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Abstract 
 Decision makers and consultants are particularly interested in “detailed” information 

on future climate to prepare adaptation strategies and adjust design criteria. Projections of 
future climate at local spatial scales and fine temporal resolutions are subject to the same 
uncertainties as those at the global scale but the partition among uncertainty sources (emission 
scenarios, climate models, and internal climate variability) remains largely unquantified. At the 
local scale the uncertainty of the mean and extremes of precipitation is shown to be irreducible 
for mid and end-of-century projections because it is almost entirely due to internal climate 
variability (stochasticity). Conversely, projected changes in mean air temperature and other 
meteorological variables can be largely constrained, even at local scales, if more accurate 
emission scenarios can be developed. The results were obtained by applying a comprehensive 
stochastic downscaling technique to climate model outputs for three exemplary locations. In 
contrast with earlier studies, the three sources of uncertainty are considered as dependent and, 
therefore, non-additive. The evidence of the predominant role of internal climate variability 
leaves little room for uncertainty reduction in precipitation projections; however, the inference 
is not necessarily negative, since the uncertainty of historic observations is almost as large as 
that for future projections with direct implications for climate change adaptation measures.  
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1  Introduction 
 Impact studies demand for meteorological forcing at local spatial scales and fine 

temporal resolutions referred by ? as “vital details” of climate change. Yet robust projections at 
scales commensurate with practical applications and for extremes [?] are still unavailable as 
climate model results are typically more reliable in terms of mean values and averaged globally 
or for large regions [???]. Uncertainties in climate change projections are very large [???]. 
However, a better knowledge of the relative contribution of the three main sources, 
anthropogenic forcing (scenario uncertainty), climate model (model epistemic uncertainty), and 
internal climate variability (stochastic uncertainty), is important for understanding how much of 
the overall uncertainty can be decreased through improvements of current climate models 
and/or emission scenarios [???], or will remain irreducible in the form of internal variability. 
Previous studies presented computations of signal to noise ratio in climate change projections 
[????], or directly partitioned uncertainty into its different sources, subject to the simplified 
assumption of the independence among the sources [????]. At the global and regional scales, 
the scenario uncertainty has been found to be the primary source for air temperature 
projections. Model uncertainty has been argued to dominate sea level rise and precipitation 
projections, especially when internal climate variability becomes less relevant for longer 
lead-time projections because of stronger climate change signals [??]. Studies at regional scale 
nonetheless indicate that internal variability for precipitation projections can exceed 50% of the 
total uncertainty, lasting throughout the end of this century [?]. Previous studies targeted 
temporal ( > hours) and spatial ( > hundreds of kilometers) scales that do not correspond to the 
typical scales at which adaptation strategies are undertaken. While from theory we know that 
the uncertainty related to internal climate variability is progressively more important as spatial 
and temporal scales decrease [?], there has been no research on its contribution to the 
uncertainty of climate change projections at the scales that are most relevant for impact 
studies. This knowledge gap is addressed in this study. 

Here, for each location we generate 20200, 30-year long realizations of probable future 
climates at the local (station) scale, 10100 for mid-century (2046-2065) and 10100 for 
end-of-the-century (2081-2100), using a stochastic downscaling technique that combines an 
hourly weather generator AWE-GEN [?] and a Bayesian methodology [??]. We compute 
factors of change from simulations of 32 climate models used in the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) for two different emission scenarios (RCP 4.5 and RCP 
8.5). This approach allows us to generate ensembles of future climate projections at the hourly 
time scale for different meteorological variables (precipitation, air temperature, relative 
humidity, and shortwave radiation) at three selected locations, representative examples of 
considerably different climate conditions: Zurich (Switzerland), Miami, and San Francisco (USA). 
Specifically, the three main sources of uncertainty: climate model (epistemic uncertainty), 
anthropogenic forcing (scenario uncertainty), and climate internal variability (stochastic 
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uncertainty) are partitioned considering them as dependent, i.e., accounting for the possible 
co-variance among the uncertainty sources, in contrast to several previous studies at global and 
regional scales [???????]. The sum of the individual variances is therefore expected to be 
larger (for negative correlations) or smaller (for positive correlations) than the variance 
corresponding to the sum of the three uncertainty sources (i.e., the total uncertainty), 
depending on the degree of actual co-variation. If uncertainty is expressed in terms of a 
percentile range, this range can be also different from the range expected from independent 
variables. 

