
for all intersections, whereas in other areas the average could still be the same, but the 
individual values vary widely. 

The surface shows no overall trend and an appreciable variation. Of special interest is 
the slight local hump that appears in the area where we have previously found a hump 
with a ridge. However, the ridge appears for crossroad volumes of 15,000 vpd, 
whereas at 20,000 vpd there is a valley, where previously there was a ridge. 

Because Figure 66 is based on main and cross roads, and the previous figures were 
based on major and minor roads, they are not strictly comparable. Therefore, Figure 
67 shows crashes on the main approach by volumes of main and cross roads. It 
corresponds to Figure 29. While there are some differences in detail, the overall 
pattern is the same. 

Thus, we conclude that the peculiar surface for crashes on the main (and also the 
major) approaches cannot be explained by the length of the influence zone as a scale 
factor. 

5.7 Analytical modeling 

We also developed a simple analytical model. Its purpose is not to compete with very 
detailed analytical models, such as those developed by Bauer and H a r ~ o o d , ~  but to 
see to what extent simple analytical models can approximate the empirical 
representation of the data by smoothing techniques. 

One important point to keep in mind is that there is no theoretical basis for a specific 
mathematical form. Commonly used models are based on very simple considerations 
of plausibility and mathematical convenience. A commonly used model is 

KM. Bauer, D.W. Harwood, Statistical Models of At-grade Intersections Crashes. Mid-West 
Research Institute, November 196 1. 



The current state - of - the - art is to specify (5-1) as the model for the expected value 
of a Poisson distribution for the crash counts, and then get a maximum-likelihood 
estimate of the parameters. A negative binomial distribution with an additional 
parameter could also be used. We used a mathematically simpler process to obtain 
practically the same result. We assumed (5-1) as the model for the crash counts, but 
weighted each observation with the inverse of the modeled crash count, which is the 
variance of a Poisson distributed variable. The estimates were obtained using the SAS 
procedures NLlN repeatedly, re-weighting each time. Though not statistically rigorous, 
these estimates are usually close to true maximum likelihood estimates. Considering 
the only modest overall fit of the resulting model, a more sophisticated approach would 
not have been justified. 

The result was: 

with standard error shown in parentheses. 

The correlation between b and c is -0.20 and between a and c it is -0.02. These values 
are negligible. The correlation between a and b is -0.97, which is large, as is usual if 
the averages of the variables are far from zero. This means that despite their low 
relative standard errors, a and b can be varied considerably, as long as it is done 
according to the correlation, without affecting the model fit too much. 

Figure 68 shows the surface resulting from the model, and Figure 69 shows the same 
surface but cut at x = 20,000 vpd and y = 62,500 vpd. Comparison with Fig~~res 23 and 
27 shows that the analytical model is only a rough approximation of the smoothed 
surface. In some areas the trend of the analytical model contravenes the trend of the 
data as reflected by the smoothed surface. 

Figures 70 and 71 show this even more clearly. However, they also show that our 
overall smoothed surfaces still are not satisfactory representations of the crash 
patterns. If separate surfaces are constructed for three separate blocks of data, 
bounded by the apparent ridges (x r 60,000 , y r 20,000, x > 60,000, y > 20,000), they 
do not meet at the boundaries. This means that more sophisticated smoothing 



techniques have to be used that distinguish "real" ridges from "noise," and avoid 
"smoothing out" of such ridges. Such techniques are not yet available for routine work. 

5.8 Conclusion regarding the four-leg signalized intersections in California 

We have found that crashes at four-leg signalized urban intersections in California 
have complicated relationships with the volumes of the two roads, which cannot be 

expressed by mathematical functions of the form z = a 3 * f ,  which is equivalent to a 
log-linear model. It is still possible that such a model is tenable, if it is expanded to 
include certain intersection or traffic characteristics. However, the intersection 

characteristics available in the data file show no patterns that can explain the deviation 
of the actual crash patterns from the analytical models. Traffic characteristics beyond 
the volumes of the two roads are not available in the file. We tried to infer some traffic 
characteristics by separating certain classes of crashes. Again, these classes of 
crashes showed no patterns likely to provide an explanation for the deviations. Of 
course, patterns of specific crash classes represent a combination of risk patterns and 
specific exposure patterns. Thus, it could be possible that very specific exposure 
measures exist that can explain the deviations. 

Another important finding is that crashes on the major and minor approaches showed 
very different patterns in relation to the volumes, and that crashes within the 
intersection itself showed yet another different pattern. Different crash types within the 
intersection also showed different patterns. 

While it might be possible to develop useable analytical model for specific crash types 
with the use of exposure measures specific to the type of crashes, it is very unlikely 
that a simple analytical model can be found that adequately represents the sum of 
many different crash types, the proportions of which vary across the intersections. 

6. Minnesota intersections 

6.1 Distribution of intersections by traffic volumes 

Figure 72 shows the distribution of traffic volumes for the 71 useable signalized urban 
four-leg intersections found in the Minnesota data files. Volumes for the four 
approaches may all be different. However, it appeared questionable whether actual 



volumes were as different as the volumes shown in the file. Also, using the four 
approach volumes would have required a complicated analysis that would not have 
been justified with 71 data points. Therefore, the volumes of the two approaches on 
each road were averaged, and only the resulting average volumes for the major and 
the minor road were used. 

Figure 73 shows the distribution of the two volumes in a form easily comparable with 
the following figures. Comparing this distribution with the distribution for California 
intersections shows that there are relatively few intersections with low volumes on the 
minor road. 

