UM-HSRI-PF-74-11

McCorneck File Copy JAN 2 4 1975 31528

HSRI Digital Computer Programs for Semi-Empirical Tire Models

by

John T. Tielking Marie Shih

November 1974

Highway Safety Research Institute/University of Michigan

.

*

•

•

TECHNICAL REPORT STANDARD TITLE PAGE

4. Title and Subirity 5: Report Date November 1974 HSRI DIGITAL COMPUTER PROGRAMS FOR SEMI-EMPIRICAL TIRE MODELS 6: Performing Organization Report Ne. 7. Author's) 3: T. Tielking and M. Shih 9: Performing Organization Report Ne. 1. T. Tielking and M. Shih 9: Performing Organization Report Ne. 9: Performing Organization Name and Address 10: Work Unit Ne. 1. The Unit versity of Michigan 10: UM-HSRI-PF-74-11 9: Performing Organization Name and Address 10: Work Unit Ne. 1. Control Parkway and Baxter Road 11: Control Parkway and Baxter Road Ann Arbor, Michigan 48105 12: Type of Report and Period Covered 12: Supersong Address 12: Type of Report and Period Covered 14: Supersonamy Agency Code 14: Supersonamy Agency Code 15: Supplementary Notes 14: Supersonamy Agency Code 15: Supplementary Notes 14: Supersonamy Agency Code 16: Adverset 11: Control Construction for Cover and Address 17: Adverset 11: Control Cover and Address 18: Supplementary Notes 14: Supersonamy Agency Code 19: Adverset 13: Type of Report and Period Covered 11: Control Cover and Adverset 14: Supersonamy Agency Code 16: Adverset <td< th=""><th>1. Report No. 2 UM-HSRI-PF-74-11 2</th><th>2. Government Acces</th><th>sion No. 3. Ri</th><th>ecipient's Catalog N</th><th>0.</th></td<>	1. Report No. 2 UM-HSRI-PF-74-11 2	2. Government Acces	sion No. 3. Ri	ecipient's Catalog N	0.
7. Authorfs1 J. T. Tielking and M. Shih UM-HSRI-PF-74-11 9. Performing Organization News and Addres. UM-HSRI-PF-74-11 9. Performing Organization News and Addres. 10 Work Unit No. Highway Safety Research Institute 11 Contr Grant No. The University of Michigan 11. Contr Grant No. Ann Arbor, Michigan 48105 13. Type of Resonand Period Covered 12. Spensenta Astery News of Address 14. Spensentag Astery Code Motor Vehicle Manufacturers Association 320 New Center Building 13. Type of Resonand Period Covered 13. Supplementary News 14. Spensentag Astery Code Tire Traction Characteristics Affecting Vehicle Performance: 14. Spensentag Astery Programs This document describes a set of five tire model computer programs Mich computing frictional performance data, from on - the-road traction measurements, is presented. Example computations are included. The theory behind the tire models programmed in this document is described in Interim Document 6. 17. Key Words 18. Distributes Statement 17. Key Words	4. Title and Subtitle HSRI DIGITAL COMPUTER F SEMI-EMPIRICAL TIRE MOI	PROGRAMS FO DELS	5. R I 6 P	eport Date November 1 erforming Organizati	974
9. Performing Organization Name and Address Highway Safety Research Institute The University of Michigan Huron Parkway and Baxter Road Ann Arbor, Michigan 48105 10 Wark Unit No 329180 12. Sponsoring Agency Name and Address Motor Vehicle Manufacturers Association 320 New Center Building Detroit, Michigan 48202 13. Type of Report and Period Covered 13. Supplementary Name Tire Traction Characteristics Affecting Vehicle Performance: Interim Document 8 14. Sponsoring Agency Code 15. Supplementary Name Which compute longitudinal and lateral traction forces and aligning moment developed by a pneumatic tire on a specific road surface. T preparation of input data for the tire models is discussed and a program for computing frictional performance data, from on-the-road traction measurements, is presented. Example computations are included. The theory behind the tire models programmed in this document is described in Interim Document 6, "A Comparative Evaluation of Five Tire Traction Models," UM-HSRI-PF-74-2 (NTIS order No. PB-229-707). These tire model programs supersede the programs described in Appendix IV of Interim Document 6. 17. Key Wode Tire models, friction 18. Distribution Statement Unlimited 17. Key Wode Tire models, friction 20. Security Clearch (of this page) 21. No. of Pages 22. Proce	7. Author's) J. T. Tielking and M. S	Shih	8 P	erforming Organizati -HSRI – PF – 7	on Report No. 4 - 11
Huron Parkway and Baxter Road Ann Arbor, Michigan 48105 13. Type of Report and Period Covered 12. Sponsoring Agency Nome and Address 13. Type of Report and Period Covered 13. Supplementary Notes 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract 14. Sponsoring Agency Code 17. Key Words 16. Abstract 17. Key Words 17. Key Words 17. Key Words 18. Distribution Statement 18. Distribution Statement 12. No. of Pages 19. Security Clease L (of this report) 20. Security Clease L (of this page) 19. Security Clease L (of this report) 20. Security Clease L (of this page) 19. Security Clease L (of this report) 20. Security Clease L (of this page) 19. Security Clease L (of this report) 20. Security Clease L (of this page) 19. Security Clease L (of this report) 20. Security Clease L (of this page) 19. Security Clease L (of this report) 20. Security Clease L (of this report) 20. Secur	9. Performing Organization Name and Address Highway Safety Research The University of Michi	n Institute Igan	10 1	Work Unit No 329180 Contraine in Grant No	
Motor Vehicle Manufacturers Association 320 New Center Building Detroit, Michigan 48202 14. Spontoring Agency Code 15. Supplementary Notes 14. Spontoring Agency Code 16. Abstract Interim Document 8 16. Abstract This document describes a set of five tire model computer programs which compute longitudinal and lateral traction forces and aligning moment developed by a pneumatic tire on a specific road surface. T preparation of input data for the tire models is discussed and a program for computing frictional performance data, from on-the-road traction measurements, is presented. Example computations are included. The theory behind the tire models programmed in this document is described in Interim Document 6, "A Comparative Evaluation of Five Tire Traction Models," UM-HSRI-PF-74-2 (NTIS order No. PB-229-707). These tire model programs supersede the programs described in Appendix IV of Interim Document 6. 17. Key Words Tire models, friction 18. Distribution Statement Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Proce	Huron Parkway and Baxte Ann Arbor, Michigan 48 12. Sponsoring Agency Name and Address	13. 1	Type of Report and F	eriod Covered	
15. Supplementary Notes Tire Traction Characteristics Affecting Vehicle Performance: Interim Document 8 16. Abstract This document describes a set of five tire model computer programs which compute longitudinal and lateral traction forces and aligning moment developed by a pneumatic tire on a specific road surface. T program for computing frictional performance data, from on-the-road traction measurements, is presented. Example computations are included. The theory behind the tire models programmed in this document is described in Interim Document 6, "A Comparative Evaluation of Five Tire Traction Models," UM-HSRI-PF-74-2 (NTIS order No. PB-229-707). These tire model programs supersede the programs described in Appendix IV of Interim Document 6. 17. Key Words 18. Distribution Statement Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price	Motor Vehicle Manufactu 320 New Center Building Detroit, Michigan 4820	iation	Sponsoring Agency C	ode	
16. Abstract This document describes a set of five tire model computer programs which compute longitudinal and lateral traction forces and aligning moment developed by a pneumatic tire on a specific road surface. T preparation of input data for the tire models is discussed and a program for computing frictional performance data, from on-the-road traction measurements, is presented. Example computations are included. The theory behind the tire models programmed in this document is described in Interim Document 6, "A Comparative Evaluation of Five Traction Models," UM-HSRI-PF-74-2 (NTIS order No. PB-229-707). These tire model programs supersede the programs described in Appendix IV of Interim Document 6. 17. Key Words 18. Distribution Statement Tire models, friction unlimited 19. Security Clease!! (of this report) 20. Security Clease!! (of this page) 21. No. of Pages 22. Price 19. Security Clease!! (of this report) 20. Security Clease!! (of this page) 21. No. of Pages 22. Price	15. Supplementary Notes Tire Traction Character Interim Document 8	ristics Aff	ecting Vehicle	Performanc	e:
17. Key Words 18. Distribution Statement Tire models, friction Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price IInclassified Unclassified 5.9	This document describes which compute longitudi moment developed by a p preparation of input da program for computing f traction measurements, included. The theory behind the described in Interim Do Tire Traction Models," These tire model progra Appendix IV of Interim	a set of inal and la oneumatic t ata for the frictional is present e tire mode ocument 6, UM-HSRI-PF ams superse Document 6	five tire model teral traction ire on a specif tire models is performance dat ed. Example co 1s programmed i "A Comparative -74-2 (NTIS ord de the programs	computer forces and ic road su discussed a, from on mputations n this doc Evaluation er No. PB- described	programs aligning rface. The and a -the-road are ument is of Five 229-707). in
17. Key Words 18. Distribution Statement Tire models, friction Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 59					
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclossified 59	17. Key Words Tire models, friction		18. Distribution Statement Unlimite	d	
	19. Security Classif. (of this report) Unclassified	20. Security Class	uf. (of this page)	21. No. of Pages	22. Price

.

.

HSRI DIGITAL COMPUTER PROGRAMS FOR SEMI-EMPIRICAL TIRE MODELS

John T. Tielking Marie Shih

Project 329180

Tire Traction Characteristics Affecting Vehicle Performance

Interim Document 8

November 1974

Sponsored by

The Motor Vehicle Manufacturers Association

HSRI Digital Computer Programs For Semi-Empirical Tire Models

PREFACE

The tire model programs described in this document supersede the programs described in Appendix IV of Interim Document 6, "A Comparative Evaluation of Five Tire Traction Models." These programs have been revised to permit greater flexibility in their use. A single main program now calls the five tire model subroutines individually or sequentially for a specific data set. Provision has also been made for calling a plot subroutine to produce plots of selected tire model output.

The preparation of input data is discussed and a data preparation program is described which computes values of the friction performance parameters required by each of the tire model subroutines.

This document contains all of the computer programs and information necessary to fit traction curves calculated from any of the five tire models discussed in Document 6 to tire traction data measured in the laboratory or on the road.

ii

CONTENTS

....

1.0	TIRE	MODEL PROGRAMS 1
	1.1	Main Program (TMMAIN) 1
	1.2	Tire Model Subroutines
	1.3	Plot Subroutine (TMPLOT) 8
	1.4	Program Listings 10
	1.5	Examples
2.0	TIRE	MODEL DATA PREPARATION 43
	2.1	Frictional Performance Data 45
	2.2	Computer Program
	2.3	Example

.

1.0 TIRE MODEL PROGRAMS

The five tire models whose descriptive equations are summarized in Appendix II of Document 6* are programmed as FORTRAN subroutines. The programming has employed the normalization scheme described on page 125 of Document 6, and the subroutines return dimensionless forces (FX, FY) and moment (XMZ) as well as the dimensional values (X, Y, and Z). The dimensional values are printed by the main program (if switch ISW2=1), the dimensionless values are used for plotting (ISW2=2).

1.1 MAIN PROGRAM (TMMAIN)

The main program is structured to obtain comprehensive traction response data from any or all of the tire model subroutines. The selection of models to be exercised, for a specific set of input data, is determined by reading model calling integers into the array MODEL by FORMAT(511). For example, to obtain the responses of models 1, 4, and 3, in that order, for a specific data set, simply punch 143 into the first three columns of the data card which holds input for the array MODEL. There must be at least one and at most five model calling numbers specified; no particular order is necessary.

The value of the input datum ISW1 selects the slip variable $(s_x \text{ or } \alpha)$ to be swept at discrete values of the path variable $(\alpha \text{ or } s_x)$. When ISW1=1, α -paths are taken; s_x is swept over N points separated by intervals of size DSX, beginning at SX11. If N=0, each s_x -sweep is made over six default values $(s_x=0., .2, .4, .6, .8, 1.0)$. The number of α -paths taken is determined by the

^{*}A Comparative Evaluation of Five Tire Traction Models, J. T. Tielking and N. K. Mital, UM-HSRI-PF-74-2, Sponsored by the Motor Vehicle Manufacturers Association, January 1974, NTIS Order No. PB-229-707.

input integer M. If M=0, s_x is swept only for the path α =0. If M > 0, s_x -sweeps are made for M α -paths at intervals DALFA, beginning at ALF11. When ISW1=2, s_x -paths are taken; α is swept over M points separated by intervals of size DALFA, beginning at ALF11. If M=0, each α -sweep is made over six default values (α =0., 4., 8., 12., 16., 20.). The number of s_x -paths taken is determined by the input integer N. If N=0, α is swept only for the path s_x =0. If N > 0, α -sweeps are made for N s_x -paths at intervals DSX, beginning at SX11.

The input datum ISW2 selects the mode of output; printing (ISW2=1), or plotting (ISW2=2). When ISW2=2, a third switch, ISW3, is active. ISW3 selects one of the eight possible data plots which can be produced by subroutine TMPLOT, described in Section 1.3.

The main program reads the following data in input modules of either Type 1 or Type 2 (described below).