 
2  Methods 
 
 
2.1  Locations 
 
Three locations were selected for this analysis: Zurich (8.56 E 47.38 N; elevation 555 m 

a.s.l.), Switzerland, San Francisco (122.39 W 37.62 N; elevation 27 m a.s.l.), and Miami (80.28 W 
25.91 N; elevation 56 m a.s.l.), USA. Meteorological data were obtained from quality-controlled 
weather stations covering 30-year periods, 1981-2010 for Zurich, and 1961-1990 for San 
Francisco and Miami. Precipitation data for Switzerland were provided by MeteoSwiss, the 
Federal Office of Meteorology and Climatology and for the United States from WebMET 
(http://www.webmet.com/). Hourly precipitation, air temperature, shortwave radiation, and 
relative humidity were available for the entire period with limited gaps ( < 0.1%). The three 
locations were selected due to their different climate characteristics (Supplementary Figure S1). 
Zurich presents pre-alpine climate with humid summer and relatively cold winters, the average 
precipitation is 1124 1mm year− , and the mean temperature is 9.4 C  (1981-2010). It is 
classified as humid continental climate according to Köppen-Geiger (KG) climatology [?]. San 
Francisco climate exhibits Mediterranean precipitation regime with dry summers and wet 
winters but small seasonality of air temperature (cool-summer Mediterranean climate 
according to KG classification). The average precipitation is 501 1mm year−  and the mean 
temperature is 13.3 C  (1961-1990). Miami has sub-tropical climate with warm temperatures 
throughout the year, receiving a relatively high amount of precipitation especially during 
summer (Tropical monsoon climate according to KG classification). The average precipitation is 
1423 1mm year−  and the mean temperature is 24.2 C  (1961-1990). 

 
2.2  Climate models 
 
Daily model runs for 32 GCMs were obtained from the dataset compiled in the World 

Climate Research Programme’s (WCRP’s), Coupled Model Intercomparison Project, phase 5 
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(CMIP5) [?]. Specifically, climate models that were used in this work are listed in the 
Supplementary Table S1. We used model simulations driven with historical forcing until 2005 
and the emission scenarios RCP4.5 and RCP8.5 until 2100 [?]. Scenarios RCP2.6 and RCP6.0 
were not used because daily simulations required for the downscaling approach were available 
only for a limited number of models. 

 
2.3  Weather generator 
 
The Advanced WEather GENerator (AWE-GEN) is a stochastic simulator that generates 

hourly time series of weather variables (precipitation, cloud cover, air temperature, incoming 
shortwave radiation, wind speed, and atmospheric pressure) for a given stationary climate 
[??]. The model parameters are estimated using station level observations. Precipitation is the 
primary driving variable and it is simulated using the Neyman-Scott rectangular pulse model 
[??]. Model parameters are month specific to preserve seasonality. Interannual dynamics are 
imposed by simulating annual precipitation using a first order autoregressive model [?]. Cloud 
cover evolution is simulated as a smooth transition between complete cloud cover during 
storms and partial or absent cloud cover during “fair-weather” periods [?]. Air temperature, 
vapor pressure, and wind speed are simulated using a combination of deterministic 
components, which introduce dependencies among meteorological variables (e.g., between 
rainy hours and cloud cover, changes in air temperature and sun position, solar radiation and 
wind speed etc.), and high frequency (1-hour) stochastic components. Shortwave radiation is 
simulated with a two-band atmospheric radiation transfer model for clear sky conditions [?], 
modified to account for cloud cover [??]. For a complete description of the AWE-GEN model 
structure and parameterization, the reader is referred to ? and to the AWE-GEN technical 
reference (http://www-personal.umich.edu/ ivanov/HYDROWIT/Models.html). Performance of 
AWE-GEN for Zurich, San Francisco and Miami was comparable to previously presented results 
[e.g., ?] and was highly satisfactory in simulating the statistics of the observed climate. Note 
that the combination of deterministic and stochastic components allows AWE-GEN to preserve 
to a large extent physical realism in the co-variance between meteorological variables unlike 
many other weather generators [e.g., ?], for instance temperature, relative humidity, 
shortwave radiation statistics are considerably different in rainy and non-rainy days. 

