
Connectivity, Organization, and Network Coordination of the Drosophila 

Central Circadian Clock  

 

by 

Zepeng Yao 

 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of  

Doctor of Philosophy 
(Molecular, Cellular and Developmental Biology) 

in the University of Michigan 
2016 

 

 

 

 

 

Doctoral Committee: 
 

Associate Professor Orie T. Shafer, Chair 
Assistant Professor Sara J. Aton 
Professor Daniel B. Forger 
Professor John Y. Kuwada 
Professor Haoxing Xu 

  



 

 

 

 

 

 

 

 

 

© Zepeng Yao 

All rights reserved 

2016 

 

 

 

 

 

 



 ii 

DEDICATION 

In Loving Memory of Grandma and Grandpa 

 

 

 

 

 

 

 



 iii 

ACKNOWLEDGEMENTS 

First and foremost, I would like to express my deepest gratitude to my advisor, Dr. Orie 

Shafer. Orie is enthusiastic, patient, and fun. I am very fortunate to be one of his first students 

and have received lots of scientific training directly from him. Orie has given me tremendous 

freedom to explore my scientific interests and provided enormous support to my research 

throughout the years. Orie is very dedicated to the career development of his students. He spent 

countless hours helping with my presentations and editing my proposals and manuscripts. 

Working with Orie has always been exciting and rewarding. 

I would also like to express my sincere gratitude to Dr. Rich Hume. I have collaborated 

with Rich on the electrophysiological characterization of clock neurons over the past two years. 

Rich taught me everything about electrophysiology from scratch. I am extremely fortunate again 

to have received training directly from him. Besides, Rich has given me lots of valuable advice 

on my research as well as my future career. 

In addition, I would like to thank all of my committee members, Dr. John Kuwada, Dr. 

Haoxing Xu, Dr. Sara Aton, and Dr. Daniel Forger for their support, critiques, and insightful 

discussions on my thesis research. Special thanks to Sara for the millions of reference letters she 

has written for me over the years.  

My sincere thanks go to every current and former member of the Shafer Lab. I would like 

to specially thank Katie Lelito, Ann Marie Macara, and Tamara Minosyan for collaborating on 

the neural circuit analysis project, my first research project in the Shafer Lab. I thank Amy 



 iv 

Bennett for working closely with me over the past few years and for her assistance on my 

research. I thank Qi Zhang, Charles “Andy” Williams, Aaron Talsma, Andrew Bahl, Bronson 

Gregory, Veronica Varela, and Swathi Yadlapalli for their friendship and helpful discussions. I 

thank the many technicians, programmers, and undergraduates who are working and have 

worked in the lab for technical assistance, especially Rebecca Mudri, Harper Jocque, Claire 

Palmarini, and Jonte Jones. 

I thank the numerous colleagues for reagents and advice. I thank members of the 

Neurobiology Joint Lab Meeting for fun and intense scientific discussions. I thank the Scott 

Pletcher Lab for long-term collaboration. In addition, I thank Dr. Laura Olsen, Dr. Steven Clark, 

Dr. Daniel Klionsky, Dr. Anuj Kumar, Dr. John Schiefelbein, and Dr. Cunming Duan among 

others for their help with my Ph.D. studies. I also greatly appreciate all the help from Mary Carr, 

Diane Durfy, and other MCDB staff. 

To all of my friends here at University of Michigan and all around the world: Thank you 

for your friendship, your support, and all the fun we had! I would also like to thank all of my 

teachers and mentors throughout my life. I am indebted to my parents, my sister, and other 

family members for their unconditional love and support. Last but not least, I thank my loving 

wife, Meiyan Jin, for everything that cannot be fully accounted for with words. She is the 

sunshine of my life. 

 

 



 v 

PREFACE 

This thesis describes the research I conducted in Dr. Orie T. Shafer’s lab, which began in 

January 2011. The objective of my work was to better understand the neuronal connectivity, 

organizing principles, and mechanisms of network coordination of circadian clock neuron 

networks.  

Chapter 2 was published in Journal of Neurophysiology (2012; 108(2):684-96), with 

author listed as Zepeng Yao (Z.Y.), Ann Marie Macara (A.M.M.), Katherine R. Lelito (K.R.L), 

Tamara Y. Minosyan (T.Y.M.), and Orie T. Shafer (O.T.S.). Z.Y., A.M.M, and K.R.L were co-

first authors. Z.Y., A.M.M., K.R.L., T.Y.M., and O.T.S. designed the research; Z.Y., A.M.M., 

K.R.L., and T.Y.M. performed experiments; Z.Y., A.M.M., K.R.L., and T.Y.M. analyzed data; 

Z.Y., A.M.M., K.R.L., T.Y.M., and O.T.S. interpreted results of experiments; Z.Y., A.M.M., and 

K.R.L. prepared figures; Z.Y., A.M.M., K.R.L., and O.T.S. drafted manuscript; O.T.S. edited 

and revised manuscript; O.T.S. approved final version of manuscript. Z.Y. specifically generated 

the data for Figures 2.3, 2.5 and 2.7. 

Chapter 3 has not yet been published. A manuscript comprising this chapter is in 

preparation for publication, with authors listed as Zepeng Yao (Z.Y.), Richard I. Hume (R.I.H.), 

and Orie T. Shafer (O.T.S.). Z.Y., R.I.H., and O.T.S. designed the research; Z.Y. performed 

experiments and analyzed data; Z.Y., R.I.H., and O.T.S. interpreted results of experiments; Z.Y. 

and O.T.S. wrote the manuscript. 



 vi 

Chapter 4 was published in Science (2014; 343(6178):1516-20), with authors listed as 

Zepeng Yao (Z.Y.) and Orie T. Shafer (O.T.S.). Z.Y. and O.T.S. designed the research; Z.Y. 

performed experiments and analyzed data; Z.Y. and O.T.S. interpreted results of experiments; 

Z.Y. and O.T.S. wrote the paper. 

Chapter 5 has not yet been published. A manuscript comprising this chapter is in 

preparation for publication, with authors listed as Zepeng Yao (Z.Y.), Amelia J. Bennett (A.J.B.), 

Jenna L. Clem (J.L.C.), and Orie T. Shafer (O.T.S.). Z.Y. and O.T.S. designed the study. Z.Y. 

conducted all the experiments. A.J.B. analyzed the phase of activity peaks in light/dark cycles for 

individual flies; J.C. quantified the PER immunostaining intensity of the CRY+ DN1ps; Z.Y. 

performed the remaining analyses. Z.Y. and O.T.S. wrote the paper. 

  



 vii 

TABLE OF CONTENTS 

DEDICATION ................................................................................................................................ ii 

ACKNOWLEDGEMENTS ........................................................................................................... iii 

PREFACE ....................................................................................................................................... v 

LIST OF TABLES .......................................................................................................................... x 

LIST OF FIGURES ....................................................................................................................... xi 

ABSTRACT ................................................................................................................................. xvi 

CHAPTER 1. Introduction.............................................................................................................. 1 

1.1 Circadian clocks .............................................................................................................. 1 

1.2 Drosophila offers an excellent model for the study of circadian clocks ......................... 1 

1.3 Molecular clocks ............................................................................................................. 3 

1.4 Anatomy and neurochemistry of the Drosophila clock neuron network ........................ 4 

1.5 Models of the Drosophila clock neuron network function ............................................. 7 

1.6 References ....................................................................................................................... 8 

CHAPTER 2. Analysis of functional neuronal connectivity in the Drosophila brain.................. 13 

2.1 Abstract ......................................................................................................................... 13 

2.2 Introduction ................................................................................................................... 14 

2.3 Methods ......................................................................................................................... 17 

2.4 Results ........................................................................................................................... 23 

2.5 Discussion ..................................................................................................................... 48 



 viii 

2.6 Acknowledgments ......................................................................................................... 51 

2.7 References ..................................................................................................................... 51 

CHAPTER 3. GABAergic and glutamatergic inhibition of the lateral clock neurons differentially 

regulates daytime and nighttime sleep in Drosophila................................................................... 57 

3.1 Abstract ......................................................................................................................... 57 

3.2 Introduction ................................................................................................................... 58 

3.3 Results ........................................................................................................................... 60 

3.4 Discussion ..................................................................................................................... 81 

3.5 Materials and Methods .................................................................................................. 85 

3.6 Acknowledgements ....................................................................................................... 90 

3.7 References ..................................................................................................................... 91 

CHAPTER 4. The Drosophila circadian clock is a variably coupled network of multiple 

peptidergic units ............................................................................................................................ 96 

4.1 Abstract ......................................................................................................................... 96 

4.2 Results ........................................................................................................................... 96 

4.3 Materials and Methods ................................................................................................ 105 

4.4 Supplementary Results ................................................................................................ 109 

4.5 Acknowledgments ....................................................................................................... 129 

4.6 References and Notes .................................................................................................. 129 

CHAPTER 5. The Drosophila circadian clock neuron network features diverse coupling modes 

and requires network-wide coherence for robust free-running rhythms ..................................... 132 

5.1 Abstract ....................................................................................................................... 132 

5.2 Introduction ................................................................................................................. 133 



 ix 

5.3 Results ......................................................................................................................... 135 

5.4 Discussion ................................................................................................................... 149 

5.5 Materials and Methods ................................................................................................ 153 

5.6 Supplementary Results ................................................................................................ 157 

5.7 Acknowledgements ..................................................................................................... 164 

5.8 References ................................................................................................................... 164 

CHAPTER 6. Concluding Remarks ........................................................................................... 168 

6.1 A new approach to address functional neuronal connectivity in the Drosophila brain

 ........................................................................................................................................... 169 

6.2 Physiological connectivity within the Drosophila clock neuron network .................. 169 

6.3 Electrophysiological characterization of the critical LNd clock neurons .................... 170 

6.4 Diverse modes of coupling between the various clock neuron groups ....................... 170 

6.5 The Drosophila clock neuron network consists of multiple oscillators and requires 

network-wide coherence for robust free-running rhythms ................................................ 171 

6.6 References ................................................................................................................... 173 

 



 x 

LIST OF TABLES 

Table 4.S1. Locomotor activity rhythms of control flies, and flies overexpressing different forms 

of DBT or SGG in all the clock neurons in constant darkness. ........................................... 122 

Table 4.S2. Locomotor activity rhythms of control flies, and flies overexpressing different forms 

of DBT or SGG only in the PDF positive clock neurons in constant darkness. .................. 123 

Table 4.S3. Locomotor activity rhythms of control flies, and Pdfr- mutant flies overexpressing 

different forms of DBT or SGG only in the PDF positive neurons in constant darkness. .. 124 

Table 4.S4. Locomotor activity rhythms of control flies, and flies overexpressing different forms 

of DBT or SGG only in the PDF negative clock neurons in constant darkness. ................. 125 

Table 4.S5. Locomotor activity rhythms of control flies, and flies with period-rescued PDF 

positive neurons with or without DBT co-overexpression in constant darkness. ............... 126 

Table 4.S6. The numbers of neurons and brains examined for PER protein rhythms in Fig. 4.4, D 

to F. ..................................................................................................................................... 127 

Table 4.S7. The numbers of neurons and brains examined for PER immunostaining intensity in 

Fig. 4.4, I and J.................................................................................................................... 128 

Table 5.S1. Expression patterns of GAL4 drivers. ...................................................................... 161 

Table 5.S2. Summary of free-running locomotor activity rhythms. ........................................... 162 

 



 xi 

LIST OF FIGURES 

Figure 1.1. Population average activity profile of wild type Canton-S flies. ................................. 2 

Figure 1.2. The core feedback loop of the Drosophila molecular clock. ....................................... 4 

Figure 1.3. A schematic of the clock neurons and their projections in the adult fly brain. ............ 6 

Figure 1.4. Neurochemistry of the Drosophila clock neuron network. .......................................... 7 

Figure 2.1 Schematic of dual binary, ATP/P2X2 excitation approach to network interrogation. 36 

Figure 2.2 Bath application of ATP results in the excitation of P2X2-expressing deep brain 

neurons during live imaging experiments. ............................................................................ 38 

Figure 2.3 LexA operator-driven P2X2 and genetically encoded sensors for excitation and live 

imaging. ................................................................................................................................ 39 

Figure 2.4 Bath-applied ATP reliably and repeatedly activates deeply situated P2X2-expressing 

neurons in the explanted adult brain. .................................................................................... 42 

Figure 2.5 Independent expression of P2X2 and genetically encoded sensor in the fly brain by 

dual binary systems supports the excitation of specific neuronal subsets. ........................... 43 

Figure 2.6 Gal4-based excitation and LexA-based live imaging for an established excitatory 

connection in the larval brain. ............................................................................................... 44 

Figure 2.7 LexA-based excitation and GAL4-based live imaging to test a predicted peptidergic 

connection deep within the adult brain. ................................................................................ 47 

Figure 3.1. Spontaneous tonic and burst firing of the LNds.......................................................... 69 

Figure 3.1–figure supplement 1. Electrophyiological parameters of whole-cell LNd recordings. 69 



 xii 

Figure 3.2 Nicotinic acetylcholine receptor agonists excite the LNds. ......................................... 70 

Figure 3.2–figure supplement 1. The nicotine-induced LNd currents are largely network-

independent. .......................................................................................................................... 70 

Figure 3.3. GABA inhibits the LNds through GABAA receptors. ................................................ 71 

Figure 3.3–figure supplement 1. The GABA-induced LNd currents are largely network-

independent. .......................................................................................................................... 71 

Figure 3.4. Glutamate inhibits the LNds through the glutamate-gated chloride channel GluClα. 72 

Figure 3.4–figure supplement 1. The glutamate-induced currents in the LNds are largely network-

independent. .......................................................................................................................... 73 

Figure 3.5. The DN1ps inhibit the LNds. ....................................................................................... 74 

Figure 3.5–figure supplement 1. Perfusion of 250 µM ATP results in consistent and near-

maximal excitation of the P2X2-expressing DN1ps. ............................................................ 75 

Figure 3.6. RNAi-mediated knock-down of GABAAR expression in the LNds results in reduced 

nighttime sleep. ..................................................................................................................... 76 

Figure 3.6–figure supplement 1. RNAi-mediated knock-down of GABAAR expression in the 

lateral clock neurons results in reduced nighttime sleep. ..................................................... 77 

Figure 3.7. RNAi-mediated knock-down of GluClα expression in the lateral clock neurons 

results in increased daytime sleep. ........................................................................................ 78 

Figure 3.7–figure supplement 1. RNAi-mediated knock-down of GluClα expression in the LNds 

and the LNvs differentially affects daytime sleep. ................................................................ 79 

Figure 3.8. A summary model for the differential regulation of daytime and nighttime sleep by 

GABAergic and glutamatergic inhibition of the lateral clock neurons. ............................... 80 



 xiii 

Figure 4.1. The PDF positive clock neurons coherently set free-running periods via PDF 

signaling over a limited temporal range.............................................................................. 101 

Figure 4.2 The PDF negative clock neurons exert independent control over free-running activity 

rhythms. .............................................................................................................................. 102 

Figure 4.3. Pigment-dispersing factor modulates only half of the PDF-negative dorsal lateral 

neurons. ............................................................................................................................... 103 

Figure 4.4. Physiological connectivity does not ensure molecular clock coupling in the lateral 

neuron network. .................................................................................................................. 104 

Figure 4.S1. The hierarchical dual-oscillator model of the Drosophila’s circadian clock neuron 

network. .............................................................................................................................. 109 

Figure 4.S2. The free-running periods of activity rhythms can be genetically manipulated over a 

wide temporal range. ........................................................................................................... 110 

Figure 4.S3. The overexpression of DBTS and DBTL coherently accelerates and decelerates the 

molecular clocks of the PDF positive s-LNvs. .................................................................... 111 

Figure 4.S4. The PDF positive neurons coherently set free-running periods only within a narrow 

temporal range. ................................................................................................................... 112 

Figure 4.S5. Comparison of rhythmicity, internal desynchronization and rhythmic power 

between flies overexpressing different forms of DBT or SGG in both PDF positive and 

negative clock neurons and in PDF positive neurons only. ................................................ 113 

Figure 4.S6. PDFR signaling is required for the PDF neuron influence over free-running periods.

............................................................................................................................................. 115 



 xiv 

Figure 4.S7. Comparison of rhythmicity, internal desynchronization and rhythmic power 

between flies overexpressing different forms of DBT or SGG in both PDF positive and 

negative clock neurons and in PDF negative clock neurons only. ..................................... 116 

Figure 4.S8. In the absence of PDFR signaling, the PDF negative neurons determine free-running 

periods. ................................................................................................................................ 117 

Figure 4.S9. The PDF positive neurons can coherently drive activity rhythms with very long 

free-running periods in the absence of functional molecular clocks in PDF negative neurons.

............................................................................................................................................. 118 

Figure 4.S10. Comparison of PER expression rhythms in sNPF+ and sNPF- LNds from flies with 

slow-running PDF positive neurons (Pdf>DBTL) on DD4. ................................................ 119 

Figure 4.S11. A multi-oscillator interpretation of free-running activity rhythms. ..................... 120 

Figure 5.1. Neuronal clock speed determines the phase of activity peaks in LD cycles. ........... 142 

Figure 5.2. Differential influence on the phase of activity peaks in LD by the LNd/5th s-LNv 

clocks and the LNv clocks. .................................................................................................. 143 

Figure 5.3. A subset of the LNd clocks displays delay-specific coupling to the LNv clocks. ..... 144 

Figure 5.4. The CRY+ DN1p clocks are tightly phased-coupled to the LNv clocks.................... 145 

Figure 5.5. The lateral clock neurons are sufficient to set the timing of activity peaks under LD.

............................................................................................................................................. 147 

Figure 5.6. Coherent free-running activity rhythms require synchrony in all of the lateral clock 

neurons as well as the CRY+ DN1ps. .................................................................................. 148 

Figure 5.S1. The DvPdf-GAL4 expressing neurons are not sufficient to fully reset the phases of 

activity peaks under LD. ..................................................................................................... 157 



 xv 

Figure 5.S2. Deviation of free-running periods for each GAL4 manipulation from the expected 

free-running periods. ........................................................................................................... 158 

Figure 5.S3. Rhythmicity and internal desynchronization of free-running rhythms for each GAL4 

manipulation. ...................................................................................................................... 159 

Figure 5.S4. The CRY+ DN1ps and all of the lateral clock neurons together are capable of 

coherently resetting free-running activity rhythms. ............................................................ 160 

Figure 6.1. The l-LNvs modulate cAMP levels in the s-LNvs. ................................................... 172 

 

 



 xvi 

ABSTRACT 

Daily rhythms in behavior and physiology are orchestrated by a network of circadian 

clock neurons. Neuronal connections within this network produce coherence and robustness in 

circadian timekeeping that are uncharacteristic of rhythms driven by isolated neurons or non-

neuronal clocks. Using Drosophila as a simple yet conserved model system, my thesis research 

aims to understand how clock neurons are physiologically connected and how their molecular 

oscillations are coordinated to produce coherent circadian rhythms.  