6.2 Smoothed crash counts 

Figure 74 shows the smoothed values for the crash counts found in the data file, using 
a window of (4,000 x 4,000). There is a tendency for crash counts to increase roughly 
linearly with the minor volume, at least up to certain values. The relationship with the 
major volume, however, is more complicated. There is relatively little variation up to 
16,000 vpd, and again from 22,000 vpd upward, except for some isolated points at high 
volumes. Between 16,000 vpd and 22,000 vpd, crash counts increase quite rapidly 
with the major volume. 

Figures 75 and 76 show this pattern more clearly. Figure 75 shows the surface cut off 
at a minor volume of 6,000 vpd, where the pattern, described above, is very 
pronounced. Figure 76 shows a cut-off at a major volume of 10,000 vpd. Here, the 
initial level part is no longer present, but there is a linear increase up to a major volume 
of 22,000 vpd, above which crash counts also remain stable. 

While this pattern appears to be very clear, there is still a possibility that it is due to 
only a few intersections. Therefore, we also generated the surface using a larger 
smoothing window size of (8,000 x 4,000). The resulting surface is shown in Figure 77. 
The fairly steep increase between 16,000 vpd and 22,000 vpd has been smoothed out 
to a more uniform increase up to 24,000 vpd. Beyond that, however, crash counts still 
vary only slightly with the major volume, except for a few points with very high volumes. 



6.3 An analytical model 

We fitted the data to a standard log-linear model, using a nonlinear regression 
technique with the following result: 

z = 2.1 8 *f205f 38s (6-1 
(0.63) (0.102)(0.090) 

Figure 78 shows the surface representing this model. Like the smoothed surface, It 
shows only a weak increase of crash counts with major volume. Obviously, it cannot 
represent the different pattern for lower volumes. This becomes clear when Figure 79, 
which shows the surface cut-off at a minor volume of 6,000 vpd, is compared with 
Figure 75, which shows the actual surface cut-off at the same place. If Figure 80 is 
similarly compared with Figure 76, it is clear either that log-linear models are 
inadequate, or that intersections with low major volume differ from those with high major 
volume by some important feature that starts appearing at volumes between 16,000 

vpd and 22,000 vpd. 

6.4 Crash types 

Since total crash counts aggregate very different types of crashes, studying different 
crash types separately may provide insights that cannot be found in aggregate crash 
patterns. The simplest distinction between crash types is by location, that is, whether 
the crash occurred within the intersection proper or on an approach to the intersection. 

Figures 81 and 82 show the smoothed relation of all crashes in the intersections proper 
and within 60 meters of the intersections. There is a general similarity between Figure 
81 and Figure 74 which represents only crashes within the intersection proper. A 
closer look, however, shows some differences that are reflected in Figures 83 and 84, 
which show crashes that occurred on the approaches within 60 meters of the 
intersection. The less smoothed surface in Figure 83 shows no clear pattern. The 
more smoothed surface in Figure 84 shows a weak but steady increase with the major 
volume, and relatively little variation with the minor volume. This simple pattern is very 
different from the pattern seen in Figure 76, where the increase with the major volume 
is less consistent, but the increase with the minor volume is strong. 



Even crashes within the intersection itself are not homogeneous. They can result from 
very different pre-crash situations and intended maneuvers. The occurrence of certain 
crash configurations depends on both the frequencies of the underlying maneuvers and 
on their inherent crash risk. One would expect that intersections with a high proportion 
of "risky" maneuvers also have higher crash counts. 

The crash file contains some information on crash configuration. We excluded crashes 
characterized as "other" or "unknown." We also excluded crashes where the vehicle 
ran off the road, because they are not typical for an intersection. The other '?ypical 

intersection crashes" were grouped as follows: 

- rear end 
- left turn 
- right turn 
- angle 
- other, consisting of side-swipes and head-on collisions 

A number of intersections had no typical intersection crashes. Figure 85 shows the 
distribution of volumes for intersections with typical intersection crashes. A comparison 
with Figure 73 shows relatively few differences. 

Figures 86 and 87 show the surfaces for the typical intersection crashes. The less 
smoothed surface in Figure 86 shows some irregular variation, aside from a few 
unusually high cases. If we again disregard the few high-volume cases, the more 
smoothed surface in Figure 87, shows practically no variation with the major volumes 
and only little variation with the minor volumes. This is an interesting observation for 
which we do not have even a speculative explanation. Counts for specific crash types 
are even lower and, therefore, show more random variations. The proportions of the 
crash types tended to vary less and are therefore shown. 

Figure 88 shows this proportion of crashes involving left turns. This proportion tends to 
decrease with increasing major volumes, though not uniformly. The pattern changes in 
a systematic way with regard to minor volume. For low values of the major volume the 
proportion of left-turn crashes decreases with the minor volume, for medium volumes it 
stays nearly constant, and for high values of the major volume it increases with the 
minor volume. The surface pattern can be roughly characterized as a twisted sheet. 



Figure 89 represents angle collisions. Again it is complicated but can be simply 
described as an elongated saddle. Figure 90 shows the surface for rear-end collisions, 
which is somewhat complementary to that for the angle collisions. A different pattern is 
seen for "other" collisions in Figure 91. However, there is a ridge, which is 
approximately at the same location as the ridge in Figure 89 and the trough in Figure 
90. Together, these three figures suggest that around minor road volumes of 4,000 vpd 
to 6,000 vpd there is a change in the crash pattern. There were too few right-turn 
crashes to allow a meaningful representation by smoothing. 

6.5 Relating proportions of crash types to number of intersection crashes 

The idea that led to this analysis was that an intersection with a high proportion of left 
turns would also have a high proportion of left-turn crashes. Because of the high risk in 
left turns, such an intersection would have a higher crash count than otherwise similar 
intersections with few left turns. If this turned out to be the case, the proportion of left- 
turn crashes could be used as a proxy for exposure. 