 
2.4  Stochastic downscaling 
 
A stochastic downscaling approach is used to generate 20200, 30-year long, hourly time 

series of meteorological variables for each of the three locations (Table 1). These simulations 
represent a set of possible conditions obtained by permutating 2 future climate periods, 101 
climate model trajectories, 2 emission scenarios, and 50 stochastic realizations. The stochastic 
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downscaling uses simulations from climate models and the hourly weather generator 
AWE-GEN. Detailed procedural steps, mathematical formulation and assumptions of the 
methodology for generating the hourly time series of future scenarios are described in ??. 
Improvements have been applied to the original methodology, and are outlined below along 
with a summary of the overall procedure. 

Information for projected climate change is derived from simulations of GCMs. Based on 
GCM statistics for a historic and a future periods, we compute “factors of change” (FC), which 
are either additive (for air temperature) or multiplicative (for precipitation) (see an extensive 
review by ?). Specifically, time series of daily precipitation and monthly temperature are used 
for estimation of daily, monthly, and annual statistics. Statistics are computed for a 
representative period corresponding to the years for which observations are available (historic) 
and two future periods: mid-century (2046-65) and end-of-the-century (2081-00). Note that 
even though climate change signals are estimated from a 20-year period, 30-year long time 
series are generated with AWE-GEN for each future trajectory, with 30-year period being a 
typical interval used to define climatological values according to the World Meteorological 
Organization. The historic and future periods are assumed stationary to estimate the statistics. 

We extract the long-term means for each month from air temperature time series. For 
precipitation, we estimate the mean, the variance, and the frequency of non-precipitation for 
different aggregation intervals (24, 48, 72, and 96 hours), that is 3 statistics for 4 aggregation 
intervals over 12-month annual cycle. Additionally, to account for low-frequency properties of 
the precipitation process, the coefficient of variation of annual precipitation is estimated. In 
order to compute the parameters of the precipitation module of AWE-GEN, additional statistics 
of precipitation such as lag-1 autocorrelation and skewness are required along with an 
extension of all precipitation statistics to the hourly time scale. The extension from daily or 
larger aggregation time periods (≥  24 hours) to sub-daily scales ( <  24 hours and ≥  1 hour) 
is discussed in [et~al.(2011), Ivanov, and Caporali, et~al.(2013), Ivanov, and Caporali]. In this 
study, we present the uncertainty of estimation of each precipitation statistic at the 
aggregation periods utilized in the weather generator (1 hour, 6, 24, and 72 hours) using 
30-year long time series (Supplementary Figure S2). Specifically, the uncertainty bars of the 
statistics (±  1 standard deviation) are computed with two methods: (i) bootstrapping 100 
times individual years with repetition from the observed climate time series, (ii) simulating 100 
times 30 years of historic climate using AWE-GEN. The results are identical for the two methods 
except for small deviations in terms of estimation of lag-1 autocorrelation and skewness at the 
aggregation periods larger than day. This outcome strongly reinforces the credibility of the 
weather generator that realistically reproduces internal climate variability over the analyzed 
period and shows that several statistics of precipitation are uncertain, even when they are 
computed from 30 years of data. 

