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Abstract Decision makers and consultants are particularly interested in “detailed” information on
future climate to prepare adaptation strategies and adjust design criteria. Projections of future climate
at local spatial scales and fine temporal resolutions are subject to the same uncertainties as those at the
global scale but the partition among uncertainty sources (emission scenarios, climate models, and inter-
nal climate variability) remains largely unquantified. At the local scale, the uncertainty of the mean and
extremes of precipitation is shown to be irreducible for mid and end-of-century projections because it
is almost entirely caused by internal climate variability (stochasticity). Conversely, projected changes in
mean air temperature and other meteorological variables can be largely constrained, even at local scales,
if more accurate emission scenarios can be developed. The results were obtained by applying a compre-
hensive stochastic downscaling technique to climate model outputs for three exemplary locations. In
contrast with earlier studies, the three sources of uncertainty are considered as dependent and, there-
fore, non-additive. The evidence of the predominant role of internal climate variability leaves little room
for uncertainty reduction in precipitation projections; however, the inference is not necessarily negative,
because the uncertainty of historic observations is almost as large as that for future projections with direct
implications for climate change adaptation measures.

1. Introduction

Impact studies demand meteorological forcing at local spatial scales and fine temporal resolutions referred
by Kerr [2011] as “vital details” of climate change. Yet robust projections at scales commensurate with prac-
tical applications and for extremes [Maraun et al., 2010] are still unavailable as climate model results are
typically more reliable in terms of mean values and averaged globally or for large regions [Kendon et al.,
2012; Knutti and Sedláček, 2013; Xie et al., 2015]. Uncertainties in climate change projections are very large
[Murphy et al., 2004; Knutti, 2008; Maslin and Austin, 2012]. However, a better knowledge of the relative con-
tribution of the three main sources, anthropogenic forcing (scenario uncertainty), climate model (model
epistemic uncertainty), and internal climate variability (stochastic uncertainty), is important for understand-
ing how much of the overall uncertainty can be decreased through improvements of current climate models
and/or emission scenarios [Cox and Stephenson, 2007; Deser et al., 2012a; Fischer et al., 2013], or will remain
irreducible in the form of internal variability. Previous studies presented computations of signal to noise
ratio in climate change projections [Giorgi and Bi, 2009; Santer et al., 2011; Hawkins and Sutton, 2012; Deser
et al., 2014], or directly partitioned uncertainty into its different sources, subject to the simplified assump-
tion of the independence among the sources [Hawkins and Sutton, 2009, 2011; Hingray and Saïd, 2014;
Little et al., 2015]. At the global and regional scales, the scenario uncertainty has been found to be the pri-
mary source for air temperature projections. Model uncertainty has been argued to dominate sea level rise
and precipitation projections, especially when internal climate variability becomes less relevant for longer
lead-time projections because of stronger climate change signals [Hawkins and Sutton, 2011; Little et al.,
2015]. Studies at regional scale nonetheless indicate that internal climate variability for precipitation pro-
jections can exceed 50% of the total uncertainty, lasting throughout the end of this century [Hingray and
Saïd, 2014]. Previous studies targeted temporal (>hours) and spatial (>hundreds of kilometers) scales that
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do not correspond to the typical scales at which adaptation strategies are undertaken. While from theory we
know that the uncertainty related to internal climate variability is progressively more important as spatial
and temporal scales decrease [Giorgi, 2002], there has been no research on its contribution to the uncer-
tainty of climate change projections at the scales that are most relevant for impact studies. This knowledge
gap is addressed in this study.