I have developed an experimental approach to address functional connectivity in the fly 

brain that combines chemogenetic excitation of neurons of interest with simultaneous monitoring 

of potential postsynaptic physiology with genetically encoded fluorescent sensors. Using this 

method, I have mapped connections in the clock network mediated by the critical neuropeptide 

Pigment-Dispersing Factor. In addition, I have performed ex vivo patch-clamp recordings of the 

fly clock neurons and provided the first electrophysiological characterization of the dorsal lateral 

neurons (LNds), which constitute the so-called Evening Oscillator of the clock network. I find 

that the neuronal activity of LNds is modulated by multiple fast neurotransmitters, and that a 

group of dorsal clock neurons provides inhibitory synaptic input onto the LNds. Lastly, using 

genetic and behavioral approaches, I find that while GABAergic inhibition of the clock network 

functions to promote sleep at night, glutamatergic inhibition of the clock network functions to 

promote wakefulness during the day. 



 xvii 

To study how the molecular rhythms of clock neurons are coordinated, I have genetically 

sped-up or slowed-down the molecular clock in specific subsets of clock neurons and determined 

how such manipulations affect the molecular oscillations in un-manipulated clock neuron classes 

and sleep/activity rhythms. I find that the various groups of clock neurons do not display uniform 

modes of coupling. Rather, they display unique and complex coupling relationships that vary 

from group to group. In contrast to the widely accepted “Master Pacemaker” model that had 

dominated the field for more than a decade, my results show that the clock network consists of 

multiple independent oscillators, each of which is unified by its neuropeptide output. Finally, I 

find that robust circadian rhythms require coherence of molecular clocks across a much larger 

proportion of the clock network than previously thought.  

Collectively, my thesis research greatly advances our understanding of how the circadian 

clock neuron network is wired and how it is organized and coordinated. 
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CHAPTER 1.  Introduction 

1.1 Circadian clocks 

Almost every living organism on this planet has an endogenous timing system, the so-

called circadian clock, to help anticipate and adapt to the daily cycle of day and night (Moore-

Ede et al., 1982). This endogenous clock orchestrates daily rhythms in physiology, metabolism, 

and various behaviors. In many animals, including humans, the master clock resides in the brain 

and consists of a network of so-called clock neurons, each of which contains a molecular clock 

that generates oscillations in gene expression with a period of approximately 24 hours (Herzog, 

2007). Neuronal connections within this network allow clock neurons to coordinate their 

molecular clocks and produce coherent and robust circadian rhythms that are uncharacteristic of 

rhythms driven by isolated clock neurons or non-neuronal clocks (Welsh et al., 2010). A major 

interest in the field is to understand how clock neurons are physiologically connected and how 

their molecular oscillations are functionally coordinated. 

 

1.2 Drosophila offers an excellent model for the study of circadian clocks  

The fruit fly, Drosophila melanogaster, has proved an excellent model for the study of 

circadian clocks due to its genetic accessibility and relative simplicity. Drosophila displays 

robust circadian rhythms in activity and rest. Under 12h:12h light:dark cycles, Drosophila 

displays a characteristic bimodal pattern of activity centered around dawn and dusk, and is 
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relatively inactive in the middle of the day and throughout the night (Fig. 1.1). The rest state of 

Drosophila shares the core characteristics of mammalian sleep, including increased arousal 

threshold and the presence of homeostatic regulation among others (Hendricks et al., 2000; Shaw 

et al., 2000; Huber et al., 2004). Genetic studies in Drosophila have identified many of the 

molecular clock components and led to a transcription/translation feedback loop model of the 

molecular clock, which is conserved across a wide spectrum of species (reviewed by Dunlap, 

1999). A brief introduction of the molecular clock will be given in Section 1.3. In addition, the 

clock neurons in the fly central brain have been mapped out. The anatomy and neurochemistry of 

clock neurons will be introduced in Section 1.4. Current models of the clock network function 

will be discussed in Section 1.5. 

 
 
 

 
 
Figure 1.1. Population average activity profile of wild type Canton-S flies. 
A population average activity profile (also known as an “eduction plot”) of wild type Canton-S 
flies (n=32) under a 12h:12h light:dark cycle. Zeitgeber time (ZT) 0 indicates the time of lights-
on, and ZT12 indicates the time of lights-off. Note that there is an increase of activity levels 
before lights-on and before lights-off, which are referred to as morning anticipation and evening 
anticipation, respectively. 
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1.3 Molecular clocks 

Many components of the molecular clock are conserved between flies and mammals 

(reviewed by Yu and Hardin, 2006). The core components of the Drosophila molecular clock 

include CLOCK (CLK), CYCLE (CYC), PERIOD (PER), and TIMELESS (TIM), which 

constitute a transcription/translation feedback loop (Fig. 1.2) (reviewed by Hardin, 2011). In 

brief, heterodimers of CLK and CYC bind to the E-box elements (canonically 5’-CACGTG-3’) 

in the per and tim promoters and promote the transcription of per and tim (Hao et al., 1997; 

Allada et al., 1998; Darlington et al., 1998; Rutila et al., 1998; McDonald et al., 2001; Wang et 

al., 2001). PER and TIM proteins accumulate in the cytoplasm, later translocate into the nucleus 

(Vosshall et al., 1994; Curtin et al., 1995; Saez and Young, 1996; Shafer et al., 2002; Meyer et 

al., 2006) where they act to suppress CLK/CYC function (Lee et al., 1998, 1999; Bae et al., 

2000). The cytoplasmic accumulation of PER is delayed by DOUBLETIME (DBT), which 

phosphorylates PER and targets PER for degradation, whereas it is facilitated by TIM, which 

stabilizes PER–DBT complexes and enables the accumulation of DBT–PER–TIM complexes in 

the cytoplasm (Kloss et al., 1998, 2001; Price et al., 1998). Nuclear translocation of PER and 

TIM is promoted by phosphorylation of PER by CASEIN KINASE 2 (CK2) (Lin et al., 2002; 

Akten et al., 2003) and phosphorylation of TIM by SHAGGY (SGG) (Martinek et al., 2001). 

Overall, the negative feedback of PER and TIM on their own transcription results in oscillations 

in the abundance of their mRNAs and proteins with a period of approximately 24 hours (Hardin 

et al., 1990; Sehgal et al., 1995). 
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Figure 1.2. The core feedback loop of the Drosophila molecular clock. 
All the genes, regulatory elements, and proteins are defined in the text. “P” represents 
phosphorylation site(s). See text for details. This figure is reprinted from Adv. Genet. 74. Hardin, 
P.E., Molecular genetic analysis of circadian timekeeping in Drosophila. 141–173. Copyright 
(2011), with permission from Elsevier. 

 

1.4 Anatomy and neurochemistry of the Drosophila clock neuron network 

The neuroanatomy of the Drosophila clock neuron network has been relatively well 

characterized. There are approximately 150 clock neurons in the adult fly brain, radically fewer 

than the tens of thousands of neurons in the mammalian clock centers (Herzog, 2007). Despite its 

relative simplicity, the fly clock neuron network shares both anatomical and functional 

similarities with that of mammals (Helfrich-Förster, 2004; Vansteensel et al., 2008). The fly’s 

clock neurons are divided into nine groups based on their anatomy: (1) four pairs of large ventral 
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lateral neurons (l-LNvs); (2) four pairs of small ventral lateral neurons (s-LNvs); (3) one pair of 

so-called fifth small ventral lateral neurons (5th s-LNvs); (4) six pairs of dorsal lateral neurons 

(LNds); (5) two pairs of anterior dorsal neurons group 1 (DN1as); (6) ~15 pairs of posterior 

dorsal neurons group 1 (DN1ps); (7) two pairs of dorsal neurons group 2 (DN2s); (8) ~40 pairs of 

dorsal neurons group 3 (DN3s); and (9) three to four pairs of lateral posterior neurons (LPNs) 

(Fig. 1.3) (Kaneko and Hall, 2000; Shafer et al., 2006). Most of the clock neurons send 

projections to the dorsal protocerebrum, with a notable exception of the l-LNvs, which send a 

network of fibers onto the surface of the medulla and also project contralaterally to the opposite 

brain hemisphere (reviewed by Helfrich-Förster, 2005). The DN1as and subsets of the LNds, 

DN1ps, and DN3s have additional projections towards the accessory medulla, where the l-LNvs 

and s-LNvs are located (Kaneko and Hall, 2000; Helfrich-Förster, 2005; Shafer et al., 2006; 

Helfrich-Förster et al., 2007). The extensive overlap of their neurites suggests that the various 

classes of clock neurons may be interconnected. However, the physiological connectivity within 

the clock neuron network remains largely uncharacterized. 

The clock neurons are remarkably heterogeneous in their neurochemistry. Pigment-

dispersing factor (PDF), a neuropeptide that is critical for circadian rhythms in locomotor 

activity, is expressed exclusively by the l-LNvs and the s-LNvs (together called the LNvs) in the 

central brain (Fig. 1.4) (Helfrich-Förster, 1995; Renn et al., 1999). The receptor for PDF (PDFR) 

is expressed by about half of the clock neurons, most of which co-express a deep-brain blue light 

photoreceptor Cryptochrome (CRY) (Fig. 1.4a) (Yoshii et al., 2008; Im and Taghert, 2010; Im et 

al., 2011). Many neuropeptides are expressed in the clock network in addition to PDF, including 

neuropeptide F (NFP), short neuropeptide F (sNPF), ion transport peptide (ITP), and IPNamide 

(IPNa), each of which is expressed by only a small number of clock neurons (Fig. 1.4b) 
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(reviewed by Hermann-Luibl and Helfrich-Förster, 2015). The 5th s-LNv and subsets of the LNds 

cholinergic (Johard et al., 2009), while some DN1s and DN3s are glutamatergic (Hamasaka et 

al., 2007) (Fig. 1.4b). This remarkable heterogeneity in neuroanatomy and neurochemistry 

suggests that the various clock neurons play distinct and diverse roles in the control of circadian 

rhythms. 

 
 
 

 
 
Figure 1.3. A schematic of the clock neurons and their projections in the adult fly brain. 
The various classes of clock neurons are described in the text and labeled in the schematic. The 
projections of each clock neuron class are depicted in the same color as their soma. The LPN 
projections have not been described. aMe, accessory medulla. See text for details. The figure is 
reprinted from Helfrich-Förster, C., Shafer, O.T., Wülbeck, C., Grieshaber, E., Rieger, D., and 
Taghert, P. (2007). Development and morphology of the clock-gene-expressing lateral neurons 
of Drosophila melanogaster. J. Comp. Neurol. 500, 47–70, with permission from John Wiley 
and Sons.  
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Figure 1.4. Neurochemistry of the Drosophila clock neuron network. 
(a) A schematic of the expression patterns of Cryptochrome (CRY) and PDF receptor (PDFR) 
within the clock neuron network. Note that CRY and PDFR are co-expressed by many clock 
neurons. Re, retina; La, lamina; Me, medulla; aMe, accessory medulla. (b) A schematic of the 
expression of neuropeptides and neurotransmitters by the various clock neurons. PDF, pigment-
dispersing factor; ITP, ion transport peptide; NPF, neuropeptide F; sNPF, short neuropeptide F; 
IPNa, IPNamide. The expression of choline acetyltransferase (Cha) and vesicular glutamate 
transporter (GluT) indicates the presence of acetylcholine and glutamate, respectively. dpr, 
dorsal protocerebrum. This figure is reprinted from Curr. Opin. Insect Sci. 7. Hermann-Luibl, C., 
and Helfrich-Förster, C. Clock network in Drosophila. 65–70. Copyright (2015), with permission 
from Elsevier. 
 

 

1.5 Models of the Drosophila clock neuron network function 

Studies employing cell ablation and mosaic genetic rescue approaches have suggested a 

dual-oscillator model of the Drosophila clock network function: The LNvs function collectively 

as a “morning oscillator” that promotes activity around dawn, whereas the LNds and the 5th s-

LNv function collectively as an “evening oscillator” that promotes activity around dusk (Grima et 

al., 2004; Stoleru et al., 2004). The LNvs are essential for robust circadian timekeeping in the 
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absence of environmental cues (Renn et al., 1999), and are thought to be the dominant 

pacemaker of the clock network under short-day conditions and constant darkness (Stoleru et al., 

2005, 2007). In contrast, it is thought that light activates output from the LNds/5th s-LNv, and 

these neurons become the dominant pacemaker under long-day conditions and constant light 

(Picot et al., 2007; Stoleru et al., 2007). This dual-oscillator model provides a powerful and 

elegant model for the functional division of the clock neuron network and the adaptation of the 

clock neuron network to day-length changes, but it does not account for many experimental 

observations (discussed by Yoshii et al., 2012). 

In addition to the lateral clock neurons, recent work has highlighted the importance of 

another group of clock neurons, the DN1ps. DN1ps are capable of driving activity rhythms in the 

presence of light (Murad et al., 2007), and can promote activity both around dawn and dusk 

depending on the specific light and temperature conditions (Fujii and Amrein, 2010; Zhang et al., 

2010a, 2010b). Furthermore, the DN1ps have been implicated as key output neurons of the clock 

network in the control of activity and sleep rhythms (Cavanaugh et al., 2014; Kunst et al., 2014). 
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CHAPTER 2.  Analysis of functional neuronal connectivity in the Drosophila brain1 

2.1 Abstract 

Drosophila melanogaster is a valuable model system for the neural basis of complex 

behavior, but an inability to routinely interrogate physiologic connections within central neural 

networks of the fly brain remains a fundamental barrier to progress in the field. To address this 

problem, we have introduced a simple method of measuring functional connectivity based on the 

independent expression of the mammalian P2X2 purinoreceptor and genetically encoded 

Ca2+ and cAMP sensors within separate genetically defined subsets of neurons in the adult brain. 

We show that such independent expression is capable of specifically rendering defined sets of 

neurons excitable by pulses of bath-applied ATP in a manner compatible with high-resolution 

Ca2+ and cAMP imaging in putative follower neurons. Furthermore, we establish that this 

approach is sufficiently sensitive for the detection of excitatory and modulatory connections deep 

within larval and adult brains. This technically facile approach can now be used in wild-type and 

mutant genetic backgrounds to address functional connectivity within neuronal networks 

governing a wide range of complex behaviors in the fly. Furthermore, the effectiveness of this 

approach in the fly brain suggests that similar methods using appropriate heterologous receptors 

might be adopted for other widely used model systems. 

                                                 
1 Originally published in J Neurophysiol 2012 Jul 15;108(2):684-96 doi: 10.1152/jn.00110.2012 with authors listed 
as Zepeng Yao*, Ann Marie Macara*, Katherine R. Lelito*, Tamara Y. Minosyan, and Orie T. Shafer (* denotes 
equal contribution). 

http://dx.doi.org/10.1152%2Fjn.00110.2012
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2.2 Introduction 

Despite its relative simplicity the nervous system of Drosophila melanogaster is capable 

of producing a remarkable repertoire of complex behaviors (Weiner 1999). Work 

on Drosophila has identified discrete networks of neurons that govern circadian timekeeping 

(Nitabach and Taghert 2008), courtship (Villella et al. 2008), memory (McGuire et al. 2005), 

sleep (Crocker and Sehgal 2010), feeding (Melcher et al. 2007), and decision-making 

(e.g., Dickson 2008; Peabody et al. 2009). The study of these and other neural networks in the fly 

continues to enrich and inform our understanding of the neural control of animal behavior. For 

many of these central brain networks the pattern and physiologic basis of their constituent 

connections have been proposed; however, due to the electrophysiologic inaccessibility of much 

of the fly CNS, many aspects of these network models remain unchallenged experimentally. The 

development of technically feasible methods to test for the presence and physiologic nature of 

connections between defined neuronal classes of the fly CNS will therefore be critical for 

progress in the field. 

The ability to address the nature of connections between pairs of identified neurons has 

been one of the great strengths of large invertebrate model systems (Kandel 1976). The 

stereotyped and large neurons of these organisms are accessible to multiple recording and 

stimulating electrodes, making it possible to stimulate activity in a neuron of interest while 

measuring electrophysiologic responses in putative follower neurons (e.g., Kandel et al. 

1967; Willows and Hoyle 1969; Fig. 2.1). Unfortunately, such multielectrode experiments are 

not feasible for most central neural networks of the Drosophilabrain. The electrophysiologic 

inaccessibility of many central fly neurons has been surmounted somewhat by the use of 

genetically encoded sensors for neuronal excitation and second-messenger signaling (e.g., 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B65
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B42
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B63
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B35
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B36
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B6
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B44
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B20
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/#B67
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/figure/F1/
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Lissandron et al. 2007; Ruta et al. 2010; Shafer et al. 2008; Tian et al. 2009; Tomchik and Davis 

2009; Wang et al. 2003; Yu et al. 2003) and the physiologic responses of single deeply situated 

neurons can now be routinely observed in the fly brain using live imaging techniques. 

Combining these techniques with an ability to acutely activate subsets of neurons would allow 

for existing models of neural connectivity to be tested and the downstream targets of neurons of 

interest to be identified physiologically. 

Several genetically encoded triggers of neural excitation have been successfully used 

in Drosophila in conjunction with various chemical or physical triggering methods (reviewed 

in Venken et al. 2011). The first instance of such triggering in the fly used the photochemical 

excitation of neurons expressing transgenic P2X2 receptor, a mammalian ATP receptor that is 

not encoded by the Drosophila genome (Lima and Miesenböck 2005; Littleton and Ganetzky 

2000). The mammalian thermosensitive TRPV1 channel has been used to excite fly sensory 

neurons using its ligand capsaicin (Marella et al. 2006) and ectopic expression of 

the Drosophila thermosensitive TRPA1 channel has also been used to activate multiple neuron 

types with pulses of high temperature (e.g., Parisky et al. 2008). Furthermore, the mammalian 

cold-sensitive TRPM8 channel has been used with both low-temperature pulses and menthol 

vapor as exogenous excitation triggers in the fly (Peabody et al. 2009). Finally, several groups 

have used the bacterial opsin Channelrhodopsin-2 (ChR2) to trigger neuronal excitation 

in Drosophila with blue light (e.g., Pulver et al. 2009; Schroll et al. 2006; Zimmermann et al. 