Uncertainty in the historic climate statistics is presented in terms of “factors of change” 
(FC), i.e., it is normalized with respect to the expected value in order to have a direct 
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comparison between observational uncertainty and potential climate change signals. Using 30 
years of data, monthly mean precipitation is known with an accuracy of ± 10% ( = 0.9 1.1FC −
), while the variance statistics are less accurate ± 20% ( = 0.82 1.18FC − ). The largest 
uncertainties concern the computation of lag-1 autocorrelation and skewness, while the 
frequency of non-precipitation is almost perfectly determined ( = 0.98 1.02FC − ). Given the 
large uncertainties ( >  30%) in the estimation of the lag-1 autocorrelation and skewness for 
historic climate for aggregation periods larger than 1 hour, contrary to our previous studies 
[?????], we did not attempt to compute FC for these statistics from climate model 
simulations. We sample their corresponding FC from a uniform distribution constrained by ±  
1 standard deviation of the expected value of the statistic computed with the analysis of the 
historic climate. This method gives a plausible estimate of a climate change signal, which would 
remain impossible to compute exactly, even in the presence of actual future data, due to the 
estimation uncertainty illustrated in Figure S2. This approach allows us to account for changes 
in these statistics in the future without their precise knowledge. The alternative of assuming 

= 1FC , and allowing only for stochastic variability will likely result in a small range of values for 
these statistics in the future and in an artificial enhancement of the fraction of uncertainty due 
to internal climate variability, because the climate model signal would be removed. 

Factors of changes from different GCMs are weighted using a Bayesian methodology 
[???] to obtain probability distributions for the FC. This methodology weights equally or 
unequally different members of the GCM ensemble and produces a numerical representation 
of the probability distribution function for each FC. In this study, we give an equal weight to 
each model to avoid introducing another degree of freedom, since robust methodologies to 
weight models are difficult to define [???]). Furthermore, differences between weighting 
techniques are not fundamental determinants of the climate change signals as shown in ?. 
Another issue, which has been often raised in constructing multi-model ensembles, is related to 
the relative interdependence among models [???]. Bayesian weighting techniques assume 
that each model is independent, which is known not to be the case. In our analysis we used the 
maximum number of available models (32 models) but we also checked the effect of using a 
sub-sample of models selecting only one model for each contributing group (19 models) or a 
random selection of 12 models repeated twenty times (Supplementary Figures S3 and S4). 
Using one model per family gives a very similar median and a slightly larger range of variability 
(10-90 percentile range) of the FC in comparison to using the entire ensemble. The medians 
typically differ by less than 0.2 C  for changes in air temperature, and less than 0.04 for the FC 
of precipitation. The ranges averaged over the 12 months are 43% larger than using 32 models. 
Using 12 random models may shift considerably the median of the FC distribution up to 0.8 C  
and 0.1 for air temperature and precipitation FC respectively, and affects the spread of the 
distribution. The larger spread is expected when using a smaller ensemble but the medians of 
all variables are reasonably estimated in most of the cases also using a 12-model ensemble. In 
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other words, insofar as the Bayesian weighting method [??] is accepted, the computation of 
“climate model uncertainty” is a robust finding, which is only influenced to a minor extent by 
the choice of the specific models. 

A Sobol quasi-random low discrepancy sequence [??], rather than a pure random 
number generator is used to sample the FC from their respective marginal probability 
distributions, assuming specific cross-correlations among the FC as done in ?. The Sobol 
sequence allows a better coverage of the multi-dimensional space of the FC distribution [??] 
with a smaller sample size. In this study, 100+1 sets of FC are drawn to sample the frequency 
distributions of projected future climate statistics, with the last 101st sampling designed to 
provide the median change. Such a large ensemble is used to cover the climate model 
uncertainty due to variability in FC among individual GCMs and it is sufficient to approximate 
the 5-95 percentile range of the distribution [?]. Subsequently, the FC are applied to the 
climate statistics derived from historical observations to re-evaluate the parameters of the 
weather generator. In this study, 404 (101 trajectories x 2 future periods x 2 emission scenarios) 
parameter sets for AWE-GEN were computed, each corresponding to a potential future climate 
“alternative”. 

The final step of the methodology is the generation of hourly time series using the 
re-evaluated parameter sets. An ensemble of 50, 30-year long, hourly time series of 
meteorological variables was simulated with AWE-GEN for each of the 404 parameter sets, 
leading to 20,200 simulations for each location. Fifty members have been tested to be a 
number larger enough to approximate the 5-95 percentile range of the stochastic uncertainty 
[?]. 