ISW1	selects sweep variable, $s_{\chi}(=1)$ or $\alpha(=2)$
ISW2	<pre>selects output mode, print (=1) or plot (=2)</pre>
ISW3	selects plot number (1-8) when ISW2=2
ISW4	selects input module type
SX11	initial value of s_x for s_x -sweep
DSX	step interval in s _x -sweep
N	number of evaluations in s_x -sweep
ALF11	initial value of α for α -sweep

DALFA step interval in α -sweep

M number of evaluations in α-sweep

MODEL selects model to be exercised (1-5, one at least, five at most)

MUO adhesive friction limit, μ_0

AS speed sensitivity parameter, A_S V traveling velocity AS*V < 1

MUX longitudinal sliding friction coefficient, μ_{r}

MUY lateral sliding friction coefficient, $\mu_{\rm v}$

CS longitudinal traction stiffness, C_s

CALFA lateral traction stiffness, C_{α}

KX longitudinal carcass stiffness, K

KY lateral carcass stiffness, K_v

BX longitudinal patch relocation factor, $\beta_{\chi}(=1.)$

BY lateral patch relocation factor, $\beta_{y}(=1.)$

L contact patch length

FZ tire load, F₇

If the speed sensitivity factor, $A_s(AS)$, causes the product A_sV to be greater than unity, the speed sensitive friction coefficient, $\mu = \mu_0 (1-A_sV_s)$, may become negative. If this occurs, the traction forces and moment calculated by tire models HSRI-I, -II, -III are invalid and the program execution may be stopped by a FORTRAN exponentiation error in subroutine TMHS3.

The input data must appear in the following eight card image formats (A-H).

Card A (4I1)

ISW1, ISW2, ISW3, ISW4

Card B (2F4.0, I3)

SX11, DSX, N

Card C (2F4.0, I3)

ALF11, DALFA, M

Card D (2F8.3)

CS, CALFA

Card E (4F8.3)

KX, KY, BX, BY

Card F (2F8.3)

L, FZ

Card G (5I1)

MODEL(1), MODEL(2), MODEL(3), MODEL(4), MODEL(5)

Card H (5F8.3)

MUO, AS, V, MUX, MUY

The data card images are arranged in one or more input modules which are read by the main program. There are two types of input modules, the type being identified by the input datum ISW4. The card order for the two input module types is shown in Table 1. There are no restrictions on the number or order of the input modules.

TABLE 1

٠

INPUT DATA MODULES

	Type 1	Type 2
	ISW4=1	ISW4=2
C a rds/ Module	Constant; 8	Variable; 7+2n, where n is an integer*
Card Order	A B C D E F G H	A B C D E F G H G H

*n = number of times that cards G and H are repeated.
**The last card of a Type 2 input module must be blank.

The Type 2 input module is useful for computer runs where output is desired for fixed ranges of s_{χ} and α in a tire model study with

- i) Constant: KX, KY, BX, BY, L, FZ
- ii) Varying: (Velocity) V
- iii) Various tire model numbers with MUO, AS, MUX, MUY being computed for each tire model by the friction performance data program (described in Section 2.0).

To facilitate conversion of this program for execution on other computing equipment, I/O device numbers are given by variables, IRD (reader) and IPR (printer), which are set before the first READ statement.

1.2 TIRE MODEL SUBROUTINES

The tire model subroutines are identified by a five-character name and a model calling integer as listed in Table 2. These subroutines are called from the main program (TMMAIN). In addition to explicit input/output arguments in the subroutine calling statements, the subroutines receive input data from the main program via the common block labeled BLK1.

TABLE 2

TIRE MODEL CALLING INTEGERS AND SUBROUTINE NAMES

Calling Integer	Subroutine Name	Tire Model	Document 6 Page
1	TMHS1	HSRI-I	21
2	TMHS 2	HSRI-II	27
3	TMHS 3	HSRI-III	69
4	TMSKI	Sakai	55
5	TMGDR	Goodyear	44

The tire model subroutines employ the following argument variables.

Input Arguments

SX	longitudinal s	lip parameter,	^s x
ALFA	slip angle, α	(degrees)	

Output Arguments

FX	longitudinal force	
FY	lateral force	dimensionless
XMZ	aligning moment	
X	longitudinal force	
Y	lateral force	dimensional
Z	aligning moment	
XIA	adhesion limit fract	ion, ξ _a /L
XIS	transition limit fra	ction, ξ _s /L

It should be noted that XIS is relevant only for the HSRI-II and HSRI-III models as these are the only models which include a transition region between adhesive and sliding contact.

1.3 PLOT SUBROUTINE (TMPLOT)

The plot subroutine is called from the main program when ISW2=2. The subroutine argument, ISW, should be zero on the first call (to check validity of switches ISW1 and ISW3—certain combinations are illegal) and nonzero on succeeding calls. The plot data is carried in the common block labeled BLK2. The following plots are produced, according to the integer value of ISW3.

ISW3	Plot
1	F_x vs. s_x for various α
2	F_y vs. s_x for various $\alpha \neq 0$
3	M_z vs. s_x for various $\alpha \neq 0$
4	F_y vs. F_x for various α (s _x sweep)
5	M_z vs. F_x for various α (s _x sweep)
6	F_y vs. α for various s_x
7	M_z vs. α for various s_x
8	F_y vs. α and F_z (carpet plot)*

*The carpet plot facility has not yet been implemented by coding in the main program.

.

1.4 PROGRAM LISTINGS

The following pages show listings of the main program (TMMAIN), the tire model subroutines (TMHS1, TMHS2, TMHS2, TMSKI, TMGDR), and the plot subroutine (TMPLOT), which have been compiled and executed on the PDP 11/45 computer at the Highway Safety Research Institute.

Subroutine PLOTST (start plot) and PLOTND (end plot), called by the main program, and GRID (draw grid), GRDNUM (number grid), PLABEL (label axes), PLOTPT (plot point), SYMBOL (label plot), called by the plot subroutine, are not included in the following listings as they are highly dependent on the particular computing and plotting equipment utilized.

FORTRAN	VØ6-13	16142133 13-JAN-75 PAGE 1
	C	TMMAIN MAIN PROGRAM FOR SEMI-EMPIRICAL TIRE MODELS
	č	
	Ċ	
	C	
0001		DIMENSION MUULL(5)/ALF2(6)/542(6) Atmengtan FF7(g)
0002		REAL MUD, MUY, KX, KY, L, MUX, KXU, KYU
0004		REAL KKX, KKY
	C	VARIABLES USED IN MODEL ROUTINES
° 0005		COMMON/BLK1/MUO,AS,V,MUX,MUY,CS,CALFA,
	· · · · ·	KX;KY;BX;BY;L;FZ NARTARI 50 11050 RV DI 07- V V 7 DIMENGTONAL COUNTERRAPT OF EV.EV.YN7
800L		COMMON/REKS/AFF1(101).\$X1(101).FX(101).FV(101).XM7(101).
0000		X(101),Y(101),Z(101),
	•	SCALX, SCALY, XMIN, YMIN, IPR, ISW1, ISW3, NUMBER, N, M, ITYPE
0007		REAL+8 NAME(5)
0008	• • •	DATA NAME/'MODEL 1', MODEL 2', MODEL 3', SAKAI ', GOODYEAR'/
0000		DATA ALFRIG .4819 .1620. / .5X2/0 2. 468.1./
0007	C	
	Č	I/O DEVICE NUMBERS
0010		IRD=6
0011	•	IPR#5
	C	CALL PLOTSTART TO BE READT FOR PLOTTING
	c	.Besseseeseeseeseeseeseeseeseeseeseeseese
	Č	READ IN SETS OF VARIABLES UNTIL END OF FILE
0012	10	READ(IRD, 1400, END=9999) ISW1, ISW2, ISW3, ISW4
	C	, IF ONLY PARTIAL SET OF VARIABLES, PRINT ERROR, EXIT
0013		READ(IRD,2000,END#1900)3X11,03X,N,ALP11,0ALPA,M READ(IRD,2000,END#1900)3X11,03X,N,ALP11,0ALPA,M
0014 0015	• 4	READ(IRD, 3000)ENDE19003G0JCAGFAUJKAUJKTUJDAJDTJEJFZ
	C	IF MODEL(1) EQUALS ZERO, REINITIALIZE MODE
	C	OF OPERATION SWITCH ISWA AND READ IN NEW DATA
0016		IF(MODEL(1),EQ.0)GO TO 10
0017	•	READ(IRD, 3500, END=1900) MUQ, AS, V, MUX, MUY
aaïa	C	WETTELTER, TARANMIN, AS, V. MUX, MUY, CSU, CALEAL.
0010		
	Ç	
	C	
	Ç	
8819	e ' '	GOTO(15/20)ISW2 DDTNT OUT HEADING IE IRWSH4
a a Ź a	68888 15	WRITE(TPR.5000)
0021	• -	WRITE(IPR, 6000)
- *	C , ,	
·	C	NORMALIZE VARIABLES
0022	20	
0024		WALFARUALFAU/FL KX#KXU/FZ
0825	<u> </u>	KY=KYU/FZ
*	C.,,,,	TAKE PATH DESIGNATED BY ISW1
	C,,,,	1 = ALPHA PATH
	C	A 2 B 3X PATM

FORTRAN V06,13 16142133 13-JAN-75 PAGE 2 GO TO (30,40),15W1 0026 C , , C.... ALPHA PATH, SWEEP SX C C....NOD & SX NOT SPECIFIED; DEFAULT SX VALUES FOR N=6 TAKEN 0027 30 IF(N.GT.0) GO TO 50 0028 N=6 0029 DO 11 I#1,N i. 0030 $11 \ SX1(I) = SX2(I)$ 0031 GO TO 150 C....N>0 I SX VALUES AS SPECIFIED ARE USED IN SWEEP 0032 50 SX1(1)=SX11 0033 DO 100 I=2,N 0034 100 SX1(I)=SX1(I=1)+DSX C,,,,,M=0 ; SX VALUES SWEPT FOR ALPHAND ONLY C....MO I SX VALUES SWEPT FOR EACH ALPHA VALUE GIVEN 0035 150 ALF1(1)=0. 0036 IF(M.EQ.0)GO TO 250 0037 ALF1(1)=ALF11. 0038 DO 200 I=2,M 0039 200 ALF1(I)=ALF1(I=1)+DALFA C C., FOR EACH ALPHA VALUE, CALL MODEL NUMBERS DESIRED WITH ALL SX: C..... POSSIBLE MODELS ARE CALLED UNTIL NODEL NUMBER Ø IS FOUND 0040 250 DO 400 IMODE=1,5 NUMBER=MODEL(IMODE) 0041 0042 IF (NUMBER. EQ. 0. OR. NUMBER. GT. 5) GO TO 500 0043 XI\$=0. C PRINT LABEL OR PLOT GRID 0944 IF(ISW2,EQ,1) WRITE(IPR,4000)NAME(NUMBER),FZ 0045 IF(ISW2,EQ.2)CALL TMPLOT(0) C.,.,.IF ILLEGAL PLOT (ISW3=0 AFTER TMPLOT CALL): C.,.,,I) GET NEXT SET OF DATA IF ISW4=1 C....2) EXIT PROGRAM IF ISW4=2 0046 IF(ISW2,EQ.2,AND.ISW3,EQ.0)GO TO(10,9999),ISW4 0947 DQ 400 I=1,M 0048 IF(ISW2_EQ,1)WRITE(IPR,4000) 0049 DO 300 J=1.N 0050 KaJ 0051 GO TO(1,2,3,4,5), NUMBER 0052 300 CONTINUE C....DO THE PLOTS NOW IF ISW2=2 C 0053 IF(ISW2.EQ.1) GO TO 400 0054 CALL TMPLOT(1) C 400 CONTINUE 0055 C 0056 500 CONTINUE C C.... READ NEXT SET OF VALUES 0057 GO TO (10,14), ISW4 Ĉ C....SX PATH, SWEEP ALPHA C C....MEDI ALPHA NOT SPECIFIED ; DEFAULT ALPHA VALUES FOR ME6 TAKEN

•

16:42:33 13-JAN-75 PAGE 3 FORTRAN VØ6.13 40 IF(M.GT.G) GO TO 550 0058 0059 Mas 0060 DO 12 I=1,M 0061 12 ALF1(I)#ALF2(I) 0062 GO TO 675 . . C.....M>0: ALPHA VALUES AS SPECIFIED ARE USED FOR SWEEP 0063 550 ALF1(1)=ALF11 0064 DO 600 I=2.M 0065 600 ALF1(I)#ALF1(I=1)+DALFA C. NFOSALPHA VALUES SWEPT FOR SXED ONLY C....N>01ALPHA VALUES SWEPT FOR EACH ALPHA VALUE GIVEN 8866 675 8X1(1)=0. IF(N.EG.0) GOTO 750 0067 0068 SX1(1)=SX11 0069 DO 700 I=2.N 700 \$X1(I)=\$X1(I=1)+D\$X 0070 C C,,,,,FOR EACH SX VALUE, CALL MODEL NUMBERS DESIRED WITH ALL ALPHAS. C.... 5 POSSIBLE MODELS ARE CALLED UNTIL MODEL NUMBER Ø IS FOUND 0071 750 DO 900 IMODE=1,5 C 0072 NUMBER=MODEL(IMODE) 0073 IF (NUMBER.EQ.0. OR. NUMBER. GT. 5) GO TO 1000 0074 XIS=0. PRINT LABEL OR PLOT GRID C 0075 IF(ISW2,EQ,1) WRITE(IPR,4000) NAME(NUMBER),FZ 0076 IF(ISW2,EQ.2)CALL TMALOT(0) C.,., IF ILLEGAL PLOT (ISW3#0 AFTER TMPLOT CALL): C,,,,,1) GET NEXT SET OF DATA IF ISW4=1 9977 IF(ISW2.EQ.2.AND.ISW3.EQ.0)GO TO(10,9999), ISW4 0078 DO 900_J=1,N IF(ISW2,EQ.1)WRITE(IPR,4000) 0079 C 0000 DO 800 I=1,M 0081 KII 0082 GO TO(1,2,3,4,5), NUMBER 0083 800 CONTINUE C C....DO THE PLOTS NOW IF ISW2=2 C 0084 IF(ISW2, EQ. 1)GO TO 900 0085 CALL TMPLOT(1) C 0086 900 CONTINUE C C 1000 CONTINUE 0087 C READ NEXT SET OF VALUES 0088 GO TO (10,14), ISW4 Ċ 0089 1 CALL TMH\$1(8×1(J), ALF1(I), FX(K), FY(K), XMZ(K), X(K), Y(K), Z(K), XIA) 0090 GO TO 350 0091 2 CALL TMH\$2(\$X1(J), ALF1(I), FX(K), FY(K), XMZ(K), X(K), Y(K), Z(K), XIA, +XIS) 0092 GO TO 350

٣

Υ.