2009). The fact that ChR2 is maximally activated by blue wavelengths makes it problematic for 

use in live imaging experiments, since GFP-based sensors must be excited with the same 

wavelengths that activate opsin conductance (Guo et al. 2009). The recent development of red-

shifted optogenetic controls (Yizhar et al. 2011) and Ca2+ sensors (Zhao et al. 2011) may 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B52
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B55
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B61
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B62
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B31
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B31
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B34
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B43
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B44
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B49
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B54
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B75
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B75
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B10
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B69
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B74
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ultimately circumvent this problem, but these newly developed tools have not yet been 

successfully introduced to Drosophila. The use of temperature pulses to trigger the opening of 

TRPA1 or TRPM8 channels during live imaging experiments is also problematic, because acute 

shifts in temperature can cause significant movement of imaging targets within the explanted 

brain during high-resolution imaging, which makes the analysis of single-neuron somata difficult 

(Q. Zhang and O. Shafer, unpublished observations). For these reasons we have opted for ligand-

gated triggering of transgenic receptors as a means for acute neuronal excitation. The feasibility 

of combining ATP excitation of P2X2-expressing fly neurons to attain biologically relevant 

neural excitation during behavioral and physiologic experiments has already been established for 

both larval and adult nervous systems (e.g., Hu et al. 2010; Lima and Miesenböck 2005). We 

have therefore chosen ATP/P2X2 excitation for use in our live imaging experiments. 

In Drosophila the Gal4/UAS system is a powerful and versatile method of transgene 

expression that has been the tool of choice for directing sensor expression in specific neuronal 

classes within the fly brain (Brand and Perrimon 1993; Venken et al. 2011). The recent 

development of alternative binary expression systems, the LexA and Q systems (Lai and Lee 

2006; Potter et al. 2010), now makes it possible to independently direct P2X2 and sensor 

expression within different neuronal classes. Here we have used the simultaneous use of the Gal4 

and LexA systems for the independent dual binary expression of P2X2 and genetically encoded 

sensors of Ca2+ or cAMP, thereby allowing for the acute excitation of defined neuronal 

populations during the simultaneous live imaging of Ca2+ and cAMP dynamics within putative 

neuronal targets (Fig. 2.1). 

Here we establish the feasibility of the simultaneous use of the GAL4 and LexA systems 

to render defined groups of neurons excitable by pulses of bath-applied ATP while 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B15
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B62
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B25
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B25
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B48
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/figure/F1/
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simultaneously and independently expressing the Ca2+ sensor GCaMP3.0 or the cAMP sensor 

Epac1-camps in putative follower neurons. We present proof of principle experiments that 

establish the efficacy of this method for detecting established and/or predicted excitatory and 

modulatory connections within larval and adult brains, concentrating on the well-characterized 

circadian clock neuron network of the fly (Nitabach and Taghert 2008), the constituent 

physiologic connections of which have remained largely unexamined. The LexAop-

P2X2, LexAop-GCaMP3.0, and LexAop-Epac1-camps lines we have used for these studies, along 

with large and growing number of existing GAL4, UAS, and LexA lines, constitute a useful and 

technically facile toolkit for the interrogation of central neuronal networks in 

the Drosophila brain. 

 

2.3 Methods 

2.3.1 Fly stocks and rearing 

Flies were reared on cornmeal-yeast-sucrose media at 25°C under a 12:12 light:dark 

cycle or under the diurnal conditions of the lab. All Gal4 and UAS lines used in this study have 

been previously described: Pdf(M)-Gal4;; and ;Pdf(bmrj)-Gal4; (Renn et al. 1999), ;UAS-

GCaMP3.0; (Tian et al. 2009), ;;UAS-P2X2(Lima and Miesenböck 2005), ;;Clock(4.1M)-

Gal4 (Zhang et al. 2010a,b), ;Clock(-856[8.2/2])-Gal4; (Gummadova et al. 2009), ;c929-

Gal4; (Hewes et al. 2000), ;Rh6-Gal4; (Pichaud and Desplan 2001), ;UAS-Epac1-

camps(50A); (Shafer and Taghert 2009), and ;Cha(7.4)-Gal4/CyO; (Salvaterra and Kitamoto 

2001). The ;Pdf-LexA;line has also been described previously (Shang et al. 2008). The creation 

of the LexAop-P2X2, LexAop-GCaMP3.0, and LexAop-Epac1-camps lines is described in the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B42
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B51
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B61
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B72
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B73
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B9
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B47
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B56
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B53
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B53
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B57
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following text. Stable lines carrying combinations of these elements were created using 

standard Drosophila genetic techniques.  

2.3.2 Creation of LexAop P2X2 and sensor lines 

We used the LexA-response element containing pLOT vector (Lai and Lee 2006) for the 

creation of LexAop-GCaM3.0,LexAop-Epac1-camps, and LexAop-P2X2 plasmids. GCaMP3.0 

(Tian et al. 2009) was obtained in a pEGFP-N1 vector from Addgene (Cambridge, MA; plasmid 

# 22692) and digested with EagI. The resulting GCaMP3.0-containing fragment was gel 

purified, digested with BglII, and subsequently PCR purified using a QIAquick PCR Purification 

Kit (Qiagen, Valencia, CA). In parallel, pLOT vector was digested with EagI and BglII, and 

treated with CIP alkaline phosphatase (New England Biolabs, Ipswich, MA) following 

manufacturer's instructions. The GCaMP3.0 fragment was ligated with the linearized pLOT 

vector with a Quick Ligation Kit from New England Biolabs. Epac1-camps (Nikolaev et al. 

2004) was sequentially digested from the pUAST-Epac1-camps plasmid (Shafer et al. 2008) 

using XhoI and BglII, and PCR purified. This Epac1-camps fragment was cloned into pLOT as 

above using sequential XhoI and BglII restriction digests of pLOT. The P2X2 trimer (Lima and 

Miesenböck 2005) was obtained as the Gateway entry clone pENTRA1_P2X2 from G. 

Miesenböck (Oxford University). We created a pLOT Gateway vector by cutting pLOT with 

KPN1, generating blunt ends using T4 DNA Polymerase (Invitrogen), and inserting the 

chloramphenicol/ccdB-resistant Gateway cassette A using T4 DNA Ligase following 

manufacturer's instructions (Invitrogen). We transformed OmniMAX 2T1R cells (Invitrogen) 

with the resulting pLOT-Gateway vector, selected ampicillin- and chloramphenicol-resistant 

clones for vector propagation, and purified the pLOT-Gateway vector using a Qiagen Mini Prep 

kit (Qiagen). The transfer of the P2X2 trimer from pENTRA1_P2X2 to the pLOT-Gateway 
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vector was accomplished via LR recombination reaction according to manufacturer's instructions 

(Invitrogen) using LR II clonase (Invitrogen). 

All three LexAop plasmids were extracted and purified using a Qiagen Mini Prep kit. 

Purified plasmids were sent to Genetic Services, Inc. (Cambridge, MA), where they were 

injected into w1118 embryos. We isolated and mapped several independent transgenic lines for 

each LexAop element using standard fly genetic techniques. The specific lines used here 

were: w;LexAop-GCaMP3.0(4B);, w;LexAop-Epac1-camps(1A);, w;LexAop-P2X2(7);, 

and w;;LexAop-P2X2(1). 

2.3.3 Dissections, solutions, and test compound delivery 

Flies were anesthetized on CO2 and brains were dissected into room temperature 

hemolymph-like saline (HL3) consisting of (in mM): 70 NaCl, 5 KCl, 1.5 CaCl2, 20 MgCl2, 10 

NaHCO3, 5 trehalose, 115 sucrose, 5 HEPES; pH 7.1 (Stewart et al. 1994). For larval brain 

dissections, third instar (nonwandering) larvae were removed from the food and brains were 

dissected directly into HL3, keeping the eye disks and ventral nerve cord intact. Mouth hooks 

continued to move after dissections and were therefore removed to prevent brain movement 

during imaging experiments. All brains were allowed to adhere to the bottom of 35-mm 

FALCON culture dishes (Becton Dickenson Labware, Franklin Lakes, NJ) under a drop of HL3 

contained within a petri dish insert (Bioscience Tools, San Diego, CA) for directing perfusion 

flow. Brains were imaged 5 to 10 min after dissection to allow for optimum baseline stabilization 

and settling of the brain to the dish. Perfusion flow was established over the brain with a gravity-

fed PS-8H perfusion system (Bioscience Tools). Test compounds were delivered to mounted 

brains by switching perfusion flow from the main HL3 line to another channel containing diluted 

compound for desired durations followed by a return to HL3 flow. All test compounds were 
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dissolved in HL3. To control for the effects of switching channels, we perfused HL3 for 30 s 

from a second vehicle channel as a vehicle control. Adenosine 5[prime]-triphosphate disodium 

salt hydrate (ATP), guanosine 5[prime]-triphosphate disodium salt hydrate (GTP), and 

carbamoylcholine chloride (carbachol) were purchased from Sigma-Aldrich (St. Louis, MO).  

2.3.4  Live imaging and analysis  

Live imaging was performed using an Olympus FV1000 laser-scanning microscope 

(Olympus, Center Valley, PA) under a ×20 (0.50 N/A W, UMPlan FL N) or ×60 (1.10 N/A W, 

FUMFL N) objective (Olympus, Center Valley, PA). Regions of interest (ROIs) were selected 

over single neuronal somata or, in the case of Bolwig's nerve, over the length of a nerve. For 

GCaMP3.0 imaging experiments, frames were scanned with a 488-nm laser at 1—10 Hz for 5 

min and GCaMP emission was directed to a photomultiplier tube by means of a DM405/488 

dichroic mirror. Scanning frequencies for GCaMP3.0 imaging were kept constant within 

experiments, but varied between experiments. Experiments involving multiple neuronal classes 

demanded larger scanning areas and therefore lower scan rates. Epac1-camps FRET imaging was 

performed by scanning frames with a 440-nm laser at a frequency of 1 Hz for 5 min. CFP and 

YFP emission was separated by means of a SDM510 dichroic mirror. 

For each neuron within an optical section, ROIs were drawn over somata using Fluoview 

software (Olympus). Raw intensity values for GCaMP3.0 emission or Epac1-camps CFP and 

YFP emission were recorded as mean pixel intensities (value range: 0—4,095) for each ROI at 

each time point and exported from Fluoview. Data transformations (see details in the following 

text) were conducted using custom software developed in Matlab (The MathWorks, Natick MA). 

For GCaMP3.0 experiments, raw intensity traces were filtered with a 10-point moving average to 
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remove high-frequency noise and then normalized to percentage fluorescence changes (ΔF/F0) 

using the following equation 

((Fn − F0) / F0) × 100 % 

where Fn is a raw intensity value recorded at each point in time and F0 is the baseline 

fluorescence value, calculated from the average of the raw intensity values in the first 10 s of 

recording from each trace. Maximum GCaMP3.0 fluorescence change values (max ΔF/F0) were 

determined as the maximum percentage change observed for each trace over the entire duration 

of each imaging experiment. Maximum values for each treatment and genotype were averaged to 

calculate the mean maximum change from baseline. To remove the direct excitatory effects of 

488-nm light on Bolwig's Nerve (BN) (Yuan et al. 2011) from our analysis, which we observed 

during the start of a subset of our 488-nm scans, the F0 for all larval BN experiments was 

calculated from the average fluorescent intensities observed during the 15 s preceding the 

stimulus onset, by which time the baseline GCaMP3.0 fluorescence had stabilized following the 

light-induced excitation of the nerve. 

For Epac1-camps data processing, we corrected YPF intensity values for spillover from 

the CFP channel by the following equation 

YFPSOC = YFP − (CFP × 0.444) 

where YFPSOC is the spillover—corrected YFP intensity, YFP and CFP are the raw intensity 

values, and 0.444 is the proportion of CFP emission that spills over into the YFP channel on our 

imaging system. The inverse FRET ratio, which is proportional to increases in cAMP, was 

calculated by taking the ratio of CFP/YFPSOC at all time points for each ROI. Each ratio trace 

was filtered with a 10-point moving average. All spillover-corrected and filtered Epac1-camps 

inverse FRET traces were normalized to the first time point to an initial value of “1.0.” Filtered, 
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 22 

corrected, and normalized inverse FRET traces were expressed as percentage inverse FRET 

changes and averaged for each treatment and neuron type to create mean inverse FRET traces. 

The maximum percentage inverse FRET change was determined for every neuron based on the 

entire duration of the experiment. Such maximum inverse FRET changes were averaged for each 

treatment and neuron type to determine the mean maximum inverse FRET change. For most 

Epac1-camps inverse FRET traces, a spontaneous and gradual increase in inverse FRET was 

observed due to a slow photobleaching of YFP, as has been described previously for this sensor 

(Börner et al. 2011; Shafer et al. 2008). To correct for these spontaneous changes, we determined 

the mean inverse FRET increase for 10—20 untreated or vehicle treated neurons of a particular 

genotype, depending on the nature of the experiment. This mean trace was then subtracted from 

each individual experimental trace to generate corrected inverse FRET traces. 

To statistically compare maximum changes in GCaMP3.0 fluorescence or Epac1-camps 

inverse FRET ratio between the vehicle and test compounds, we used a Kruskal—Wallis one-

way ANOVA with a Dunn's multiple comparison test. Pairwise comparisons of maximum 

changes in GCaMP3.0 fluorescence or inverse Epac1-camps FRET in response to test compound 

or vehicle perfusion were made using the Mann—Whitney U test. All plots and statistical tests 

were generated and performed using Prism 5 (GraphPad, San Diego CA). Figures were 

constructed in Adobe Illustrator and Photoshop (Adobe Systems, San Jose, CA). To obtain 

intensity-mapped images representing select time points before, during, and after ATP/P2X2 

stimulation, single frames were captured from intensity-mapped still images using Fluoview. 

These images were imported to Photoshop (Adobe Systems, San Diego CA), and trimmed to 

size. 
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2.4 Results 

2.4.1 Controlled excitation of P2X2-expressing deep brain neurons with perfused ATP is 

compatible with high-resolution live imaging. 

Previous work has established that neurons expressing transgenic P2X2 receptor 

in Drosophila can be excited at biologically relevant levels through the global uncaging of ATP 

in freely moving flies (Lima and Miesenböck 2005) or through the puffing of ATP on explanted 

brains during electrophysiologic recordings of superficial brain neurons (Hu et al. 2010). We 

wondered if the simple perfusion of ATP across the explanted brain could provide a reliable and 

technically facile means of exciting deeply situated adult neurons in a manner compatible with 

high-resolution live imaging. We therefore used a Pdf-Gal4 driver to coexpress UAS-

GCaMP3.0 (Tian et al. 2009) and UAS-P2X2 (Lima and Miesenböck 2005) in the small ventral 

lateral neurons (s-LNvs). These cells are critical circadian pacemaker neurons whose small 

somata and deep position within the central brain make them difficult neurons to investigate 

electrophysiologically (Cao and Nitabach 2008). Compared with vehicle controls (Fig. 2.2A), 30-

s perfusions of 1 or 2.5 mM ATP resulted in significant GCaMP3.0 fluorescence increases, 

thereby revealing acute excitation of the s-LNvs (Fig. 2.2, B, C, E, F). In contrast, 30-s perfusions 

of 2.5 mM GTP did not result in significant increases in on GCaMP3.0 fluorescence, instead 

causing very small decreases in fluorescence during perfusion (Fig. 2.2, D and E). The latencies 

of the s-LNv responses to 1 mM ATP were less consistent compared with the responses to 2.5 

mM, although a few s-LNvs did display relatively late responses to the higher dose (Fig. 

2.2, B and C). Many of the GCaMP3.0 fluorescence increases displayed by the s-LNvs following 

1 mM ATP perfusion were markedly bimodal, unlike the majority of responses to 2.5 mM (Fig. 

2.2, B and C). This was reminiscent of s-LNv GCaMP3.0 responses to nicotinic acetylcholine 
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receptor activation. Carbachol (CCh) excitation of s-LNv nicotinic acetylcholine receptors 

(nAChRs), which like P2X2 are expected to gate both Na+ and Ca2+ upon ligand binding, results 

in bimodal GCaMP3.0 responses at low CCh concentrations but in single fluorescence peaks at 

high concentrations (Lelito and Shafer 2012). It is possible that, in the case of bimodal responses, 

the first peak reflects the direct gating of Ca2+ through P2X2, whereas the second peak represents 

Ca2+ entry through voltage-gated Ca2+ channels or the release of intracellular Ca2+. 

The Drosophila genome does not encode a P2X2 receptor homolog and previous studies 

suggest that there are no acute behavioral or physiologic effects of ATP in the absence of 

transgenic P2X2 (Lima and Miesenböck 2005; Littleton and Ganetzky 2000). Nevertheless, it is 

still possible that bath-applied ATP might have previously uncharacterized effects on the 

physiology of fly neurons, possibly through effects on the conserved ATP sensitive K+ channel 

(Kim and Rulifson 2004), or might have effects on properties of the genetically encoded sensors 

themselves (Willemse et al. 2007). We therefore treated brains expressing UAS-

GCaMP3.0 or UAS-Epac1-camps in the absence of transgenic P2X2 expression with 30-s 

perfusions of 2.5 mM ATP to determine if ATP had measurable effects on GCaMP3.0 

fluorescence or the inverse Epac1-camps FRET ratio (CFP/YFP), which are directly proportional 

to Ca2+ and cAMP levels, respectively. The 30-s perfusions of 2.5 mM ATP resulted in very 

small but consistent transient decreases in GCaMP3.0 fluorescence relative to vehicle controls 

(Fig. 2.2, G and H). Bath-applied ATP also caused a consistent increase in Epac1-camps inverse 

FRET values relative to vehicle controls (Fig. 2.2, I and J). However, the evaluation of raw CFP 

and YFP traces revealed that this change was not due to bona fide FRET changes, but rather to 

decreases in YFP fluorescence, reminiscent of GCaMP3.0 fluorescence loss (Fig. 2.2J and data 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B27
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B31
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B24
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B66
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/figure/F2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/figure/F2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/figure/F2/


 25 

not shown). We therefore conclude that bath-applied ATP has only small and easily accounted 

for effects on GCaMP3.0 fluorescence and Epac1-camps inverse FRET. 

Taken together, these results indicate that deeply situated P2X2-expressing neurons can 

be excited by the controlled perfusion of ATP across the explanted brain in a manner compatible 

with high-resolution GCaMP3.0 and Epac1-camps live imaging within single neuronal somata. 

Furthermore, the absence of ATP excitation in neurons lacking transgenic P2X2 expression 

confirms that, as expected from previous work (Lima and Miesenböck 2005), ATP did not excite 

the s-LNvs in the absence of specifically directed P2X2 expression and had only minor effects on 

genetically encoded sensors. 