Here, for each location we generate 20,200, 30-year long realizations of probable future climates at the local
(station) scale, 10,100 for mid-century (2046–2065) and 10,100 for end-of-the-century (2081–2100), using a
stochastic downscaling technique that combines an hourly weather generator Advanced WEather GENer-
ator (AWE-GEN) [Fatichi et al., 2011] and a Bayesian methodology [Tebaldi et al., 2005; Fatichi et al., 2013].
We compute factors of change (FC) from simulations of 32 climate models used in the Coupled Model
Intercomparison Project Phase 5 (CMIP5) for two different emission scenarios (RCP 4.5 and RCP 8.5). This
approach allows us to generate ensembles of future climate projections at the hourly time scale for dif-
ferent meteorological variables (precipitation, air temperature, relative humidity, and shortwave radiation)
at three selected locations, representative examples of considerably different climate conditions: Zurich
(Switzerland), Miami, and San Francisco (USA). Specifically, the three main sources of uncertainty: climate
model (epistemic uncertainty), anthropogenic forcing (scenario uncertainty), and climate internal variabil-
ity (stochastic uncertainty) are partitioned considering them as dependent, i.e., accounting for the possible
co-variance among the uncertainty sources, in contrast to several previous studies at global and regional
scales [Hawkins and Sutton, 2009, 2011; Yip et al., 2011; Rowell, 2012; Orlowsky and Seneviratne, 2013; Hingray
and Saïd, 2014; Little et al., 2015]. The sum of the individual variances is therefore expected to be larger (for
negative correlations) or smaller (for positive correlations) than the variance corresponding to the sum of
the three uncertainty sources (i.e., the total uncertainty), depending on the degree of actual co-variation.
If uncertainty is expressed in terms of a percentile range, this range can be also different from the range
expected from independent variables.

2. Methods

2.1. Locations

Three locations were selected for this analysis: Zurich (8.56∘E 47.38∘N; elevation 555 m a.s.l.), Switzerland,
San Francisco (122.39∘W 37.62∘N; elevation 27 m a.s.l.), and Miami (80.28∘W 25.91∘N; elevation 56 m a.s.l.),
USA. Meteorological data were obtained from quality-controlled weather stations covering 30-year periods,
1981–2010 for Zurich, and 1961–1990 for San Francisco and Miami. Precipitation data for Switzerland were
provided by MeteoSwiss, the Federal Office of Meteorology and Climatology and for the United States
from WebMET (http://www.webmet.com/). Hourly precipitation, air temperature, shortwave radiation,
and relative humidity were available for the entire period with limited gaps (<0.1%). The three locations
were selected because of their different climate characteristics (Supporting Information, Figure S1). Zurich
presents pre-alpine climate with humid summer and relatively cold winter, the average precipitation is
1124 mm year-1, and the mean temperature is 9.4∘C (1981–2010). It is classified as humid continental
climate according to Köppen–Geiger (KG) climatology [Peel et al., 2007]. San Francisco climate exhibits
Mediterranean precipitation regime with dry summers and wet winters but small seasonality of air tem-
perature (cool-summer Mediterranean climate according to KG classification). The average precipitation
is 501 mm year-1 and the mean temperature is 13.3∘C (1961–1990). Miami has sub-tropical climate with
warm temperatures throughout the year, receiving a relatively high amount of precipitation especially
during summer (Tropical monsoon climate according to KG classification). The average precipitation is
1423 mm year-1 and the mean temperature is 24.2∘C (1961–1990).

2.2. Climate Models

Daily model runs for 32 General Circulation Models (GCMs) were obtained from the dataset compiled in
the World Climate Research Programme’s (WCRP’s), CMIP5 [Taylor et al., 2012]. Specifically, climate models
that were used in this work are listed in the Supporting Information, Table S1. We used model simulations
driven with historical forcing until 2005 and the emission scenarios RCP4.5 and RCP8.5 until 2100 [Moss et al.,
2010]. Scenarios RCP2.6 and RCP6.0 were not used because daily simulations required for the downscaling
approach were available only for a limited number of models.
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2.3. Weather Generator