FORTRAN	V06.13		16142133	13-JAN-75 PA	GE 4
0093	3 C	ALL TMHS3(SX1(J), IS)	ALF1CI),FX(K),FY(K),XMZ(K)	,XČK3,Y(K),Z(K),XIA,
0094	G	0 10 350	,		1
0895	4 6	ALL THERT (SX1(J)	ALFICT).FXCK	1. FY(K), YM7(K)	. * (K) . * (K) . 7 (K) . * T A)
0096	a i	0 10 350			
0097	5 II	F(K.EQ.1) CALL TH	GDR (8X1 (J) . A	LFI(I),FX(K),F	Y(K),XMZ(K),X(K),Y(K),
0098	11 +Z	F(K.GT.1)CALL TM (K),XIA,FX(K=1),	DR(SX1(J),AL Y(K=1),XMZ(K	F1(1),FX(K),FY =1))	(K),XMZ(K),X(Ķ),Y(K),
0999	CPI 350 II	RINT OUT DIMENSIO F(ISW2.EQ.1) WRITE(IDR.AGGG	NAL VALUES I	F ISW2=1; ELSE	PLOT LATER
	C CRI	ETURN TO LOOP	//		2(7)}//#//10
0100	6	N TACTAR. 4001. TSW	14		
0100	- C - T	NOIT FORMO	· 4		
0101		OTTF/TOD. GAMAN			
0101	0890 F	NONAT//GEND OF F1	IF ENCAUNTED	ED TH READING	DADAMS' EDDAD EVITEN
OTOE		DEF DIOT FACTITY	ILE ENGUUNIER	EN TH REARING	PARANO: CRAUR CAll'J
	F8600 F	ALL PLOTND	TEMPODADTI		
4141	0000 0	ALL FLUINDUUUUU	I SHPURARIL	TUNUSADLE	
	C	ALL CAL!			
	C				
0104	2000 1	DRMAT(2F4,0,13)			
0105	1400 FI	DRMAT(511)			
0106	3000 F	ORMAT(2F8,3/4F8,3	10F8,3)		
0107	3500 F	ORMAT (558.3)			
0108	4000 FI	DRMAT("0", A8, " F	Z=",F6,1/)		
0129	5000 F	DRMAT(1H1)			1
0110	6000 F(+	ORMAT(10X,'SLIP / Moment',8>	NGLE LON (, 'Adhe\$ion',	G, SLIP FO 6x, "TRANSITION	RCE-LONG FORCE-LAT [/11%,"(ALPHA)",10%,
	* *	(8x <u>)</u> *,11x,*(Fx)*,	11X, *(FY)*,1	1X, "(MZ)", 10X,	/(XIA)/,11X,/(XIS)//
à	+1	1X, "DEGREES", 8X, ' 10X, "	PERCENT	,'LB.',12X,'LB	• • 11X, * LB= IN* ;
	+ • •			************/)	
0111	7000 F(+Fi	DRMAT('1 MUOB',F6 B,3/' C8=',F9,3/'	.3/ AS#',F8 CALFA=',F9.	3/" V#",F8.3/ 3/" KX#",F8.3/	* MUX#*,F8.3/* MUY#*, * Ky=*,F8.3/* Bx=*,
	- + F (0.3/* BT#*/*8.3/*	La", ro, 3/-	r 2= , 9r 10.5)	
0112	8000 F(DRHAT (F17, 1; F16, 2	. 3F15.1,2F15	.3)	
₩ 433 (* **	. 21				
	POUTÍNES			, i	· · ·
	TMPLOT,	THHS1 , THHS2 ,	TMHSS , TM8K	I , TMGDR , EX	IT
	OPTIONS	=/0N./0P13			
	BLOCK	LENGTH			
	MAIN.	1817 (007062)*			
	BLK1	26 (000064)			
	BLK2	1631 (006276)			

ı

...

-
Ř
<u> </u>
_
Ň
Š
-
7
3
$\tilde{\alpha}$
-
ò
ō
L.

-

	C TMHS! HSPI-1 (DOC.6. REF.3)
ดษต1	SUBROUTINE TMHS1(SX,ALFA,FX,FY,MZ,X,Y,Z,XIA)
	C UNTEORM PRESSURE DISTRIBUTION
	C COMPLETE SLIDING ONLY AT WHEEL LOCK
3	C WHEEL LOCK FORCES ARE COMPUTED.
	C MUMENI IS NOT COMPOLED. C NO TRANSITION FROM ADHESION TO SLIDING.
	C BEAL MILY, MILY, M7, KY, KY, L, MILO
9093 9093	COMMON/BLK1/MUQ, AS, V, MUX, MUY, CS, CALFA,
	+ KX,KY,BX,BY,L,FZ C
004	C ALFEALFA* 0174533
0005	SY=SIN(ALF)/COS(ALF)
	CSPECIAL CASE FOR SXESYED.
0000 0001	IF (ABS (SX), GF , BUI) GUI U ZI IF (ABS (SY), GE , BUI) GOT O 21
9008	22 FX=0.
9 N N 9	FYE0.
9010 201	XIAE1.
1100	00 10 50 21 FONTFNIF
0013	IF(SX+1.)20,20,60
9014	80 SX=1.
9015 9015	20 VS=V*COS(ALF)*SGRT(ABS(SX)**2。+ABS(SY)**2。) Mitematical (* - **8+VS)
0100	TEMPESORT (ABS(SX*CS)**2.+ABS(SY*CALFA)**2.)
•	
	CUTITRAINT AUARVLUN KANGR.
0018 0018	C IF(SX-1.)49, 70,22
0019	40 XIA=.5+MU+(1SX)/TEMP
9296	IF(1XIA)50,50,60
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50 XIAPE1.
9073 9073	60 XIAPEXIA
1	
	CADHESION AND SLIDING.
ิดผ้วน	70 FX=CS*SX/(1SX)*XIAP*(2XIAP)
9025	FY=CALFA*SY/(1.=SX)*XIAP*(2.=XIAP)
9696	
	CCOMPLETE SLIDING (WHEEL LOCK).
7500	
9628	TEMPESORT(ABS(SX*CS)**2.+ABS(SY*CALFA)**2.)
0020 0420	
0000	

	CMULTIPLY BY FZ.
9031 9032 9033 9034	30 X==FX*FZ Y==FY*FZ Z=0. MZ=0.
9035 9036	RETURN END
	ROUTINES CALLED: SIN , COS , ABS , SQRT
	OPTIONS = /ON,/OP
	BLOCK LENGTH TMHS1 440 (001560)★ BLK1 26 (000064)
	COMPILER CORE PHASE USED FREE
	DECLARATIVES 00216 01576 EXECUTABLES 00639 01153 ASSEMBLY 00441 03917

DK1:TMHS1,LP:=CR:

.

FORTRAN	VØ8.04	13:55:06 02-0CT-74 PAGE 1
	С	TMHS2 HSRI-II (DOC.6, REF.4)
	C	
	C	
aga1	ſ	SUBROUTINE TMHS2(SX,ALFA,FX,FY,MZ,X,Y,Z,XIA,XIS)
	Ċ	
•	C	
	С	UNIFORM PRESSURE DISTRIBUTION
_	C	COMPLETE SLIDING ONLY AT WHEEL LOCK
	C	WHEEL LUCK FURCES ARE CUMPUIED. TRANSITION FROM ADDERION TO SUIDING
	r	TRANSITION FROM ADDESION TO SCIDING.
	Č	***************************************
	Ċ	
0002		REAL MU, MUN, MZ, MZA, MZT, MZS, MZP, KY, KX, L, MUX, MUY
0003		COMMON/BLK1/MUO,AS,V,MUX,MUY,CS,CALFA,
	· ·	
	Č	
a0a4		ALF=ALFA*.0174533
a0a5		SY=SIN(ALF)/COS(ALF)
000/	C S	SPECIAL CASE FOR SX=SY=0.
0000		TELABS(SX), GE , 001)GOTO 21
0007	22	FX=0.
0009		FY=0
0010		MZ=0.
0011		XIA=1.
0012		XIS=1.
au13	2	GONTINUE
0014	ζ1	TE(SX=1, 10, 10, 20)
9016	20	SX=1.
0017	10	SP=SQRT((ABS(SX)**2,)+(ABS(SY)**2,))
0018		VS=V*COS(ALF)*SP
0019		MU=MU0*(1.=AS*VS)
1020	ſ	1F(3X=1.)30,13,27
	Č	COMPLETE SLIDING (WHEEL LOCK).
9021	15	XIA=Ø.
0022	_	XIS=0,
9953		XIAP=0.
0024		XISP=0.
0025 0026		
0027		GO TO 100
	C .	
	C	DETERMINE ADHESION AND TRANSITION LIMITS.
a028	30	SXP=SX/(1SX)
0029		SYP=SY/(1.=SX)
UUSU 0021		IEMM=3NKI((ABS(3**U3)**2.J+(ABS(SY*UALFA)**2.)) XTA=_5*MU0*(1.=SX)/TEMP
····· · · •		NY CARACTER ANTICE CONTRACTER CONTRA

```
FORTRAN VØ8_04
                                   13:55:06
                                                02-0CT-74
                                                            PAGE
                                                                     2
0032
               XIS=,5*MU*(1.=SX)*(1./CS+1./CALFA)/SP
0033
               IF(1.-XIA)50,50,60
0034
            50 XIAP=1.
0035
               XISP=1.
               GO TO 100
0036
0037
            60 IF(XIS=XIA)70,70,80
0038
            70 XIAP=XTA
0039
               XISP=XIA
0040
               GO TO 100
0041
            80 IF(1.-XIS)90,90,110
0042
            90 XIAPEXIA
0043
               XISP=1.
0044
               GO TO 100
           110 XIAP=XIA
0045
0046
               XISP=XIS
         C
         C.... DETERMINE FORCES IN CONTACT PATCH.
        Ĉ
0047
           100 FXA=CS*SXP*XIAP**2.
               FXT=(CS*SXP*XIAP+.5*MU*SX/SP)*(XISP=XIAP)
0048
0049
               FXS=MU*SX/SP*(1-XISP)
0050
               FX=FXA+FXT+FXS
        C
0051
               FYA=CALFA*SYP*XIAP**?.
0052
               FYT=(CALFA*SYP*XJAP+.5*MU*SY/SP)*(XISP=XIAP)
0053
               FYS=MU*SY/SP*(1=XISP)
0054
               FY=FYA+FYT+FYS
        С
9055
               MZA=(.666666*SXP*(CS=CALFA)*XIAP=.166666*CALFA*(4.*XIAP=3.))*SYP*XIA
              1P**2.
0056
               MZT=.666666*((CS=CALFA)*(SYP*SXP*XIAP*XIAP+.25*(1./CALFA+1./CS)*MU*
              1SYP*SX/SP*XIAP+.25*MU**2./(CS*CALFA)*SX*SY/SP**2.)=.25*(CALFA*SYP*
              2XIAP*(4.*XIAP+2.*XISP=3.)+.5*MU*SY/SP*(2.*XIAP+4.*XISP=3.)))*(XISP
              3=XIAP)
9057
               MZS=,5*MU*SY/SP*(SX/SP*MU*(1./CALFA=1./CS)=XISP)*(1.=XISP)
0058
               MZP == (BX/KX = BY/KY) * FX * FY
0059
               MZ=MZA+MZT+MZS+MZP/L
        C
        С.
              .MULTIPLY BY FZ AND L.
        C
0060
            40 X==FX*FZ
               Y==FY*FZ
0061
               Z==MZ*FZ*L
0062
        С
        C
        C
0063
               RETURN
0064
               END
        ROUTINES CALLED:
        SIN
              , COS
                                , SQRT
                       , ABS
        OPTIONS = /ON,/OP
        BLOCK
                     LENGTH
        TMHS?
                 824
                        (003160) \star
        BLK1
                 26
                        (000064)
```

```
13:56:03 Ø2=0CT=74
                                                         PAGE 1
FORTRAN VØ8.04
              TMHS3 HSRI-III (DOC.6, PAGE 69)
        С
        С
        C
              SUBROUTINE TMHS3(SX, ALFA, FX, FY, MZ, X, Y, Z, XIA, XIS)
0001
        C
        C
        C
        C
              PARABOLIC PRESSURE DISTRIBUTION
        C
              COMPLETE SLIDING OCCURS BEFORE WHEEL LOCK
        C
              WHEEL LOCK FORCES ARE COMPUTED.
        C
              TRANSITION FROM ADHESION TO SLIDING.
        C
        C
        C
              REAL MU, MUO, MZ, MZA, MZT, MZS, MZP, KY, KX, L, MUX, MUY
0002
0003
              COMMON/BLK1/MUO,AS,V,MUX,MUY,CS,CALFA,
                     KX, KY, BX, BY, L, FZ
        C
        C
              C
              ALF=ALFA*.0174533
0004
0095
             SY=SIN(ALF)/COS(ALF)
        C....SPECIAL CASE FOR SX=SY=0.
              IF(ABS(SX),GE.,005)GOTO 21
0006
              IF(ABS(SY).GE..005)GOTO 21
9097
0008
           22 FX=0.
              FY=0.
0009
              MZ=0.
9010
              XIA=1.
0011
0012
              XIS=1.
              GO TO 999
0013
           21 CONTINUE
0014
0015
              IF(SX=1.)10,10,22
           10 SP=SQRT(SX*SX+SY*SY)
0016
ØØ17
              VS=V*COS(ALF)*SP
0018
              MU=MUO*(1 = AS*VS)
              IF((1.-SX),GE..001)GO TO 30
0019
        C
        C....COMPLETE SLIDING (WHFEL LOCK).
        C
an5n
           15 XIA=0.
0021
              XIS=0.
9025
              XIAP=0.
0023
              XISP=0.
              SXP=0.
7024
              SYP=0.
7025
7026
              SX=,999
7027
              GO TO 120
        С
        C....DETERMINE ADHESION AND TRANSITION LIMITS.
        С
1028
           30 SXP=SX/(1.=SX)
1029
              SYP=SY/(1-SX)
1030
              TEMP=SORT((ABS(SX*CS)**2,)+(ABS(SY*CALFA)**2,))
1031
              XIA=1_=TEMP/(3.*MU0*(1.=SX))
```

```
FORTRAN VØ8.04
```