For the following analyses, we used only those intersections that had crashes of the 
selected types within the intersection and had a minor volume of less than 16,000 vpd, 
because the few intersections with greater volumes had much higher crash counts than 
others and showed only very weak relationships between volumes and crash counts. 
Fifty-seven intersections were selected. 

As a first step, we looked at relationships between the number of crashes within the 
intersections and the proportions of the four crash types we distinguished. These data 
are plotted in Figures 91 to 95. Also shown are crash counts smoothed over the 
proportions. A common pattern is that the smoothed values are always low for 
proportions of 0 and 1, and are at their highest value near 0.25 to 0.3. Interpreted 
literally, this means that total crashes would be the highest if the four crash types were 
about equally present, that is, each accounted for about 25 percent of the total crashes. 
Furthermore, the total crashes would be lowest if all the crashes were of one type. 

However, it is easy to see that this is a statistical artifact. Intersections with only one 
crash can have only the proportions 0 or 1 for each crash type. For instance, in Figure 
91 there are eight intersections with one crash that have no angle collisions, and two 
that have one angle collision. For intersections with two crashes the proportions of 0, 



0.5, and 1 are possible. In Figure 92 there are four intersections with no angle 
collisions, six with one, and one with two. More possibilities appear with increasing 
number of collisions. For the one intersection with 17 crashes, the proportions 0, 
0.059, 0.1 18, ........ 0.941, and I .0 are possible. Actually this intersection has; 
proportions of 0.294 for angle collisions, 0.41 2 for left-turn collisions, 0.235 f'or rear-end 
collisions, and 0.059 for other collisions. It can be concluded from this obse~vation 
that, if there were no relationships between crash counts and proportions of crashes, 
and the probabilities for the four types are equal, then most intersections with many 
crashes would have proportions near 0.25, and very few intersections, if any, would 
have proportions near 0 or 1. The lower the number of crashes, the more often 
intersections with proportions of 0 or 1 must appear, until finally intersections; with one 
crash can have only zero or one crashes of each type. 

A consequence of the above is that primarily intersections with low crash count are 
represented at the endpoints 0 and 1 and that the average crash counts at these points 
must be low. Other proportions can be realized only at intersections with more crashes 
and, therefore, for proportions between 0 and 1, the average crash count must be 
higher. 

Correcting for this confounding factor is very difficult. However, it can be avoided if one 
looks at the graph ''the other way," that is, by looking at proportions of crashes versus 
crash counts. Figures 96 to 99 show the data this way. For each crash courit 
(intersections with the same crash count are combined) the proportions of crashes of 
one of the four types are shown, together with the range of one standard error. For 
proportion 0, a standard error of 0.04 was assumed. 

The smoothed curves also are shown. They use a generalized Gaussian kernel and 
weight the points according to their standard errors. Figure 98, which shows the 
proportion of rear-end crashes, is the only figure that shows a potential relationship 
between total crashes and the proportion of crashes of one type. To explore this 
further, we used our original idea that the proportions of crash types might possibly 
explain deviations of individual intersection counts from the average surface for all 
intersections, which should be determined largely by volume effects. Therefore, we 
calculated the difference between the intersection crash count and the value from the 
smoothed surface for each of the 57 intersections. These differences are used in 
Figure 100. Comparing Figure 100 with Figure 98, which shows the smoothed surface 



for the actual crash counts, shows that although the two figures initially look very 
different, there are some similarities. A comparison with Figure 94 shows even greater 
similarities (note that abscissa and ordinates are exchanged). The clusters of data 
points that appear in Figure 94 are spread out, but not much. The reason is that the 
differences against the smoothed value do not differ much from the difference against 
the overall average, because the smoothed surface does not differ much from the 

overall average. 

The straight line shows a linear regression fitted to the data points. Its slope does not 
differ significantly from zero. This can be deceiving, since the linear specification of the 
model may be wrong. A quadratic regression fit gave the bold curved line. None of the 
coefficients, or both coefficients together, were significantly different from zero. Again, 
the quadratic specification may not be adequate. Smoothing with a wide window gave 
the broken line close to the quadratic model. Smoothing with an intermediate window 
gave the dash-dotted line, and smoothing with a narrow window gave the light solid 
line, which, aside from local variations, suggests a step somewhere between crash 
differences of 6 to 9. 

The smoothed functions do not provide simple error estimates as regression models 
do. However, some estimates can be obtained. One approach utilizes the concept that 
each point of the smoothed curve is an estimated point of a local regression. The error 
of this estimate can be used as the error of the smoothed value. An objection to this 
approach is that both the proportion and the crash difference are random variables. 
The standard error estimates of regression analysis, however, assume that only the 
dependent variable is subject to random errors. An alternative, nonparametric 
approach is bootstrapping. One way to bootstrap is to fit a smooth model, calculate the 
residual of the data points against the model, repeatedly add random samples (with 
replacement) of the residuals to the smoothed values, and smooth these artificial 
values. If one repeats this often enough, one obtains a visual "confidence band" where 
only a certain specific percentage of the smoothed points lie outside this band. This 
approach, however, makes the same unrealistic assumption as the classical regression 
approach, i.e., that the values of the independent variables have no errors. This 
assumption can be avoided by a different, even simpler, application of the 
bootstrapping principle. Samples (with replacement) of 57 from the given 57 
intersections are drawn repeatedly and a smoothed curve is fitted to each sample. 



Figure 101 shows the results of 10 smoothing fits using the wide window. Beyond a 

crash difference of 7, the fit becomes very uncertain and often gives impossible 
negative proportions. Figure 102 shows the same curves, with the range of the 
ordinate between 0 and 1. Obviously, the smoothed relationship between the 
proportion of rear-end crashes and the crash difference is very uncertain, even where 
the proportions are not negative. 