The AWE-GEN is a stochastic simulator that generates hourly time series of weather variables (precipita-
tion, cloud cover, air temperature, incoming shortwave radiation, wind speed, and atmospheric pressure)
for a given stationary climate [Ivanov et al., 2007; Fatichi et al., 2011]. The model parameters are estimated
using station level observations. Precipitation is the primary driving variable and it is simulated using the
Neyman–Scott rectangular pulse model [Cowpertwait et al., 2007; Paschalis et al., 2014]. Model parame-
ters are month specific to preserve seasonality. Interannual dynamics are imposed by simulating annual
precipitation using a first order autoregressive model [Fatichi et al., 2011]. Cloud cover evolution is sim-
ulated as a smooth transition between complete cloud cover during storms and partial or absent cloud
cover during “fair-weather” periods [Ivanov et al., 2007]. Air temperature, vapor pressure, and wind speed
are simulated using a combination of deterministic components, which introduce dependencies among
meteorological variables (e.g., between rainy hours and cloud cover, changes in air temperature and sun
position, solar radiation and wind speed, etc.), and high frequency (1-h) stochastic components. Shortwave
radiation is simulated with a two-band atmospheric radiation transfer model for clear sky conditions [Guey-
mard, 2008], modified to account for cloud cover [Stephens, 1978; Slingo, 1989]. For a complete description
of the AWE-GEN model structure and parameterization, the reader is referred to Fatichi et al. [2011] and to
the AWE-GEN technical reference (http://www-personal.umich.edu/ivanov/HYDROWIT/Models.html). Per-
formance of AWE-GEN for Zurich, San Francisco, and Miami was comparable to previously presented results
[e.g., Fatichi et al., 2011] and was highly satisfactory in simulating the statistics of the observed climate. Note
that the combination of deterministic and stochastic components allows AWE-GEN to preserve to a large
extent physical realism in the co-variance between meteorological variables unlike many other weather
generators [e.g., Bordoy and Burlando, 2014], for instance temperature, relative humidity, shortwave radia-
tion statistics are considerably different in rainy and non-rainy days.

2.4. Stochastic Downscaling

A stochastic downscaling approach is used to generate 20,200, 30-year long, hourly time series of mete-
orological variables for each of the three locations (Table 1). These simulations represent a set of possible
conditions obtained by permutating 2 future climate periods, 101 climate model trajectories, 2 emission
scenarios, and 50 stochastic realizations. The stochastic downscaling uses simulations from climate mod-
els and the hourly weather generator AWE-GEN. Detailed procedural steps, mathematical formulation and
assumptions of the methodology for generating the hourly time series of future scenarios are described in
Fatichi et al. [2011, 2013]. Improvements have been applied to the original methodology, and are outlined
below along with a summary of the overall procedure.

Information for projected climate change is derived from simulations of GCMs. Based on GCM statistics for a
historic and future periods, we compute “FC”, which are either additive (for air temperature) or multiplicative
(for precipitation) (see an extensive review by Anandhi et al. [2011]). Specifically, time series of daily precip-
itation and monthly temperature are used for estimation of daily, monthly, and annual statistics. Statistics
are computed for a representative period corresponding to the years for which observations are available
(historic) and two future periods: mid-century (2046–2065) and end-of-the-century (2081–2100). Note that
even though climate change signals are estimated from a 20-year period, 30-year long time series are gen-
erated with AWE-GEN for each future trajectory, with 30-year period being a typical interval used to define
climatological values according to the World Meteorological Organization. The historic and future periods
are assumed stationary to estimate the statistics.

Table 1. A List of the Permutation Scenarios Used to Generate the 20,200, 30-Year Long, Hourly Time Series of Meteo-
rological Variables for Each of the Three Locations

Mid-Century (2046–2065) End-Century (2081–2100)

Scenario uncertainty 2 2

Climate model uncertainty 100+ 1 (Median) 100+ 1 (Median)

Stochastic uncertainty 50 50

Total uncertainty 10,100 10,100
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We extract the long-term means for each month from air temperature time series. For precipitation, we
estimate the mean, the variance, and the frequency of non-precipitation for different aggregation inter-
vals (24, 48, 72, and 96 h), that is three statistics for four aggregation intervals over 12-month annual cycle.
In addition to account for low-frequency properties of the precipitation process, the coefficient of varia-
tion of annual precipitation is estimated. In order to compute the parameters of the precipitation module
of AWE-GEN, additional statistics of precipitation such as lag-1 autocorrelation and skewness are required
along with an extension of all precipitation statistics to the hourly time scale. The extension from daily or
larger aggregation time periods (≥24 h) to sub-daily scales (<24 and≥1 h) is discussed in Fatichi et al. [2011,
2013]. In this study, we present the uncertainty of estimation of each precipitation statistic at the aggrega-
tion periods utilized in the weather generator (1, 6, 24, and 72 h) using 30-year long time series (Figure S2).
Specifically, the uncertainty bars of the statistics (±1 standard deviation) are computed with two methods:
(i) bootstrapping 100 times individual years with repetition from the observed climate time series, (ii) sim-
ulating 100 times 30 years of historic climate using AWE-GEN. The results are identical for the two methods
except for small deviations in terms of estimation of lag-1 autocorrelation and skewness at the aggregation
periods larger than one day. This outcome strongly reinforces the credibility of the weather generator that
realistically reproduces internal climate variability over the analyzed period and shows that several statistics
of precipitation are uncertain, even when they are computed from 30 years of data.