 
2.5  Uncertainty Partition 
 
The climate model uncertainty is computed separately for the two future periods and 

the two emission scenarios. We first compute the median of a given variable from the 50 
stochastic simulations for each of 100 future trajectories (climate alternatives), and then we 
compute the 5-95th percentiles of the obtained values (Figure ??). To estimate the total climate 
model uncertainty for a given future period, we average the 5-95th percentile ranges obtained 
for the two emission scenarios RCP4.5 and RCP8.5. 

The internal climate variability (stochastic uncertainty) is also computed separately for 
the two future periods and the two emission scenarios. We take future trajectory 
corresponding to the median climate change (101st simulation) and estimate the 5-95th 
percentiles of the corresponding 50 stochastic simulations for a given variable (Figure ??). 
Similar to the climate model uncertainty, in order to obtain the total stochastic uncertainty for 
a future period, we average the 5-95th percentile ranges obtained for the two emission 
scenarios RCP4.5 and RCP8.5. 
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The emission scenario uncertainty is computed for each future period as the difference, 
for a given variable, between the median of the 5,000 (100x50) simulations corresponding to 
RCP8.5 scenario and the median of the 5,000 simulations corresponding to the RCP4.5 scenario. 
The availability of only two emission scenarios force us to approximate the 5-95th percentile 
range with the difference between the two end-members. While this represents an 
approximation of the percentile range statistic, it is an unavoidable assumption, which would 
be required even if all of the four existing emission scenarios could have been used. 

The total uncertainty is computed as the 5-95th percentile range for a given variable for 
the 10,000 (100x50x2) simulations carried out for a given location and future period (Figure ??). 
Note that while, we refer in the text to total uncertainty, this represents only our best 
approximation of the “true” total uncertainty, which is forcefully unknown. 

Fractional uncertainties are computed by normalizing the 5-95th percentile range of 
uncertainty of each type (climate model, stochastic, and emission scenario) by the total 
uncertainty. For instance, for the monthly mean precipitation or mean temperature, these 
uncertainties correspond to the sum of the differences between the 95th and 5th percentiles 
for each uncertainty type over 12 months (colored area in Figures ?? and ??). 

 
2.6  Uncertainty co-variance  
 
For the variance statistic, the sum of the variances of n  independent (uncorrelated) 

random variables is equal to the variance of the sum of these variables [?]. For 
positively/negatively correlated random variables the sum of the variances is smaller/larger 
than the variance of the sum of the variables. Therefore, a comparison between the sum of the 
variances and the variance of the sum allows one to examine the degree of co-variation 
(interactions) among the examined variables. Unfortunately, variances cannot be computed for 
all the three uncertainty sources, because only two values are available to compute emission 
scenario uncertainty. For the same reason a formal analysis of variance (ANOVA) cannot be 
applied and an alternative solution must be sought. 

For a given range of percentiles, there is not a general theory that permits defining the 
ratio between the sum of the percentile range of n  independent random variables and the 
percentile range of the sum of the variables (total uncertainty). This ratio is a function of the 
number of random variables, the probability distribution of the random variables, and of the 
parameters of the distributions. For our specific case, we use a Monte Carlo approach to 
compute numerically this ratio for the 5-95th percentile range for = 3n , as three are the 
uncertainty types we analyzed. We compute the ratio with five distributions (Figure S5). We use 
three theoretical distributions, a standard normal distribution N(0,1), a uniform distribution 
between 0 and 1, an exponential distribution with the mean equal to 1, and two combinations 
of empirical distributions corresponding to the distributions computed for the three uncertainty 
types for mean temperature and precipitation (Zurich, mid-century period). The ratios between 
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the sum of the percentile ranges of 3 independent random variables and the percentile range 
of the sum of 3 variables are between 1.6 and 2.1 varying across distributions, with the larger 
values computed from the empirical distributions. In an analogy with the variance, if the ratio 
between the sum of the percentile ranges and the percentile range of the sum is larger/smaller, 
than the one expected from independent variables (Figure S5), the variables are 
negatively/positively correlated. 

