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Graphical and numerical diagnostic tools
to assess suitability of multiple
imputations and imputation models
Irina Bondarenkoa and Trivellore Raghunathanb*†

Multiple imputation has become a popular approach for analyzing incomplete data. Many software packages
are available to multiply impute the missing values and to analyze the resulting completed data sets. However,
diagnostic tools to check the validity of the imputations are limited, and the majority of the currently available
methods need considerable knowledge of the imputation model. In many practical settings, however, the imputer
and the analyst may be different individuals or from different organizations, and the analyst model may or may
not be congenial to the model used by the imputer. This article develops and evaluates a set of graphical and
numerical diagnostic tools for two practical purposes: (i) for an analyst to determine whether the imputations
are reasonable under his/her model assumptions without actually knowing the imputation model assumptions;
and (ii) for an imputer to fine tune the imputation model by checking the key characteristics of the observed
and imputed values. The tools are based on the numerical and graphical comparisons of the distributions of the
observed and imputed values conditional on the propensity of response. The methodology is illustrated using
simulated data sets created under a variety of scenarios. The examples focus on continuous and binary variables,
but the principles can be used to extend methods for other types of variables. Copyright © 2016 John Wiley &
Sons, Ltd.
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1. Introduction

Multiple imputation (MI) is a general purpose approach for analyzing data with missing values where
the missing set of values are replaced by several sets of plausible values. These values are generated as
draws, typically from a predictive distribution of the missing set conditional on the observed set of values.
Each plausible or imputed set, when combined with the observed set of values, results in a completed
data set. Each completed data set is then analyzed separately, and then the inferential statistics (such as
point estimates, covariance matrices, test statistics, or p-values) are combined across the completed data
sets to construct the MI inference [1–5].

Data with missing values may be complex with several types of variables, (such as continuous, ordi-
nal, nominal, count, and semi-continuous), involve skip patterns (for example, some variables are not
applicable to a particular group of subjects), and restrictions (such as bounds for plausible lab values).
Availability of MI software to handle such complexities has made the MI procedure attractive. During
the last two decades, procedures for MI of missing values have been incorporated into many popular
statistical software packages such as SAS, R, Stata [6–9].

Despite this extensive development of the imputation software, the tools to diagnose the validity of the
imputations are limited, and the majority of currently available tools assume that the imputation model is
known. In most practical applications of MI, however, the imputer and the analyst are different individuals
or may work at different organizations. Hence, the analyst may have limited or no knowledge of the
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imputation model. This may lead to a scenario where the imputation and analyst models make different
assumptions with respect to data generating process and, hence, in broad terms uncongenial [10].

There are different kinds of uncongeniality having varying consequences on the point and interval esti-
mates. For example, if the analyst model is a submodel of the imputer model, then the point estimates
are typically unbiased but may yield wider interval estimates. On the other hand, if the imputer model is
a submodel of the analyst model, then the point estimates may be biased. Another type of uncongeniality
occurs when the model assumptions made by the imputer and analyst are the same but the analyst uses
suboptimal estimation procedure (for example, the method of moments instead of the maximum likeli-
hood) [11, 12]. Note, that we always assume that the analyst model is the correct model for performing
the repeated sampling calculations.

This paper develops a set of diagnostic tools with two broad objectives:

(1) To assist an analyst to determine whether the imputations are reasonable under his/her model, with-
out actually knowing the exact imputation model. That is, the analyst can diagnose uncongeniality.

(2) To assist an imputer to fine tune the imputation model through checking whether the observed
and imputed values exhibit similar characteristics, and thus capturing important features to be
preserved in the imputation process.

An imputer can use several standard model building techniques such as regression diagnostics, poste-
rior predictive checks, and variable selection methods. These tools allow the modeler to discern important
features and structures in the data and then to incorporate them in the imputation model. Some examples
include inclusion of nonlinear or interaction terms, variable transformation, etc. The goal of the second
objective listed earlier is slightly different from these standard procedures. That is, the goal is to check
whether, conditional on the model chosen, the observed and imputed values exhibit similar characteris-
tics. After all, the goal of the imputation is to create a plausible completed data set from the population.
If the observed and imputed values are not exhibiting similar characteristics, then the imputation model
needs further refinement.