This high uncertainty is not a weakness of the smoothing technique. Rather, it is a 
result of the wide scatter of the data. This is confirmed in Figures 103 and 104. They 
show quadratic regressions fitted to 10 bootstrap samples of intersections. Except for 
one sample, the range of variability is as great as with the smoothed relations. If the 
comparison is limited to the range of feasible proportions between 0 and 1, the 
quadratic model is much less certain than the smoothed model, as shown in Figures 
102 and 104. The reason is that the two data points with the highest values of crash 
difference are very "influential." To some extent smoothing can accommodate such 
influential points and reduce their influence on other parts of the curve. This is difficult 
with analytical models, and models with many parameters must be used. 

Figure 105 shows the result of fitting linear regressions to the bootstrapped samples. 
Here the variability is much less than with the quadratic model. It should be noted that 
the envelope of the lines is very close to the typical 90 percent confidence "trumpet" 
derived by analytic models. 

6.6 Conclusion 

The overall conclusion is that only two intersections are responsible for the apparent, 
but not significant, relationship between the proportion of rear-end collisions and the 
crash difference. To determine whether such a relationship might be real, a much 
larger number of intersections would be needed. No relationship between their 
proportion and the deviation of crash counts from the smoothed model was apparent for 
the other crash types. 



7. Conclusions on modeling intersection crashes in relation to traffic volumes as 

exposure measures 

7.1 Relations between crash counts and traffic volumes at four-leg signalized 

intersections 

The currently readily available exposure measures at intersections are the average 
traffic volumes on the intersecting roads. Intuitively, one expects crashes in 
intersections to result from the interaction of the two traffic streams. The simplest 
mathematical function expressing an interaction is z=a*x*y. This expression is too rigid 
because it has only one parameter, a. A simple generalization is z=a'pyc. It is often 
used, usually in logarithmic from as a log-linear model. 

A critical question is, is this form adequate to represent the actual relation between 
crashes and traffic volumes, or are there better relationships? The simplest way to 
obtain an approximation to the "true" relationship between crashes and traffic volumes 
is to smooth crash counts over the two traffic volumes. We did this for three data sets: 
four-leg signalized and stop-controlled intersections in Washtenaw County, Michigan; 
four-leg signalized intersections in California; and four-leg signalized intersections in 
Minnesota. 

The Washtenaw County data suffered from a selection bias because only intersections 
with more than a certain number of crashes were included. Such data are rarely 
selected in practice. For this data set, crash counts increased with increasing major 
volume as well as with increasing minor volume. The conventional log-linear model 
appeared to be an acceptable qualitative representation. Quantitatively, however, 
there were complex systematic deviations between the data and the model. There was 
practically no relationship between crash counts and traffic volumes for crashes at 
stop-controlled intersections in this data set. 

The large number of intersections in the California data set allowed detailed analysis. 
A fairly simple visual, but analytically complex, relationship was apparent. The most 
obvious feature of the surface was a "ridge" at minor road volumes of 20,000 vpd. Up 
to that value, crash counts increased nearly linearly with the minor volume. Beyond 
that volume, they initially dropped rapidly, and then leveled off. The relationship with 
the major volume was not that pronounced but showed a fairly strong increase at low 



volumes, no or moderate increase at middle volumes, and an irregular decrease at high 
volumes. 

Crashes within the intersection itself showed a similar but much less pronounced 
pattern with a weaker variation with the volumes. Crashes on the major approach 
showed a pattern very similar to that of all crashes, while those on the minor approach 
showed a definitely different pattern. There was, however, a "ridge" beyond which 
again crashes declined, a very strong increase with minor volume, and relatiively little 
variation with major' volume. It was obvious that a log-linear model could not even 
roughly approximate the actual surface. 

One possible reason for a deviation from the expected pattern is that intersections that 
otherwise would have very high crash counts have been "improved" so as to reduce the 
crash risk. However, none of the intersection characteristics given in the data file that 
might reduce the crash risk appeared more frequently in the areas of the diagrams 
where the unexpected decline of the crash counts occurred. Thus, there must be either 
other intersection features not available in our data file, or the relationship between 
crash counts and traffic volumes must be far from log-linear. 

The analysis of Minnesota intersections was limited by their low number. They showed 
a complex pattern. The relationship of major volume to crash counts was nearly a step 
function, which was approximately constant for low volumes, even more so for high 
volumes, with a "ramp" connecting the two levels. Strong smoothing that came close to 
fitting a plane to the data points resulted in a surface that increased with both volumes. 

Crashes within the intersection itself showed a slightly different pattern. The pattern for 
the major volume again had two levels connected by a ramp, but there was a fairly 
strong increase with minor volume. Crashes on the approaches showed no clear 
pattern. Strong smoothing revealed only a weak increase with major volume and a 
stronger increase with minor volume. 

A log-linear function was qualitatively similar to the more strongly smoothed surface, 
but deviated quantitatively. It could not represent the less strongly smoothed surface 
showing two levels and a connecting ramp. 



If the crash risk in specific intersection maneuvers, such as turning left, turning right, 
going straight, etc., were the same across and independent of the volumes, but not 
across maneuvers, the frequencies of crashes reflecting such maneuvers would be 
proportional to the frequencies of the maneuvers. If an intersection had many high-risk 
maneuvers, one would expect more crashes than at intersections with comparable 
volumes but with fewer such maneuvers. Therefore, we also explored possible 
relationships between the frequencies of crash types, and of total crashes, in the 
Minnesota and California data sets. We found none. 