Uncertainty in the historic climate statistics is presented in terms of “FC”, i.e., it is normalized with respect to
the expected value in order to have a direct comparison between observational uncertainty and poten-
tial climate change signals. Using 30 years of data, monthly mean precipitation is known with an accu-
racy of ±10% (FC= 0.9 – 1.1), while the variance statistics are less accurate ±20% (FC= 0.82 – 1.18). The
largest uncertainties concern the computation of lag-1 autocorrelation and skewness, while the frequency
of non-precipitation is almost perfectly determined (FC= 0.98 – 1.02). Given the large uncertainties (>30%)
in the estimation of the lag-1 autocorrelation and skewness for historic climate for aggregation periods
larger than 1 h, contrary to our previous studies [Fatichi et al., 2011, 2013; Caracciolo et al., 2014; Franci-
pane et al., 2015; Kim and Ivanov, 2015], we did not attempt to compute FC for these statistics from climate
model simulations. We sample their corresponding FC from a uniform distribution constrained by ±1 stan-
dard deviation of the expected value of the statistic computed with the analysis of the historic climate.
This method gives a plausible estimate of a climate change signal, which would remain impossible to com-
pute exactly, even in the presence of actual future data, because of the estimation uncertainty illustrated
in Figure S2. This approach allows us to account for changes in these statistics in the future without their
precise knowledge. The alternative of assuming FC= 1, and allowing only for stochastic variability will likely
result in a small range of values for these statistics in the future and in an artificial enhancement of the frac-
tion of uncertainty contributed by internal climate variability, because the climate model signal would be
removed.

Factors of changes from different GCMs are weighted using a Bayesian methodology [Tebaldi et al., 2004,
2005; Fatichi et al., 2013] to obtain probability distributions for the FC. This methodology weights equally or
unequally different members of the GCM ensemble and produces a numerical representation of the proba-
bility distribution function for each FC. In this study, we give an equal weight to each model to avoid intro-
ducing another degree of freedom, because robust methodologies to weight models are difficult to define
[Christensen et al., 2010; Knutti et al., 2010; Weigel et al., 2010]. Furthermore, differences between weight-
ing techniques are not fundamental determinants of the climate change signals as shown in Fatichi et al.
[2013]. Another issue, which has been often raised in constructing multi-model ensembles, is related to
the relative interdependence among models [Pennell and Reichler, 2010; Masson and Knutti, 2011; Knutti
et al., 2013]. Bayesian weighting techniques assume that each model is independent, which is known not
to be the case. In our analysis, we used the maximum number of available models (32 models) but we also
checked the effect of using a sub-sample of models selecting only one model for each contributing group
(19 models) or a random selection of 12 models repeated 20 times (Figures S3 and S4). Using one model per
family gives a very similar median and a slightly larger range of variability (10–90 percentile range) of the
FC in comparison to using the entire ensemble. The medians typically differ by less than 0.2∘C for changes
in air temperature, and less than 0.04 for the FC of precipitation. The ranges averaged over the 12 months
are 43% larger than using 32 models. Using 12 random models may shift considerably the median of the
FC distribution up to 0.8∘C and 0.1 for air temperature and precipitation FC, respectively, and affects the
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spread of the distribution. The larger spread is expected when using a smaller ensemble but the medians of
all variables are reasonably estimated in most of the cases also using a 12-model ensemble. In other words,
insofar as the Bayesian weighting method [Tebaldi et al., 2004, 2005] is accepted, the computation of “cli-
mate model uncertainty” is a robust finding, which is only influenced to a minor extent by the choice of the
specific models.