Recently, several imputation diagnostic tools have been proposed [13–16]. These tools proceed in two
stages: (i) initial comparison of the marginal distributions of the imputed and observed values and ( ii)
evaluation of variables flagged based on the first stage with the knowledge of the imputation model. The
initial comparison of the marginal distributions of the observed and imputed values is useful to identify
variables that need future evaluation. Existing statistical packages provide a variety of strategies for com-
parison of marginal distributions of imputed and observed values, including comparison of histograms,
density plots, q− q plots, or descriptive statistics of the imputed and observed. Various numeric tests and
rules of thumb have been suggested to identify variables with differences in the marginal distributions
of observed and imputed values. For example, flagging variables with an absolute difference in means
between the observed and imputed values greater than 2 standard deviations, or with a ratio of variances
of the observed and imputed values that is less than 0.5 or greater than 2 [16]. As an alternative, compare
variances of point estimates and correlation coefficients from multiply imputed data and available cases
[14]. Kolmogorov–Smirnov (KS) test can also be used to flag variables with significant differences in
the marginal distributions of imputed and observed values [13]. In such comparisons, attention should be
paid to the extreme values produced by imputations, because they can indicate a potential problem with
the imputations and a need for model improvement [15].

It is important to note that the marginal distributions of the observed and imputed values are expected
to be similar only when the data are missing completely at random. Under the missing at random (MAR)
mechanism, the differences in the marginal distributions of the observed and imputed values are not nec-
essarily an indicative of problems with the imputation model. Consider a bivariate example with missing
values in Y with X fully observed. Suppose that the probability of missing Y values is positively (or neg-
atively) correlated with X. Depending upon the correlation between Y and X, the marginal distributions
of the observed and imputed values will differ even when the imputations are created under the correctly
specified model. Thus, the initial evaluation described earlier may result in false alarms about the impu-
tation model. Thus, many of these procedures are mostly useful for filtering a large set to smaller subset
for further inspection.

The second stage of MI diagnostics includes more elaborate tools developed to assist in the evalua-
tion of certain conditional, weighted distributions of observed and imputed values. For example, one can
compare complete-case, MI, and weighted analyses [14]. This approach, however, is applicable only for
a certain missing data patterns. An alternative is to test the fit of the imputation model to the observed
data by comparing distributions of the residuals for imputed and observed values, conditional on their
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predicted values under the imputation model [13]. If the imputation model is a good fit, then the pattern
of residuals should be random with no difference between the observed and imputed values. A sensitivity
analysis based on the posterior predictive checking under an imputation model or its surrogate based on
the subset of variables may also be useful [14]. For example, suppose that the completed data through
imputation, DC, are used to generate several copies or replicates D∗(r)

C , r = 1, 2,… through posterior pre-
dictive check mechanism. If the original imputations are valid, then the estimates based on the completed
data through imputation, DC, should be similar to the estimates calculated from D∗(r)

C (under the correctly
specified imputation model). However, considerable knowledge of the imputation model is necessary to
implement many of these methods.

As emphasized earlier, the imputation models may not be available when the analyst and imputer work
in different organizations. Sometimes, internal variables (such as paradata or administrative data) may
be used in the imputation process which may not be released as a part of the completed data sets. In such
situations, it is necessary to determine whether the imputations are valid under the analyst model or, in
other words, to assess whether the imputation model is congenial with the model posited by the analyst.
The notion of congeniality of the imputation and analyst models is an important issue. The techniques
proposed in this paper can be used to assess congeniality of the imputations for the analyst model without
knowing the imputation model.

The rest of the paper is organized into the following five sections. Section 2 develops the proposed
diagnostic methods. Section 3 outlines a set of graphical tools to implement the method for continuous and
binary variables. Section 4 uses simulated data sets to illustrate and evaluate the proposed approaches for
assessing the validity of the imputations. How these tools can be used for detecting uncongeniality is also
discussed in Section 4. Section 5 proposes numerical summaries or test procedures and evaluates them
using simulated data sets. Section 6 concludes with discussions, limitations, and future work. Throughout
the paper, the missing data are assumed to be MAR.

2. Proposed method

Consider a data set with missing values that has n observations and p variables, Yv, v = 1, 2,… , p and
the goal is to assess imputation for the variable Yv. Without loss of generality, denote the set of observed
values of Yv as yobs,v = {ysv, s = 1, 2,… , nv} and the set of missing values as ymis,v = {ysv, s = nv+1, nv+
2,… , n}. Let Rsv = 1, s = 1, 2,… , nv and Rsv = 0, s = nv + 1, nv + 2,… , n be the response indicator.
Let Yobs,−v denote all the observed set of values of variables Yi, i = 1, 2,… , v − 1, v + 1,… , p across all
subjects. If values of Yv are MAR, then, by definition, the conditional distribution of yobs,v given Yobs,−v
should be the same to that of ymis,v given Yobs,−v. That is, Pr(yobs,v|Yobs,−v) = Pr(ymis,v|Yobs,−v)

Let eobs,−v = Pr(Rv = 1|Yobs,−v) be the actual response propensity for variable Yv as a function of
the observed data, Yobs,−v. The propensity score eobs,−v is an efficient summary of the covariates Yobs,−v
[17].Thus, under the MAR assumption, distributions of observed yobs,v and missing ymis,v must be the
same, conditional on eobs,−v.