Our three data sets showed very different relationships between crash counts at four- 
leg signalized intersections and the traffic volumes on the intersecting roads. None of 
them could be adequately represented by the conventional log-linear model. Either 
other intersection characteristics that were not readily available in our data sets had a 
strong influence on crash counts, or average annual daily traffic is not an adequate 
exposure measure. 

7.2 What can currently be done? 

Considering our negative conclusions about the usefulness of using conventional 
mathematical models to represent relationships between crash counts at signalized 
intersections and traffic volumes, what can be done? Smoothing is a promising 
alternative because it allows the fitting of even complicated surfaces by a simple 
process and avoids arbitrary assumptions. Using a function of two volumes, as done in 
this study, is a relatively simple matter. If more than two volumes, or other variables, 
especially categorical variables, are desired, the procedures have to be extended and 
refined, as discussed in subsequent sections. 

We cannot rule out the possibility that someone may find manageable and not too ad- 
hoc mathematical expression for the relationship between traffic volumes and crash 
counts. By ad hoc we mean mathematical expressions selected specifically to fit the 
data sets studied, without consideration whether they could plausibly be extended to 
other data sets. However, such mathematical expressions have to be validated by 
more detailed criteria than correlative coefficients, likelihood ratios, or similar 
aggregate measures to be acceptable substitutes for smoothed surfaces. 



What can be done in practice with such smoothed (or validated analytical) 
relationships? They can be used to compare the experience of an individual 
intersection with that expected from the relationship. If the difference is suffilciently 
large then the crash experience of that intersection should be studied in detail. Criteria 
for what is considered sufficiently large still have to be selected. Possibly, an 
explanation that suggests either which countermeasure should be applied to that 
intersection or which features of that intersection might have the beneficial e'ffect of a 
crash countermeasure could be found. 

This approach has its limitations. It can work only for intersections in an "area," defined 
by combinations of the two volumes, with enough data points in the "area" so that the 
individual peculiarities of the intersections will average out. It will not work for relatively 
isolated intersections near the boundary of the area covered by intersections. There, 
the smoothed surface will be "pulled" toward the value of each individual intersection. 
Even if the actual crash count for an intersection may be much higher than to be 
expected from the ''true" relationship between crashes and volumes, this deviation may 
not be recognizable. 

7.3 Substantive research needed 

Before one can realistically think about modeling intersection crash counts, one needs 
to develop a more realistic logical and functional structure for such models. A first step 
is to re-think the concept of exposure. As already discussed, traffic volumes on the 
intersecting roads are conceptually unsatisfactory. Only in the simplest case of 
uncontrolled intersections can one expect crash counts to be log-linear or similar 
functions of the volumes. An exposure measure should count the opportunities for 
collisions. These depend heavily on the type and characteristics of traffic control 
provided. Promising steps to develop more meaningful exposure measures lhave been 
taken.4 However, much more work on the problem using different perspectives is 
needed. 

4F.M. Council, J.R. Stewart, D.W. Reinfurt, W.W. Hunter, Exposure Measures forp Evaluating 
Highway Safety Issws. University of North Carolina Highway safety Research Center, 1983. F.M. 
Council, J.R. Stewart, E.A. Rodgrnan, Development of Exposure Measures for Highway Safety 
Analysis. University of North Carolina Highway Safety Research Center, 1987. 



Another aspect is that intersection crashes, and even more so, intersection-related 
crashes, are very inhomogeneous. It cannot be expected that a single model will 
describe their frequency in a manner reflecting crash causation. Therefore, a closer 
examination of intersection crash types should be made and classes for meaningful 
modeling must be identified. This might require performing nearly a "clinical" analysis 
of individual crashes. 

In reality, many intersections have certain features exactly because they had much 
crash experience. This creates relationships that make the standard statistical models 

uninterpretable. Either much more sophisticated models have to be developed, or 
different techniques used. 

One alternative to the conventional approach, that of using a large set of intersections 
and including many variables in a complicated model, is to select intersections that are 
matched in many respects as closely as practical, and differ only in one or very few 
characteristics to be studied. This is much more likely to isolate any effect of such 
characteristics. If this is done, in turn, with many different subsets of intersections, a 
realistic model may be built in a stepwise fashion. 

7.4 Methodological research needs 

Before smoothing can be used routinely to model relationships between crash counts 
and exposure measures and other intersection characteristics, additional research 
needs to be done. 

A realistic model will contain one or several exposure measures that are continuous 
variables (or counts that can be treated as continuous variables), intersection 
characteristics that will usually be described by 011 categorical variables, and possibly 
other continuous variables, such as travel speeds. In principle, one can smooth over 
all continuous variables simultaneously, but one cannot smooth over the categorical 
variables. They have to be accommodated by either additive or multiplicative terms, or 
the entire data set may have to be split according to a categorical variable, or 
combinations of several categorical variables, and each part modeled separately. 
Criteria have to be developed to decide when each of these treatments is appropriate. 



Though it is possible to smooth data sets with a large number of continuous 
independent variables, it is not very useful. The data can be stored in a computer, or in 
hardcopy tables, ar~d the smoothed value can be calculated for any csmbina~tion of the 
independent variables. However, i f  the number of variables is greater than two, or at 
most three, the smoothed surface cannot be visualized or intuitively assesse!d for 
overall shape and smoothness. As a practical matter, one wants to separate the model 
into additive or multiplicative components, each of which can be studied and assessed 
separately. Indeed, this is the same approach used in analytical modeling, where one 
uses additive or multiplicative terms. If interactions have to be considered, they are 
introduced as additional additive or multiplicative terms. Since one can easily visualize 
a surface smoothed over two variables, one only needs to determine how to separate a 
model into components representing main effects, or interactions of any two variables. 
Research is needed to learn how to do this best and how to assess the adecluacy of 
such additive or multiplicative models. 