A Sobol quasi-random low discrepancy sequence [Sobol, 1976; Saltelli et al., 2000], rather than a pure ran-
dom number generator is used to sample the FC from their respective marginal probability distributions,
assuming specific cross-correlations among the FC as done in Fatichi et al. [2013]. The Sobol sequence allows
a better coverage of the multi-dimensional space of the FC distribution [Saltelli et al., 2000; Pappas et al.,
2013] with a smaller sample size. In this study, 100+ 1 sets of FC are drawn to sample the frequency distri-
butions of projected future climate statistics, with the last 101st sampling designed to provide the median
change. Such a large ensemble is used to cover the climate model uncertainty because of variability in FC
among individual GCMs and it is sufficient to approximate the 5–95 percentile range of the distribution [Kim
et al., 2016]. Subsequently, the FC are applied to the climate statistics derived from historical observations
to re-evaluate the parameters of the weather generator. In this study, 404 (101 trajectories× 2 future peri-
ods× 2 emission scenarios) parameter sets for AWE-GEN were computed, each corresponding to a potential
future climate “alternative”.

The final step of the methodology is the generation of hourly time series using the re-evaluated parameter
sets. An ensemble of 50, 30-year long, hourly time series of meteorological variables was simulated with
AWE-GEN for each of the 404 parameter sets, leading to 20,200 simulations for each location. Fifty members
have been tested to be a number large enough to approximate the 5–95 percentile range of the stochastic
uncertainty [Kim et al., 2016].

2.5. Uncertainty Partition

The climate model uncertainty is computed separately for the two future periods and the two emis-
sion scenarios. We first compute the median of a given variable from the 50 stochastic simulations
for each of the 100 future trajectories (climate alternatives), and then we compute the 5–95th per-
centiles of the obtained values (Figure 1). To estimate the total climate model uncertainty for a given
future period, we average the 5–95th percentile ranges obtained for the two emission scenarios RCP4.5
and RCP8.5.

The internal climate variability (stochastic uncertainty) is also computed separately for the two future peri-
ods and the two emission scenarios. We take future trajectory corresponding to the median climate change
(101st simulation) and estimate the 5–95th percentiles of the corresponding 50 stochastic simulations for
a given variable (Figure 1). Similar to the climate model uncertainty, in order to obtain the total stochastic

Figure 1. A scheme illustrating how different uncertainty types are partitioned in the stochastic downscaling approach. For simplicity,
the figure refers only to one future emission scenario and one projection period. Envelopes for climate model and stochastic
uncertainties include the entire uncertainty range; in practice, the 5–95th percentile ranges are used.
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Figure 2. Changes in mean monthly air temperature (ΔT in ∘C) detected with the stochastic downscaling approach for the period of
2081–2100 with respect to the observational periods for Zurich, San Francisco, and Miami. The colored areas represent the 5th-to-95th
percentile ranges of the projections. Different uncertainty types are presented: (a) total uncertainty; (b) climate model uncertainty; (c)
stochastic uncertainty (internal variability); (d) emission scenario uncertainty, and (e) historic stochastic uncertainty. In (b) and (c), the
results for the two emission scenarios (RCP4.5 and RCP8.5) are presented separately.

uncertainty for a future period, we average the 5–95th percentile ranges obtained for the two emission
scenarios RCP4.5 and RCP8.5.

The emission scenario uncertainty is computed for each future period as the difference, for a given variable,
between the median of the 5000 (100× 50) simulations corresponding to RCP8.5 scenario and the median of
the 5000 simulations corresponding to the RCP4.5 scenario. The availability of only two emission scenarios
forces us to approximate the 5–95th percentile range with the difference between the two end-members.
While this represents an approximation of the percentile range statistic, it is an unavoidable assumption,
which would be required even if all of the four existing emission scenarios could have been used.

The total uncertainty is computed as the 5–95th percentile range for a given variable for the 10,000
(100× 50× 2) simulations carried out for a given location and future period (Figure 1). Note that while,
we refer in the text to total uncertainty, this represents only our best approximation of the “true” total
uncertainty, which is forcefully unknown.

Fractional uncertainties are computed by normalizing the 5–95th percentile range of uncertainty of
each type (climate model, stochastic, and emission scenario) by the total uncertainty. For instance, for
the monthly mean precipitation or mean temperature, these uncertainties correspond to the sum of the
differences between the 95th and 5th percentiles for each uncertainty type over 12 months (colored area
in Figures 2 and 3).