2.4.2 LexA operator-driven sensors and P2X2 for dual binary expression experiments. 

Our proposed method of circuit interrogation requires the independent expression of the 

P2X2 receptor and genetically encoded sensors in neurons of interest and their putative follower 

neurons (Fig. 2.1). To complement existing UAS-Sensor and UAS-P2X2lines and the large 

number of existing GAL4 and LexA drivers, we have created a series of transgenic flies 

containing GCaMP3.0, Epac1-camps, and P2X2 elements under the control of the LexA operator 

(LexAop) (Lai and Lee 2006). We tested the functionality of our LexAop-

GCaMP3.0 and LexAop-Epac1-camps elements within s-LNvs using the previously 

described Pdf-LexA element (Shang et al. 2008). The adult s-LNvs respond to the general 

cholinergic agonist carbachol (CCh) with rapid Ca2+ and cAMP increases (Lelito and Shafer 

2012). LexAop-driven GCaMP3.0 and Epac1-camps were indeed capable of detecting significant 

increases in Ca2+ and cAMP in response to 30-s perfusions of 10−4 M CCh (Fig. 2.3, A—D). 

Along with evidence presented below, these results indicate that our LexAop-
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GCaMP3.0 andLexAop-Epac1-camps elements are suitable for the observation of Ca2+ and 

cAMP dynamics within single somata of deeply situated neurons of the adult brain. 

We tested the functionality of our LexAop-P2X2 element by coexpressing it with LexAop-

GCaMP3.0 in the s-LNvs using Pdf-LexA. The s-LNvs of Pdf-LexA,LexAop-

GCaMP3.0/+;LexAop-P2X2/+ brains displayed clear increases in GCaMP3.0 fluorescence in 

response to 30-s perfusions of 1 mM ATP, indicating that the LexAop-driven P2X2 element had 

rendered the s-LNvs sensitive to bath-applied ATP (Fig. 2.3, E and F). Importantly, the LexAop-

P2X2 element rendered the s-LNvs sensitive to ATP only when driven by the Pdf-LexA driver: 

when UAS-GCaMP3.0 was driven in the s-LNvs with Pdf-GAL4 in flies carrying the LexAop-

P2X2 element, ATP had no significant effects on GCaMP3.0 fluorescence (Fig. 2.3, E and F). 

This observation, along with work presented in the following text, indicates that the presence of 

theLexAop-P2X2 element does not cause significant P2X2 expression in the absence of LexA 

drivers. The same was true for the previously described UAS-P2X2 element (Fig. 2.3, E and F; 

Lima and Miesenböck 2005). We conclude that, like its UAS counterpart, our LexAop-

P2X2 element is capable of specifically rendering deeply situated adult neurons excitable by 

bath-applied ATP. 

2.4.3 Bath-applied ATP reliably and repeatedly activates P2X2-expressing neurons of the 

adult brain. 

Having acquired the genetic elements necessary for dual binary control of P2X2 and 

sensor expression, we sought to determine the most reliable means of exciting deep brain 

neurons expressing UAS-P2X2 and LexAop-P2X2 elements using bath-applied ATP. We first 

imaged the somata of three different classes of neuron coexpressing P2X2 and GCaMP3.0: the s-

LNvs and DN1p clock neurons [usingPdf(bmrj)-GAL4 and Clock(4.1M)-Gal4, respectively] and 
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the olfactory projection neurons [PNs; using Cha(7.4)-Gal4] and compared the effects of 30-s 

perfusions of a range of ATP concentrations on GCaMP3.0 fluorescence (Fig. 2.4A). For all 

three neuron types, 30-s perfusions of 0.1 mM ATP had no significant effects on GCaMP3.0 

fluorescence. Higher concentrations resulted in dose-dependent increases in Ca2+ responses, with 

the s-LNvs and DN1ps displaying sigmoidal response curves and the PNs (the most superficial of 

the neurons tested) displaying a biphasic response curve with diminished response magnitudes at 

doses >5 mM (Fig. 2.4A). We also compared the effects of these ATP concentrations between s-

LNvs expressing GCaMP3.0 and P2X2 using either the GAL4 or LexA expression system. The 

LexA-expressing s-LNvs displayed significant GCaMP3.0 responses over the same range of ATP 

concentrations as their GAL4-expressing counterparts, but did so with lower response 

amplitudes, most likely due to lower levels of transgene expression (Fig. 2.4E). Nevertheless, the 

LexA-expressing s-LNvs displayed maximum fluorescence changes (ΔF/F0) approaching 100%, 

amplitudes on par with the GCaMP3.0 responses displayed by fly sensory neurons subjected to 

acute sensory excitation (Tian et al. 2009). As shown in Fig. 2.4, C and D, the excitatory 

responses of single P2X2-expressing neurons to a series of increasing ATP doses were 

proportional to the concentration of perfused ATP. Thus, the excitatory responses of single 

neurons can be controlled through the manipulation of ATP dose, thereby making it possible to 

excite neurons at a range of intensities. 

Our results suggest that 30-s perfusions of 1—5 mM ATP result in significant neuronal 

excitation for all three neuron types we tested. To gauge the reliability of such ATP/P2X2 

excitation we analyzed how often each of these 30-s ATP treatments failed to excite the P2X2-

expressing s-LNvs, DN1ps, and PNs. We defined a failure conservatively as any ATP-treated 

neuron displaying less than a 25% maximal increase in GCaMP3.0 fluorescence. For all three 
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neuron types, failure rates were <50% for 1 mM ATP perfusions and approached zero at higher 

concentrations (Fig. 2.4B). Our choice of 30-s perfusions was based on previous experiments 

involving the bath application of neurotransmitters and receptor agonists (Lelito and Shafer 

2012). We wondered if shorter applications of ATP might still yield sufficient excitation of the s-

LNvs, the most deeply situated of the neurons tested, using both the LexA and Gal4 expression 

systems. We therefore determined the failure rates for various durations of 2.5 mM ATP for s-

LNvs coexpressing GCaMP3.0 and P2X2 with either LexA or Gal4 drivers. For perfusion 

durations of 10 to 20 s, failure rates for both genotypes were all near 30%. Failure rates reached 

zero at perfusion durations of 25 s for LexA s-LNvs and at 30 s for GAL4 s-LNvs (Fig. 2.4F). 

The ability to excite the same set of P2X2-expressing neurons repeatedly would allow for 

multiple sets of putative follower neurons residing in different focal planes to be investigated in 

the same brain preparation. We therefore asked if P2X2-mediated excitation by bath-applied 

ATP could be used to repeatedly stimulate deep brain neurons. Indeed, repeated 30-s perfusions 

of 2.5 mM ATP resulted in reliable repeated excitation of s-LNvs expressing either GAL4- or 

LexA-driven P2X2 (Fig. 2.4, G and H). Although the baseline fluorescence of these neurons 

displayed a slow and steady drop in intensity, there was no significant difference in the mean 

maximum GCaMP3.0 fluorescence increases displayed in response to the first and last (fifth) 30-

s perfusion of ATP, when compared with the baseline fluorescence preceding each ATP pulse. 

For repeated excitation using the GAL4 system to coexpress GCaMP3.0 and P2X2 expression 

(Fig. 2.4G), the first ATP perfusion caused a mean maximum GCaMP3.0 increase of 126.6 ± 

32.9% and the fifth and final pulse caused a mean increase of 114.5 ± 21.9% (P = 0.8438 by 

Mann—Whitney U test). For repeated excitation using the LexA system (Fig. 2.4H) the first 

ATP perfusion caused a mean maximum GCaMP3.0 increase of 145.3 ± 19.1% and final pulse 
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caused a mean increase of 94.1 ± 18.8% (P = 0.0524 by Mann—Whitney U test). Thus, P2X2-

expressing neurons can be repeatedly activated in the same dissected brain without a significant 

rundown in excitation. 

Based on these results, we conclude that 30-s perfusions of 1—5 mM ATP result in 

robust, reliable, and repeatable excitation of deep brain P2X2-expressing neurons, using either 

the GAL4 or LexA expression system to drive the expression of P2X2. However, we note that 

different neuronal types display differing profiles of excitation, indicating that specific excitation 

parameters should be determined empirically for every neuron class and genotype to be excited. 

2.4.4 Dual binary expression of P2X2 and genetically encoded sensors allow for the specific 

excitation of neuronal subsets during live imaging experiments. 

Having confirmed the efficacy of our LexAop-driven sensor and P2X2 elements, we next 

sought to confirm that the simultaneous use of the GAL4 and LexA systems could render 

specific neuron classes excitable by ATP during high-resolution imaging experiments. We 

therefore used the Pdf-LexA element to drive LexAop-GCaMP3.0 expression in both the s-LNvs 

and the large ventrolateral neurons (l-LNvs) of the circadian clock network, while simultaneously 

using the c929-GAL4 element, which is expressed by the l-LNvs but not the s-LNvs, to drive 

P2X2 in the l-LNvs and in the many other peptidergic neurons expressing this GAL4 driver (Fig 

2.5A; Hewes et al. 2000). Thus, the l-LNvs of ;Pdf-LexA,LexAop-GCaMP3.0/c929-GAL4;UAS-

P2X2/+ brains will express P2X2, whereas the s-LNvs will not. If the specific dual binary 

expression of P2X2 and GCaMP3.0 were successful, the l-LNvs would be expected to display 

acute GCaMP3.0 responses to bath-applied ATP, whereas the s-LNvs would not. As predicted, 

30-s perfusions of 1 mM ATP resulted in the excitation of the l-LNvs, but did not excite the s-

LNvs imaged within the same focal planes (Fig. 2.5, B–D). This result, along with the 
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experiments presented in the following text, indicate that the simultaneous use of the GAL4 and 

LexA systems for the independent expression of P2X2 and genetically encoded sensors, makes 

possible the specific excitation of neuronal subsets in a manner compatible with high-resolution 

live imaging experiments. This result also suggests that the excitation of the l-LNvs, neurons 

important for the control of arousal, sleep, and the integration of circadian light input (Parisky et 

al. 2008;Shang et al. 2008; Sheeba et al. 2008), does not result in large acute Ca2+ increases in 

the critical s-LNv pacemaker neurons. 

2.4.5 Gal4-based excitation and LexA-based live imaging for an established excitatory 

connection in the larval brain. 

We next sought to determine if our proposed method of addressing functional 

connectivity was sufficiently sensitive to detect an established neuronal connection 

in Drosophila. We were motivated to propose the present approach to circuit analysis because 

there are few well-established synaptic connections in our circuitry of interest, the circadian 

clock neuron network. One of the only fully confirmed synaptic connections in 

the Drosophila clock network is the excitatory connection between Bolwig's organ (BO), the 

maggot eye, and the LNv clock neurons, which persist through metamorphosis to become the 

adult s-LNvs (Fig. 2.6A; Helfrich-Förster et al. 2007). BO projects directly to the larval optic 

neuropil via Bolwig's nerve (BN), where its terminals reside in close apposition to LNv arbors 

(Helfrich-Förster et al. 2002; Malpel et al. 2002). BN expresses ChAT, an enzyme required for 

acetylcholine (ACh) synthesis (Yasuyama and Salvaterra 1999) and ChAT is required in BN for 

photic resetting of larval clock neurons (Keene et al. 2011). Dissociated and cultured larval LNvs 

are directly excited by bath-applied ACh and nicotine (Wegener et al. 2004). Finally, Yuan and 

colleagues (2011) have recently shown that blue-light stimulation of BO causes acute 
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Ca2+ increases in the larval LNvs clock neurons. Thus, the BN to LNv connection in the larval 

brain offers a well-established excitatory connection in the clock network on which to test our 

method for addressing connectivity. 

Under our experimental conditions, we found it necessary to remove the larval mouth 

hooks to prevent brain movement during imaging. Mouth hook removal was associated with the 

loss of BO, leaving only the afferent BNs associated with the eye disks and central brain (Fig. 

2.6, A and B). We therefore first confirmed that excitation of BN was possible in the absence of 

BO by coexpressing P2X2 and GCaMP3.0 in BN using the Rh6-Gal4 driver, which is expressed 

in a subset of BN axons (Fig. 2.6A; Keene et al. 2011). We found that 30-s perfusions of 5 mM 

ATP caused reliable Ca2+ responses in BNs of ;Rh6-GAL4/UAS-GCaMP3.0;UAS-P2X2/+ brains, 

indicating the successful excitation of BNs (Fig. 2.6, B, D, and G). 

Having confirmed successful ATP/P2X2 excitation of BN in our preparation, we asked if 

the predicted excitatory responses could be detected in larval LNvs in response to BN excitation. 

We therefore created ;Rh6-Gal4/Pdf-lexA, LexAop-GCaMP3.0; UAS-P2X2/+ larvae to 

independently express P2X2 in BN and GCaMP3.0 in the LNvs (Fig. 2.6A). Consistent with 

previous reports, we observed no Rh6-GAL4 driver expression in the LNvs or in any other central 

neurons of the larval brain (e.g., Keene et al. 2011 and data not shown). All 30-s perfusions of 5 

mM ATP caused significant GCaMP3.0 fluorescence increases in the LNvs of Rh6-Gal4/Pdf-

lexA, LexAop-GCaMP3.0; UAS-P2X2/+ brains (Fig. 2.6, C, E, and H). To confirm that the 

LNv responses to ATP perfusion were due to the specific excitation of the BN and not to the 

leaky expression of UAS-P2X2 in non-BN cell types or native responses of larval LNvs to ATP, 

we repeated the experiment on brains dissected from ;Pdf-lexA, LexAop-GCaMP3.0/+; UAS-

P2X2/+ larvae, which lacked the R6-GAL4 element and therefore would not have driven P2X2 
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expression specifically in BN. The LNvs of these flies did not display significant changes in 

GCaMP3.0 fluorescence following 30-s perfusions of 5 mM ATP (Fig. 2.6, F and I), indicating 

that nonspecific UAS-P2X2expression or native ATP responses had not caused the 

Ca2+ responses displayed by the LNvs following the ATP/P2X2 excitation of BN. We conclude 

that our method of addressing connectivity was sufficiently sensitive to detect an established 

excitatory connection deep within the larval brain. 

2.4.6 LexA-based excitation and GAL4-based live imaging to test a predicted peptidergic 

connection in the adult central brain. 

The circadian clock neuron network of the adult fly consists of approximately 150 

neurons that express conserved molecular clockwork (Nitabach and Taghert 2008). 

Understanding the connective properties of this network was our motivation for developing a 

means for interrogating the physiologic connections between neuronal classes deep within the fly 

brain. The s-LNvs are critical neuronal pacemakers required for the maintenance of robust 

rhythms in sleep and activity in the fly under constant darkness and temperature (Grima et al. 

2004;Renn et al. 1999; Shafer and Taghert 2009; Stoleru et al. 2004). A large and growing body 

of anatomic, genetic, and physiologic evidence suggests that the clock neuron network is 

coordinated through modulatory connections between the s-LNvs and the various classes of 

dorsal clock neurons. The s-LNvs project to the dorsal brain, where their terminals comingle with 

terminals from the dorsal clock neuron classes (Helfrich-Förster et al. 2007; Kaneko and Hall 

2000). The s-LNvs express the neuropeptide pigment-dispersing factor (PDF), the genetic loss of 

which causes a weakening or loss of free-running behavioral rhythms (Helfrich-Förster 

1995; Renn et al. 1999; Shafer and Taghert 2009) and a loss of synchronization among various 

clock neuron classes (Lin et al. 2004). PDF signals through PDFR, a G-protein—coupled 
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receptor (GPCR) that signals through cAMP increases (Hyun et al. 2005; Lear et al. 

2005; Mertens et al. 2005) and is expressed by dorsal clock neurons (Im and Taghert 2010). 

Finally, the dorsal neuron classes respond to bath-applied PDF peptide with cAMP increases 

(Shafer et al. 2008). Taken together, these findings provide strong evidence for a 

neuromodulatory connection between the s-LNvs and dorsal clock neurons in the adult fly brain. 

Thus, the current prevailing model predicts that the excitation of the s-LNvs will result in acute 

cAMP increases within dorsal clock neurons. 

Nevertheless, the physiologic nature of this proposed connection has not been confirmed 

experimentally. Indeed, recent work has shown that the s-LNvs also expressshort neuropeptide 

F (sNPF) (Johard et al. 2009), which encodes four peptides whose GPCR would likely 

antagonize PDFR signaling (Garczynski et al. 2007; Mertens et al. 2002; Reale et al. 2004). The 

coexpression of potentially antagonistic peptides in the s-LNvs suggests that the excitation of 

these neurons might in fact cause cAMP decreases in dorsal clock neuron classes. Determining 

the functional nature of this proposed connection therefore requires the ability to experimentally 

interrogate its physiology. We therefore set out to determine the nature of the predicted 

connection between the s-LNv pacemakers and the LNds, which are among the predicted 

neuronal targets of the s-LNvs (Im and Taghert 2010; Shafer et al. 2008) and are thought to play 

a critical role in the control of the fly's evening bout of daily activity (Grima et al. 2004; Stoleru 

et al. 2004). 

To investigate the proposed connection between the s-LNvs and the LNd clock neurons, 

we drove P2X2 expression specifically in the l-LNvs and s-LNvs using Pdf-LexA, while driving 

GCaMP3.0 or Epac1-camps expression with Clock(856)-GAL4, which is expressed throughout 

most of clock neuron network (Fig. 2.7A; Gummadova et al. 2009). Note that although Pdf-
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LexA drives LexAop-P2X2 in both the l-LNvs and s-LNvs, only the s-LNvs send projections to the 

dorsal brain, whereas the l-LNvs project to both optic lobes (Fig. 2.7A; Helfrich-Förster et al. 

2007). For brains dissected from ;Clock(856)-GAL4,UAS-GCaMP3.0/+;Pdf-LexA,LexAop-

P2X2/+ flies, excitation of the l-LNvs and s-LNvs with 30-s perfusions of 1 mM ATP caused 

clear increases in GCaMP3.0 fluorescence in the LNvs, but had no measurable effects on the 

LNds residing in the same optical sections, suggesting that LNv excitation does not cause large 

acute Ca2+ increases or acute excitation in the LNds (Fig. 2.7B). In contrast, 30-s perfusions of 1 

mM ATP across ;Clock(856)-GAL4,UAS-Epac1-camps/+;Pdf-LexA,LexAop-P2X2/+ brains 

resulted in significant increases in Epac1-camps inverse FRET within the LNds, consistent with 

cAMP increases in response to LNv excitation (Fig. 2.7, C and D). Direct ATP/P2X2 excitation 

of the l-LNvs and s-LNvs caused significant increases in Epac1-camps inverse FRET (Fig. 

2.7, E and F, and data not shown), indicating a strong coupling of neuronal excitation and cAMP 

production in these neurons. The large increase in LNd inverse Epac1-camps FRET was preceded 

by a small and transient decrease in inverse FRET (Fig. 2.7C). However, this decrease was not 

caused by LNv excitation, because we observed a similar initial decrease in mean inverse FRET 

in control brains lacking the Pdf-LexA element for driving LexAop-P2X2 expression in the LNvs 

(Fig. 2.7C). 