2

XIS=1.=CS*CALFA/(CS+CALFA)*SP/(3.*MU*(1.=SX)) 1032 C 0033 IF(XIS)35,35,40 35 XIAP=0. 1034 XISP=0. 1035 XIA=0. 7036 2037 XIS=0. GO TO 120 7038 Ĉ 0039 40 IF(XIA)45,45,50 45 XIAP=0. 0040 0041 XIA=Ø. GO TO 90 MØ42 Ĉ 50 JF(1,-XIA)60,60,70 0043 0044 60 XIAP=1. XISP=1. ØØ45 GO TO 120 0046 C 70 IF(XIS=XIA)80,80,90 0047 80 XIAP=XIA 0048 XISP=XIAP 0049 0050 GO TO 120 90 IF(1.-XIS)100,100,110 0051 100 XIAP=XIA 0052 XISP=1. 0053 GO TO 120 0054 110 XIAP=XIA 0055 XISP=XTS 0056 CCOMPUTATION OF TRACTION FORCE. С, r 120 FXA=CS*SXP*XIAP**2. 0057 0058 FXT=(1,/3,*CS*SXP*(3,=2,*XIAP=XISP)*XIAP/(1,=XIAP)+ +MU*SX/SP*(3.=2.*XISP*XIAP)*XISP)*(XISP=XIAP) FXS=MU*SX/SP*(1.=3.*XISP**2.+2.*XISP**3.) 0059 FX= FXA+FXT+FXS M060 C C....COMPUTATION OF CORNERING FORCE. C FYA=CALFA*SYP*XIAP**2. 0061 FYT=(1,/3,*CALFA*SYP*(3,=2,*XIAP=XISP)*XIAP/(1,=XIAP)+ 9062 +MU*SY/SP*(3.=2.*XISP=XIAP)*XISP)*(XISP=XIAP) FYS=MU*SY/SP*(1.=3.*XISP**2.+2.*XISP**3.) 0063 M064 FY= FYA+FYT+FYS С C....COMPUTATION OF ALIGNING MOMENT. C MZA=2./3.*SXP*SYP*(CS=CALFA)*XIAP**3.=1./6.*SYP*CALFA 0065 *(4.*XIAP**3.*3.*XIAP**2.) MZT=SY*(CS+CALFA)*(SX/((1.=SX)**?.)*XIAP**?./((1.=XIAP)**?.) 0066 +*1./15.*(6.*XIAP**?.+3.*XIAP*XISP*XISP**?.=15.*XIAP*5.*XISP+10.)) +*(XISP=XIAP) MZT=MZT+SY*(CS=CALFA)*(SXP*MU/SP*(1./CS+1./CALFA)*XIAP*XISP/(1... 9067 +XIAP)*_1*(3_*XISP**2_+3_*XIAP**2_+4_*XIAP*XISP=10_*(XIAP+XISP)+ +10.)) * (XISP = XIAP)

3

MZT=MZT+SY*(CS=CALFA)*(SX*MU**2./(SP**2.*CS*CALFA)*.3*(6.*XISP**2. 0068 ++3,*XIAP*XISP+XIAP**2,=15,*XISP*5,*XIAP+10,))*(XISP=XIAP) MZT=MZT+SY*CALFA/(1.=SX)*XIAP/(1.=XIAP)*1./6.*(3.=3.*XIAP*(2.=XIAP 0069 +)=XISP*(3.=XISP)+2.*XISP*XIAP)*(XISP=XIAP) MZT=MZT+SY*MU*XISP/SP*.5*(3.=3.*XISP*(2.=XIAP)=XIAP*(3.=XIAP)+2. P070 +*XIAP*XISP)*(XISP=XIAP) MZS=MU*SY/SP*(.6*MU*SX/SP*(1./CALFA=1./CS) 0071 *(1.=10.*XISP**3.+15.*XISP**4.=6.*XISP**5.) ŧ =1.5*(XISP**2.=2.*XISP**3.+XISP**4.)) MZP==(PX/KX=BY/KY)*FX*FY 9672 0073 MZ= MZA+MZT+MZS+MZP/L C MULTIPLY BY FZ AND L. C C 999 X==FX*FZ 0074 0075 Y==FY*FZ Z==MZ*FZ*L 0076 С C Ĉ RETURN ØØ77 END 0078 ROUTINES CALLED: SIN , COS , ABS , SURT OPTIONS = /ON, /OPLENGTH BLOCK 1192 (004520)* TMHS3 BLK1 26 (000064) **COMPILER ---- CORE** PHASE USED FREE DECLARATIVES 00216 01576 FXECUTABLES 00879 00913 ASSEMBLY 09673 03685

DK1:TMHS3,LP:=CR:

ORTRAN	VØ8.04	i	13:57	:16	02-0CT-74	PAGE	1
	С	TMSK1	SAKA1	(DOC.6	, REF.6)		
	Ċ			******			
	C				•		
1001	~	SUBROUTINE	TMSKI(SX,ALF	A,FX,FY	, MZ, X, Y, Z, X	XIA)	
	C						
	č	PARABOLIC P	RESSURE DIST	RIBUTIO	N		
	C C	OMPLETE SLI	DING POSSIBL	E WITHO	UT WHEEL LO	nck.	
	С	WHEEL LOCK	(SX=1.) CAN	BE SPEC	IFIED.		
	C	NO TRANSITI	ON FROM ADHE	SION TO	SLIDING.		
	C		• •	•			
	C				*****		
0000	L	REAL MILO. MIL	X.MUY.M7.KY.	I . KX			
1003		COMMON/BLK1	/MUD.AS.V.MU	X. MUY.C	S.CALFA.		
	+	KX,K	Y, BX, BY, L, FZ				
	С						
	С						
	C						
aga4		ALF=ALFA *	3.1416/180.				
0005		SYESIN(ALF)					
0000	17	1 - (5 × = 1 •) 1 0 Y T A = Ø	• 1 / • 1 /				
aaa8	± ′	SX=1.					
9009		SP=SQRT((AB	s(sx)**2.)+(ABS(SY)	**2.))		
0010	. .	GO TO 40					
	C S	PECIAL CASE	FOR SX=SY=0	•			
a011	10	IF(ABS(SX),	GF. 001)GOTC	16			
0012		IF(ABS(SY).	GE. 001)GOTC	16			
0015	15						
0014		M7=0.					
0016		XIA=1.					
0017		GO TO 20					
A018	16	CONTINUE					
9019		SXP=SX/(1	SX)				
020		SYP=SY/(1_=	SX)				
021	c	SHERNKI ((AH	5(5%)**2.)+(AB3(31)	**2•)]		
		DETERMINE A	DHESTON LIMT	T.			1
	C		DUFOTOU FIU				
0022	-	XIA=1SQRT	((ABS(SX*CS)	**2.)+(ABS (SY*CALF	FA)**2.))/(3.*MU()*(1.=SX))
a023		IF(XIA)40,4	0,50				
<i>R</i> B24	50	IF(1 - XIA)6	0,69,70				
	C ,	CONDICTE AD					
		COMPLETE AD					
025	60	FX=CS*SXP					
9026	-	FY=(CALFA+C	S*SX)*SYP				
9827		MZ=.1666*SY	P*(3.*CS*SX=	CALFA)+	FX*FY/(KY*L	_)	
7028	•	GO TO 20					
	с,,	ADHESTON AN					
	C	-DUCOTON WN					

.

FORTRAN	VØ8.04		13:57:16	M2=UC1=74	PAGE	2
au29 auza	70 F	FX=CS*SXP*XIA**2.+ FY=(CALFA+CS*SX)*S	MUX*(SX/SP)* YP*XIA**2.+M	(1.=XIA)**2. UY*(SY/SP)*!	*(1.+2.*) (1.=XIA)*:	XIA) *2.*(1.+2.*XIA)
0031	• • •	MZ=.1666*SYP*(3.*C +.5*(SY/SP)*(MU +FX*FY/(KY*L)	S*SX+CALFA*(X*SX*(1.+3.*	3.=4.*XIA)); XIA)=3.*MUY;	*XIA**2. *XIA)*(1.*	-XIA)**2.*XIA
00,32	C .	GO TO 20				
		CUMPLETE SLIDING				
0033 0034 0035	40	FX=MUX*SX/SP FY=MUY*SY/SP M7=FX*FY/(KY*L)				
0036	c	XIA=0.				
	C !	MULTIPLY BY FZ AND	L.			
0037 0038	20	X=-FX*FZ Y=-FY*FZ				
9039	C C	Z==MZ*FZ*L				
0040 0041	C	RETURN END				
	ROUTIN Sin	ES CALLED: , COS , SQRT ,	ABS			
	OPTION	S = /ON,/OP				
	BLOÇK Tmski Blki	LENGTH 605 (002272)# 26 (000064)	¢			
	COMP PHA DECLAR Execut Assemb	ILFR CORE SE USED FRFE ATIVES 00216 01576 ABLES 00639 01153 LY 00477 03881	2 5 5 1			

DK1:SK1,LP:=CR:

FORTRAN	VØ8.04	l -		13:58	:02	02=0CT=74	PAGE	1
	С	TMGDR	GOOI	DYEAR	(DOC.	6, REF.5)		
	С							
	С					-		
7001	c	SUBROUTINE T	MGDR (SX,ALF	A,FX,F	Y, MZ, X, Y, Z	Z,XIA,XOLD	,YOLD,ZOLD)
	C							
	C			-		6 M		
	C	PARABOLIC PR	ESSUR	E DIST	RIBUTI	UN		
	C	COMPLETE SLI	DING	UCCURS	BEFUR	E WHEEL LO	CK	
	C	WHEEL LOCK (SX=1.) SHOU	LD NUT	BE SPECIF	IED.	
	С	NO TRANSITIO	NFRU	M ADHE	SIUNI	U SLIDING.	1	
	C	-	• •				• - •	
	C	**********						
	С		141114		1 1/1			
0002		REAL MUU, MUX	MUY	MZJKYJ				
0003		CUMMUN/BLK1/		3, V, MU V I 77	X, MUY,	LSICALFAI		
	1	• • • • • • • • • • • • • • • • • • • •	, BX, B	1,6,72				
	C		•		• •	• • •	· ·	•
	C				* * * * * *			
0 0 <i>0</i> //	C							
4044 4045		ALFEALFAX.01	74333					
0005		ST=SIN(ALF)/						
0000		IF(SX=1.J10)	12117					
00007 00000	17							
0000 0000								
0019 0019								
0010		$X \downarrow A = 1_{0}$						
011 0012								
0012		38= 9999 SDEPTAL CASE		v=sv=0				
0017		TELARSISY) C	FORS	516070	•			
0010	<u>Ι</u> Ψ	TECARS(SY) L	F. DA	5)60T0	15			
0019	16	CONTINUE						
0015	10	SYP=SY/(1.=S	נצ					
0010		SYP=SY/(1.=S	xì					
0018		TEMP=SORT (AB	S(SX*	CS)**2	.+ABS(SY*CALFA)*	(*2.)	
	ſ				• • • • • •			
	C	DETERMINE AD	HESIN	N LIMI	T.			
0010	ι.	YTARS TEMP	(MII 0+	(1.=\$¥)*3.1			
010)7 01000			.50					
0020 0021	59	TE(1 = YTA)60	.60.7	a				
THE T	۰			L				
	<u> </u>	COMPLETE ADH	ESION					
	С.							
9022	60	FX=CS+SXP						
0023	_	FY=CALFA*SYP						
ab24		MZ==.16666*C	ALFA*	SYP+.6	6666*(CS=CALFA)*	SXP*SYP	
0025		GO TO 20						
	C .							
	C	ADHESION AND	SLID	ING				
	С	-						
MN56	79	TEMP1=1.+XTA	+XIA*	*2.				
9027		FX=.33333*CS	*SXP*	TEMP1	D 4			
8500		+Y=.33333*CA	LFA*S	YP*1EM	۲1			

```
13:58:02 Ø2=0CT=74
                                                     PAGE
                                                             2
FORTRAN VØ8.04
             MZ==SYP*XIA**3*CALFA/6.+.066666*(CS=CALFA)*SXP*SYP*(1.+2.*XIA
9929
            + +3.*XIA**2+4.*XIA**3)
             GO TO 20
9030
       C
       C....COMPLETE SLIDING
       C VALUES BECOMME MEANINGLESS WHEN XIA LE Ø; ASSIGN PREV. VALUES
          40 FX=XOLD
0031
0032
             FY=YOLD
             MZ=ZOLD
0033
0034
             XIA=Ø.
       C
       C.... MULTIPLY BY FZ AND L.
       r
          20 X = FX * FZ
0035
             Y==FY*FZ
0036
             Z==MZ*FZ*L
0037
       C
                        C
       C
0038
             RETURN
0039
             END
       ROUTINES CALLED:
       SIN
            , COS , ABS , SURT
       OPTIONS = /ON,/OP
       BLOCK
                   LENGTH
       TMGDR
               474
                     (001664)*
       ALK1
               26
                      (000064)
       **COMPILER ===== CORF**
          PHASE
                     USED FREE
       DECLARATIVES 00216 01576
       EXECUTABLES 00719 01073
        ASSEMBLY
                    00509 03809
```