 
3  Results 
 
Changes in monthly air temperature by the end-of-the-century (2081-2100) for all three 

analyzed locations show a substantial warming throughout the entire year, more pronounced 
during summer, especially for Zurich (Fig. ??). The total uncertainty (5-95th percentile range) 
for most of the months is roughly constrained to within 2.5  C, with the striking exception of 
the summer months in Zurich. The climate change signal, i.e., the distance from the zero, is 
large enough that the lower uncertainty bounds never cross the +1  C line (Fig. ??a-d). Climate 
model and stochastic uncertainties are presented separately for the two emission scenarios; 
the difference between the two is representing the scenario uncertainty. As seen, the emission 
scenario has a large effect on air temperature also at the local scale, with the scenario 
uncertainty incorporating the largest fraction of the total uncertainty (Fig. ??). For reference, 
we also computed the uncertainty due to internal variability for the historic climate, which 
represented the confidence interval for the 30-year mean monthly temperature (See also 
Supplementary Fig. S2). The historic internal variability is seasonally centered around zero (no 
change signal) and generally constrained to less than 1  C. A similar range applies to the 
stochastic uncertainty for the future conditions but centered on the mean climate change 
signal. The uncertainty due to climate model differences is only slightly larger than the 
stochastic uncertainty. 

Changes in monthly precipitation at the end-of-the-century (2081-2100) show that the 
total uncertainty can be as large as 40-80 mm (30-60% of the mean) for individual months, with 
the zero change mostly embedded within the uncertainty envelope (5-95 percentile) for 
essentially each month and location (Fig. ??). The uncertainty range (lower than 15 mm but 
corresponding to > 100% change) for San Francisco during the summer months simply reflects 
the very low mean precipitation during this season (Fig. S1). Climate model and stochastic 
uncertainties are clearly the major sources for mean precipitation, with the stochastic 
uncertainty the largest among the two and comparable to the total uncertainty. Not 
surprisingly, the projections are different for the three locations. However, the relative 
magnitudes of the uncertainty sources are remarkably invariant despite climatological 
differences among the three locations. Using the uncertainty due to internal variability for 
historic climate as a reference (Fig. ??e), it can be seen that it is generally high, i.e., it spans a 
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large fraction of the total uncertainty for the projected future climate conditions (Fig. ??). 
The dominance of stochastic uncertainty is even more evident when “vital details” of 

climate change are analyzed (i.e., extreme precipitation at the hourly and daily scales). For the 
1-hour and 24-hour extreme precipitation with a return period of 10 years, the scenario and 
climate model uncertainties become even less relevant, and the total uncertainty can be mostly 
explained by the internal variability (Fig. ??). This does not necessarily imply that the medians 
for future projections are identical to that of the historic climate, as can be appreciated from 
the relative differences of the 24-hour median extremes for mid- and end-of-the century 
periods, when compared to historic climate. Present-day stochastic uncertainty is very large, as 
supported by analysis of long rainfall time series [?], and can cover a wide range of possible 
future climates in terms of local precipitation extremes. 

Uncertainty for different climate variables can be computed as a range between the 5th 
and 95th percentiles and normalized by the total uncertainty to obtain a measure of the 
fractional contribution (Fig. ??). This permits a relative cross-comparison of the primary 
uncertainty sources, even though the 5-95th percentile can only be approximated for the 
emission scenario uncertainty. The stochastic uncertainty overwhelms the other sources for 
mean and extreme precipitation, reaching almost 100% of the total uncertainty for the 
mid-century interval and roughly 70-80% for the end-of-the century period. For the mean, 
maximum and minimum daily temperatures, and mean relative humidity the three source of 
uncertainty are comparable for the mid-century interval, while the scenario uncertainty 
accounts for approximately 80% of the total uncertainty at the end-of-the century. For solar 
radiation, the expected changes are very small and the three sources of uncertainty are 
comparable, especially for large lead-times. The arithmetic sum (Σ ) of the three fractional 
uncertainties (5-95th percentile range) is close to 1.5 for precipitation and to 1.2 for 
temperature. These values are lower than the values expected for independent variables (Fig. 
S5), supporting the expectation that the uncertainties cannot be assumed as independent and 
are rather positively correlated. There is a remarkable agreement in the results obtained for the 
three locations, suggesting that the presented results are unlikely to be a function of specific 
climatic conditions but rather represent a robust image of features of uncertainty partition at 
the local scale. Analyses for other stations in different climates will be important for a 
generalized understanding at the global scale but unlikely change the emerged property of 
uncertainty partition. 