The LNd cAMP response to bath-applied ATP required P2X2 expression in the LNvs, 

because brains carrying the LexAop-P2X2 element but lacking the Pdf-LexA driver failed to show 

cAMP increases in either the LNds or LNvs (Fig. 2.7, C–F; “—P2X2”). Furthermore, the 

LNd cAMP response to LNv excitation required functional PDF receptor, because ATP perfusion 

over brains from PdfR5304;Clock(856-GAL4,UAS-Epac1-camps/+;Pdf-LexA,LexAop-P2X2/+ flies 

failed to produce significant changes in LNd Epac1-camps inverse FRET levels (Fig. 
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2.7, C and D; “—PDFR”), despite clear excitation of LNvs within the same optical sections (Fig. 

2.7, E and F; “—PDFR”). 

Our results indicate that the excitation of the l-LNvs and s-LNvs results in acute cAMP 

increases in the LNds and that this response requires functional PDF receptor signaling (Fig. 

2.7, C and D). Thus, our method of connectivity analysis was sufficiently sensitive to 

experimentally confirm a predicted modulatory connection deep within the adult brain. Given the 

thorough vetting of GCaMP3.0 and Epac1-camps sensors in the fly CNS by previous studies 

(e.g., Shafer et al. 2008; Tian et al. 2009), the lack of GCaMP3.0 responses in the face of clear 

Epac1-camps responses in the LNds following LNv excitation suggests that the LNds are not 

strongly excited by the LNvs and that the LNv-to-LNd connection acts predominantly as a 

modulator of LNd cAMP signaling. Thus, the connection between these neuronal classes could 

not have been detected with Ca2+ imaging alone, which argues for the use of diverse sensor types 

in the investigation of functional connectivity. The efficacy of this approach to circuit 

interrogation now makes possible a wider analysis of the patterns of clock network connections, 

and an investigation of how these connections might change over the course of the circadian 

cycle or in response to changing environmental conditions such as photoperiod and temperature. 

Furthermore, these experiments establish the feasibility of conducting such experiments in 

mutant backgrounds of choice. 
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Figure 2.1 Schematic of dual binary, ATP/P2X2 excitation approach to network 
interrogation.  
Left: an electrophysiologic approach to connectivity in invertebrate nervous systems. The 
investigator stimulates a neuron of interest with depolarizing current while simultaneously 
recording membrane voltage in putative follower neurons (e.g., Kandel et al. 1967). Right: a 
physiogenetic approach to connectivity in the Drosophila nervous system. Depolarizing current 
is induced in neuronal classes of interest through ATP gating of transgenic P2X2 receptors 
(shown in purple), whereas Ca2+ or cAMP levels are simultaneously monitored in putative 
follower neurons using genetically encoded sensors (shown in green). Note the differing time 
scales between methods. 
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Figure 2.2 Bath application of ATP results in the excitation of P2X2-expressing deep brain 
neurons during live imaging experiments. 
A–D: individual (gray) and mean (black) traces of Pdf(M)-Gal4;UAS-GCaMP3.0/+;UAS-P2X2/+ 
s-LNv responses to 30-s perfusion of (A) vehicle (N = 13 neurons from 5 brains [13,5]), (B) 1 
mM ATP (N = 13,5) (C) 2.5 mM ATP (N = 13,5), and (D) 2.5 mM GTP (N = 12,5). Test 
compounds were perfused after a 35-s baseline interval and responses were recorded for a total 
of 150 s. E: histogram summarizing the mean maximum percentage increase in GCaMP3.0 
fluorescence displayed by the neurons plotted in A–D. Perfusion of 1 and 2.5 mM ATP caused 
fluorescence increases that were significantly greater than vehicle control (P < 0.0001, by 
Mann—Whitney U test). The perfusion of 2.5 mM GTP did not cause significant fluorescence 
increases relative to the vehicle control (P = 0.6302 by Mann—Whitney U test). The two 
numbers displayed within or above each bar of the histogram indicate the number of neurons and 
the number of brains examined, respectively. F: representative intensity mapped micrographs of 
a single Pdf(M)-Gal4;UAS-GCaMP3.0/+;UAS-P2X2/+ s-LNv before (0 s), during (40 s), and 
after (100 s) its response to bath-applied 2.5 mM ATP. The scale bar in F = 2.5 μm. G and H: 
characterization of ATP's P2X2-independent effects on GCaMP3.0 fluorescence: unlike vehicle 
perfusion (G), 30-s 2.5 mM ATP perfusion (H) caused a slight but consistent decrease in 
GCaMP3.0 fluorescence. I and J: characterization of ATP's P2X2-independent effects on Epac1-
camps inverse FRET levels. Unlike vehicle perfusion (I), 30-s 2.5 mM ATP perfusion caused a 
slight increase in inverse FRET (J), due to a decrease in YFP emission. 
  



 39 

 
 
Figure 2.3 LexA operator-driven P2X2 and genetically encoded sensors for excitation and 
live imaging.  
A: mean GCaMP3.0 traces for Pdf-LexA(7M),LexAop-GCaMP3.0(4A)/CyO s-LNvs to 30-s 
perfusions of 10−4 M carbachol (CCh) or vehicle (Veh). B: mean Epac1-camps inverse FRET 
traces for Pdf-LexA(7M),LexAop-Epac1-camps(1A)/CyO s-LNvs to 30-s perfusions of 10−4 M 
CCh or Veh. C and D: maximum changes in GCaMP3.0 fluorescence (C) or Epac1-camps 
inverse FRET increases (D) of s-LNv corresponding to the data in A and B, respectively. 
Numbers on the histograms indicate the number of neurons and brains sampled. Both LexAop-
driven sensors displayed significant responses to CCh relative to Veh controls (P = 0.0004 for 
GCaMP3.0 fluorescence and P < 0.0001 for Epac1-camps inverse FRET by Mann—
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Whitney U test). E: mean GCaMP3.0 traces for the s-LNvs of the genotypes indicated below the 
plots to 30-s perfusions of 10−3M ATP. Pdf-LexA—driven expression of LexAop-P2X2 rendered 
s-LNvs sensitive to bath-applied ATP. UAS-P2X2 and LexAop-P2X2 elements did not render 
neurons sensitive to ATP in the absence of their appropriate Gal4 or LexA drivers. F: summary 
of maximum Ca2+ responses of s-LNv in E. *** indicates P < 0.001 by Kruskal—Wallis one-way 
ANOVA and a Dunn's multiple comparison test. Numbers on the histogram is inC, D, 
and F indicate the number of neurons and brains sampled. For A, B, and E, the time of perfusion 
is indicated by the bars under the plots and the gray-shaded regions surrounding the mean plots 
indicate SE, as do the error bars in C, D, and F. 
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Figure 2.4 Bath-applied ATP reliably and repeatedly activates deeply situated P2X2-
expressing neurons in the explanted adult brain. 
A: dose—response curves for the excitation of P2X2-expressing s-LNvs (N = 13,5), DN1ps (N = 
15,5), and olfactory projection neurons (PN, N = 18,5)) by 30-s perfusions of ATP. The 
genotypes used for each neuronal class where Pdf-Gal4;UAS-GCaMP3.0/+;UAS-P2X2/+ for s-
LNvs, ;UAS-GCaMP3.0/+; Clock(4.1M)-Gal4/UAS-P2X2 for DN1ps, and ;Cha(7.4)-Gal4/UAS-
GCaMP3.0;UAS-P2X2/+ for PNs. Values represent the mean maximum increase in GCaMP3.0 
fluorescence (ΔF/F0) detected during the 150 s following ATP perfusion. B: failure rate curves 
for 30-s ATP perfusions over a range of concentrations for s-LNvs, DN1ps, and PNs based on the 
data shown in A. A maximum GCaMP3.0 fluorescence increase of <25% was considered a 
failure to excite. C and D: GCaMP3.0 responses of a single s-LNv (C) and DN1p (D) cell body to 
increasing ATP concentrations (0.1–5 mM), each delivered for 30 s. Single neurons displayed 
graded responses to increasing ATP doses. E: dose—response curves for s-LNvexcitation in 
response to 30-s ATP perfusions comparing s-LNvs from Pdf-Gal4;UAS-GCaMP3.0/+;UAS-
P2X2/+ (N = 13,5) and ;Pdf-LexA,LexAop-GCaMP3.0/LexAop-P2X2; (N = 10,5) brains. F: 
failure rates of s-LNv excitation by various durations of 2.5 mM ATP perfusions comparing s-
LNvs excited using the GAL4 (N = 8,5) and LexA (N = 10,5) systems. Genotypes were identical 
to those used in E. G: individual (gray) and mean (black) GCaMP3.0 traces for repeatedly 
activated s-LNvs from Pdf-Gal4;UAS-GCaMP3.0/+;UAS-P2X2 brains (N=11,5). H: individual 
(gray) and mean (black) GCaMP3.0 traces for repeatedly activated s-LNvs from Pdf-
LexA,LexAop-GCaMP3.0/LexAopP2X2 brains (N = 10,5). For G and H the white 
rectanglesindicate 30 s of vehicle perfusion and black rectangles indicate 30 s of 2.5 mM ATP 
perfusion, with 90-s intervals between ATP perfusions. 
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Figure 2.5 Independent expression of P2X2 and genetically encoded sensor in the fly brain 
by dual binary systems supports the excitation of specific neuronal subsets. 
A: schematic diagram showing the expression patterns of P2X2 (magenta) and GCaMP3.0 sensor 
(green) in the experimental fly brain, whose full genotype is shown.B: intensity-mapped stills of 
l-LNv and s-LNv GCaMP3.0 fluorescence before (T = 0 s), during (T = 60 s), and after (T = 200 
s) perfusion of 1 mM ATP. The l-LNvs but not the s-LNvs responded to ATP. The colors of the 
legend indicate pixel intensity values. Each “l” indicates a l-LNv and each “s” indicates a s-
LNv. C: mean GCaMP3.0 fluorescence traces of l-LNvs and s-LNvs to 30-s perfusions of 1 mM 
ATP (indicated by the bar under the plots). Sample sizes for these plots are shown in D. 
The gray-shaded regions surrounding the mean plots indicate SE. D: summary of maximum 
GCaMP3.0 fluorescence increases displayed by the l-LNv and s-LNv to bath-applied ATP and 
vehicle (Veh). *** indicates a significant difference between ATP and Veh (P < 0.001) and NS 
indicates nonsignificance by Mann—Whitney U test. The two numbers displayed within or 
above each bar of the histogram indicate the number of neurons and the number of brains 
examined, respectively. 
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Figure 2.6 Gal4-based excitation and LexA-based live imaging for an established excitatory 
connection in the larval brain. 
A: schematic diagram of Bolwig's Nerve (BN) and larval LNv anatomy. The expression of 
GCaMP3.0 (green) and P2X2 (magenta) are indicated for two experimental genotypes. B: 
ATP/P2X2 excitation of BN. Single-plane intensity mapped confocal images of GCaMP3.0 
fluorescence in the BN of an Rh6-Gal4/UAS-GCaMP3.0;UAS-P2X2/+ larva before (15 s), during 
(45 s), and after (120 s) the start of 30-s 5 mM ATP perfusion. C: single-plane intensity mapped 
confocal images of GCaMP3.0 fluorescence in two larval LNvs of a Pdf-LexA,LexAop-
GCaMP3.0/Rh6-Gal4;UAS-P2X2/+ larva before (15 s), during (45 s), and after (120 s) their 
response to BN excitation. The look-up table represents pixel intensity values for both B and C. 
D: mean GCaMP3.0 fluorescence traces for BNs of ;Rh6-gal4/UAS-GCaMP3.0;UAS-P2X2/+ 
larval brains treated with 30-s perfusions (black bar) of 5 mM ATP or vehicle (Veh). E: mean 
GCaMP3.0 fluorescence traces recorded from the LNvs of Pdf-LexA,LexAop-GCaMP3.0/Rh6-
Gal4;UAS-P2X2/+ larval brains in response to 30-s perfusions of 5 mM ATP or Veh. F: mean 
GCaMP3.0 fluorescence traces recorded from the LNvs of Pdf-LexA,LexAop-GCaMP3.0/+;UAS-
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P2X2/+ larval brains in response to 30-s perfusions of 5 mM ATP or Veh. For D–F, error bars 
indicate SE. G–I: summary histograms of the maximum GCaMP3.0 fluorescence increases 
displayed by the BNs (G) and s-LNvs (H and I) of the genotypes shown in D–F. The two 
numbers displayed within each bar of the histogram indicate the number of neurons and the 
number of brains examined, respectively. Asterisks indicate a significant difference in maximum 
fluorescence increase between ATP and Veh treatments and “N.S.” indicates no significant 
difference by Mann—Whitney U test (***P < 0.001 and **P < 0.01). The error bars 
in G represent the SE. 
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Figure 2.7 LexA-based excitation and GAL4-based live imaging to test a predicted 
peptidergic connection deep within the adult brain. 
A: schematic diagram showing the expression of P2X2 and genetically encoded sensors in the 
experimental brain for testing the predicted physiologic connection between the LNv and the 
LNd clock neurons. B: mean GCaMP3.0 fluorescence traces of the l-LNvs and LNds during their 
responses to a 30-s bath application of 1 mM ATP (indicated by the bar under the plots). l-
LNv and LNd plots were recorded simultaneously from the same optical sections of 
a ;Clock(856)-GAL4,UAS-GCaMP3.0/+;Pdf-LexA,LexAop-P2X2/+ brain. Shaded regions 
surrounding the mean plots indicate SE. Excitation of the LNvs had no measurable effects on 
GCaMP3.0 fluorescence in the LNds. For l-LNvs, N = 14 neurons from 6 brains (14,6). For s-
LNvs, N = 17,6. C: mean Epac1-camps inverse FRET traces of the LNds during excitation of the 
LNvs in ;Clock(856)-GAL4,UAS-Epac1-camps/+;Pdf-LexA,LexAop-P2X2/+ brains (“Exp”). 
LNv excitation resulted in increases in cAMP in the LNds. This response was absent 
in PdfR5304;Clock(856)-GAL4,UAS-Epac1-camps/+;Pdf-LexA,LexAop-P2X2/+ brains (“—
PDFR”), which lacked PDF receptor function, and in;Clock(856)-GAL4,UAS-Epac1-camps/+; 
LexAop-P2X2/+ brains, which lacked a LexA driver for the P2X2 element (“—P2X2”). D: 
summary histogram of the mean maximum increases in Epac1-camps inverse FRET for the 
LNd data shown in C. E: mean Epac1-camps inverse FRET traces for l-LNvs imaged 
simultaneously with the LNds shown in C. Plots displayed as for C. ATP/P2X2 excitation of the 
LNvs resulted in cAMP increases in both wild type (“Exp”) and PdfR5304 (“—PDF”) 
backgrounds. The l-LNvs showed no cAMP increases in response to ATP in the absence of a 
LexA driver for the P2X2 element (“—P2X2”). F: summary histogram of maximum increases in 
Epac1-camps inverse FRET for the l-LNv data shown in E. For D and F, the two numbers within 
or above each bar of the histogram indicate the number of neurons and the number of brains 
examined respectively. ***P < 0.001; **P < 0.01; NS, nonsignificance by Kruskal—Wallis one-
way ANOVA and Dunn's multiple comparisons test. The mean plots in C and E were corrected 
for spontaneous FRET drift by subtracting the mean inverse FRET traces of l-LNv and 
LNd neurons from vehicle treated ;Clock(856)-GAL4,UAS-Epac1-camps/+;Pdf-LexA,LexAop-
P2X2/+ (“Exp”) brains (seemethods for details). 
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2.5 Discussion 

Animal behavior is an emergent property of neural networks and is shaped by the pattern 

and nature of the connections between their constituent neurons. Connectivity is therefore an 

abiding problem in neuroscience, and understanding how it governs complex behavior is a 

fundamental goal of the field (Lichtman and Sanes 2008). Here we have introduced a method for 

addressing the physiologic connections between discrete neuronal classes in Drosophila. We 

have shown that the independent dual binary expression of the vertebrate purinergic P2X2 

receptor and genetically encoded sensors makes possible the specific excitation of neuronal 

classes of interest while simultaneously imaging Ca2+ and cAMP dynamics within putative 

follower neurons. Our proof of principle experiments establish this “physiogenetic” approach as 

a technically facile method of investigating physiologic connections between 

electrophysiologically inaccessible neuronal classes of the Drosophila CNS. 

Although the method we introduce here makes possible the detection of neural 

connections in regions of the brain where multielectrode electrophysiologic experiments are not 

possible, it is important to note its limitations relative to electrophysiologic techniques. For 

example, the use of bath-applied ATP to excite P2X2-expressing neurons does not offer the fine 

temporal control associated with the depolarization of neurons by brief current injections (Fig. 

2.1). Likewise, genetically encoded sensors of neural signaling have not yet attained the 

sensitivity and temporal resolution of electrodes for detecting small changes in membrane 

voltage or modest excitatory/inhibitory responses. Thus, connections producing subthreshold 

excitatory input or only very weak excitation in follower neurons might be missed using the 

approach we have described. Furthermore, some inhibitory connections may not be detectable 

using existing genetically encoded sensors (e.g., Lelito and Shafer 2012). Thus, for any pair of 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B27
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neuronal classes, the absence of both cAMP and Ca2+ responses in a putative follower neuron is 

not in itself compelling evidence for a complete lack of connection. Despite these limitations, the 

work presented here establishes that our method of addressing functional connectivity is 

sufficiently sensitive to detect both excitatory and modulatory connections between 

electrophysiologically inaccessible neuronal classes within the adult fly brain, thereby allowing 

for the analysis of functional connectivity in regions of the brain where electrodes cannot be 

used. We therefore believe that this method will be immediately useful for the investigation of 

connectivity within a variety of electrophysiologically inaccessible networks in the fly brain. 

The ultimate cellular resolution afforded by this approach is currently limited by the 

number of available highly specific LexA and Gal4 drivers for directed P2X2 expression. This is 

no less true for the widespread use of these same drivers for the experimental manipulation of 

neuronal function and behavior, a limitation that has not prevented the field from learning a great 

deal about the neuronal classes underlying a wide range of behaviors (Simpson and Stephen 

2009). Nevertheless, the current supply of specific drivers allows for many hypothesized 

connections between neuronal classes to be experimentally tested using the approach we have 

described, and the production of highly specific genetic drivers continues apace (e.g., Bohm et 

al. 2010; Luan and White 2007; Pfeiffer et al. 2008, 2010). Furthermore, in instances when 

sufficiently specific drivers prove unattainable, increased specificity of ATP/P2X2 excitation can 

be realized through localized puffing of ATP (Hu et al. 2010;Huang et al. 2010) or through the 

focal liberation of caged ATP using focused laser light (Z. Yao and O.T. Shafer, unpublished 

observations). 