2.6. Uncertainty Co-Variance

For the variance statistic, the sum of the variances of n independent (uncorrelated) random variables is equal
to the variance of the sum of these variables [Papoulis, 1991]. For positively/negatively correlated random
variables the sum of the variances is smaller/larger than the variance of the sum of the variables. Therefore,
a comparison between the sum of the variances and the variance of the sum allows one to examine the
degree of co-variation (interactions) among the examined variables. Unfortunately, variances cannot be
computed for all the three uncertainty sources, because only two values are available to compute emission
scenario uncertainty. For the same reason a formal analysis of variance cannot be applied and an alternative
solution must be sought.
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(a) (b) (c) (d) (e)

Figure 3. Changes in mean monthly precipitation (ΔPr in mm) detected with the stochastic downscaling approach for the period 2081–2100 with respect to the observational
period for Zurich, San Francisco, and Miami. The colored areas represent the 5th and 95th percentiles of the projections. Different uncertainty types are presented: (a) total
uncertainty; (b) climate model uncertainty; (c) stochastic uncertainty (internal variability); (d) emission scenario uncertainty, and (e) historic stochastic uncertainty. In (b) and (c), the
results for the two emission scenarios (RCP4.5 and RCP8.5) are presented separately.

For a given range of percentiles, there is not a general theory that permits defining the ratio between the
sum of the percentile range of n independent random variables and the percentile range of the sum of
the variables (total uncertainty). This ratio is a function of the number of random variables, the probability
distribution of the random variables, and of the parameters of the distributions. For our specific case, we
use a Monte Carlo approach to compute numerically this ratio for the 5–95th percentile range for n= 3, as
three are the uncertainty types we analyzed. We compute the ratio with five distributions (Figure S5). We use
three theoretical distributions, a standard normal distribution N(0,1), a uniform distribution between 0 and
1, an exponential distribution with the mean equal to 1, and two combinations of empirical distributions
corresponding to the distributions computed for the three uncertainty types for mean temperature and
precipitation (Zurich, mid-century period). The ratios between the sum of the percentile ranges of three
independent random variables and the percentile range of the sum of three variables are between 1.6 and
2.1 varying across distributions, with the larger values computed from the empirical distributions. In an
analogy with the variance, if the ratio between the sum of the percentile ranges and the percentile range of
the sum is larger/smaller, than the one expected from independent variables (Figure S5), the variables are
negatively/positively correlated.

3. Results

Changes in monthly air temperature by the end-of-the-century (2081–2100) for all three analyzed locations
show a substantial warming throughout the entire year, more pronounced during summer, especially for
Zurich (Figure 2). The total uncertainty (5–95th percentile range) for most of the months is roughly con-
strained to within 2.5∘C, with the striking exception of the summer months in Zurich. The climate change
signal, i.e., the distance from zero, is large enough that the lower uncertainty bounds never cross the +1∘C
line (Figures 2a–2d). Climate model and stochastic uncertainties are presented separately for the two
emission scenarios; the difference between the two is representing the scenario uncertainty. As seen, the
emission scenario has a large effect on air temperature also at the local scale, with the scenario uncertainty
incorporating the largest fraction of the total uncertainty (Figure 2). For reference, we also computed
the uncertainty caused by internal variability for the historic climate, which represents the confidence
interval for the 30-year mean monthly temperature (see also Figure S2). The historic internal variability is
seasonally centered around zero (no change signal) and generally constrained to less than 1∘C. A similar
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Figure 4. Boxplot of simulated extreme 1-h (left panel) and 24-h (right panel) precipitation for a 10-year return period for Zurich, San Francisco, and Miami. The central mark of each
box is the median, the edges are the 25th and 75th percentiles, the whiskers extend to the most extreme data points that are not considered outliers. Blue boxplots refer to the
projections for mid-century (2046–2065), red boxplots refer to the end-of-the century (2081–2100), and yellow to the historic period. Different uncertainty types are presented: total
uncertainty (TOT); climate model uncertainty separately for the two emission scenarios (CM-45 and CM-85); internal climate variability (stochastic uncertainty) separately for the two
emission scenarios (STO-45 and STO-85); emission scenario uncertainty (SCE); and historic stochastic uncertainty (HISSTO).

range applies to the stochastic uncertainty for the future conditions but centered on the mean climate
change signal. The uncertainty due to climate model differences is only slightly larger than the stochastic
uncertainty.