Missing values ymis,v are unknown quantities and replaced in the course of imputations with a set of
imputed values, y(l)mis,v = {y(l)sv , s = nv + 1, nv + 2,… , n}, where l = 1, 2,… ,M. If the imputations are

reasonable under the MAR assumption, then the observed set yobs,v and the imputed set y(l)mis,v should
have similar distributions conditional on the propensity score eobs,−v or equivalently, Pr(yobs,v|eobs,−v) ∼
Pr(y(l)mis,v|eobs,−v)

The actual response propensity, eobs,−v is not known, but it can be estimated for each subject. One
option is to estimate the propensity scores in the presence of missing data by conditioning on the response
indicators as well as the observed covariates [18]. The second option is to use the following approach to
estimate eobs,−v.

(1) Let Y (l)
mis,−v, l = 1, 2,… ,M denote the M sets of imputed values for the missing values in all the

variables except Yv. Analyze each completed data set to build a response propensity model for
Yv using the standard logistic, probit, or any other regression model with binary outcome vari-
able, Rv, and the completed data Yi, i = 1, 2,… , v − 1, v + 1,… , p as predictors. One could also
use nonparametric regression models, such as CART or semiparametric models such as general-
ized additive models, to estimate the observed data propensity scores. The choice of the model for
propensity of response is guided by the best fit model that ensures balance of all covariates, that
is, Pr(Yobs,−v|eobs,−v,Rv = 1) = Pr(Yobs,−v|eobs,−v,Rv = 0). The extent of balancing can be deter-
mined using the methods described in [19,20]. Standard model building tools can be used to inspect
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whether interaction terms or transformations are needed and to assess the goodness of fit statistics
(for example, in Hosmer and Lemeshaw [21]). After a satisfactory fit of the model in each completed
data is achieved, obtain the values of the estimated propensities, P̂r(Rv = 1|Yobs,−v,Y

(l)
mis,−v).

(2) For sufficiently large M, approximate

êobs,−v = P̂r
(
Rv = 1|Yobs,−v

)
≈

M∑
l=1

P̂r
(

Rv = 1|Yobs,−v,Y
(l)
mis,−v

)
∕M.

3. Specific diagnostics

3.1. Continuous variables

The next step of comparing the imputed and observed values for a variable Yv, conditional on the estimated
propensity scores, can be performed in a number of ways. For example, H strata could be created from
the propensity scores with nh and mh observed and imputed values in stratum h = 1, 2,… ,H. Analysis
of variance (anova) technique may be used with stratum (H − 1 degrees of freedom), indicator for
observed/imputed (1 degree of freedom), and their interactions (H − 1 degrees of freedom) as factors.
Under the correctly specified imputation model, the mean squares for both the missingness indicator
and the interaction effect should be small. A large between-stratum sum of squares indicates significant
departure from missing completely at random assumption. Because the imputed and observed values
are correlated, the derivation of the sampling distribution even under the correctly specified imputation
model is complex. Hence, it is analytically difficult to define large or small using the significance testing
framework. In Section 5, we describe some empirically derived decision rules to reject the imputations
that are calibrated (the exact and nominal levels are similar) and good power detect problems with the
imputation.

Because the goal is to diagnose the problem with the imputations, a set of graphical tools (similar to the
residual plots in a regression analysis) might be more useful. Two useful diagnostic plots are described
to visualize the differences in the conditional distributions: scatter plot diagnostics and residual density
diagnostics.

3.1.1. Scatter plot diagnostics. Plot values of Yv versus the estimated propensity of response êobs,−v.
Use different colors or symbols to identify observed and imputed values in Yv. Systematic differences in
the patterns of scatter across observed and imputed values, for a given value of propensity of response,
indicate problems with the imputation model. Adding separate local regression (LOESS) curves to the
scatter for imputed and observed groups may help further to visualize the differences.

3.1.2. Residual density diagnostics. First, regress Yv on the estimated propensity score êobs,−v. Next,
create histograms or kernel density plots of the residuals, separately for the observed and imputed values
in Yv. Differences in shape as well as the location of the residual densities indicate problems with the
imputations.