The assumption about the climate model inter-dependency has only a small influence 
on the results, while reducing the number of models increases climate model uncertainty (see 
detail in Fig. S3). Climate model limitations in simulating correctly precipitation patterns and 
capturing features of local climate are reflected in our analysis since they control climate model 
simulations and therefore the estimate of the uncertainty. The assumption of stationarity for 
each simulated period and internal static parameterizations of AWE-GEN are also influencing to 
some extent the final results. We contend that these “unaccounted uncertainties” (in our and 
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in many other study) are more likely to modify the climate change signal rather than 
considerably increase the total uncertainty and alter the relative contributions. 

 
4  Discussion and conclusions 
 
Internal climate variability has been shown to be the dominant source of uncertainty in 

projections of mean and extreme precipitation not only for short lead-times (few decades), as 
currently acknowledged in literature [??], but also for a century distant projections, as already 
hinted by a regional study [?]. Differences from previous studies are expected because of the 
focus on small point-scales, the capability of our methodology to partition uncertainty sources 
without assuming them to be independent, and other assumptions, which are unavoidable in 
this type of study. 

One apparent consequence is that the results appear to leave limited room for 
uncertainty reduction in precipitation projections even if methodologies and emission scenarios 
are significantly improved. Does the dominance of stochastic (irreducible) uncertainty suggest 
that improvements to climate models or higher resolution projections are unnecessary for local 
projections? Not at all. The improvement and availability of climate model realizations will still 
be fundamental to provide a more trustworthy climate change signal. The physical-basis of 
climate model simulations is in fact representing an important constraint, for instance 
potentially preserving the Clausius-Clapeyron relation for the scaling of short-term extreme 
precipitation with air temperature [e.g., ???]. As a matter of fact, when precipitation mean 
and extremes are considered: despite the large uncertainty dictated by the internal variability, 
the climate change signal can be detected in terms of the median. Thus, we claim that further 
model refinement should lead to identifying a more reliable median signal of the change, rather 
than in reduction of the spread of projection ensembles per se. 

Does the dominance of irreducible uncertainty prevent us from making precise 
projections in terms of precipitation and climate extremes at local scale? Very likely. Internal 
climate variability will remain even when a perfect model and an exact emission scenario would 
be used; therefore issuing precise projections to serve the needs of ultimate users is not 
achievable. Frequency and/or intensity of extreme events will most likely increase [????] but 
we cannot precisely assess or predict where and by how much, because the signal to noise ratio 
is and will remain very small. This leads to another question: Does the lack of accurate and 
robust projections about changes in precipitation and extremes at local scale prevent us from 
making decisions in a changing climate? We think that such a statement would ignore decades 
of research dedicated to decision making under conditions of large uncertainty in various 
sectors, especially engineering [???]. While it would be impossible to provide precise 
information on local changes in precipitation sought by decision makers and stakeholders, we 
should not overlook that uncertainty is already dealt with in stochastic solutions for the current 
climate system and may suffice in many applications [?????]. We argue that robust 
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assessments of climate change scenarios are only possible taking into account internal climate 
variability and generally the largest range of possible trajectories in a probabilistic framework. 
In other words, a better description of uncertainty will help decision making, even when the 
latter can only use a subset of this information. Downscaling techniques similar to the one 
presented here or large multi-member ensembles of climate models perturbing initial 
conditions [???] may represent the best approach. Using a single or few deterministic 
trajectories is a widespread approach in climate change projections and impact studies [e.g., 
??], yet this could be very misleading because it neglects natural climate variability and could 
convey a false perception of certain information to end-users [???]. For precipitation, we 
additionally suggest that impact studies which cannot afford elaborated and time-consuming 
analyses of climate model outputs should rely on proper accounting of historic climate 
variability, rather than selecting climate change signal from few subjectively chosen or available 
model runs. This study demonstrates that the historic internal variability for precipitation mean 
and extremes, if properly accounted for, is likely to be sufficient to cover a wide range of 
possible future trajectories. 
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Tables 
  

Table  1: A list of the permutation scenarios used to generate the 20,200, 30-year long, hourly 
time series of meteorological variables for each of the three locations. 