DK1:TMGDR,LP:=CR:

FORTRAN	V08.04	13:58:45	02-0CT-74	PAGE	1
	C DATA PLOTTING	G SUBROUTINE			
	С				
0001	SUBROUTINE TMPLOT	(ISW)			
0002		101J,5X1(101)),Y(101),7(10	<pre>>PX(101),FY(1);</pre>	101),XM2	(101),
	+ SCALX	SCALY, XMIN, Y	MIN. IPR. ISW1	. ISW3. NL	JMBER . N. M. ITYPE
a0a3	REAL*8 LABEL(2,5)				
0004	REAL*8 NAME(5)				
aua5	DATA LABEL(1,1),LA	ABEL(2,1)/*LO	NGITUD , SL	IP SX /,	I
		AHEL (2,2)/"LA	TERAL ","FOR	CE FY"/,	
		ABEL(2,5)/*LU ABEL(2,4)/#AI	TGNTNG MO	MENT 1/	
	+ LABEL(1,5),LA	ABEL(2,5)/*SL	IP ANG LE	(DEG) //	
a0a6	DATA NAME/ MODEL 1	1", "MODEL 2",	MODEL 3 , S	AKAI ,	GOODYEAR /
0007	IF(ISW.NE.0)GOTO(1	1,2,200,4,100	,6,100,8) IS	W 3	
		T CHECK FOD W			
0008	TECTSWI FO I AND T	TSWI CF 1 AND	TEWINE SY	ALL Temetema	!
AUA 9	IF(ISW1_EQ.2.AND.I	ISW3_GE_6_AND	.ISW34LE.8)I	SWEISW3	,
0010	IF(ISW.NE.0)GOTO(1	10,20,30,40,5	0,60,70,75)I	SW3	
	C				
0.011	CILLEGAL PLOT CALL				
0011	WRIIE(IPR,1000)15W TSWZ=0	w1,15w5			
0012	RETURN				
	C				
	C MAKE SURE XMZ (MOMENT)	IS WITHIN BO	UNDS OF GRAP	Н	
0014	200 K=N				
0015	GOTO 300				
0010	100 NEM 100 NO 400 Tel.K				
0018	IF(XMZ(I).LT.=.2)X	XMZ(I)=2			
0019	IF(XMZ(I).GT2)XM	MZ(I)=,2			
0020	400 CONTINUE				
0071	GOTO(1,2,3,4,5,6,7	7) ISW3			
	C FIND MAY AND MIN P	POINTS, DRAW	A GRED AND I		s
	C	CINTOF BRAN			0
	С .				
0022	10 XMAX=1.				
0023	XMIN=0,				
0024 0025					
ØØ26	NXDIV=5				
0027	NYDIV=6				
0028	ITYPE=6				
0029	NXSKIP=2 NVSKTD=4				
0031	NXSIG=1				
0032	NYSIG=1				
9033	NX = 1				
0034	NY=3				
0036	DIU BU 20 XMAX±1				
0037	XMIN=0.				

ØØ38		YMAX=1,2
a 0 3 9		YMIN=0.
a040		NXDIV=5
PU41		NYDIV=6
A042		TTYPE=6
0043		NXSKJP=2
0044		NYSKTP=1
0045		NXSIG=1
0045		NYSIGEI
0040 0047		NYEI
0047		NVED
0040		COTO 80
0450	20	XMAX=1
0050 0051	24	YMINER
0051		
0072		VMINES 2
ממבע		
9034 9055		
10000 0051		TTYDE-D
000		
4057		NXSKIP=2
4058 6450		NYSKIP=1
N059		NXSIGEI
0060		NYSIG=2
0061		NX=1
a065		NY=4
0063		GOTO 80
9064	40	XMAX=1.2
0065		XMIN==1.2
0066		YMAX=1.2
9067		YMIN=0.
ØØ68		NXPIV=12
0069		NYDIV=6
9070		ITYPE=4
0071		NXSKIP=2
9072		NYSKIP=2
9073		NXSIG=1
9074		NYSIG=1
9075		NX=3
9076		NY=2
0077		GOTO 80
au78	50	XMAX=1.2
ØU79		XMINE=1.2
0080		YMAX=_2
0000		YMINES.2
0082		NXDTV=12
0082		NVDIV-8
0000		TTVDE=1
0004		NYSKTDeo
9005 1086		NVSKTP=2
ØØ87		NYSTGEI
0088		NYSICED
0080		NYEZ
ØØØM		
0001		
2002	60	YMAY=20
1107E	01	YMTNER
בדשיי		

0004		YMAX=1 2
0005		
0095		
0090		
1001		NYDIV#6
a098		ITYPE=6
an 66 m		NXSKIP=2
a100		NYSKIP=1
Ø191		NXSIG=1
0102		NYSIG=1
9193		NX=5
0104		NY=2
0105		
0105	70	
0100	1 40	
0107		
V108		TMAXE, 2
0109		YMIN=2
0110		NXDIV=5
Ø111		NYDIV=8
0112		ITYPE=2
Ø113		NXSKIP=2
Ø114		NYSKIP=1
0115		NXSIG=1
Ø116		NYSIG=2
0117		NX=5
0118		NY=4
7110		GOTO 80
0120	75	YMAY=25
0121	1.1	
9121		
1122		
0125		
0124		NXDIV=1
0125		NYDIV=5
M126		ITYPF=6
Ø127		NXSKIP=0
0128		NYSKJP=1
Ø129		NXSIG=0
Ø130		NYSIG=0
0131		NX=0
0132		NY=2
0133		CALL SYMBOL (4.7 2. CARPET PLOT
	r	
	ř.	LAREL WITH THE MODEL NAME
01172	2000 200	CALL SYMBOL (1 - B
0175	0 41	CALL OPTNIVNDC VODC VMAY, VMTN, VMAY, VMTN, R., R., NYDTV, NYDTV,
C C L 14		CALL GRIDINGSTORGENMANENTINETMANETHINEGEFORENNOIVENTOIVE
a. 7/		
120		UALL GRUNUML) [TEE / AURO / TORO / AMAA / AMIN' THAA / THIM / D . / D . /
		Y NXUIVANYUIVANXONIFANYONIFANYONYOIGJ
0137		IF (NX, NE, K) LALL PLABELLITTE, 1,8,00, LADELLI, NAJ, 10)
И138		IF(NT.NE.0) LALL PLADEL(IITPE,2,8.,8.,LABEL(1,NT),10)
M139		KE I UKN
	C	
	C,	
	C	PLOT UNE CURVE OF THE PLOT
9140	1	CALL PLOTPT(ITYPF, XMIN, YMIN, 8., 8., SCALX, SCALY, SX1(1), FX(1), N)
0141		RETURN
Ø142	2	CALL PLOTPT(TTYPE, XMIN, YMIN, 8., 8., SCALX, SCALY, SX1(1), FY(1), N)

-

```
13:58:45
                                               02-0CT-74
                                                            PAGE
                                                                     4
FORTRAN VØ8.04
               RETURN
0143
             3 CALL PLOTPT(ITYPE, XMIN, YMIN, 8., 8., SCALX, SCALY, SX1(1), XMZ(1), N)
0144
               RETURN
0145
             4 CALL PLUTPT(ITYPE, XMIN, YMIN, 8., 8., SCALX, SCALY, FX(1), FY(1), N)
0146
               RETURN
0147
             5 CALL PLOTPT(ITYPE, XMIN, YMIN, 8., 8., SCALX, SCALY, FX(1), XMZ(1), N)
Ø148
9149
               RETURN
             6 CALL PLOTPT(ITYPF, XMTN, YMIN, 8., 8., SCALX, SCALY, ALF1(1), FY(1), M)
Ø150
               RETURN
0151
             7 CALL PLOTPT(JTYPF, XMIN, YMIN, 8., 8., SCALX, SCALY, ALF1(1), XMZ(1), M)
Ø152
               RETURN
0153
         C....SCALE FZ (CURRENTLY STORED AS ISW) RELATIVE TO 2000
         C....TO BE USED FOR GRAPH UNLY
             8 FZ=ISW/2000.
Ø154
               DO 99 I=1,M
0155
               FX(I) = -ALF1(I) * FZ
Ø156
            99 WRITE(IPR,2000) FX(I),Y(I)
0157
               CALL PLOTPT(ITYPE, XMIN, YMIN, 8., 8., SCALX, SCALY, FX(1), Y(1), M)
M158
               RETURN
Ø159
         С
          2000 FORMAT(1X, 2F10.3)
0160
          1000 FORMAT("1ILLFGAL COMBINATION OF VARIABLE SWEEP (ISW1) AND PLOT",
0161
                  * TYPE (ISW3). THIS SFT OF DATA IGNORED. */*0ISW1=*, I3, 5X,
                  'ISW3=', [3)
              ŧ
         C
               END
Ø162
         ROUTINES CALLED:
         SYMBOL, GRID , GRDNUM, PLABEL, PLOTPT
         OPTIONS = /ON,/OP
                      LENGTH
         BLOCK
                        (005270)*
         TMPLOT
                  1372
                         (906276)
         BLK2
                  1631
         **COMPILER ===== CORE**
                        USFD FREE
            PHASE
         DECLARATIVES 00485 01307
                       00858 00934
         EXECUTABLES
```

```
DK1:TMPLOT,LP:=CR:
```

ASSEMBLY

1.5 EXAMPLES

The following three examples were chosen to demonstrate the flexibility of the computer program in producing output from one or more tire models and in sweeping over ranges of s_x and α .

Example 1

Here it is desired to obtain F_y vs. α from tire model HSRI-II only. The output is to be given for α ranging from 1 to 16 degrees in 1 degree increments. The following 8 data cards are needed.

Card A (4I1)

ISW1 = 2	sweep α as indicated on Card C
ISW2 = 1	print output
ISW3 = 0	
ISW4 = 1	type 1 input module

Card B (2F4.0, I3)

[blank] default ($s_x=0.$) path is taken <u>Card C</u> (2F4.0, I3) ALF11 = 1. initial α DALFA = 1. α increments M = 16 evaluations

<u>Card D</u> (2F8.3)

CS = 19251.4 CALFA = 9625.7

Card E (4F8.3) KX = 1000.KY = 500. BX = 1. BY = 1.Card F (2F8.3) L = 5.6FZ = 800. Card G (5I1) MODEL(1)=2 exercise HSRI-II only Card H (5F8.3) MUO = 1.224determined by friction data program (see Sec. 2.3) AS = .004V = 20. MUX = 0. relevant only for Sakai model MUY = 0. Punched card listing 21 1 1. 1. 16 19251.4 9625.7 1000. 500. 1. 1. 800. 5.6 2 1.224 . 194 20.

The program output for Example 1 is reproduced on the next page.