3.2. Diagnostics for binary variables

For a binary variable Yv, the analog of anova method, described earlier for the continuous variable,
may be developed. As before, create H strata-based propensity scores and fit a logistic regression model
with Yv as the outcome (imputed or observed), H − 1 dummy variables for strata, 1 dummy variable for
observed/imputed and their products (interaction). We could use the deviance statistic as a measure, and
under the correctly specified model, the deviance for both missing indicator and the interaction effect
should be small. As in the continuous case, a set of graphical diagnostics tools may be more useful.

The scatter plot diagnostics can be applied to any type of variable: continuous or categorical. For
binary variables, the average of the outcome values across imputations gives a better picture (because
the response is either 1 or 0). Adding LOESS curves plotted on the top of the scatter make this plot,
generally, informative. For a categorical variable, we may use the frequency distribution averaged across
imputations.

The residual density diagnostic described earlier cannot be directly used for a binary variable because
the residuals (given that the observed data is either 1 or 0) are not very informative and is even more
problematic with nominal categorical outcome. Deviance residuals may be used, but the simulation study
described in the next section did not show much promise for such residuals.
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To develop an analog of residual density diagnostic for a binary variable Yv, we modify the method
described for the continuous variable as follows. Let pv denote the actual conditional probability Pr(Yv =
1|Y−v). Then pv is a balancing score for the covariates Y−v across the two populations defined by the
outcome Yv. In particular, the distributions of Y−v, conditional on pv, are independent of Yv [17]. This
ideas were first proposed in [22] for logistic regression models and extended to the ordinal outcome in
[23].

Note that, as discussed earlier, conditional on eobs,−v, the Yobs,−v is independent of Rv. Thus, it follows
from the properties of these two scores eobs,−v and pv, that under MAR, conditional on eobs,−v and pv, the
Y−v is independent of both Yv and Rv. That is,

Pr
(
Y−v|eobs,−v, pv

)
⟂⟂Rv,Yv

A simple proof follows by noting that

Pr
(
Y−v,Yv,Rv|eobs,−v, pv

)
= Pr

(
Y−v|eobs,−v, pv

)
⋅ Pr

(
Yv,Rv|eobs,−v, pv, Y−v

)
. (1)

Because, under MAR and the property of the propensity scores,

Pr
(
Rv,Yv|eobs,−v, pv,Y−v

)
= Pr

(
Yv|eobs,−v, pv

)
⋅ f

(
Rv|eobs,−v, pv

)
,

the right-hand side of Equation (1) reduces to

Pr
(
Y−v|eobs,−v, pv

)
⋅ Pr

(
Yv|eobs,−v, pv,Y−v

)
⋅ Pr

(
Rv|eobs,−v, pv,Y−v,Yv

)
The aforementioned result implies that the distribution of the covariates conditional on both propen-

sities should be similar for the two populations defined by Yv regardless of whether Yv is imputed or
observed. Specifically,

Pr
(
Y−v|eobs,−v, pv,Rv,Yv = 0

)
∼ Pr

(
Y−v|eobs,−v, pv,Rv,Yv = 1

)
.

Note that matching on both propensity scores is akin to residual density diagnostics for the continuous
variable. Estimation of p̂v poses a challenge because Yv is not observed for Rv = 1, and using the imputed
values makes the estimate very much dependent on the imputation model. The suggestion is to estimate
p̂v using Yobs,v (that is, subset the completed data to Rv = 0), conditional on the observed values Yobs,−v.
Specifically, fit, for example, a logistic regression (or any other regression) model for

p̂(l)v = P̂r
(

Yv = 1|Yobs,−v,Y
(l)
mis,−v,Rv = 0

)
,

to obtain the maximum likelihood estimate of the regression coefficients, 𝛽l. Note that the complete-case
maximum likelihood estimates are the correct estimates for the regression model under MAR. Average
𝛽l across imputations (𝛽 =

∑
l 𝛽l∕M) and then apply the resulting logistic regression equation (with the

average 𝛽 as the regression coefficient) to estimate the propensity score p̂v for the whole sample.
In the simulation study (described in the next section), the following strategy to develop residual den-

sity diagnostic for binary variables proved to be highly useful to diagnose problems with the imputations
of binary variables. First, conduct a principal component analyses on Y (l)

−v and extract the principal com-
ponents Z(l)

−v. Next, regress these principal component Z(l)
−v on pv, êobs,−v and their interaction. Finally,

separate the data by the missingness indicator Rv, create two sets of the create histograms or kernel den-
sity plots of the residuals, grouping subjects by the value of outcome Yv within each set (a total of four
kernel density plots for the cross classification Rv × Yv). Differences in distributions of the residuals for
the two values of Yv for subjects with Rv = 1 or for subjects with missing value of Yv ( Rv = 0) indicate
problem with the imputations.