Changes in monthly precipitation at the end-of-the-century (2081–2100) show that the total uncertainty
can be as large as 40–80 mm (30–60% of the mean) for individual months, with the zero change mostly
embedded within the uncertainty envelope (5–95 percentile) for essentially each month and location
(Figure 3). The uncertainty range lower than 15 mm (but corresponding to >100% change) for San Fran-
cisco during the summer months simply reflects the very low mean precipitation during this season (Figure
S1). Climate model and stochastic uncertainties are clearly the major sources for mean precipitation,
with the stochastic uncertainty the largest among the two and comparable to the total uncertainty. Not
surprisingly, the projections are different for the three locations. However, the relative magnitudes of the
uncertainty sources are remarkably invariant despite climatological differences among the three locations.
Using the uncertainty caused by internal variability for historic climate as a reference (Figure 3e), it can be
seen that it is generally high, i.e., it spans a large fraction of the total uncertainty for the projected future
climate conditions (Figure 3).

The dominance of stochastic uncertainty is even more evident when “vital details” of climate change are
analyzed (i.e., extreme precipitation at the hourly and daily scales). For the 1- and 24-h extreme precip-
itation with a return period of 10 years, the scenario and climate model uncertainties become even less
relevant, and the total uncertainty can be mostly explained by the internal variability (Figure 4). This does
not necessarily imply that the medians for future projections are identical to that of the historic climate,
as can be appreciated from the relative differences of the 24-h median extremes for mid- and end-of-the
century periods, when compared with historic climate. Present-day stochastic uncertainty is very large, as
supported by analysis of long rainfall time series [Marani and Zanetti, 2015], and can cover a wide range of
possible future climates in terms of local precipitation extremes.
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Figure 5. The fractional uncertainties for the mid-century (2046–2065), and end-of-the century (2081–2100) projections (left and right
panel) for Zurich, San Francisco, and Miami. Different uncertainty sources are presented: climate model uncertainty (CM); internal climate
variability (stochastic uncertainty, STO); emission scenario uncertainty (SCE); total uncertainty (TOT); and Σ, the arithmetic sum:
Σ=CM+ STP+ SCE. The fractional uncertainty is presented for mean precipitation (Pr), extreme precipitation for 24 and 1 h for 2- and
10-year return periods (Ex. 24 h Rp 2 year, Ex. 1 h Rp 2 year, Ex. 24 h Rp 10 year, Ex. 1 h Rp 10 year), mean temperature (Ta), maximum and
minimum daily temperature (Max Ta, Min Ta), mean relative humidity (RH), and mean shortwave incoming radiation (Rad).

Uncertainty for different climate variables can be computed as a range between the 5th and 95th percentiles
and normalized by the total uncertainty to obtain a measure of the fractional contribution (Figure 5). This
permits a relative cross-comparison of the primary uncertainty sources, even though the 5–95th percentile
can only be approximated for the emission scenario uncertainty. The stochastic uncertainty overwhelms
the other sources for mean and extreme precipitation, reaching almost 100% of the total uncertainty for
the mid-century interval and roughly 70–80% for the end-of-the century period. For the mean, maximum
and minimum daily temperatures, and mean relative humidity the three sources of uncertainty are com-
parable for the mid-century interval, while the scenario uncertainty accounts for approximately 80% of the
total uncertainty at the end-of-the century. For solar radiation, the expected changes are very small and the
three sources of uncertainty are comparable, especially for large lead-times. The arithmetic sum (Σ) of the
three fractional uncertainties (5–95th percentile range) is close to 1.5 for precipitation and to 1.2 for tem-
perature. These values are lower than the values expected for independent variables (Figure S5), supporting
the expectation that the uncertainties cannot be assumed as independent and are rather positively corre-
lated. There is a remarkable agreement in the results obtained for the three locations, suggesting that the
presented results are unlikely to be a function of specific climatic conditions but rather represent a robust
image of features of uncertainty partition at the local scale. Analyses for other stations in different climates
will be important for a generalized understanding at the global scale but unlikely change the emerged
property of uncertainty partition.