Although the methods described here allow for connections between discrete neuronal 

classes to be detected and characterized, they do not currently allow for a differentiation between 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B59
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B59
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B32
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B45
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B46
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B15
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B16
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monosynaptic (direct) and polysynaptic (indirect) connections. This limitation does not preclude 

the usefulness of the technique, which can nevertheless reveal the presence and physiologic 

nature of connections between defined neuronal classes, whether monosynaptic or polysynaptic. 

Furthermore, it may be possible in the future to adapt established pharmacologic methods for 

determining if a given downstream response to ATP/P2X2 excitation is monosynaptic or 

polysynaptic. For example, the use of bathing saline containing high concentrations of divalent 

cations (e.g., Kandel et al. 1967) or tetrodotoxin (e.g., Mizunami 1990) to block the synaptic 

release from or the firing of interposed neurons could be compatible with this technique if P2X2, 

a nonselective cation channel, can drive sufficiently high Ca2+ in the presynaptic terminals of 

P2X2-expressing neurons in the presence of these manipulations. We are currently investigating 

these possibilities in multiple neuronal types. 

Although other methods to detect physiologic connectivity have recently been used in the 

fly brain (e.g., Hu et al. 2010; Ruta et al. 2010), we feel that the approach outlined here has the 

virtue of a relative technical simplicity, requiring only standard confocal or epifluorescent 

microscopy and a means of delivering controlled perfusions of ATP solutions. Thus, the 

LexAop-driven P2X2, GCaMP3.0, and Epac1-camps elements we describe here, in combination 

with the large number of available Gal4, UAS, and LexA elements, constitute a flexible and 

technically facile toolkit for the interrogation of central neuronal networks in the fly. These tools 

can now be used to address functional connectivity within neuronal networks governing a wide 

range of behaviors in Drosophila. Furthermore, Drosophila photoreceptors and ligand-gated 

receptors have been successfully introduced into mammalian neurons (Morita et al. 

2006; Zemelman et al. 2002), suggesting that an approach similar to the one described here using 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B39
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B52
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404787/?report=printable#B40
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appropriate heterologous receptors could be used to investigate the physiologic connections 

between neuronal ensembles within other model systems. 
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CHAPTER 3.  GABAergic and glutamatergic inhibition of the lateral clock neurons 

differentially regulates daytime and nighttime sleep in Drosophila2 

3.1 Abstract 

Networks of circadian clock neurons orchestrate daily rhythms in sleep and activity. 

Drosophila displays two peaks of daily activity, the morning and evening peaks. Here, we 

provide an electrophysiological characterization of the dorsal lateral neurons (LNds), the so-

called “evening oscillator”. We find that the LNds are excited by acetylcholine and inhibited by 

GABA and glutamate. Furthermore, we provide evidence that the DN1p clock neurons inhibit the 

LNds. Our results reveal that while GABAergic inhibition of the lateral clock neuron network 

promotes sleep at night, glutamatergic inhibition via GluClα promotes wakefulness during the 

day. Our work demonstrates how fast synaptic inputs onto the lateral clock neurons orchestrate 

daily rhythms in sleep and activity. Most surprisingly, our results reveal that, within the clock 

network of Drosophila, the morning oscillator not only promotes morning activity but also 

promotes evening sleep, while the evening oscillator promotes evening activity and morning 

sleep. 

 

                                                 
2 A manuscript comprising this chapter is in preparation for publication, with authors listed as Zepeng Yao, Richard 
I. Hume, and Orie T. Shafer. 
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3.2 Introduction 

Daily rhythms in activity and sleep are timed by an endogenous clock, the so-called 

circadian clock. The central circadian clock consists of a network of clock neurons, each of 

which contains a molecular clock that generates gene expression oscillations with a period of 

approximately 24 hours (Herzog, 2007). Clock neurons are organized into functionally distinct 

subclasses that cooperate to support coordinated rhythms in behaviors and physiology 

(Vansteensel et al., 2008; Welsh et al., 2010). Drosophila melanogaster offers an excellent 

model to study the distinct roles of different clock neuron classes in circadian timekeeping and 

the mechanisms through which they are coordinated. The Drosophila clock network consists of 

about 150 clock neurons, radically fewer than the tens of thousands of neurons in the mammalian 

clock centers (Herzog, 2007). The fly’s clock neurons are relatively dispersed throughout the 

brain and are highly stereotypic in their location and morphology, making each subclass of clock 

neurons easily identifiable (Helfrich-Förster, 2005). Despite this relative simplicity, flies display 

robust circadian rhythms in highly conserved behaviors, including sleep (Hendricks et al., 2000; 

Shaw et al., 2000; Huber et al., 2004).  

Genetic rescue and neuronal ablation experiments have led to a widely accepted dual-

oscillator model of clock network function in Drosophila.  In this model, the ventral lateral 

neurons (LNvs) function collectively as a “morning oscillator” that promotes activity around 

dawn, whereas the dorsal lateral neurons (LNds) function collectively as an “evening oscillator” 

that promotes activity around dusk (Grima et al., 2004; Stoleru et al., 2004). The LNvs express a 

neuropeptide called pigment-dispersing factor (PDF), which is required for robust endogenous 

timekeeping in the absence of environmental cues and for the proper coordination of molecular 

and physiological rhythms among the various clock neuron classes (Helfrich-Förster, 1995; Renn 
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et al., 1999; Peng et al., 2003; Lin et al., 2004; Shafer et al., 2008; Yao and Shafer, 2014). A 

subset of the LNvs, the large-LNvs (l-LNvs), functions as an arousal center to promote 

wakefulness(Shang et al., 2008; Sheeba et al., 2008a). Owing to their large size and anatomical 

accessibility, the electrophysiological properties of the l-LNvs have been characterized by several 

groups. The l-LNvs are receptive to several fast neurotransmitters (McCarthy et al., 2011), fire 

both tonic and bursting patterns of action potentials (Sheeba et al., 2008b; Muraro and Ceriani, 

2015), and display a daily rhythm in firing rate (Cao and Nitabach, 2008; Sheeba et al., 2008b). 

In contrast, the electrophysiological properties of the LNds are unknown. These critical clock 

neurons are responsible for generating increased levels of activity around dusk (Grima et al., 

2004; Stoleru et al., 2004), which is the most prominent peak of daily activity in flies, and are 

thought to be the dominant pacemakers of the clock network in the presence of light (Picot et al., 

2007; Stoleru et al., 2007). The LNds also integrate visual inputs mediated by PDF and direct 

light inputs via the cell-autonomous photoreceptor Cryptochrome (CRY) (Cusumano et al., 

2009) and are important for adjusting the fly’s daily activity rhythms to environmental light:dark 

schedules (Yoshii et al., 2015). In addition to their circadian functions, the LNds are likely 

involved in olfactory associative learning (Chen et al., 2012) and plasticity in mating behaviors 

(Kim et al., 2013). Despite their importance for circadian timekeeping and behavioral plasticity, 

the LNds remain un-characterized electrophysiologically, presumably due to technical difficulties 

caused by their size and location within the brain. 

Here we report for the first time an electrophysiological analysis of the LNds. We find 

that these critical clock neurons receive multiple fast neurotransmitter inputs, including 

excitatory cholinergic input mediated by nicotinic acetylcholine receptors, and inhibitory 

GABAergic (γ-aminobutyric acid) and glutamatergic inputs, both of which are mediated by 
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ligand-gated chloride channels. We also find that a subset of glutamatergic clock neurons, the 

posterior dorsal neurons group 1 (DN1ps), inhibits the LNds. Furthermore, although GABA and 

glutamate both inhibit the LNds, the actions of these two neurotransmitters on the LNds 

differentially regulate daytime and nighttime sleep. Surprisingly, our results predict that the LNvs 

which promote activity in the morning (Grima et al., 2004; Stoleru et al., 2004) also promote 

sleep in the evening, while the LNds which promote activity in the evening (Grima et al., 2004; 

Stoleru et al., 2004) also promote sleep in the morning. Our work provides the first 

electrophysiological characterization of the critical LNds, and reveals how the various clock 

neuron classes integrate distinct fast synaptic inputs to orchestrate daily rhythms in sleep and 

activity.  

 

3.3 Results 

3.3.1 The LNds fire spontaneous tonic and bursting patterns of action potentials. 

Of the various clock neuron classes, only three groups of clock neurons have been 

recorded electrophysiologically, the l-LNvs, the s-LNvs, and the DN1ps. The l-LNvs have been 

recorded by multiple groups and been shown to fire both tonic and bursting patterns of action 

potentials (Park and Griffith, 2006; Cao and Nitabach, 2008; Sheeba et al., 2008b; McCarthy et 

al., 2011; Muraro and Ceriani, 2015). The s-LNvs have only been recorded by Cao and Nitabach, 

with less than 20% of the recorded cells displaying spontaneous firing (Cao and Nitabach, 2008). 

The DN1ps appear to fire tonic action potentials only (Seluzicki et al., 2014; Flourakis et al., 

2015). We therefore sought to determine if the LNds fire spontaneous action potentials and if so 

what firing patterns they display. The LNds are heterogeneous in their neurochemistry(reviewed 

by Hermann-Luibl and Helfrich-Förster, 2015). In this study, we have focused on the three pairs 
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of LNds that co-express the circadian photoreceptor Cryptochrome (CRY) and the receptor for 

pigment-dispersing factor (PDFR) (Yoshii et al., 2008; Im and Taghert, 2010; Im et al., 2011). 

These neurons are important for the anticipatory peak of activity at dusk, for the light 

entrainment of circadian rhythms, and are important targets of the PDF signaling (Grima et al., 

2004; Stoleru et al., 2004; Shafer et al., 2008; Cusumano et al., 2009; Yao and Shafer, 2014; 

Yoshii et al., 2015). We expressed the enhanced green fluorescent protein (EGFP) in these 

CRY+/PDFR+ LNds using the Mai179-GAL4 driver (Grima et al., 2004; Yoshii et al., 2008), and 

made targeted patch-clamp recordings from these neurons in whole-brain explants. All the 

recordings were done during the light period of a 12hr:12hr light:dark (LD) cycle (see Materials 

and Methods for details).  

We have recorded a total of seven LNds in cell-attached configuration. All of the 

recorded LNds fired spontaneous action potentials (Figure 3.1A-B). Four out of seven LNds fired 

tonic action potentials exclusively (Figure 3.1A), while three out of seven LNds displayed both 

bursting and tonic firing (Figure 3.1B). All bursting LNds also displayed tonic firing during the 

course of recording. The overall average firing frequency of the LNds in cell-attached 

configuration is 4.63 ± 1.39 Hz (mean ± SEM, n=7). When firing tonically, the average firing 

frequency is 3.59 ± 0.98 Hz (n=7). When firing in bursts, the average firing frequency is 12.01 ± 

3.79 Hz (n=3).  

We also made current-clamp recordings of the LNds in whole-cell configuration. The 

LNds have a membrane capacitance of 3.97 ± 0.13 pF (n=40) and a membrane resistance of 1.16 

± 0.07 GΩ (n=40) (Figure 3.1–figure supplement 1). The access resistance of most recordings is 

under 20 MΩ (Figure 3.1–figure supplement 1). Because of the high membrane resistance of the 

LNds, the seal current is expected to substantially depolarize the membrane potential in current-
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clamp mode (Gouwens and Wilson, 2009). We therefore injected a constant hyperpolarizing 

current (typically -10 to -20 pA) into the recorded cell in order to compensate for the 

depolarizing effect of the seal current and bring the membrane potential to between -50 to -70 

mV. Under these conditions, the LNds maintained stable firing rates. However, due to the need 

for the introduction of hyperpolarizing currents, we were not able to accurately measure the 

endogenous firing rate or the resting membrane potential of the LNds in whole-cell current-clamp 

recordings, nor any time-of-day effects on these metrics. Of the 40 LNds recorded in whole-cell 

configuration, 18 cells fired tonic action potentials exclusively (Figure 3.1C); 10 cells fired both 

tonic and bursting patterns of action potentials, alternating between the two firing modes during 

recording (Figure 3.1D-F); the remaining 12 cells were silent. It is unclear why some LNds were 

silent in whole-cell current-clamp mode. One possibility is that the spike initiation zone or part 

of the neural processes of the recorded cell was damaged even though the cell membrane 

appeared to be healthy. 

3.3.2 Nicotinic acetylcholine receptors mediate excitatory inputs onto the LNds. 

Given that acetylcholine (ACh) is the most prevalent fast excitatory neurotransmitter in 

insect brains (reviewed in Restifo and White, 1990), we first tested the LNds’ receptivity to 

cholinergic agonists. In whole-cell current-clamp mode, 30s perfusion of 1 mM 

carbamoylcholine (CCh), a structural homolog of acetylcholine that is resistant to the action of 

cholinesterases, induced a burst of action potentials that lasted for approximately eight seconds 

and a strong depolarization of the membrane potential to about -30 mV in the LNds (Figure 

3.2A,C,E). Following washout, the cell remained depolarized for tens of seconds, then gradually 

repolarized and resumed firing (Figure 3.2A). As in mammals, two types of cholinergic receptors 

exist in Drosophila, the ionotropic nicotinic acetylcholine receptors (nAChRs) and the 
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metabotropic muscarinic acetylcholine receptors (mAChR) (Littleton and Ganetzky, 2000). We 

utilized the nAChR-specific agonist, nicotine, to ask if LNds received nicotinic cholinergic input. 

20s perfusion of 100 µM nicotine in current-clamp mode induced bursts of action potentials and 

strong depolarizations in the LNds, very similar to those seen in response to CCh perfusion 

(Figure 3.2B,D,E). We also performed voltage-clamp recordings to directly measure the currents 

induced by nicotine. When the LNd membrane potential was held at -68 mV, perfusion of 

nicotine induced large inward currents (Figure 3.2–figure supplement 1). When brains were 

placed in a low calcium bath solution containing 1/10th the normal calcium to reduce network 

activity, the nicotine-induced currents persisted, indicating that these currents are largely 

independent of network activity (Figure 3.2–figure supplement 1). Lastly, we used a voltage 

ramp protocol, wherein the holding potential was changed linearly from -113 mV to +47 mV, to 

characterize how the nicotine-induced current changed as a function of the membrane potential 

(see Materials and Methods for details). We observed a nearly linear relationship between the 

nicotine-induced current and the membrane potential, with a reversal potential of -19.5 ± 5.2 mV 

(n=4) (Figure 3.2F), which is approximately the average of the sodium and the potassium 

equilibrium potentials, +49 mV and -91 mV, respectively at 25 °C. This suggests that the 

nicotine-induced currents are conducted by non-selective cation channels, consistent with the 

notion that they are conducted by nAChRs. We therefore conclude that nAChRs mediate 

excitatory synaptic inputs onto the LNds. 

3.3.3 GABAA receptors and glutamate-gated chloride channels mediate inhibitory inputs 

onto the LNds. 

Next, we tested the LNds’ receptivity to GABA (γ-aminobutyric acid), the major fast 

inhibitory neurotransmitter in the fly brain (reviewed in Restifo and White, 1990). In whole-cell 
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current-clamp recordings, perfusion of 1 mM GABA induced hyperpolarization of the LNd 

membrane potential and completely suppressed spontaneous firing (Figure 3.3A-B). The inward 

GABA-induced currents, measured in voltage-clamp mode with a holding potential of -113 mV, 

persist in low calcium bath solution, suggesting that the LNds are directly responsive to GABA 

(Figure 3.3–figure supplement 1). Voltage ramp experiments revealed that the reversal potential 

for the GABA-induced currents was -68.5 ± 6.6 mV (n=3) (Figure 3.2C). This is more negative 

than but still close to the predicted equilibrium potential for chloride (-49 mV at 25 °C), 

suggesting that these currents may be at least partially conducted by chloride channels. The 

GABAA receptors (GABAARs) are chloride-conducting ion channels gated by GABA (reviewed 

by Macdonald and Olsen, 1994). The presence of 100µM picrotoxin, a potent GABAAR 

antagonist (Macdonald and Olsen, 1994), almost completely suppressed the GABA-induced 

currents when measured at a holding potential of -113 mV (Figure 3.3D-E). We conclude that 

GABAA receptors mediate inhibitory synaptic inputs onto the LNds. 

We next tested the LNds’ receptivity to a third fast neurotransmitter, glutamate. 

Glutamatergic neurons are widespread in the Drosophila central nervous system (Daniels et al., 

2008), but the physiological functions of glutamatergic signaling in the central brain are not well 

understood. The fly genome encodes a glutamate-gated chloride channel, GluClα, which is not 

present in mammals, suggesting that glutamate can be an inhibitory neurotransmitter in the fly 

brain (Cully et al., 1996). Indeed, glutamate acts as an inhibitory neurotransmitter in the fly 

olfactory system (Liu and Wilson, 2013) and mediates inhibition of the l-LNvs (McCarthy et al., 

2011), clock neurons important for arousal in flies (Shang et al., 2008; Sheeba et al., 2008a). 

Furthermore, glutamate is expressed by a subset of dorsal clock neurons (Hamasaka et al., 2007; 

Guo et al., 2016) where it may function as a synchronizing factor for the clock neuron network 
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(Collins et al., 2014). We therefore wondered if the LNds would respond to exogenously applied 

glutamate. Perfusion of 1 mM glutamate resulted in hyperpolarization of the LNds and complete 

suppression of the LNd firing in current-clamp mode (Figure 3.4A-B). When the LNd membrane 

potential was held at -113 mV in voltage-clamp mode, glutamate induced inward currents in the 

LNds that persisted under low calcium conditions, consistent with glutamate having direct effects 

on the LNds (Figure 3.4–figure supplement 1). Voltage ramp experiments revealed that the 

glutamate-induced current reversed at -58.3 ± 2.6 mV (n=6), close to the predicted chloride 

equilibrium potential (-49 mV at 25 °C), suggesting that theses currents are conducted by GluClα 

channels (Figure 3.4C). Because of the lack of highly specific antagonists for GluClα channels, 

we took a genetic approach, knocking down GluClα expression in the LNds using RNAi. The 

knock-down of GluClα in the LNds significantly reduced the currents induced by glutamate 

perfusion (Figure 3.4D-E). As an additional control, we showed that the GluClα knock-down did 

not affect the LNd’s response to GABA (Figure 3.4E), indicating that the RNAi against GluClα is 

specific. Thus, the LNds are inhibited by glutamate through the action of the glutamate-gated 

chloride channel GluClα. 