4. Simulation study

To evaluate these diagnostic tools, we conducted a simulation study involving the following four steps:
generation of complete data; setting some values to missing; multiply imputing under the correct and
incorrect models; and finally applying the diagnostic tools developed in this paper. The simulated data
contained both continuous and binary variables.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3007–3020
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4.1. Simulations for continuous variables

First, the complete data of size 1000 were generated from normal model with mean function given by (2)
and variance 1. Variables x1, x2, x3 were independently drawn from the standard normal distribution and
are assumed to be fully observed.

E(y|x) = 𝛼0 + 𝛼1x1 + 𝛼2x2 + 𝛼3x3 + 𝛼4x2
1 + 𝛼5x1 ⋅ x2 . (2)

We considered two scenarios by choosing the values of 𝛼. The null scenario or the correctly specified
model where 𝛼4 = 𝛼5 = 0, or the non-null scenarios with varying levels of mis-specification by vari-
ous choices of (𝛼3, 𝛼4, 𝛼5). The mis-specification scenarios correspond to omitting a linear, quadratic or
interaction term.

Second, some values for y were deleted. The missing data mechanism was defined by a logistic regres-
sion model (3). The regression coefficients were chosen to yield the response rate as 0.5 (50% missing
values on the average).

logit(Pr(y = .)) = 1 − x1 + x2 − x3 . (3)

At the third step, the missing values of y were multiply imputed using the sequential regression
approach as implemented in IVEWARE [6,24] package. For this simple case with missing values only in
y, this is equivalent to drawing values from the posterior predictive distribution under the normal model
with non-informative prior for the parameters. The imputation models adopted for these simulations did
not include interaction, or a quadratic term (misspecified models but all variables included), and in one
scenario did not include x3 term (omitted variable in the model). Five multiply imputed data sets were
produced under all scenarios.

Lastly, scatter plot and residual density diagnostic were applied to the imputed data sets to assess the
validity of the imputations. The results are given in Figure 1. It shows that the two proposed diagnostics
and, for comparison purposes, also the expected value-based diagnostics, which requires the knowledge
of imputation model [13].

Red and black dots indicate imputed and observed values, respectively. The first row corresponds to
the null scenario, where the imputation and data generating models included only linear terms for x1,
x2, x3, and y with no interactions or square terms. All three methods, as expected, show no difference in
patterns of red (imputed) and black (observed) values.

In the second row, the imputation model is misspecified by omitting x3. Scatter plot diagnostic shows
differences in the observed and imputed values of y for a given values of the propensity scores. The
differences in the patterns are made clearer by the addition of LOESS curves to the scatter plot. The
residual density plot shows less variance in the residual values for imputed y’s than for the observed
values. However, the expected value-based plot shown in the third column fails to diagnose the problem.
In fact, if a variable is erroneously omitted from the imputations, the diagnostics based on the imputation
model are not valid, and hence, the expected value-based diagnostic cannot be used to detect omitted
variable from the imputation model.

In the third row, the data generating model includes both the linear and quadratic terms for x3, but the
imputation model includes only a linear term. For this scenario, all three methods clearly detect substantial
differences in patterns of the observed and imputed values. For example, the residuals for the observed
values (in black) show a long left tail, whereas the residuals for the imputed values (in red) show much
more compact and symmetric distribution. This difference in in the residual densities indicates a need for
a nonlinear transformation. We tested this aspect through several replicates of the simulation study.

The final row examines a scenario where the interaction term is part of the data generation model
but not included in the imputation model. Here, the residual density plot and the expected value-based
diagnostics clearly indicate differences in patterns between observed and imputed values, whereas the
scatter plot diagnostics fail to show substantial differences where the response propensities overlap. That
is, the residual density and the scatter plot diagnostics call for different conclusions.

A more detailed investigation reveals that the residual density and scatter plot diagnostics target dif-
ferent aspects of misspecification of the imputation model. To investigate further, consider two data sets
A and B with the following two regression models for y involving interaction between x1 and x2:

E(y|x) = 1 + x1 + x2 + x3 + x1 ⋅ x2 , (4)

3012
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Figure 1. Diagnostics for continuous variables.

E(y|x) = 1 + x1 + x2 + x3 − x1 ⋅ x2 , (5)

As before, some values of y were set to missing in correspondence using the logistic model (3) and then
multiply imputed both data sets assuming that values of y depend on the linear combination of x1, x2, and
x3 but ignoring the interaction term x1 ⋅ x2.