	SLIP ANGLE (ALPHA) DEGREES	LONG, SLIP (SX) PERCENT	FORCE-LONG (FX) LB.	FORCE-LAT (FY) LB.	MOMENT (12) [18-IN	ADHESION (XIA)	TRANSITION (XIS)
ODEL 2	F2= 800.0						
	-						
	2 G.	200	6.6	-168.0	156,8	2.914	4,365
	3,8	0 20			515.7	1.457	2,179
	7 . 0	0.00	0.0	5 · C · C · C · C · C · C · C · C · C ·		0,971	1.459
	5.0	0,40	0.0	-692.7	1919 184 - 4		1.085
	0 I	0.00	0.0	-739.8	0 177		0000
	9 °	0,08	2.2	-771.7	404 5		0 1 2 0
		2020	5	-796,0	369.0	0 362	
		200	0	-814.6	337,8	0 321	1 C C C C C C C C C C C C C C C C C C C
		0 2 0 2 2 2	6	-829.2	310.7	0.288	0.477
			8	-841.0	287.0	0.262	0. 787
	2	0 2 0 2 0 2) 2 0	-858.6	266.3	0.239	0.351
			0	-858.5	247.9	0.220	9.305
			200	-865.1	231.7	6.294	0.300
3			9	-87.8-7	217.2	0.190	0.279
2			9.0	-875,5	204.1	0.177	0,260

Computer output for Example 1

 MUG=
 1,224

 ASE
 0,004

 V=
 20,004

 V=
 0,004

 MUX=
 0,000

 MUY=
 0,000

 From previous Rage

Example 2

Here it is desired to obtain F_x , F_y , and M_z vs. s_x and α from the HSRI-I, -II, and Sakai tire models. The output is to be given for two α -paths (0° and 2°) where s_x is swept through the six default values. The following 8 data cards are required.

<u>Card A</u> (4I1)	
ISW1 = 1	sweep s , take α -paths indicated on Card C
ISW2 = 1	print output
ISW3 = 0	
ISW4 = 1	type 1 input module
<u>Card B</u> (2F4.0, I3)
[blank]	use default s _x values
<u>Card C</u> (2F4.0, I3	5)
ALF11 = 0.	initial α
DALFA = 2.	α increments
M = 2	α -paths
<u>Card D</u> (2F8.3)	
CS = 21774.	
CALFA = 10887	· .
<u>Card E</u> (4F8.3)	
KX = 1000.	
KY = 500.	
BX = 1.	
BY = 1.	

<u>Card F</u> (2F8.3) L = 7.1FZ = 1100.Card G (5I1) MODEL(1) = 1MODEL(2) = 2MODEL(3) = 4Card H (5F8.3) MUO = .6AS = .025V = 20. MUX = .37MUY = .37Punched card listing 11 1

0. 2. 2 21774. 10887. 1000. 500. 1. 1. 7.1 1100. 124 .6 .025 20. .37 .37

-

The resulting computer output is shown on the next page. In examining this output, it should be noted that: (a) the HSRI-I model does not compute aligning moment, (b) the transition region (XIS) is relevant only for the HSRI-II model, (c) the Sakai model, which has parabolic contact pressure, loses adhesion at a low value of longitudinal slip (s_x < .2).

	SLIP ANGLE (ALPHA) DEGREES	LONG, SLIP (SX) PERCENT	FORCE-LONG (FX) LB,	FORCE-LAT (FY) L8.	MOHENT (MZ) LB-IN	ADHESION (XIA)	TRANSITION (XIS)
MODEL 1	FZ=1100.0						
	0.0	Ø. 90	0.0	0.0	0,0	1.000	0,000
	0,0	0,20	-5//.5	0.0	0.0	0.055	0.000
	0.0	0,40	- 223,2	v. v	0,0	0.018	0.000
	0.0	0,00	-105 5	0.0 A 0	v.v	0.007	0,000
	0.0	1.80	-373,3 nlin n	r,0	ю., и а. а	n. 00C	r,000
	0.0	1.00	- 334 6 0	0.0	n , n	10 6 (1) (1, (2)	0 6 0 6 0
	2.0	A.00	P. 9	-372,0	a.a	0,853	0,000
	2,0	0,20	-574.8	-54,2	0,0	0,054	0.000
	2.0	0,40	+522,3	8,55+	0.0	0,018	000
	2,0	P.60	-460,0	-13,4	0.0	0,007	. 0,000
	2.0	И.80	= 395,4	-8,6	0.0	0,002	0,000
	2.0	1.00	= 329,9	-5,8	0.0	0.040	0.000
MODEL 2	FZ=1100,0						
	0.0	0.00	9.0	0.0	0.0	1.000	1.000
	0.0	0.20	-581.4	0 0	0.0	0.061	0.164
	0.0	0.40	+525.6	0,0	0.0	0,023	0,055
	0.0	0.60	-461.8	0,0	0.0	0,010	0,021
	0,0	0.80	-396.1	0,0	0.0	0.094	8,887
	9,0	1.00	-330,0	0.0	0.0	0.000	0,040
	2.0	0.00	0.0	-372.8	426.0	0.868	1.279
	2.0	0.20	-572.5	-95.3	-42.3	0,060	0,161
	2,0	0,40	-523,2	-44,9	-24,0	0,023	0,054
	2,0	0.60	=460 . 8	÷26,6	=13,5	0.010	0,021
	2.0	и,82	-395,7	-17,2	-7.8	0,004	0,007
	2.0	1.90	-329,8	-11.5	-4.4	0,090	0,000
SAKAI	FZ=1140.0						
	9.0	0.00	0.0	0.0	0.0	1.000	0.000
	0.0	0.20	-407.9	0.0	0.0	0.900	0.000
	0.0	0,40	-407.0	0.0	0.0	0,000	0 ,000
	0.0	A. 60	=407.0	0,0	0,0	0.000	a.ana
	P.0	P.89	-407.0	0.0	0.0	6.090	8.669
	0,0	1,00	-407,0	0,0	a, p	6.030	P.000
	2.0	0.00	0.0	-287.5	172.4	0,828	a. 600
	2,0	0,20	-400.9	-70.0	-56,1	0,000	0,000
	2,0	0.48	-405.5	-35,4	-28.7	6.020	0.013
	2,0	0,60	-406.3	=23.6	=19,2	0.000	0.200
	2.0	0.80	=406.6	• 17 . 7	-14,4	0.000	0.000
	2.0	1,00	=406.8	-14,2	-11.6	0.000	0,000

۰.

.

MUQ	3	0.60	0
A5=	0,	P25	
٧z	20,0	<i>ua</i>	
MUX=	Ø,	.370	
MUY=	Ø	370	
CS=2	1774	.000	
CALF	A=10	887.	000
KX=1	A00.	999	
KY=	500.	ดถด	
BX=	1.	ดผล	
8Y=	1.	000	
L=	7.1	00	
FZ#	110	0,00	8

.

Example 3

This example illustrates the use of a Type 2 data module for the requirement of obtaining F_y and M_z vs. α (at $s_x=0.$) from all five tire models. Frictional performance data for each tire model has been calculated by the friction data program described in Section 2.0. The output from each tire model is to be obtained at three speeds (20, 40, and 55 mph). Since these models assume the tire-road friction coefficient to be speeddependent, this necessitates the use of unique friction data for each model at each speed. A total of 37 data cards are required for the Type 2 data module.

Card A (4I1)

ISW1 = 2	sweep α as indicated on Card C
ISW2 = 1	print output
ISW3 = 0	
ISW4 = 2	type 2 input module

Card B (2F4.0, I3)

[blank] default ($s_x=0.$) path is taken

<u>Card C</u> (2F4.0, I3)

ALF11 = 0.	initial α
DALFA = .5	α increments
M = 25	evaluations

Card D (2F8.3)

CS = 21774. CALFA = 10887.

<u>Card E</u> (4F8.3) KX = 1000. KY = 500. BX = 1. BY = 1. Card F (2F8.3) L = 7.1FZ = 1100. Card G (5I1) MODEL(1) = 1 exercise HSRI-I model <u>Card H</u> (5F8.3) MUO = .7089AS = .0551data for HSRI-I model V = 20. Card G (5I1) MODEL(1) = 2 exercise HSRI-II model Card H (5F8.3) MUO = .698AS = .054data for HSRI-II model V = 20 • • (11 G-H pairs) ٠

Card G (5I1) MODEL(1) = 4 exercise Sakai model Card H (5F8.3) MU0 = .611AS = 0. data for Sakai model V = 55. MUX = 0. MUY = .286Card G (5I1) MODEL(1) = 5 exercise Goodyear model Card H (5F8.3) MUO = .3455AS = 0. data for Goodyear model V = 55.[a blank card]

A blank card terminates a Type 2 module which may be followed by a Type 1 module or another Type 2 module. The complete data module for this example is seen in the punched card listing reproduced below. Listing of the Type 2 data module for Example 3.

21 2

	05	25				
	21774.	10887.				
	1000.	500.	1.	1.		
	7.1	1100.	•			
1		•				
	. 7089	. 9551	20.			
2	•	• • • •	•			
	698	.054	20.			
3	•	-	•••••			
	.572	.023	29.			
4	•	•	•			
	709		20.		.515	
5	-		- •		• = • =	
	.5440		20.			
1			· -			
	.6477	. 1509	40.			
5			-			
	.634	.051	40.			
3						
	563	. 953	40			
4						
	.684		40.		.371	
5						
	.4364		40.			
1						
	.5017	.0373	55.			
2						
	. 494	.037	55.			
3						
	. 433	. 060	55.			
4						
	.611		55.		.286	
5						
	.3455		55.			

The first two and last two pages of the computer output for Example 3 are reproduced on the next two pages.

	SLIP ANGLF (ALPHA) DEGRFES	LONG, SLIP (SX) PERCENT	FORCE-LONG (FX) La.	FORCE-LAT (FY) (L9.	1045VT (42) [8-12	ADHESION (XIA)	TRANSITION (XIS) (19)
MODEL 1	FZ=1109.0						
	6	9.99		0.0	8.5	1, 998	686
	ູອ	9.19	6	95.0	5	2.062	6.000
	1.0	9.9	6	9.091-	2.2	2,012	9999
	1,5	9.90	2.2	-285.1	0.0	1,328	9,909
	2.9	808	9 ° 3	-380.1	9°6	0,986	0,009
	2,5	9.49	3.3	-452.5	9.9	0,791	A. 988
	3.0	9.40	0.0	-498.2	9.9	0,644	9996
	3.5	9.99	5.2	-528.7	0.9	0,546	8,988
	4.0	90.00	8	-549.7	9 ° 3	0.473	9,993
	4 5	9.99	3.3	-564,3	а . а	0,416	9.989
	5.0	0000	0-0	-574.5	0.9	9,370	999.9
	5,5	99.99	9,9	-581.4	6 . 9	8,333	8.903
	6.0	9.99	5°5	-586,0	6.9	0,391	90 P 9
	6 . 5	9.98	9 . 9	5 588.6	9 ° 6	0,275	6.999
	7.0	9.90	9.9	=589,8	0°0	0, 253	0,000
	7.5	2.25	a. o	-589.9	8°8	0, 233	9999
	8.9	9.99	9.9	-589,0	9.9	0,216	6 .998
	0 . 5	9.09	а . а	-587,3	a. a	0,291	60.00
	9.0	9.99	0.0	-585.0	8 8	0,197	0000
4	0°2	9.99	a.o	-582,1	0°0	0,175	6999
1	10,0	9.90	0.9	-578,8	9.9	0,164	00000
	10,5	95.6	9.9	-575,1	6.9	0,154	999.9
	11,0	90.00	6.9	-571,0	8,9	0,146	888 8
	11,5	9.98	2 3	-566,7	0,0	0,137	00000
	12.0	0.00	0.0	-562.1	0.0	0,130	0,000

• . First two pages of computer output for Example 3.

	SLIP ANGLE (Alpha) Degrees	LONG, SLIP (SX) PERCENT	FURCE-LONG (FX) LB.	FORCE-LAT (FY) LB,	HOMENT (12) [1 - 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ADHESION (XIA)	TRANSITION (XIS)
GODOVEAL	R FZ=1100.0						
	8	8.9.8	2		e. 9	1,898	6.408
	5 - 5	80 80 80	6 0 6		86.6	0,917	9.809
	•••	00 00 00 00 00	32	-100.1	142.3	0,750 0,750	6. 2020 002
	5,0	9.98	6.2	-267,5	133.2	0,667	9999
	2°2	9.98	6 I 6	- 304.7	111.5	0,583	9.409
		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5	= 332.7	84.2	0,540	0.000
	0 0 0 0 0	5 6	2.6	1.352.	1405	0.410 2 110	
	4 . 5	9.99	9	-374.2	15.6	6.248	3 3 3 3
	5,0	A. AA	5	-378,4	5.0	0,165	9 700
	5.5	9.69	6 6	-379.8	0.6	0,041	000.0
	8 I 9 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		= 379 . 8	9	0000	9.909
	0 0	2 2 2	5 5	- 5/9-8 - 170-8	0 J	60 60 60 60 60 60 60 60 60	
		99.99					
	60	9.9.9	2	= 379 . 8		0.070	8868
	8,5	0.99	9.9	-379,8	9 . 0	0,000	9.989
	8 ° 6	9.96	8.8	=379,8	9 ° 6	8,098	6.999
42	2 ° 2	96.9	8.0	= 3 4 6 F	\$ 6 0	0,040	6.999
2	91	500) 2 •) 2	5 7 9 B	0 0	0,090	9.999
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 (5 5 (5 (5 (5 (0	949	6 600
		2 2 2 2 2 2 2 2 2	5 6		0 4 9 6		
	12.0	00.00	6	8 4 4 M 4	9.0		
	HOUM.	1,345					
		19.0					
	MUY= 0.	948					
	CS=21774.	6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H	final two pag	tes of comput	er outnut	for Examula
	XXIII 800 5 0	187. 189 181		1		, 5 5 5 5	
		22					

3.