If one deals with experimental data where by design the data points can cover the 
range of the variables of interest more or less uniformly, smoothing by standard 
methods can give a good representation of the relationship, and the deviatiolns of the 
individual points from the surface can give a good idea of the random variability of the 
data points. 

In the case of intersections, and probably also other highway locations, the situation is 
different. Most observations are concentrated in only part of the entire area covered 
with observations. Toward the edges of this area, observations become more sparse 
and may be isolated. This poses a dilemma for smoothing. In the areas densely 
covered with observations, a narrow smoothing window may be appropriate, because it 
can well represent a complex relationship and still provide adequate smoothing. 
Where the points are more isolated, such a narrow window is no longer appropriate, 
because in extreme cases it may result in a perfect or at least very good fit to any 
single point or to a combination of only a few points. This can result in erratic behavior 
of the smoothed surface toward its boundaries. To avoid this, one might enlarge the 
smoothing window. While this has the effect of giving a smoothed surface near the 
boundaries of the covered area, it can result in smoothing out important details in the 
area well covered with points. Techniques should be developed that avoid this, for 
instance, by using a window with adoptive size, or by identifying parts of the smoothed 
surface that depend on only a few data points. 





Figure 1. Representation of a Gaussian kernel, as represented by (2-1). 



Figure 2. Representation of a Gaussian kernel with an exponent of 10. 



Figure 3A.1 Example Volunres 

fgure 3A.2 Expianation 1 

Figure 3A. Example of two-way volumes and two possible 
explanations. 



Figure 3. Flows distinguished at an intersection. 



Figure 4. Different representation of the traffic flows shown in Figure 3. 



Figure 5. Deriving other realizable solutions from a given realizable solution. d is the 
value by which the original flows are changed. 



Figure 6. A new flow pattern, resulting from a modification shown in Figure 5, and 
possible further modifications of the flow pattern. 



Figure 7. The simplest flow patterns obtainable if  x is a minimal volume on the legs. 
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Figure 8. Reduced flow pattern to derive conditions for reliability of leg volurnes. 



y I 
I 

25000 +-------------+-------------+-------------  A- 
I I I A 1 
I I I I 
I I I A I 
I I I I 
I 1 I I 
I I I I 
I I I A  l 

20000 +-------------+-------------+-------------+-------------+---- 

I I I I I A 
I I I A A  I I 
I I A I A I A I 
I I I I I 
I I A I I I 
I I A I A I I 
I 1 A AA A 1 A  I 

15000  +-------------+-------A-----A---A---------+-------------+---- 
I 1 A  I I A  I 
I I A  I A l I 
I I A  l I I 
I I I AA I A  1 
I I A A A  I A  A I I 
I 1 A  A  I A  I I 
1 I A AIA A I 1 

10000 +-------------+--A----------+-----------A-+-------------+---- 
I AB A  A  IAA I I 
1 1 A A AIAAA A 1 A 1 
I IA AA A  I I I 
I A AA A  I AA I I 
I I A A A A A  I A  I A  A  
I A A A  A  AA A A  I I 
1 A A A A A  A A( A  A I I 

5000 +-------------+A------------+-A-----------+A------------+---- 
I I A  ABAA B A A  A I 1 
I I A A I A  A  Al A  I 
I B I A  I I A 
I I A A  AA A l A  I 
I A  A A l B  I A  B  I I 
I I A A 1 I A  I 
I I I I I 

0  +-------------+-------------+-------------+-------------+---- 

0  10000  20000 30000  40000 

Legend: A = 1 obs, B = 2 obs, etc. 

Figure 9. Distribution of traffic volumes at signalized four-leg intersections in Washtenaw 
County, Michigan. X=volume on major, Y= volume on minor road. 



Figure 10. Signalized four-leg intersections in Washtenaw County, Michigan. Accident 
counts smoothed with a 4,000 x 4,000 window. 



Figure 11. Signalized four-leg intersections in Washtenaw County, Michigan. Accident 
counts smoothed with a 6,000 x 6,000 window. 



Figure 12. Signalized four-leg intersections in Washtenaw County, Michigan. Surface 
represents the analytical model 4.1. 



Figure 13. Signalized four-leg intersections in Washtenaw County, Michigan. Surface 
represents the analytical model 4.4. 



Figure 14. Signalized four-leg intersections in Washtenaw County, Michigan. Surface 
represents the analytical model 4-5. 



Figure 15. Signalized four-leg intersections in Washtenaw County, Michigan. Surface 
represents the analytical model 4-6. 
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Figure 16. Signalized four-leg intersection in Washtenaw County, Michigan. Cross- 
sections through the surfaces in Figures 11, 12, 13, and 14 at minor volumes of 4,000 
and 14,000. 
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Figure 17. Cross-sections at major volume of 16,000. 



Figure 18. Stop-controlled four-leg intersections in Washtenaw County, Michigan. 
Accident count smoothed with a 3,000 x 3,000 window. 



Figure 19. Stop-controlled four-leg intersections in Washtenaw County, Michigan. 
Accident count smoothed with a 6,000 x 6,000 window. 
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California, signalized urban intersections 

Figure 20. Distribution of volumes at signalized urban intersections from California 
data file. 



Figure 21. Distribution of four-leg signalized intersections in California by volume of 
the major and minor approaches. The width of the lines is proportional to the number 
of cases in each cell. 



Figure 22. California four-leg signalized urban intersections. Total accident count 
smoothed with a 5,000 x 5,000 window. 



Figure 23. California four-leg signalized urban intersections. Total accident count 
smoothed with a 10,000 x 5,000 window. 