After the imputations, the marginal and conditional distributions of the original values of y that were
set to missing and the corresponding imputed values were compared. The first and second columns of

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3007–3020
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Figure 2. Targets for scatter plot and residual density diagnostics.

graphs in Figure 2 show the conditional and marginal distributions of the original (red) and imputed
(blue) values of y. The imputations for data set A (4) preserved conditional distributions of y given x3 but
distorted the marginal distribution of the residuals. The imputations of data set B (5) retained the marginal
distributions of y but distorted the relationship of y and x3.

The plots comparing the marginal distributions of the original and imputed values of y are shown in
the second and third columns of Figure 2. The proposed diagnostic tools as well as expected value-based
diagnostics were applied to check whether they are equally capable to detect flaws in the imputations of
data sets A and B. As shown in the last three columns of Figure 2, the scatter plot is effective in recog-
nizing problems with the conditional distributions of imputed values, and the residual density plot targets
the marginal distributions of the residuals. If conditional distributions are preserved, but the marginal dis-
tributions of the residuals are distorted by imputations (as in data set A), then the residual density plots
and the expected value-based diagnostic are helpful to diagnose the problem. If marginal distributions
are similar, but the conditional distributions are distorted (data set B), then the scatter plots are useful.
Thus, it is important to apply both residual density diagnostics and the scatter plot diagnostics, as they
detect different types of misspecfications.

4.2. Simulations for binary variable

The simulation study for a binary variable consisted of the same four steps as for the continuous variable.
Binary variable, y, was generated by the logistic regression model (6).

logit(P(y = 1|x)) = 𝛼0 + 𝛼1x1 + 𝛼2x2 + 𝛼3x3 + 𝛼4x2
1 + 𝛼5x1 ⋅ x2 , (6)

As in the continuous case, values x1, x2, x3 are independent draws from standard normal distributions
and fully observed. Missing mechanism for y was imposed by Equation (3).

The values of y were set to be missing and then imputed using IVEWARE. Again, for this simple
case, the imputations are the draws from the posterior predictive distribution under the binomial-logistic
regression model with non-informative prior for the regression coefficients with the posterior distribution
of the parameters being approximated by a multivariate normal distribution with the maximum likelihood
estimate as the mean and the inverse of the observed information matrix as the covariance matrix. Impu-
tation models were prone to various degrees of misspecification, including omitted linear, quadratic, or
interaction terms. The results are illustrated in Figure 3.

The first row corresponds to the correct imputation where the imputation model is consistent with
the data generating model. The scatter plot diagnostic, in the first column, shows that observed (black)

3014
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Figure 3. Diagnostics for binary variables.

and imputed (red) values are very similar. Residual density diagnostic shows a set of four kernal density
curves. Again, the observed values are depicted by the black lines and imputed by the red lines. Solid
lines of both colors represent observations with y = 0, and the dashed lines represent y = 1. The kernel
densities in the first row are very similar across all four subgroups. Thus, both diagnostics confirm the
validity of the imputations.

The second row of graphs corresponds to the omitted variable scenario. LOESS curves are clearly
different for the observed and imputed values of y. For the third row, a case of ignored interaction, the

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3007–3020
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scatter plot diagnostic, clearly diagnoses a problem with the imputations. On the other hand, the residual
density diagnostic are not very informative.

The last row shows a scenario where a square term for x3 is present in the data generation model but is
omitted from the imputation model. Here, the scatter plot diagnostic is rather ambiguous. LOESS curves
for the observed and imputed values of y coincide in the area of the most dense overlap of propensities for
respondents and nonrespondents, and differ on the sides. However, residual plot clearly shows the differ-
ence in distributions for nonrespondents for whom y was imputed to be 0 and for those with y imputed
as 1. The last two scenarios indicate discrepancy between conclusions from scatter plot diagnostic and
residual density diagnostic. As for the continuous variable, it is important to check both diagnostic tools
to evaluate the imputations.

4.3. Assessment of uncongeniality

An analyst can detect uncongeniality by constructing scatter plot diagnostic and residual density diag-
nostic using the residuals from the analyst model. Suppose that the analyst using a regression model that
involves Yv and has some imputed values. Suppose that the analyst model was applied to the imputed
data set l yielding the residuals r(l). If the imputations are ‘agreeable’ with the analyst model, then under
MAR assumption, in each imputed data set l distribution of the residuals r(l), conditional on the estimated
propensity of response, must be similar for Rv = 1 and Rv = 0 groups.