١

1.489 7.198 1189.889

2.0 TIRE MODEL DATA PREPARATION

The semi-empirical tire models, whose programs are listed in Section 1.4, require input data which is derived from the results of full-scale tire traction tests made in the laboratory or on the road. There is no way, at this time, to relate tire model input data to tire design characteristics. Thus, the model input data are strictly valid only for a specific tire, at a specific inflation pressure, and carrying a specific load. The frictional performance data (μ_0 , A_s , etc.) is further restricted to a specific paved surface and water cover (if any). Notwithstanding the above restrictions, it is frequently possible to estimate changes in input data produced by slight changes in tire design or operating conditions.

The tire models with which this report is concerned all simulate tire tread and carcass elasticity with the same linear elements; specifically, the tread-carcass structure is an array of linear shear springs (tread) attached to a rigid beam which is supported by a linear spring foundation (carcass). The determination of tire structure input data, C_s , C_α , K_x , K_y , common to all of the models, is described in Document 6 (pp. 77-88). Again, it is emphasized that tire structure input data relate to a specific tire at a specific pressure and load (F_z). Changing the load, pressure, or tire, requires consideration of corresponding changes in C_s , C_α , K_x , and K_y in addition to the contact length, L.

The tire models all vary in their schemes for simulating tire-road frictional performance; viz, the generation of the friction-dependent shear force distribution, σ , expressed by

 $\sigma = \mu \cdot p$

where μ is the tire-road friction potential and p is the normal contact pressure distribution. A pressure distribution, uniform or parabolic, is programmed into each of the tire models; no pressure distribution input data is required. The tire-road friction potential is calculated by the various models with the input data A_s , μ_0 , μ_x , μ_y as indicated in Table 3, where V_s is the slip velocity.

TABLE 3

FRICTION PERFORMANCE FACTORS

Mode1	μ	<u>р</u>
HSRI-I	$\mu_0(1-A_sV_s)$	uniform
HSRI-II	$\mu_0(1-A_sV_s)$	uniform
HSRI-III	$\mu_{0}^{(1-A_{s}V_{s})}$	parabolic
Goodyear	μo	parabolic
Sakai	$\mu_{o}, \underbrace{\mu_{x} \text{ and } \mu_{y}}_{y}$	parabolic
	sliding	

The remainder of this section is concerned with the preparation of frictional performance data.

2.1 FRICTIONAL PERFORMANCE DATA

The frictional performance input data for a particular tire model is determined such that the model will reproduce selected points on measured traction force curves. For example, the HSRI models, which utilize two input parameters (μ_0 and A_s), are given parameter values which cause these models to reproduce two points in the high slip region of the measured F_x vs. s_x or F_y vs. α curves. Because of model differences, values of μ_0 and A_s for one of the HSRI models will not be optimum for the other two HSRI models.

A digital computer program has been written to calculate frictional performance data, for each of the tire models, from free-rolling F_y vs. α data measured in the laboratory or on the road. The following solution procedures are used.

HSRI-I

 μ_0 and A_s are obtained by solution of the two simultaneous linear equations which result when the lateral force equation for this model is evaluated at the two data points which are to be reproduced.

$$2x[C_{\alpha} \tan \alpha(1 - \sqrt{1 + F_y/C_{\alpha} \tan \alpha})/F_z]_1 + y[V_s]_1 = 1$$
$$2x[C_{\alpha} \tan \alpha(1 - \sqrt{1 + F_y/C_{\alpha} \tan \alpha})/F_z]_2 + y[V_s]_2 = 1$$

where $\mu_0 = 1/x$, $A_s = y$, and subscripts 1, 2 indicate evaluation at the two data points to be reproduced by the HSRI-I model.

HSRI-II

 μ_0 and A_s are determined by an iterative solution for these parameters as roots of the following function, $F(\mu_0, A_s)$, which is derived from the lateral force equation for this model.

$$F(\mu_0, A_s) = F_y + \frac{1}{2} \mu_0 F_z [2 - \frac{\xi_a}{L} - A_s V_s (2 - \frac{\xi_a}{L} - \frac{\xi_s}{L})]$$

where

$$\frac{\xi_a}{L} = \frac{1}{2} \mu_0 F_z / (C_\alpha \tan \alpha)$$

$$\frac{\xi_s}{L} = \frac{1}{2} \mu_0 F_z (1 + C_\alpha / C_s) \times (1 - A_s V_s) / (C_\alpha \tan \alpha)$$

HSRI-III

 μ_0 and A_s are determined by an iterative solution for these parameters as roots of the following function, $F(\mu_0, A_s)$, which is derived from the lateral force equation for this model.

$$F(\mu_{0}, A_{s}) = F_{y} + \mu_{0}F_{z}\left\{1 - (\frac{\xi_{a}}{L})^{3} - A_{s}V_{s}[1 - (3 - \frac{\xi_{a}}{L} - \frac{\xi_{s}}{L})\frac{\xi_{a}}{L}\frac{\xi_{s}}{L}]\right\}$$

where

$$\frac{\xi_a}{L} = 1 - C_\alpha \tan \alpha / (3\mu_0 F_z)$$

$$\frac{\xi_{\rm S}}{\rm L} = 1 - \left(\frac{C_{\alpha} C_{\rm S}}{C_{\alpha} + C_{\rm S}}\right) \frac{\tan \alpha}{3\mu_{\rm o}(1 - A_{\rm s} V_{\rm S})F_{\rm z}}$$

,'

Goodyear

 μ_0 is obtained by evaluating the following equation (derived by rewriting the lateral force equation for this model) at the peak datum point of the free-rolling F_v vs. α test data.

$$\mu_{0} = \frac{C_{\alpha} \tan \alpha}{6 F_{z}} \left(\frac{\sqrt{1 + \frac{4}{3} \left[1 - \frac{F_{y}}{C_{\alpha} \tan \alpha}\right] - 1}}{1 - \frac{F_{y}}{C_{\alpha} \tan \alpha}} \right)$$

Sakai

 μ_{0} and μ_{y} are determined by an iterative solution for these parameters as roots of the following function, $F(\mu_{0}, A_{s})$, which is derived from the lateral force equation for this model.

$$F(\mu_{0}, \mu_{y}) = F_{y} \left\{ 3\mu_{0} (1 - \frac{\xi_{a}}{L}) (\frac{\xi_{a}}{L})^{2} + \mu_{y} [1 - 3(\frac{\xi_{a}}{L})^{2} + 2(\frac{\xi_{a}}{L})^{3}] \right\}$$

where

$$\frac{\xi_a}{L} = 1 - C_\alpha \tan \alpha / (3\mu_0 F_z)$$

and the valid roots are such that μ_y is less than $\mu_o.$

The iterative solutions required for the HSRI-I, -II, and Sakai models are obtained by the Newton-Raphson method for finding simultaneous roots of two functions, F_1 and F_2 , of two variables $(\mu_0 \text{ and } A_s \text{ or } \mu_y)$. The two functions are $F(\mu_0, A_s \text{ or } \mu_y)$, written above for the respective models, evaluated at two data points on the F_y vs. α curve which are to be reproduced by the model. The Newton-Raphson method provides corrections, $\Delta \mu_0$ and ΔA_s (or $\Delta \mu_y$), to an estimate of the roots (say μ_0^{-1} and A_s^{-1}) by solution of the following simultaneous linear equations for these corrections.

$$\frac{\partial F_1}{\partial \mu_0} \Delta \mu_0 + \frac{\partial F_1}{\partial A_s} \Delta A_s = -F_1$$
$$\frac{\partial F_2}{\partial \mu_0} \Delta \mu_0 + \frac{\partial F_2}{\partial A_s} \Delta A_s = -F_2$$

where

 $\frac{\partial F_1}{\partial \mu_0}$, $\frac{\partial F_1}{\partial A_s}$, F_1 , etc., are constants calculated from the uncorrected values of μ_0 and A_s . The corrected roots

$$\mu_{0}^{2} = \mu_{0}^{1} + \Delta \mu_{0}$$
$$A_{s}^{2} = A_{s}^{1} + \Delta A_{s}$$

are then used in repeating the procedure until the corrections become negligible. In most cases, a solution is obtained with a small number of iterations (typically 4-6). The functions $F(\mu_0, A_s)$ for the HSRI-II, -III models and $F(\mu_0, \mu_y)$ for the Sakai model are highly nonlinear and a comprehensive analysis for the region where valid roots may be found has yet to be performed. In some cases, the program presented below is unable to find roots for one or more of these models. These cases are, usually, a consequence of abnormal data. It is mathematically impossible for certain models to reproduce some pairs of data points in the high-slip region, given C_{α} determined in the low slip region of the same F_y vs. α test data. Fortunately, these cases seem to be in the minority, at least for the HSRI mobile tire tester and flat bed data used so far.*

2.2 COMPUTER PROGRAM

The program described and listed in this section was developed to compute frictional performance data for the five tire models called by TMMAIN. The program requires the following input data obtained from lateral force vs. slip angle measurements made by a flat bed tire tester (low speed data) or a mobile tire tester (high speed data).

Data Card 1

FΖ

tire load, F₇

^{*}Wet and dry mobile tire tester data from 9 different tires (including 3 construction types) tested on two surfaces (asphalt and concrete) have been used in testing the frictional performance data program.

CALFA	lateral traction stiffness, C_{α}
SWITCH	real variable indicating high speed data
	(=0.) or low speed data $(\neq 0.)$
CS	longitudinal traction stiffness, C_s

Data Card 2	(FY must have a sign opposite to the sign of ALFA)
ALFA(1) FY(1)	data point l
ALFA(2) FY(2)	data point 2
V	traveling velocity

The program finds values of μ_0 and A_s which make the HSRI-I, -II, -III models reproduce the two data points on Card 2. Values of μ_0 and μ_y are found which make the Sakai model reproduce these two points. A value of μ_0 is found which makes the Goodyear model reproduce the data point for which F_y is largest.

Initial values of $\mu_0 = 1$. and $A_s = 0$. are used to start the Newton-Raphson iterative solution for the HSRI-II model. These starting values have enabled the iteration to converge to a valid solution for the HSRI-II model with all data tried. The initial values of $\mu_0 = C_\alpha \tan \alpha/(3F_z) + .1$ and $A_s = 0$. or $\mu_y = \mu_0/2$ have enabled the iteration to converge to a valid solution for the HSRI-III and Sakai models with most data tried. The initial values

are computed as part of the program; they are not read in as input data.

The program detects a nonconvergent solution if the result of an iteration differs from the previous result by more than 5.0, or if no convergence has been achieved after 10 iterations. Convergence is assumed if the result of an iteration differs from the previous result by less than .0001 (μ_0 and A_s or μ_y). Nonconvergence can usually be traced to an anomaly in the measured data.

The program may fail to converge for the Sakai model for the reason that $\mu_0 = \mu_y$ produces the best fit to the selected data points. This result, which occurs in the example given below, is evident on examination of the printed iteration history.

When SWITCH is nonzero, flat bed or other low-speed data are indicated and the $F_y - \alpha$ data point with greatest F_y magnitude is used to determine μ_0 for all models. In this case, the velocity input, V, is irrelevant and $A_s = 0$.

FORTRAN	V08.04	14:00:46	02-OCT-74 PAGE	1
	C FRICTION DATA PRE	PARATION PROG	RAM	
0001 0002 000 3	REAL MUO,MUY DIMENSION F(2),SY DIMENSION A(2),B((2),FY(2),DFM 2),C(2),DFMUY	U(2),DFAS(2),ALFA((2)	(2),VS(2)
0004 0005	C ASSIGN LOGICAL DF IPR=5 IPD=8	VICE NUMBERS		
נייטפי	CREAD IN VALUES			
	CFOR FLATBED DATA, CFUR OTHER DATA LE	PUT SWITCH#1 AVE SWITCH BL K AS A NECATI	., LEAVE ALFA(2), FY ANK OR ENTER Ø.	(2),V BLANK
9096 9097 9998	100 READ(IRD, 1000, FND: READ(IRD, 1000, FND: IE(CS E0 0)CS=2	=40)FZ,CALFA, =40)ALFA(1),F	VE NOMBER SWITCH,CS Y(1),ALFA(2),FY(2)	, V
0009	WRITE(IPR, 4090) FZ	,CALFA,CS,V,A	LFA,FY	
9010	CCALCULATE VS AND DO 10 T=1.2	TAN(ALFA)		
0011 0012	ALFA(I)=ALFA(I)* SY(I)=SIN(ALFA(I))	0174533)/COS(ALFA(I))	
0013	C C	[]]		
	CPICK THE PEAK FOR	R MODEL RODT CF OF THE 2 V	OF MUO Alues given	
0014 0015	MAX=1 IF(ARS(FY(2)),GT./	ABS(FY(1)))MA	X=2	
0016 0017	I=1.+FY(MAX)/(CALF IF(T.LF75) MUO=(CIF SLIDING UCCURS	A*SY(MAX)) CALFA*SY(MAX) BEFORE ALFA(/(6.*FZ)*(1.+SQRT(MAX), IE XIA<0, OR	14./3.*T))/T T TOO LARGE,
9018 9019	CPICK MUO DIFFERENT IF(3.*MUO*FZ/CALFA WRITE(TPR-6000)MU(LY ALT.SY(MAX).	OR.T.GT75)MUD=AH	S(FY(MAX))/F7
	C C	,		
	CIF SWITCH IS NOT E CCALCULATE UNIFORM CUSING THE PEAK FOR	PRESSURE MUD RESSURE MUD RCE OF THE 2	FLATBED DATA IS IN FROM HSRI-1 EQN GIVEN (ONLY ONE IS	DICATED; NECESSARY)
9020 9021 9022	IF(SWITCH.FQ.0.)G(T1=CALFA*SY(MAX) MUD =2.*T1*(1.=SQF	0T0 1 8T(1_+FY(MAX)	/T1))/F7	
0023 0024	WRITE(IPR, 1500) MUC GOTO 100			
	CSOLVE FOR MODEL1	ROOTS OF AS	AND MUO	
9025 9026 9027	1 DU 50 I=1,2 T1=C4LFA*SY(I)			
ייטכו	CMANIPULATE ARRAYS	FOR SOLUTION	OF THE TWO SIMULT	ANEOUS LINEAR EQN

_

•

.