Figure 24. California four-leg signalized urban intersections. Major volume # 60,000, 
minor volume # 20,000. Total accidents, smoothed with a 10,000 x 5,000 window. 



Figure 25. California four-leg signalized urban intersections. Total accidents for 
intersections with major volume # 60,000, minor volume > 20,000, smoothed with a 
10,000 x 5,000 window. 



Figure 26. California four-leg signalized urban intersections. Total accidents for 
intersections with major volume > 60,000. 



Figure 27. California four-leg signalized urban intersections with the same data and 
surface as in Figure 23, but with surface for major volume # 60,000 and minor volume # 
20,000 not shown. 



Figure 28. California four-leg signalized urban intersections. Total accidents within the 
intersection, smoothed with a 10,000 x 5,000 window. 



Figure 29. California four-leg signalized urban intersections. Total accidents on major 
approaches, smoothed with a 10,000 x 5,000 window. 



Figure 30. California four-leg signalized urban intersections. The same data and 
smoothing as in Figure 29, but with the surface not shown below minor volume of 
20,000. 



Figure 31. California four-leg signalized urban intersections. The same data and 
surface as in Figure 29, but with the surface below minor volumes of 40,000 not shown. 



Figure 32. California four-leg signalized urban intersections. The same data and 
surface as in Figure 29, but with the surface below minor volume of 60,000 riot shown. 



Figure 33. California four-leg signalized urban intersections. Total accidents on minor 
approaches, smoothed with a 10,000 x 5,000 window. 



Figure 34. The same surface as in Figure 33, but not shown for major volume below 
20,000. 



Figure 35. The same surface as in Figure 33, but not shown for major volumes below 
40,000. 



Figure 36. The same surface as in Figure 33, but with major volumes not shown below 
60,000. 



Figure 37. California four-leg signalized urban intersections. Left-turn accidents within 
the intersection, smoothed with a 10,000 x 5,000 window. 



Figure 38. California four-leg signalized urban intersections. Right-turn accidents 
within the intersection, smoothed with a 10,000 x 5,000 window. 



Figure 39. California four-leg signalized urban intersections. Rear-end collisions within 
the intersection, smoothed with a 10,000 x 5,000 window. 



Figure 40. California four-leg signalized urban intersections. Angle collisions within the 
intersection, smoothed with a 10,000 x 5,000 window. 



Figure 41. California four-leg signalized urban intersections. "Other" collisions within 
the intersection, smoothed with a 10,000 x 5,000 window. 



Figure 42. California four-leg signalized urban intersections. Lett-turn collisions within 
intersection. smoothed with a 15,000 x 10,000 window. Based on the same data as 
Figure 37 but more smoothed. 



Figure 43. California four-leg signalized urban intersections. Right-turn collision within 
intersection, smoothed with a 15,000 x 10,000 window. Based on the same data as 
Figure 38 but more smoothed. 



Figure 44. California four-leg signalized urban intersections. Rear-end collisions within 
intersection, smoothed with a 15,000 x 10,000 window. Based on the same data as 
Figure 39 but more smoothed. 



Figure 45. California four-leg signalized urban intersections. Angle - collision within 
intersection, smoothed with a 15,000 x 10,000 window. Based on the same data as 
Figure 40 but more smoothed. 



Figure 46. California four-leg signalized urban intersections. "Other" collisions within 
intersection, smoothed with a 15,000 x 10,000 window. Based on the same clata as 
Figure 41 but more smoothed. 



Figure 47. California four-leg signalized urban intersections. Proportion of left- and U- 
turn accidents within intersection, smoothed with a 15,000 x 10,000 window. 



Figure 48. California four-leg signalized urban intersections. Proportion of right-turn 
accidents within intersections, smoothed with a 15,000 x 10,000 window. 



Figure 49. California four-leg signalized urban intersections. Proportion of rear-end 
accidents within intersections, smoothed with a 15,000 x 10,000 window. 



Figure 50. California four-leg signalized urban intersections. Proportion of angle 
accidents within intersection, smoothed with a 15,000 x 10,000 window. 



Figure 51. California four-leg signalized urban intersections. Proportion of "other" 
accidents within intersection, smoothed with a 15,000 x 10,000 window. 



Figure 52. California four-leg signalized urban intersections. Design speed, smoothed 
with a 10,000 x 5,000 window. 



Figure 53. California four-leg signalized urban intersections. Proportion of intersections 
with multi-phase signals, smoothed with a 10,000 x 5,000 window. 



Figure 54. California four-leg signalized urban intersections. Proportion of iritersections 
with left-turn channelization on the main road, smoothed with a 10,000 x 5,000 window. 



Figure 55. California four-leg signalized urban intersections. Proportion of intersections 
with left-turn channelization on the minor road, smoothed with a 10,000 x 5,000 window. 



Figure 56. California four-leg signalized urban intersections. Proportion of illtersections 
with free right turns on major road, smoothed with a 10,000 x 5,000 window. 



Figure 57. California four-leg signalized urban intersections. Proportion of intersections 
with free right turns on minor road, smoothed with a 10,000 x 5,000 window. 



Figure 58. California four-leg signalized urban intersections. Number of lanes on major 
road, smoothed with a 10,000 x 5,000 window. 



Figure 59. California four-leg signalized urban intersections. Number of lanes on minor 
road, smoothed with a 10,000 x 5,000 window. 



Figure 60. California four-leg signalized urban intersections with median on main road, 
smoothed with a 10,000 x 5,000 window. 



Figure 61. The same surface as in Figure 60, shown only for major volume above 
40,000. 



Figure 62. The same surface as Figure 60, shown only for major volume above 50,000. 