To create residual density diagnostic, first regress r(l) on the propensity score êobs,−v and construct the
residuals u(l) from this model. Next, or each imputation l generate the kernel density plots for u(l) by Rv.
If imputation model is congenial to the analyst model, then the marginal distributions of the residuals u(l)

must be similar between the two groups, respondents, and nonrespondents.
To further elaborate on this approach, we simulated data for the congenial and uncongenial scenarios.

Specifically, an analyst is interested in a regression model for y as a linear function of x1, x3 and their
product. The analyst believes that interaction between x1 and x3 is important. However, the analyst has no
knowledge if the interaction was included in the imputation model and wants to assess if the imputations
are valid under the posited model.

We simulated the data under the analyst model, reset some values of y to missing, and then multiply
imputed the two data sets. One set was imputed incorporating interaction x1 ⋅ x3 into the imputation
model. The second set was imputed ignoring the interaction. Figure 4a shows that the scatter plot and
residual density diagnostics for the congenial models were imputation model included in the interaction.
Neither plot shows any differences between distributions for the residuals based on the observed and
imputed values. However, the plots in Figure 4b, corresponding to the imputations omitting the interaction
term, show differences between the observed and imputed values. These differences allow the analyst to
conclude that imputations are not reasonable under the analyst model.

We conducted several other simulation studies varying the missingness rate, alternative models for both
regression model for the outcome as well as missing data mechanism. Across all these simulation studies,
the proposed diagnostic procedure detected modest to severe discrepancies. When the residual variance
in the outcome regression model is large compared with systematic bias because of underfitting, the
residual diagnostic plots were better in detecting the problems than the scatter plot diagnostic. Generally,
together, they practically identified problems when they exist.

5. Numerical tests

Though the emphasis of this paper has been on graphical approach, we also propose two test procedures
that mirror the graphical diagnostic tools. These are useful to formally test the validity of the imputations
using the significance testing framework.

As indicated earlier, a numeric test analogous to the scatter plot diagnostics can be performed applying
the anova technique. A similar approach has been used to ensure balance of covariates on the estimated
propensity score [17]. To apply the anova technique to diagnose problems, the estimated probabilities of
response êobs,−v are grouped into H strata. The anova model includes stratum (H−1 degrees of freedom),
indicator for observed/imputed (1 degree of freedom), and their interactions (H − 1 degrees of freedom)
as factors. It has been shown that with five strata, 90% of the bias is removed [19,25] Thus, we use H = 5
as default guidance for this test. The anova test basically uses a F-statistic that compares the full model
with the null model that drops the missing data indicator and stratum by indicator interaction term.

As a numerical analog of kernel density estimate (KDE) diagnostics, we propose using the KS test
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Figure 4. Use of the scatter plot and residual density diagnostic to check congeniality.

for equality of the distribution of the residuals for the imputed and observed units conditional on the
estimated propensity of response. Define the residuals rsv = ysv − ŷsv, where ŷsv is the prediction from
the regression of Yv on êobs,−v. Compute the KS statistic comparing the residuals for Rv = 1 with Rv = 0.
Thus, the anova test would formally test the equality of the location, and the KS test examines equality
of the full residual distribution.

As indicated earlier, because of correlation between the imputed and observed values, the standard
sampling distributions for the anova and KS procedures cannot be applied. It is difficult to analytically
derive the actual sampling distributions. Instead, we conducted a simulation study by generating data
under both null and non-null scenarios, applied the test procedures on each multiply imputed data set, and
determined the cut points under the null scenarios that resulted in the exact and nominal level to be the
same. We then used the same cut points for the non-null scenarios to determine the power of these tests.

We generated 500 data sets under the simulation scenarios described in Section 4. We also
added modest and severe misspecification. Table I provides the true and imputation models used in
the simulation.

We calculated the number of rejections of the null hypothesis for each test in every imputed data set.
Based on these empirical distributions, we established a rule based on the number data sets in which the
hypothesis should rejected (under the null model) to ensure that type I error is close to the nominal level
(we chose 0.05). For both the tests, the following two simple rules of rejecting the imputation model
worked best:

(1) Rule 1: Reject the imputation model if the anova test is rejected in at least two of the five imputed
data sets.

(2) Rule 2: Reject if at least KS is rejected in at least one of the five imputed data sets or anova test
is rejected in at least two of the five imputed data sets.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3007–3020
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Table I. True and imputation models used in determining the exact and power of anova and
Kolmogorov–Smirnov procedures. Residual variance is 1 for all seven true models.