FORTRAN	VOR.AL	I	14:00:46	Ø2-0CT-74	PAGE	2
9028 9029 9030	59	C(I)=1./A(I) B(I)=VS(I)/A(I) CONTINUE				
9031 0032 9033	c	AS=(C(1)-C(2))/(B) MUO=1./(C(1)-AS*B) WRITE(IPR,3090)MU((1)-B(2)) (1)) U,AS			
	C	SOLVF FOR MODEL 2 Method and startI	ROOTS OF MUC NG WITH MUU=1) AND AS, US L, AS≡0	ING THE	NEWTON-RAPHSON
0034 0035 0036 0037 0038 0039 0040 0041 0041 0042 0043		MUN=1. AS=0. WRITE(IPR,9000) D0 90 KOUNT=1,10 D0 80 I=1,2 T1=.5*FZ/(CALFA*S) XIA=T1*MU0 T2=1.=AS*VS(I) T3=1.+CALFA/CS XIS=T2*T3*XIA	((1))			
0044 0045	с	T=2XIA-AS*VS(I); F(I)=FY(I)+.5*MUO; FIND DERIVATIVES	*(2.=XIA=XIS) *FZ*T DF XIA,XIA AN) ND F WITH RE	SPECT TO	MUO AND AS
0046 0047 0048 0049 0050		DAMU=T1 DSMU=T1*T2*T3 DSAS==XIA*VS(I)*T DFMU(I)=.5*FZ*T=.5 DFAS(I)=.5*MU0*FZ	3 5*M110*FZ*(DA1 *VS(I)*(AS*DS	MU-AS*VS(I)* 5AS-(2,-XIA-	(DAMU+DS XIS))	MU))
0051 0052 0053	C 80	DIVIDE TO SOLVE F F(I)=-F(I)/DFMU(I DFAS(I)=DFAS(I)/DI CONTINUE	OR MUD AND AS) FMU(I)	6		
9054 9055 9056 9057 9058 9058		DAS=(F(1)-F(2))/(DMU=F(1)-DAS*DFAS MUO=MUO+DMU AS=AS+DAS WRITE(IPR,2000)MU TE(ABS(DAS) T 1	DFAS(1)-DFAS((1) D,AS	(2))	4)6010 1	1
0040 9061	90 11 C C	CONTINUE			4700101	•
	с с с	SOLVE FOR MODEL 3 Method, starting wi	RODTS OF AS ITH ESTIMATE	AND MUO, US OF MUO FOR	ING THE POSITIVE	NEWTON-RAPHSON SLOPE
0062 0063 0064 0065 0065 0066 0067		MUNE.1+CALFA*SY(2) AS=0. WRITE(IPR,5000) WRITE(IPR,2000)MUN DO 30 KOUNT=1,10 DO 20 I=1,2)/(3.*FZ) D,AS			
9068	C	IF LOOP IS LEFT BE DATA POINTS OF THE N=3-I	EFORE COMPLET E TWO GIVEN 1	FTON, N IS T That are in	O INDICA FULL SLI	TE NUMBER OF DING

FORTRAN	V08.04	ļ	1	41	00	:46		Ø2	-OCT-7	74	PAGE	3
ØØ69		TEMP=CALFA*SY(I)/	(3	• *	MIJ	$0 \pm F_2$!)					
a070		XIS=1TEMP*CS/((CA	LF.	A +	CS),	(1.	- A	S*VS()	())		
ØØ71		XIA=1TEMP										
ØØ72		T1=3XIA=XIS										
0073		T2=XIA*XIS										
0074		T=1 X TA**3-AS*VS	(1)*	(1	. = T 1	*72	1				
0075		F(T) = FY(T) + MUU + F7	* T	•	•••	• • •		<i>.</i>				
	r	ETND DEPTVATIVE O	5	vT	۸.	VTS	A NU	5	мтты	DECC		
0074	U	DAMUSTENDAMUO	r	v 1	~ ,	VIO	ANU	r	M 1 1 1	REOF		MUU AND AS
0070					~ ~			• .				
9077 G0 7 0			6.5	A 🕈 I	63)*(]	• • A	5*	VS(1)]			
0078		DSAS=DSMU*VS(1)*	MU	07	(1	- A 3	5×VS	[]))			
0079		DFMU(I) = FZ * (T = MUO)	* (3.	×Х	IA*)	(IA*	DA	MU+AS*	VSCI)*((DAM	IU+DSMU)*T2
	+	• = T 1 * C X T A *	DS	MU	+ X	IS×C	DAMU))))			
9980		DFAS(I) == MUO*FZ*V	S (1):	* (AS*(2.*	XI	S+XIA=	•3.)*	XIA*DSA	S+(1.=T1*T2))
	C											
	C	MANIPULATE ARRAYS	F	OR	S	OLUI	ION	0	F DMU	AND	DAS	
0081		F(I) = -F(I) / DFMU(I))									
0082		DFAS(I)=DFAS(I)/D	FM	U (1)							
0083	20	CONTINUE										
0084	-	DAS=(F(1)-F(2))/f	DF	۵S	11) = D F	ASC	21	۱			
DOAS		DMILEF(1)=DAS+DFAS	11	1	•				,			
0086												
0000												
0000		NDTTE/TDD DOG(A)MU	0									
9000 0000		RELECTER, 2000 MU		АЭ. //								
0009		IF (ABS(DAS) LI, 1,	L	4,, 1			55(0	MU a -		. • t = 4		2
0090	~ ~	IF (ABS(DAS).GI.5.	• 0	R . /	AH	SCUM	10).	GT	• 5 •)GC	DTO 5	5	
0091	30	CONTINUE										
0092	55	WRITE(IPR,2500)N										
0093	22	CONTINUE										
	С.,											
	C.,.,	SOLVE FOR SAKAI R	00	TS	0	F ML	JY A	ND	MUO,	USIN	IG THE N	EWTON-RAPHSON
	C	METHOD, STARTING	WI	TΗ	Ε	STIN	ATE	0	FMUO	AND	MUY FOR	STABILITY
	C											
0094		MUD=.1+CALFA*SY(2)/	(3)	•*	FZ)						
9095		MUY=MU0/2.										
0096		WRITE(IPR,7000)										
0097		WRITE (IPP, 8000) MU	0,	MU	Y							
0098		DO 70 KOUNT=1.10										
0099		DO 60 T=1.2										
	r	TE LOOP TS LEFT B	FF	NRI	-		IFT	TO	N. N. T	S TO	TNDTCA	TE NUMBER OF
	C	DATA POINTS OF TH	F	TWI	n .	GTVF		ΗΔ	TARE	TNF		DING
a1aa			-		0	0110				* IN I		
0101		TEMPECALEALOV(T)/	17	ولك	чн	0 - 5 7	``					
0100		VIAGE STEND	()	е л і	17	0 # F Z						
0107												
M104		╵┧┺╽╻╼╱┧ᄊ ╨つ━Ѵ╹⋏┶∨て⋏										
010E		1257147718										
0105												
11/16		1=1.=5.*72+2.*73				. -			_ 、			
107		F(I)=FY(I)+F7*(3.	* M	00,	k T.	1*72	+ MU'	Y★' 	「)			4.4.mm
	C	FIND DERIVATIVE O	F	Χť	4	AND	FW	ITI	H RESP	ECT	TO MUO	AND MUY
9198		DAMU=TEMP/MU0					_					
9199		DFMU(I)=6.*FZ*(1.	 M	UY,	/ MI	U())*	T1*	T1:	*XIA			
9110		DFMUY(I)=FZ*T						_				
	C	DIVIDE TO SOLVE F	OR	ML	JΥ	AND	MU	0				
Ø1 <u>1</u> 1		F(I) = -F(I) / DFMU(I))									
Ø112		DFMUY(T)=DFMUY(I).	10	FML	JC])						

.

FORTRAN	VØ8.04							14	00	:4	6		n2- 0	CT-	74	PA	GE	4			
0113 0114 0115 0116 0116 0117 0118 0119	60	CONT DMUY DMU= MUY= MUO= WRIT IF(A	INU =(F f(1 MUY MUO F(I BS(E (1)) = D + DM + DM PR, DAS	-F(MUY IUY 802	2)) 10*) 10*)	1/(7MU	DF Y ()	4UY 1) Jy . An	'(1)-I	DFM S(D	MU).))	1.E-	• 4) G	οτο	44			
0120 0121 0122 0123 0124 0125	70 33 44	IF (A CONT WRIT CONT GOTO CALL	PS(INU E(I INU 10 FX	DMU E PR, E Ø IT	250	GT.	, 5 . N	. 01	₹ . А	BS	(D)	MU)	.GT.	5.)	GOT	33					
₩ 1 C J	C		ب	. '																	
9126 9127 9128 9129	C 1000 1500 2000 2500	FORM FORM FORM FORM	A T (A T (A T (A T (5F1 00 M	0.3 INIF 100=) URN • • F	1 P 79.)T	RES 3, 1 SEF	SSU 1ØX Em	RE TO	MI AS: CI	0DE =', UNV	L MU F9.3 Erge	n=*	,F9 TRY	,3) ',12	, • (OTHER		TA PO	INT(S)
9130 9131	+ 3000 4000	WITH Form Form	S M A T (A T (AL L • ØM • 1 F	ER IQDE Z="	SLI L1 ,F1	[Р ҮІ (Я.	AN(EL[4,,	GLE DS /•	S ª Mu C A) 0=' LF,	•,F A=•	10.4 F10	,10 .4/	x,•4 • cs	\S=*, 	,F10	ð.4) 4/	V= * ,	F10.	4/
9132 9133 9134	+ 5000 6000 7000	FURM Form Form	A T (A T (A T (• A • A • A • A G • A S		= , L3 YEA	F8 YI R	ELI MOC	S: DEL	• , •) • Y	F8 IEI	.1/	FY MUO	=*, =*,	F10. F8.4	4, *,	, * , F	10.4	//)		
0135 0136 0137	8000 9000	FORM FORM END	AT (AT (• M • Ø M	100= 10DE	L2	9. YI	3, : ELI	10× 5:	•)	MUY	, , Y = *	,F9.	3)							
	ROUTIN Sin	ES C , CO	ALL S	ED:	ABS		,	SQF	s t	,	F)	KIT									
	OPTIONS = /ON,/OP																				
	PLOCK Main.	20	L 43	ENG (TH 007	766)*														
	**COMP PHA DECLAR EXECUT ASSEMB	ILER SE ATIVI ABLE: LY	ES S	US 002 007 011	CO ED 16 78 48	RE* FR 015 010 032	* FE 76 14														
DK1:NEWT	ON, LP:	=CR:																			

2.3 EXAMPLE

In this example, μ_0 (MUO), A_s (AS), and μ_y (MUY) are found for their respective models using the following two data points.

α (deg)	F _y (1b)
11.2	- 844*
15.2	- 873

The following two data cards are needed for this example.

 $\frac{Card 1}{FZ} = 800.$ CALFA = 9625.7 SWITCH = 0. CS = 19251.4 $\frac{Card 2}{ALFA(1)} = 15.2$ FY(1) = -873.

ALFA(2) = 11.2FY(2) = -844.V = 20.

^{*}In accordance with SAE sign convention, negative F corresponds to positive $\alpha.$

Punched card listing

-

- -- -

800.9625.70.19251.415.2-873.11.2-844.20.

FZ= BUN. NHOA CALFA= 9625.7002 CS=19251.4004 V= 20.0.100 ALFA= 15.2, 11.2 FY= -873.0000, -844.0000 GOODYEAR HODEL YIELDS MUDE 1.0912 AS= 0.0038 MODEL1 YIELDS MUD= 1,2263 MODELP YJELDS: AS= 0.003 MUC= 1.214 MUC= 1.224 45= 45= 0.004 0.104 1.224 MUD= MODEL3 YIELDS: MUD= 0.895 45= a ana -0.018 AS= 1.004 MUD= AS= -0.008 1.044 MUO= AS= -0.008 1.046 MUD= -7.008 AS= 1.046 MUN= SAKAT MODEL YIELUS: AS= 0.447 MUN= 0.895 MUY= 1.073 0.856 MU()= 1.067 N.948 MILY = MU()= MU()= MIIY = 1.079 1.075 41)Y= 1.494 MUD= 5,017 MUY= 59.501 MUO= =41.763 DOES NOT SEEM TO CONVERGE. TRY 1 OTHER DATA POINT

Although convergence is not detected for the Sakai model, the approximate solution $\mu_0 = \mu_y = 1.077$ is evident from the iteration history printed above.

•

•

4 .