The assumption about the climate model inter-dependency has only a small influence on the results, while
reducing the number of models increases climate model uncertainty (see detail in Figure S3). Climate model
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limitations in simulating correctly precipitation patterns and capturing features of local climate are reflected
in our analysis because they control climate model simulations and therefore the estimate of the uncer-
tainty. The assumption of stationarity for each simulated period and internal static parameterizations of
AWE-GEN are also influencing to some extent the final results. We contend that these “unaccounted uncer-
tainties” (in our and in many other studies) are more likely to modify the climate change signal rather than
considerably increase the total uncertainty and alter the relative contributions.

4. Discussion and Conclusions

Internal climate variability has been shown to be the dominant source of uncertainty in projections of mean
and extreme precipitation not only for short lead-times (few decades), as currently acknowledged in litera-
ture [Hawkins and Sutton, 2011; Trenberth, 2012], but also for century distant projections, as already hinted
by a regional study [Hingray and Saïd, 2014]. Differences from previous studies are expected because of
the focus on small point-scales, the capability of our methodology to partition uncertainty sources without
assuming them to be independent, and other assumptions, which are unavoidable in this type of study.

One apparent consequence is that the results appear to leave limited room for uncertainty reduction in pre-
cipitation projections even if methodologies and emission scenarios are significantly improved. Does the
dominance of stochastic (irreducible) uncertainty suggest that improvements to climate models or higher
resolution projections are unnecessary for local projections? Not at all. The improvement and availability of
climate model realizations will still be fundamental to provide a more trustworthy climate change signal.
The physical-basis of climate model simulations is in fact representing an important constraint, for instance
potentially preserving the Clausius–Clapeyron relation for the scaling of short-term extreme precipitation
with air temperature [e.g., Ban et al., 2014; Westra et al., 2014; Molnar et al., 2015]. As a matter of fact, when
precipitation mean and extremes are considered: despite the large uncertainty dictated by the internal vari-
ability, the climate change signal can be detected in terms of the median. Thus, we claim that further model
refinement should lead to identifying a more reliable median signal of the change, rather than in reduction
of the spread of projection ensembles per se.

Does the dominance of irreducible uncertainty prevent us from making precise projections in terms
of precipitation extremes at local scale? Very likely. Internal climate variability will remain even when a
perfect model and an exact emission scenario would be used; therefore, issuing precise projections to
serve the needs of ultimate users is not achievable. Frequency and/or intensity of extreme events will most
likely increase [Trenberth, 2012; Fischer et al., 2013; Westra et al., 2014; Molnar et al., 2015] but we cannot
precisely assess or predict where and by how much, because the signal to noise ratio is and will remain very
small. This leads to another question: Does the lack of accurate and robust projections about changes in
precipitation and extremes at local scale prevent us from making decisions in a changing climate? We think
that such a statement would ignore decades of research dedicated to decision making under conditions
of large uncertainty in various sectors, especially engineering [Jordaan, 2005; Dessai et al., 2009; Hallegatte,
2009]. While it would be impossible to provide precise information on local changes in precipitation sought
by decision makers and stakeholders, we should not overlook that uncertainty is already dealt with in
stochastic solutions for the current climate system and may suffice in many applications [Lins and Cohn,
2011; Brown et al., 2012; Koutsoyiannis and Montanari, 2015; Montanari and Koutsoyiannis, 2014; Serinaldi
and Kilsby, 2015]. We argue that robust assessments of climate change scenarios are only possible taking
into account internal climate variability and generally the largest range of possible trajectories in a proba-
bilistic framework. In other words, a better description of uncertainty will help decision making, even when
the latter can only use a subset of this information. Downscaling techniques similar to the one presented
here or large multi-member ensembles of climate models perturbing initial conditions [Deser et al., 2012b,
2014; Xie et al., 2015] may represent the best approach. Using a single or few deterministic trajectories is a
widespread approach in climate change projections and impact studies [e.g., Seager et al., 2007; Elkin et al.,
2013], yet this could be very misleading because it neglects natural climate variability and could convey a
false perception of certain information to end-users [Deser et al., 2012a; Sexton and Harris, 2015; Thompson
et al., 2015]. For precipitation, we additionally suggest that impact studies which cannot afford elaborated
and time-consuming analyses of climate model outputs should rely on proper accounting of historic climate
variability, rather than selecting climate change signal from few subjectively chosen or available model
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runs. This study demonstrates that the historic internal variability for precipitation mean and extremes, if
properly accounted for, is likely to be sufficient to cover a wide range of possible future trajectories.
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