  
   

Mid-Century 
(2046-65)  

 
End-Century 
(2081-2100)  

Scenari
o Uncertainty  

 2   2  

Climate 
Model 
Uncertainty  

 100 + 
1 (median)  

 100 + 
1 (median)  

Stochas
tic Uncertainty  

 50   50  

Total 
Uncertainty  

 10100   10100  
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Figures 
 
 
  

Figure  1: A scheme illustrating how different uncertainty types are partitioned in the 
stochastic downscaling approach. For simplicity, the figure refers only to one future emission 
scenario and one projection period. Envelopes for climate model and stochastic uncertainties 

include the entire uncertainty range; in practice, the 5-95th percentile ranges are used.  
  
 
  

Figure  2: Changes in mean monthly air temperature ( T∆  in  C) detected with the stochastic 
downscaling approach for the period of 2081-2100 with respect to the observational periods 
for Zurich, San Francisco, and Miami. The colored areas represent the 5th-to-95th percentile 
ranges of the projections. Different uncertainty types are presented: (a) total uncertainty; (b) 

climate model uncertainty; (c) stochastic uncertainty (internal variability); (d) emission scenario 
uncertainty, and (e) historic stochastic uncertainty. In (b) and (c), the results for the two 

emission scenarios (RCP4.5 and RCP8.5) are presented separately.  
  
 
  

Figure  3: Changes in mean monthly precipitation ( Pr∆  in mm) detected with the stochastic 
downscaling approach for the period 2081-2100 with respect to the observational period for 
Zurich, San Francisco and Miami. The colored areas represent the 5th and 95th percentiles of 
the projections. Different uncertainty types are presented: (a) total uncertainty; (b) climate 

model uncertainty; (c) stochastic uncertainty (internal variability); (d) emission scenario 
uncertainty, and (e) historic stochastic uncertainty. In (b) and (c), the results for the two 

emission scenarios (RCP4.5 and RCP8.5) are presented separately.  
  
 
  

Figure  4: Boxplot of simulated extreme 1-hour (left panel) and 24-hour (right panel) 
precipitation for a 10-year return period for Zurich, San Francisco, and Miami. The central mark 
of each box is the median, the edges are the 25th and 75th percentiles, the whiskers extend to 

the most extreme data points that are not considered outliers. Blue boxplots refer to the 
projections for mid-century (2046-65), red boxplots refer to the end-of-the century 

(2081-2100), and black to the historic period. Different uncertainty types are presented: total 
uncertainty (TOT); climate model uncertainty separately for the two emission scenarios (CM-45 
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and CM-85); internal climate variability (stochastic uncertainty) separately for the two emission 
scenarios (STO-45 and STO-85); emission scenario uncertainty (SCE); and historic stochastic 

uncertainty (HIS STO ).  

  
 
  

Figure  5: The fractional uncertainties for the mid-century (2046-65), and end-of-the century 
(2081-2100) projections (left and right panel) for Zurich, San Francisco, and Miami. Different 

uncertainty sources are presented: climate model uncertainty (CM); internal climate variability 
(stochastic uncertainty, STO); emission scenario uncertainty (SCE); total uncertainty (TOT); and 
Σ , the arithmetic sum: Σ  = CM+STP+SCE. The fractional uncertainty is presented for mean 

precipitation (Pr), extreme precipitation for 24 hours and 1 hour for 2-year and 10-year return 
periods (Ex. 24h Rp 2yr, Ex. 1h Rp 2yr, Ex. 24h Rp 10yr, Ex. 1h Rp 10yr), mean temperature (Ta), 
maximum and minimum daily temperature (Max Ta, Min Ta), mean relative humidity (RH), and 

mean shortwave incoming radiation (Rad).  
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