Figure 63. The same surface as Figure 60, shown only for major volume above 60,000. 



Figure 64. California four-leg signalized intersections with median on main road. 
Accidents on major approaches, smoothed with a 10,000 x 5,000 window. 



Figure 65. California four-leg signalized intersections with no median on main road. 
Accidents on major approaches, smoothed with a 10,000 x 5,000 window. 



Figure 66. California four-leg intersection accidents. Length of influence zone on main 
(not major) road, smoothed with a 10,000 x 5,000 window. 



Figure 67. California four-leg signalized intersection. Number of collision accidents on 
main (not major) road, smoothed with a 10,000 x 5,000 window. 



Figure 68. California four-leg signalized urban intersections. Model (5-2) fitted to total 
accidents. 



Figure 69. The same surface as in Figure 68, but cut out at major volume = 62,500, 
minor volume = 20,000. 
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(The heavy solid line refers to the surface in Figure 23, smoothed over all intersections. 
The dotted line, "low volume block," refers to the surface in Figure 24, smoothed over 
intersections with x I 60,000, y I 20,000. The broken line, "high volume cross traffic," 
refers to the surface shown in Figure 25, smoothed over intersections with y > 20,000 
"High volume major road" refers to the surface shown in Figure 26, smoothed over 
intersections with x > 60,000. The light solid line refers to the analytical model shown in 
Figure 68.) 

Figure 70. Cross-sections at y = 20,000 through the surfaces shown in Figures 23, 24, 
25,26, and 68. 
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Figure 71. Cuts through the same surface as in Figure 70, but at (a) x = 20,000, (b) x = 
40,000, (c) x = 60,000. 
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Figure 72. Distribution of traffic volumes for 71 signalized urban four-leg intersections 
from Minnesota data files. 



Figure 73. Distribution of approach volumes of four-leg signalized urban intersections 
in Minnesota. The width of the gridiines is proportional to the number of intersections 
in each cell. 



Figure 74. Signalized four-leg urban intersections in Minnesota. Counts of accidents 
within intersections smoothed with a 4,000 x 4,000 window. 



Figure 75. The same surface as in Figure 74, but cut-off at a minor volume of 6,000. 



Figure 76. The same surface as in Figure 74, but cut-off at a minor volume of 10,000. 



Figure 77. Signalized four-leg urban intersections in Minnesota. Accident counts 
within intersections smoothed with a 8,000 x 4,000 window. 



Figure 78. Signalized four-leg urban intersections in Minnesota. Surface rlepresents 
model (6-1) for within intersection accident counts. 



Figure 79. The same surface as in Figure 78, but cut-off at y = 6,000, 



Figure 80. The same surface as in Figure 78, but cut-off at y = 10,000. 



Figure 81. Signalized four-leg urban intersections in Minnesota. All accidents in the 
intersection and on the approaches within 60 meters, smoothed with a 5,000 x 5,000 
window. 



Figure 82. Signalized four-leg urban intersections in Minnesota. All accidents in the 
intersection and on the approaches within 60 meters, smoothed with a 15,000 x 10,000 
window. 



Figure 83. Signalized four-leg urban intersections in Minnesota. All accidents on the 
approaches outside the intersection within 60 meters, smoothed with a 5,000 x 5,000 
window. 



Figure 84. Signalized four-leg urban intersections in Minnesota. All accidents on the 
approaches outside the intersection within 60 meters, smoothed with a 10,000 x 10,000 
window. 



Figure 85. Signalized four-leg urban intersections in Minnesota. Distribution of 
intersections with typical intersection accidents by volumes of the two roads. 



Figure 86. Signalized four-leg urban intersections in Minnesota. Typical intersection 
accident, smoothed with a 10,000 x 5,000 window. 



Figure 87. Signalized four-leg urban intersections in Minnesota. Typical intersection 
accident within the intersection, smoothed with a 20,000 x 10,000 window. 



Figure 88. Signalized four-leg urban intersection in Minnesota. Left-turn accidents 
within the intersection as proportion of typical intersection accidents, smoothed with a 
10,000 x 15,000 window. 



Figure 89. Signalized four-leg urban intersections in Minnesota. Angle collisions 
within the intersection as proportion of typical intersection accidents, smoothed with a 
10,000 x 5,000 window. 



Figure 90. Signalized four-leg urban intersections in Minnesota. Rear-end collisions 
within the intersection as proportion of typical intersection accidents, smoothed with a 
10,000 x 5,000 window. 



Figure 91. Signalized four-leg urban intersections in Minnesota. Other collisions within 
the intersection as proportion of typical intersection accidents, smoothed with a 10,000 
x 6,000 window. 
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Figure 92. Signalized four-leg intersections in Minnesota. Accidents in intersections 
versus proportion of angle collisions. 
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Figure 93. Signalized four-leg intersections in Minnesota. Accidents in intersections 
versus proportion of left-turn accidents. 
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Figure 94. Signalized four-leg intersections in Minnesota. Accidents in intersections 
versus proportion of rear-end accidents. 
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Figure 95. Signalized four-leg intersections in Minnesota. Accidents in intersections 
versus proportion of "other" accidents. 
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Figure 96. Signalized four-leg intersections in Minnesota. Proportion of angle 
collisions versus number of accidents in intersections. 
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Figure 97. Signalized four-leg intersections in Minnesota. Proportion of left-turn 
collisions versus number of accidents in intersections. 
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Figure 98. Signalized four-leg intersections in Minnesota. Proportion of rear-end 
coliisions versus number of accidents in intersections. 
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(The bars show +/- one standard deviation, the curve smoothed values.) 

Figure 99. Signalized four-leg intersections in Minnesota. Proportion of "othern 
collisions versus number of accidents in intersections. 