Model number Type of model True model Imputation model

1 Null E(y) = 1 + x1 + x2 + x3 y ∼ N
(
𝛼o + 𝛼1x1 + 𝛼2x2 + 𝛼3x3, 𝜎

2
)

2 Omitted E(y) = 1 + x1 + x2 + x3 y ∼ N
(
𝛼o + 𝛼1X1 + 𝛼2x2, 𝜎

2
)

3 Variable E(y) = 1 + x1 + x2 + 0.5x3 Same as above
4 Interaction E(y) = 1 + x1 + x2 + x3 + x2x3 y ∼ N

(
𝛼o + 𝛼1x1 + 𝛼2x2 + 𝛼2x3, 𝜎

2
)

5 Omitted E(y) = 1 + x1 + x2 + x3 + 0.5x2x3 Same as above
6 Square term E(y) = 1 + x1 + x2 + x3 + x2

3 y ∼ N
(
𝛼o + 𝛼1x1 + 𝛼2x2 + 𝛼3x3, 𝜎

2
)

7 Omitted E(y) = 1 + x1 + x2 + x3 + 0.5x2
3 Same as above

Table II. The exact level
and power (both in %)
based on the two rules for
rejecting the imputation
model.

Model Rule 1 Rule 2

1 5.2 6.2
2 98.8 99.4
3 50.4 64.4
4 37.8 87.6
5 36.4 72.8
6 86.4 100
7 13.8 72.2

Table II provides the exact level (under the null) and power (under the alternative) based on the 500
simulated data sets.

The results in Table II suggest that though using just the anova test may be sufficient to detect large
departures from the true model, but using both KS and anova tests add considerable power to detect
relatively modest differences between the true and imputation models.

6. Conclusion

The major emphasis of this paper is to propose a set of graphical diagnostic tools that adopt propensity
score methods to assist in assessing suitability of MI for an analyst without the full knowledge of the
imputation model. Additionally, the proposed diagnostics can be used by an imputer to check the validity
of the imputations from the working model and refine it, if necessary. The central theme is the comparison
of the imputed and observed values conditional on the estimated propensity of response even with missing
values in other variables.

Two proposed diagnostic tools help to evaluate different features of imputed values. The scatter plot
diagnostics assist in comparison of the conditional distributions, whereas the residual density plots are
useful in comparison of means as well as second and third moments of the residual distributions. It is
important to address both issues when evaluating MI. We also proposed and evaluated some simple rules
for rejecting the imputation model using the significance testing framework.

Although the focus was on binary and continuous variables, the method could be extended to count
or semi-continuous variables. For example, in the case of semi-continuous variables, the diagnostics
can be carried out in two parts. The first part uses the binary variable diagnostic tools to assess the
validity of the imputations of zero/non-zero status. Next, conditional on the binary variable being non-
zero, one can use the continuous variable approach to assess the validity of imputed continuous values.
The methodology can be easily implemented in standard software packages such as R or Stata and has
already been used in a complex setting [26] where they use limited techniques in the non-peer reviewed
technical report [27]. This report, considered mainly continuous variables, did not provide theoretical
underpinnings, refinements for binary variable, and the numerical tests. The present article also carries
out a more thorough evaluation of the proposed tools.
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The proposed approach can be used by an analyst who was not involved in the imputation process and
seeks to assess congeniality of the imputation and analyst models. If the diagnostic procedures indicate
problems with the imputation, then it may be prudent for the analyst to ignore the imputed values and
adopt alternative approaches such as MI analysis by re-imputing the missing values in just the variables
in the analyst model, the maximum likelihood, or the fully Bayesian analysis. A comparison of the results
with original and re-imputed values might be useful to quantify sensitivity of inferences to model mis-
specification. Such analysis across the data sets might be useful to assess the impact of uncongeniality
on MI inferences.

There are number of limitations that can be addressed with further research. First, the approach assumes
that the data set includes all the variables used in the imputation process. In some applications, the imputer
may use some internally available variables, and it is possible that our diagnostics may indicate problems
where there are none. However, as long as all variables used in the imputations are used in propensity score
estimation, the inferences should be valid. Second limitation is the assumption that the data are MAR. The
problems identified by the procedures may be because of nonignorable missing data mechanism rather
than problems with the imputation model. The third limitation is that while focusing on variable Yv, the
estimated propensity score is constructed by averaging over the imputations of all other variables Y−v. If
the models imputing those variables are severely misspecified, then the estimated propensity score may
be affected. One solution is to apply the diagnostics sequentially and iteratively for all the variables until
all the models show reasonable fit across all variables. Nevertheless, further work is needed to address
these limitations.
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