3.3.4 The DN1ps provide inhibitory synaptic input onto the LNds. 

Our results indicate that GABA and glutamate provide inhibitory synaptic inputs onto the 

LNds through chloride channels (Figures 3.3-3.4). None of the various classes of clock neuron in 

Drosophila are GABAergic (Hamasaka et al., 2005), whereas some of the dorsal clock neurons 

including the dorsal neurons group 1 (DN1s) and dorsal neurons group 3 (DN3s) are 

glutamatergic (Hamasaka et al., 2007; Guo et al., 2016). The neurites of DN1s and LNds 

intermingle in the dorsal protocerebrum, and a subset of the posterior DN1s (DN1ps) project 

ventrally and terminate in proximity to the LNds (Kaneko and Hall, 2000; Zhang et al., 2010b), 
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suggesting potential synaptic connections between the DN1ps and the LNds. To test this 

hypothesis, we expressed the mammalian ATP-gated nonselective cation channel P2X2, which is 

not present in the fly genome (Littleton and Ganetzky, 2000; Lima and Miesenböck, 2005), in 

the DN1ps to render them excitable by exogenously applied ATP, while simultaneously 

monitoring LNd membrane currents using whole-cell voltage-clamp recordings. We found that 

perfusion of 250 µM ATP consistently and near-maximally excites the P2X2-expressing DN1ps 

in our experimental conditions (Figure 3.5–figure supplement 1). At a holding potential of -113 

mV, perfusion of 250 µM ATP induced inward currents in the LNds that are significantly 

different from those of vehicle controls (Figure 3.5A,D). These ATP-induced currents in the 

LNds depend on P2X2 expression in the DN1ps and therefore the excitation of DN1ps (Figure 

3.5C). Voltage ramp experiments reveal that the DN1p-to-LNd current appears to be outwardly 

rectifying, with a reversal potential of -72.0 ± 4.2 mV (n=5) (Figure 3.5B), which is in between 

the chloride and potassium equilibrium potentials, -49 mV and -91 mV, respectively at 25 °C. 

This suggests that these currents are likely a mixture of chloride and potassium currents, which 

would normally act to hyperpolarize the LNds. We therefore conclude that the DN1ps provide 

inhibitory synaptic input onto the LNds, presumably via glutamate. 

As mentioned above, another class of clock neurons, the l-LNvs, are also inhibited by 

glutamate (McCarthy et al., 2011). We therefore asked if the l-LNvs are also inhibited by the 

DN1ps. P2X2-mediated excitation of the DN1ps induced significant but relatively small inward 

currents in the l-LNvs when their membrane potential was held at -113 mV (Figure 3.5E-F). 

Exciting all the glutamatergic neurons induced larger inward currents in the l-LNvs (Figure 

3.5G), suggesting that the l-LNvs receive additional glutamatergic inputs from neurons other than 

the DN1ps. 
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3.3.5 GABAergic and glutamatergic inputs to the clock network differentially regulate 

sleep. 

A functional molecular clock in the LNds is sufficient to generate increased levels of 

locomotor activity in anticipation of lights-off, indicating that the LNds promote locomotor 

activity around dusk (Grima et al., 2004). A recent study found that the LNds display daily 

rhythms in their intracellular calcium concentration, with the highest calcium levels in the late 

afternoon, a few hours before the fly’s activity peak at dusk (Liang et al., 2016). These results 

further support the notion that the LNds promote locomotor activity in the evening. We therefore 

reasoned that a properly-timed suppression of LNd neuronal activity would be important for the 

fly’s normal timing of activity quiescence and sleep. Given that GABA and glutamate inhibit 

LNd neuronal activity via GABAARs and GluClα respectively (Figures 3.3-3.4), we wondered if 

the disruption of these inhibitory inputs would have effects on the fly’s rhythm of activity and 

sleep. 

When we knocked down GABAAR expression in the LNds (along with various non-clock 

neurons) using the combination of Mai179-GAL4 and Pdf-GAL80 (Grima et al., 2004; Stoleru et 

al., 2004; Yoshii et al., 2008), we observed a reduction of total sleep amount specifically in the 

nighttime of a light/dark cycle, but not in the daytime (Figure 3.6A-B). The same effects were 

observed when we knocked down GABAAR in the LNds using a different driver, R78G02-GAL4, 

which is expressed in the CRY+/PDFR+ LNds but not in the CRY-/PDFR- LNds or the PDF-

expressing LNvs (Dr. C. Helfrich-Förster, personal communication) (Figure 3.6C-D). These 

phenotypes were also observed when we used different RNAi lines targeting different regions of 

the GABAAR transcripts (Liu et al., 2007) (Figure 3.6C-D and Figure 3.6–figure supplement 1A-

D). These results indicate that GABAAR-mediated inhibition of the LNds normally promotes 
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sleep at night. Interestingly, it had previously been reported that GABAAR-mediated inhibition 

of the other class of lateral clock neurons, the LNvs also promotes sleep at night (Parisky et al., 

2008; Chung et al., 2009) (Figure 3.6–figure supplement 1E-F). Therefore, GABA suppresses 

the neuronal activity of both sets of lateral neurons to promote nighttime sleep. 

In contrast, knocking down GluClα expression in the LNds resulted in an increased 

daytime sleep, without significantly affecting the amount of nighttime sleep (Figure 3.7A-B). 

The increase of daytime sleep occurs primarily in the first half of the light period (Figure 3.7B 

and Figure 3.7–figure supplement 1A). The LNvs also express GluClα (McCarthy et al., 2011; 

Collins et al., 2012). When we knocked down GluClα in the LNvs, we also observed an increase 

in the amount of daytime sleep, but not of nighttime sleep (Figure 3.7C-D). However, when 

GluClα was knocked down in the LNvs, the increase of daytime sleep occurs primarily in the 

second half of the light period (Figure 3.7D and Figure 3.7–figure supplement 1B). Finally, when 

GluClα was knocked down in both the LNds and the LNvs, the amount of sleep was increased in 

both the first half and the second half of the light period (Figure 3.7E-F and Figure 3.7–figure 

supplement 1C). Taken together, our results suggest that the glutamatergic inhibition of lateral 

clock neurons normally functions to suppress sleep during the day, with GluClα-mediated 

inhibition of the LNds suppressing sleep in the morning and GluClα-mediated inhibition of the 

LNvs suppressing sleep in the afternoon. This result was quite surprising, as it predicts that the 

LNvs which promote activity in the morning (Grima et al., 2004; Stoleru et al., 2004) also 

promote sleep in the afternoon, while the LNds which promote activity in the afternoon (Grima et 

al., 2004; Stoleru et al., 2004) also promote sleep in the morning (Figure 3.8). 
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Figure 3.1. Spontaneous tonic and burst firing of the LNds. 
(A-B) Representative cell-attached voltage-clamp recordings of the LNds. The pipette potential 
was 0 mV. The LNd in (A) is displaying tonic firing, while the LNd in (B) is bursting. (C-F) 
Representative whole-cell current-clamp recordings of the LNds. A constant hyperpolarizing 
current was injected to counteract the depolarizing seal current (see Materials and Methods for 
details). Panel (C) shows an LNd displaying tonic firing; Panel (D) shows a bursting LNd. Panels 
(E-F) display examples of LNds alternating between tonic and burst firing. 
 
 
 
 
 

 
 
Figure 3.1–figure supplement 1. Electrophyiological parameters of whole-cell LNd 
recordings. 
(A) Membrane capacitance, (B) membrane resistance, and (C) access resistance for whole-cell 
LNd recordings. Graphs report values for a total of 40 LNds from 40 male Mai179>EGFP brains. 
Lines represent mean ± SEM (standard error of the mean). 
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Figure 3.2 Nicotinic acetylcholine receptor agonists excite the LNds. 
(A) Representative whole-cell current-clamp recording of an LNd responding to the perfusion of 
1 mM carbamoylcholine (CCh), a structural homolog of acetylcholine. CCh induced strong 
depolarization of the LNd membrane. (B) Representative whole-cell current-clamp recording of 
an LNd responding to the perfusion of 100 µM nicotine, a nAChR-specific agonist. Nicotine 
induced a depolarization of the LNd membrane similar to that observed for CCh in (A). (C-D) 
Magnified views of the boxed regions in panel (A) and panel (B), respectively. The black bars 
above the traces in (A-D) indicate the perfusion time of the indicated chemicals. (E) 
Quantification of the LNd membrane potential before and after CCh (left) and nicotine (right) 
treatments. ** P < 0.01, by paired t test. (F) The current-voltage relationship of the nicotine-
induced current in a representative LNd, measured by a voltage ramp protocol (see Materials and 
Methods for details). The reversal potential is approximately -25 mV, suggesting that the current 
is conducted by nonselective cation channels. 
 
 

 
Figure 3.2–figure supplement 1. The nicotine-
induced LNd currents are largely network-
independent. 
Currents induced by nicotine were measured in the 
same LNds in both normal Ca2+ (1 mM) and low Ca2+ 
(0.1 mM) saline at a holding potential of -68 mV. 
Data for individual LNds are shown in light gray. 
Average values are shown in black. Error bars 
represent SEM. ‘ns’, not significant, by paired t test. 
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Figure 3.3. GABA inhibits the LNds through GABAA receptors. 
(A) Representative whole-cell current-clamp recordings of two LNds responding to perfusion of 
1 mM GABA. GABA induced hyperpolarization of the LNd membrane potential and completely 
suppressed the LNd firing. (B) Quantification of the LNd membrane potential (left) and firing rate 
(right) before and after GABA treatment. ** P < 0.01, *** P < 0.001, by paired t test. (C) The 
current-voltage relationship of the GABA-induced current in a representative LNd, measured by 
a voltage ramp protocol (see Materials and Methods for details). (D) Representative whole-cell 
voltage-clamp recording of an LNd responding to GABA perfusion in the absence (top) or 
presence (bottom) of 100 µM picrotoxin, a potent GABAAR antagonist. The holding potential 
was -113 mV. In (A) and (D) the perfusion time of GABA is indicated by the black bars above 
the traces. (E) Current density induced by GABA in the absence or presence of picrotoxin at a 
holding potential of -113 mV. * P < 0.05, by paired t test. 
 
 

 
Figure 3.3–figure supplement 1. The GABA-
induced LNd currents are largely network-
independent. 
Currents induced by GABA were measured in the 
same LNds in both normal Ca2+ (1 mM) and low Ca2+ 
(0.1 mM) saline at a holding potential of -113 mV. 
Data for individual LNds are shown in light gray. 
Average values are shown in black. Error bars 
represent SEM. ‘ns’, not significant, by paired t test. 
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Figure 3.4. Glutamate inhibits the LNds through the glutamate-gated chloride channel 
GluClα. 
(A) Representative whole-cell current-clamp recordings of two LNds responding to perfusion of 
1 mM glutamate. Glutamate induced hyperpolarization of the LNd membrane potential and 
completely suppressed the LNd firing. (B) Quantification of the LNd membrane potential (left) 
and firing rate (right) before and after glutamate treatment. * P < 0.05, *** P < 0.001, by paired t 
test. (C) The current-voltage relationship of the glutamate-induced current in a representative 
LNd, measured by a voltage ramp protocol (see Materials and Methods for details). (D) 
Representative glutamate-induced currents in a control LNd (top) and in an LNd in which GluClα 
has been knocked down (bottom), both measured at a holding potential of -113 mV. The 
genotypes are ;Mai179-GAL4/UAS-EGFP; for the control, and ;Mai179-GAL4,UAS-
EGFP/UAS-Dcr-2;UAS-GluClαRNAi/+ for the GluClα knock-down. In (A) and (D) the perfusion 
time of glutamate is indicated by the black bars above the traces. (E) Current density induced by 
glutamate (left graph) and GABA (right graph) in control LNds and GluClα knock-down LNds at 
a holding potential of -113 mV. Lines represent mean ± SEM. *** P < 0.001, ‘ns’, not 
significant, by unpaired t test. 
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Figure 3.4–figure supplement 1. The glutamate-
induced currents in the LNds are largely network-
independent. 
Glutamate induced currents were measured in the 
same LNds in both normal Ca2+ (1 mM) and low Ca2+ 
(0.1 mM) external saline at a holding potential of -
113 mV. Data for individual LNds are shown in light 
gray. Average values are shown in black. Error bars 
represent SEM. ‘ns’, not significant, by paired t test. 
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Figure 3.5. The DN1ps inhibit the LNds. 
(A) Left: a diagram of the experimental strategy: P2X2 was expressed in the DN1ps to render 
them excitable by ATP while the postsynaptic response in an LNd was simultaneously monitored 
using patch-clamp recording. Right: representative whole-cell voltage-clamp recordings of LNds 
responding to vehicle (top) and 250 µM ATP (bottom). The perfusion time is indicated by the 
black bars above the traces. The excitation of DN1ps by ATP induced an inward current in the 
recorded LNd at a holding potential of -113 mV. (B) Representative current-voltage relationship 
of the DN1p-to-LNd current induced by ATP treatment, measured by a voltage ramp protocol. 
(C-D) LNd current density induced by vehicle and ATP perfusion of control (C) and 
experimental (D) flies. The genotypes are ;Mai179-GAL4/UAS-EGFP;LexAop-P2X2/+ for 
control (C) and ;Mai179-GAL4/UAS-EGFP;Clk4.1M-LexA/LexAop-P2X2 for experimental flies 
(D). (E-G) l-LNv current density induced by vehicle and ATP perfusion for the following 
genotypes: ;Pdf-LexA,LexAop-Epac1-camps/+;UAS-P2X2/+ (E), ;Pdf-LexA,LexAop-Epac1-
camps/+;Clk4.1M-GAL4/UAS-P2X2 (F), and ;Pdf-LexA,LexAop-Epac1-camps/+;VGlut-
GAL4/UAS-P2X2 (G). * P < 0.05, ** P < 0.01, ‘ns’, not significant, by paired t test. 
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Figure 3.5–figure supplement 1. Perfusion of 250 µM ATP results in consistent and near-
maximal excitation of the P2X2-expressing DN1ps. 
Calcium imaging was performed to assess the extent of excitation of P2X2-expressing DN1ps by 
different concentrations of ATP (see Materials and Methods for details). 17 DN1ps from 3 brains 
dissected from LexAop-GCaMP3.0/Sco;Clk4.1M-LexA/LexAop-P2X2 flies were sequentially 
treated by 100 µM, 250 µM, and 1 mM of ATP. The Ca2+ responses (quantified as maximum 
percent GCaMP3.0 fluorescence increase over baseline) of individual DN1ps are shown in light 
gray. Average responses are shown in black. Error bars represent SEM. ** P < 0.01, *** P < 
0.001, ‘ns’, not significant, by the Friedman one-way ANOVA and Dunn's multiple comparison 
test. 
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Figure 3.6. RNAi-mediated knock-down of GABAAR expression in the LNds results in 
reduced nighttime sleep. 
(A, C) The total amount of daytime sleep (left) and nighttime sleep (right) of the genotypes 
indicated on the far right of the figure. GABAAR (also known as Rdl in flies) expression was 
knocked down in the LNds using the Mai179-GAL4/Pdf-GAL80 combination in (A) and the 
R78G02-GAL4 driver in (C). *** P < 0.001, ‘ns’, not significant. See Materials and Methods for 
details of the statistics. (B, D) Population averaged sleep profiles of the indicated genotypes. 
Yellow indicates the light period and gray indicates the dark period. All data are presented as 
mean ± SEM. 
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Figure 3.6–figure supplement 1. RNAi-mediated knock-down of GABAAR expression in the 
lateral clock neurons results in reduced nighttime sleep. 
(A, C, E) The total amount of daytime sleep (left) and nighttime sleep (right) of the genotypes 
indicated on the far right of the figure. GABAAR expression was knocked down in the LNds using 
the R78G02-GAL4 driver and two different RNAi lines (A, C), and in the LNvs using the Pdf-
GAL4 driver (E). * P < 0.05, *** P < 0.001, ‘ns’, not significant. See Materials and Methods for 
details of the statistics. (B, D, F) Population averaged sleep profiles of the indicated genotypes. 
Yellow indicates the light period and gray indicates the dark period. All data are presented as 
mean ± SEM. 
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Figure 3.7. RNAi-mediated knock-down of GluClα expression in the lateral clock neurons 
results in increased daytime sleep. 
(A, C, E) The total amount of daytime sleep (left) and nighttime sleep (right) of the genotypes 
indicated on the far right of the figure. GluClα expression was knocked down in the LNds in (A), 
in the LNvs in (C), and in both the LNds and the LNvs in (E). *** P < 0.001, ‘ns’, not significant. 
See Materials and Methods for details of the statistics. (B, D, F) Population averaged sleep 
profiles of the indicated genotypes. Yellow indicates the light period and gray indicates the dark 
period. Green arrows mark the increased daytime sleep in the experimental genotypes. All data 
are presented as mean ± SEM. 
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Figure 3.7–figure supplement 1. RNAi-mediated knock-down of GluClα expression in the 
LNds and the LNvs differentially affects daytime sleep. 
(A-C) The total amount of daytime sleep that occurs in the first 6 hours of the light period (AM 
sleep, left) and that occurring in the last 6 hours of the light period (PM sleep, right) of the 
indicated genotypes. Knock-down of GluClα expression in the LNds results in increased AM 
sleep (A), while knock-down of GluClα expression in the LNvs results in increased PM sleep 
(B). Knock-down of GluClα expression in the LNds and LNvs simultaneously results in increases 
in both AM sleep and PM sleep (C). *** P < 0.001, ‘ns’, not significant. See Materials and 
Methods for details of the statistics. All data are presented as mean ± SEM. 
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Figure 3.8. A summary model for the differential regulation of daytime and nighttime sleep 
by GABAergic and glutamatergic inhibition of the lateral clock neurons. 
Previous studies have indicated that the LNvs promote activity around dawn and the LNds 
promote activity around dusk (pathways illustrated in blue) (Grima et al., 2004; Stoleru et al., 
2004). Based on our results, GABAergic inhibition promotes nighttime sleep through the 
suppression of LNv and LNd neuronal activity (pathways illustrated in red), whereas 
glutamatergic inhibition of the lateral clock neurons promotes wakefulness during the day 
(pathways illustrated in cyan). Impaired suppression of the LNv activity by glutamate leads to 
increased sleep around dusk, while impaired suppression of the LNd activity by glutamate leads 
to increased sleep around dawn. These results suggest a potential antagonism between the LNvs 
and the LNds. “→” indicates promotion and “—|” indicates suppression. See text for more 
details.  
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3.4 Discussion 

3.4.1 Fast synaptic inputs to LNds 

Using whole-cell patch-clamp recordings, we have characterized the LNds’ 

responsiveness to several classical fast neurotransmitters. Acetylcholine is the major excitatory 

neurotransmitter in the fly brain (reviewed in Restifo and White, 1990). Our results revealed that 

acetylcholine provides excitatory synaptic inputs to the LNds via ionotropic nAChRs. However, 

our results do not preclude the expression of metabotropic mAChRs in the LNds. In addition, we 

found that GABA and glutamate both provide fast inhibitory synaptic inputs onto the LNds via 

ligand-gated chloride channels, GABAAR and GluClα, respectively. The residual glutamate 

currents in the GluClα RNAi flies (Figure 3.4D-E) were most likely due to an incomplete knock-

down of the GluClα expression in the LNds, but it is also possible that they are mediated other 

glutamate receptors, the Drosophila metabotropic glutamate receptor mGluR for example. 

Indeed, a recent study found that mGluR is rhythmically expressed in the LNds (Guo et al., 

2016). Taken together, these results identify for the first time the neurochemical modulators of 

the critical LNd clock neurons. 

3.4.2 Connectivity in the clock neuron network 

The anatomy of Drosophila’s clock neuron classes has been well characterized. The 

neural processes of many clock neurons are intermingled within the dorsal protocerebrum and 

the accessory medulla of the ventral lateral brain (reviewed by Helfrich-Förster, 2005), 

suggesting the presence of synaptic connections between clock neuron classes. Despite the 

longstanding assumption of synaptic contacts between the various classes of clock neurons, 

physiological connectivity within the clock network has remained largely uncharacterized. We 

previously developed a means of addressing functional connectivity in the adult fly brain, and 
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used it to characterize a long predicted modulatory connection between the LNvs and the LNds 

mediated by PDF (Yao et al., 2012). Based on our finding that the LNds are inhibited by 

glutamate, we wondered if the glutamatergic DN1p clock neurons might provide inhibitory input 

onto the LNds. Indeed, acute excitation of the DN1ps revealed an inhibitory connection from the 

DN1ps to the LNds, which is likely mediated by both chloride and potassium conductance. 

Recent work by Guo and colleagues using P2X2-mediated excitation of the DN1ps in 

conjunction with calcium imaging within the LNds revealed that DN1p excitation results in 

calcium decreases in the LNds (Guo et al., 2016), consistent with an inhibitory connection 

between the DN1ps and the LNds. Guo and colleagues have suggested that this connection is 

mediated by the Drosophila metabotropic glutamate receptor mGluR (Guo et al., 2016). This is 

consistent with our finding of LNd potassium conductance following DN1p excitation, as mGluR 

is known to activate potassium channels when expressed exogenously in Xenopus oocytes 

(Raymond et al., 1999). However, the presence of chloride conductance suggests that the 

ionotropic glutamate receptor GluClα also contributes to the inhibitory connection between the 

DN1ps and the LNds. 

Given that the l-LNvs are also inhibited by glutamate (McCarthy et al., 2011), we asked if 

there is a functional inhibitory connection between the DN1ps and the l-LNvs. DN1p excitation 

produced significant but relatively small currents in l-LNvs, suggesting that the DN1ps inhibit 

both the l-LNvs and LNds but with a stronger connection with the latter clock neuron class. This 

is consistent with recent findings by Guo and colleagues (Guo et al., 2016). These results are also 

consistent with the finding that the ventral projections of the DN1ps typically terminate within 

the dorsal protocerebrum and only occasionally extend ventrally to regions of the brain 

containing l-LNv projections (Zhang et al., 2010b). An extension of this experimental approach 
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should make it possible to identify the physiological connectivity between other groups of clock 

neurons, and between clock neurons and potential input and output pathways. 

3.4.3 Differential regulation of daytime and nighttime sleep by GABAergic and 

glutamatergic inhibition of the lateral clock neurons 

Male flies display a characteristic pattern of activity and sleep under a 12:12 light:dark 

cycle. They are active around dawn and dusk, display a midday siesta, and sleep throughout the 

night. It has been known for more than a decade that the daily activity peaks around dawn and 

dusk are controlled by the LNvs and the LNds, respectively (Grima et al., 2004; Stoleru et al., 

2004). Less is known about the circadian control of sleep patterns and sleep amount. Studies 

have found that GABA promotes nighttime sleep through suppressing the neuronal activity of 

the LNvs (Parisky et al., 2008; Chung et al., 2009). Here, we extend these findings by showing 

that GABA also suppresses the neuronal activity of the LNds to promote nighttime sleep (Figure 

3.6 and Figure 3.8). This fits nicely with the recent finding that the LNds are most active in the 

late afternoon (Liang et al., 2016) to promote a major peak of activity around dusk. Thus, a 

timely suppression of their neuronal activity would be required for the animal’s activity 

quiescence and consolidated sleep at night.  

While conducting these studies we became aware of work by Guo and colleagues 

revealing that the DN1ps promote sleep through the glutamatergic inhibition of lateral clock 

neurons (Guo et al., 2016). This work proposed that this inhibition was mediated by the 

metabotropic glutamate receptor mGluR (Guo et al., 2016). The use of electrophysiological 

methods has allowed us to identify a second glutamate receptor, GluClα, in the lateral neurons 

and we show that this ionotropic glutamate receptor mediates a function distinct from mGluR in 

these cells in the control of sleep. Whereas Guo and colleagues have shown that lateral neuron 
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mGluR is important for promoting midday sleep, we show that GluClα-mediated inhibition of 

the lateral clock neurons controls sleep in a fundamentally different and unexpected manner. 

Though both the LNvs and the LNds promote activity during specific times of the day (Grima et 

al., 2004; Stoleru et al., 2004; Guo et al., 2016), the glutamatergic inhibition of these neurons via 

GluClα promotes wakefulness during the daytime, as disruption of GluClα in the lateral clock 

neurons increased the levels of daytime sleep (Figure 3.7). Even more surprisingly, impairing 

GluClα-mediated inhibition of the LNvs (i.e, the morning oscillator) leads to increased sleep in 

the late afternoon while impairing GluClα-mediated inhibition of the LNds (i.e., the evening 

oscillator) leads to increased sleep in the early morning (Figure 3.7B,D,F and Figure 3.7–figure 

supplement 1). Thus, the LNvs, which have long been thought to drive morning activity (Grima 

et al., 2004; Stoleru et al., 2004), also promote sleep in the afternoon, and the LNds, which drive 

activity in the afternoon (Grima et al., 2004; Stoleru et al., 2004), also promote sleep in the 

morning (Figure 3.8).   

Given that the LNvs and LNds promote activity around dawn and dusk, respectively, and 

that activity and sleep are mutually exclusive behavioral states, these results reveal a striking 

antagonism between the morning and evening oscillators (Figure 3.8). Reciprocal inhibition is a 

core feature of almost all known central pattern generators, neuronal circuits that generate 

rhythmic motor patterns endogenously even in the absence of rhythmic inputs (reviewed by 

Marder and Bucher, 2001). Based on our results, we wonder if similar principles are at play in 

the circadian timekeeping network, which produces rhythmic outputs over a ~24-hour time-

course. While it might be counterintuitive that the LNvs and LNds can promote both activity and 

sleep, we note that it is likely that these neurons promote sleep indirectly. If there is reciprocal 

inhibition between the LNvs and the LNds, an increase in LNv neuronal activity would result in a 
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greater suppression of LNd neuronal activity, which would effectively suppress or delay the 

activity around dusk and therefore lead to an increase in rest or sleep. Alternatively, the LNvs and 

the LNds may have separate output pathways through which they control activity and sleep. In 

summary, our results reveal that although GABA and glutamate both provide fast inhibitory 

synaptic inputs to the lateral clock neurons, the GABAergic input functions to promote sleep at 

night while the glutamatergic input functions to promote wakefulness during the day. Perhaps 

most surprisingly, our results reveal that, within the clock neuron network of Drosophila, the 

morning oscillator not only promotes activity in the morning but also promotes sleep in the 

evening, while the evening oscillator promotes activity in the evening and sleep in the morning. 

 

3.5 Materials and Methods 

3.5.1 Fly strains 

Flies were reared on cornmeal-sucrose-yeast media under a 12hr:12hr light:dark cycle at 

25 °C or under the diurnal conditions of the lab. The following fly lines were used: Mai179-

GAL4 (Siegmund and Korge, 2001; Grima et al., 2004; Stoleru et al., 2004); Pdf-GAL4 (Renn et 

al., 1999; Park et al., 2000); Pdf-LexA (Shang et al., 2008); Pdf-GAL80 (Stoleru et al., 2004); 

R78G02-GAL4 (Bloomington Stock # 40010); Clk4.1M-GAL4 (Zhang et al., 2010a, 2010b); 

Clk4.1M-LexA (Cavanaugh et al., 2014); VGlut-GAL4 (Daniels et al., 2008); UAS-EGFP 

(Bloomington Stock # 5431); LexAop-GCaMP3.0(4B), LexAop-Epac1-camps(1A), LexAop-

P2X2(1) (Yao et al., 2012); UAS-P2X2 (Lima and Miesenböck, 2005); GABAAR RNAi lines 

UAS-Rdli(8-10)J, UAS-Rdli(4-5)E, UAS-Rdli(2-7)E2 (Liu et al., 2007); UAS-Dicer-2(III) 

(Bloomington Stock # 24651), UAS-GluClαRNAi (Vienna Drosophila Resource Center ID 

105754) (Dietzl et al., 2007; Collins et al., 2012). 
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3.5.2 Electrophysiology 

Brain dissection: 

All of the brain dissections and electrophysiological recordings were done in the light 

phase of a 12:12 LD cycle. Brains from adult male flies (about 3-10 days old) were dissected into 

the external saline containing 101 mM NaCl, 3 mM KCl, 1 mM CaCl2, 4 mM MgCl2, 1.25 mM 

NaH2PO4, 5 mM glucose, and 20.7 mM NaHCO3 (pH 7.2, 250 mOsm), pre-oxygenated with 

95% O2/5% CO2 (Gu and O’Dowd, 2006). The dissected brain was placed in a drop of external 

saline containing 2 mg/mL protease XIV (Sigma-Aldrich, St. Louis, MO) for 30 to 60 seconds to 

weaken the perineural sheath. The brain was then returned to fresh external saline without 

protease XIV, and the perineural sheath was carefully removed with fine forceps. Because the 

LNd soma are a few cell-layers beneath the surface of the brain, tissues above the LNd soma were 

carefully removed with fine forceps to make the LNd soma accessible to electrodes. The 

preparation was discarded if the LNds were visibly damaged. The dissected brain was placed 

ventral side up on the floor of an RC-26G perfusion chamber and secured using an SHD-

26GH/10 slice anchor (Warner Instruments, Hamden, CT). The brain was allowed to recover 

from dissection in continuously flowing oxygenated external saline (95% O2/5% CO2) for a 

minimum of 10 minutes. Perfusion with oxygenated external saline was continued throughout 

the recording period, at a flow rate of approximately 1-2 mL/min. 

Drug application: 

All drugs were delivered by bath perfusion. The time of solution exchange in the 

recording chamber was approximately 20-30 seconds. For picrotoxin and low Ca2+ solution 

treatments, the preparation was bathed in 100 µM picrotoxin (in normal external saline) or in low 

Ca2+ external saline (0.1 mM Ca2+/4.9 mM Mg2+) for a minimum of 5 minutes before drugs were 
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applied. Picrotoxin was purchased from Tocris Bioscience (Bristol, United Kingdom). 

Carbamoylcholine, nicotine, GABA, glutamate, and ATP were purchased from Sigma-Aldrich 

(St. Louis, MO). 

Whole-cell patch-clamp recordings: 

Whole-cell patch-clamp recordings were performed using borosilicate standard wall 

capillary glass pipettes (World Precision Instruments, Sarasota, FL), with a resistance of 10-14 

MΩ after fire polishing. Recording pipettes were filled with internal saline containing 102 mM 

potassium gluconate, 17 mM NaCl, 0.085 mM CaCl2, 4 mM Mg-ATP, 0.5 mM Na-GTP, 0.94 

mM EGTA, and 8.5 mM HEPES (pH 7.2, 235 mOsm) (Cao and Nitabach, 2008). All recordings 

were corrected for the 13 mV liquid junction potential generated in these solutions. The 

preparations were visualized using an Olympus BX51WI fixed stage upright microscope 

equipped with an Olympus LUMPlanFl 40×/0.8 W water-immersion objective (Olympus, Center 

Valley, PA). The LNds and l-LNvs were identified by their anatomical locations and their 

expression of fluorescent proteins. Giga-Ohm seals were achieved before breaking in to whole-

cell configuration. The identity of the recorded cells was visually confirmed by adding 10 µM 

Alexa Fluor 594 biocytin (Thermo Fisher Scientific, Waltham, MA) into the internal solution, as 

previously described (Flourakis and Allada, 2015). Recordings were done using an Axopatch 

200 patch-clamp amplifier, a Digidata 1440A digitizer, and the pClamp 10 Clampex software 

(Molecular Devices, Sunnyvale, CA). Only cells with a membrane resistance higher than 500 

MΩ were used for recordings.  

Current-clamp recordings were low-pass filtered at 5 kHz before digitization at 10 kHz. 

Because of the high membrane resistance of many fly neurons, the seal current may substantially 

depolarize the membrane potential in current-clamp recordings (Gouwens and Wilson, 2009). 
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We therefore injected a constant hyperpolarizing current (typically -10 to -20 pA) into the 

recorded cell in order to compensate for the depolarizing effect of the seal current and bring the 

membrane potential to between -50 and -70 mV.  

Voltage-clamp recordings were low-pass filtered at 1 kHz before digitization at 2 kHz. 

For voltage ramp experiments, the holding potential was changed linearly over 500 ms from -113 

mV to +47 mV for each voltage ramp, and ramps were applied every five seconds. Six ramps 

were applied before drug treatment to obtain an average baseline current. The average baseline 

current before treatment was subtracted from the recorded current after the drug was applied, 

such that the resulting current represents current induced by the drug. For steady-state voltage-

clamp recordings, the membrane potential was held at -68 mV for nicotine treatments, and at -

113 mV for all the other treatments. The recorded current traces were further low-pass filtered at 

10 Hz before being displayed in the figures. Analyses of both the current-clamp and the voltage-

clamp data were done using the pClamp 10 Clampfit software (Molecular Devices, Sunnyvale, 

CA). 

Cell-attached recordings: 

For cell-attached recordings, the recording pipette was filled with external saline. Giga-

Ohm seals were achieved before recording in cell-attached configuration in voltage-clamp mode, 

with the holding potential set at 0 mV. Signals were low-pass filtered at 1 kHz before digitization 

at 10 kHz, and were further low-pass filtered after recording at 200 Hz before being displayed in 

the figures. 

Neural circuit analysis: 

Two modifications were made for the experiments that analyzed functional neuronal 

connections (Figure 3.5). First, brain dissection and desheathing were performed in ice-cold low 
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Ca2+ external saline (0.1 mM Ca2+/4.9 mM Mg2+) to reduce neurotransmitter release during these 

procedures. The dissected brain was then returned to normal Ca2+ external saline and allowed to 

rest for a minimum of 10 minutes before recording. Second, the 4 mM ATP in the internal saline 

was replaced by 4 mM phosphocreatine to avoid ATP leaking from the recording pipette into the 

bath, which may potentially depolarize the P2X2-expressing cells before measurements took 

place. All the other procedures were the same as those described above. 

3.5.3 Calcium imaging 

Calcium imaging experiments were performed to determine the concentration of ATP to 

be used to excite the P2X2 DN1ps (Figure 3.5–figure supplement 1). Brains from male 

w/Y;LexAop-GCaMP3.0(4B)/Sco;Clk4.1M-LexA/LexAop-P2X2(1) flies were dissected and 

desheathed in external saline as described above. Calcium imaging was performed as previously 

described (Yao et al., 2012) using an Olympus Fluoview 1000 laser-scanning confocal 

microscope equipped with an Olympus LUMFL N 60×/1.10 W water-immersion objective 

(Olympus, Center Valley, PA). Regions of interest (ROIs) were selected over single somata of 

the DN1ps using Olympus Fluoview software (Olympus, Center Valley, PA), and the GCaMP3.0 

fluorescent intensity was sampled at 1 Hz with a 488-nm laser. Each preparation was 

sequentially treated with ~30-second perfusions of 100 µM, 250 µM, and 1 mM of ATP, with 

approximately 10 minutes between treatments. Raw GCaMP3.0 intensity traces were filtered 

with a 10-point moving average filter, and the maximum percent change in fluorescence over 

baseline was determined for each trace using custom software developed in Matlab (MathWorks, 

Natick, MA). 
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3.5.4 Sleep recording and analysis 

Flies aged a week or less were placed individually in recording glass tubes containing 2% 

agar-4% sucrose food at one end and these were loaded onto the DAM2 Drosophila Activity 

Monitors (TriKinetics, Waltham, MA) for locomotor activity recording. Flies were tested under a 

12:12 LD cycle for a minimum of 5 days at a constant temperature of 25°C, and their activity 

counts were collected in 1-minute bins. Sleep was defined as uninterrupted inactivity lasting for 

five minutes or more, as previously described (Hendricks et al., 2000; Shaw et al., 2000; Huber 

et al., 2004). Sleep bouts and the amount of sleep of individual flies were analyzed using the 

Counting Macro, an Excel-based program, which has been described in detail previously 

(Pfeiffenberger et al., 2010). The total amount of sleep was determined for each desired period of 

time (e.g., the first 6 hours of the light period, or the 12-hour dark period) and averaged for the 

last 4 days. The total sleep amount of an experimental genotype was compared to those of the 

corresponding GAL4 and UAS controls using the Kruskal-Wallis one-way ANOVA and Dunn’s 

multiple comparison test. Significance was reported only if the experimental group differed 

significantly from both controls in the same direction, and only the smaller significance value 

was reported in the figures. For the population average sleep profile (also known as “sleep 

eduction”), the population average amount of sleep was determined for each hour for the last 4 

days, which was then averaged across days to generate a single-day sleep profile. 
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CHAPTER 4.  The Drosophila circadian clock is a variably coupled network of multiple 

peptidergic units3 

4.1 Abstract 

Daily rhythms in behavior emerge from networks of neurons that express molecular 

clocks. Drosophila’s clock neuron network consists of a diversity of cell types, yet is modeled as 

two hierarchically organized groups, one of which serves as a master pacemaker. Here we 

establish that the fly’s clock neuron network consists of multiple units of independent neuronal 

oscillators, each unified by its neuropeptide transmitter and mode of coupling to other units. Our 

work reveals that the circadian clock neuron network is not orchestrated by a small group of 

master pacemakers but rather consists of multiple independent oscillators, each of which drives 

rhythms in activity. 

 

4.2 Results 

Molecular clocks drive circadian rhythms in animals (1). Most circadian rhythms follow 

from clocks located in small islands of brain tissue (2) and connections within networks of clock 

neurons produce a robustness in circadian timekeeping uncharacteristic of rhythms driven by 

isolated neurons or non-neuronal clocks (3, 4). Here we study the clock neuron network 

                                                 
3 From Yao Z, Shafer OT (2014). The Drosophila circadian clock is a variably coupled network of multiple 
peptidergic units. Science. 343(6178):1516-20. doi: 10.1126/science.1251285. Reprinted with permission from 
AAAS. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#R1
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#R3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#R4
http://dx.doi.org/10.1126%2Fscience.1251285
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of Drosophila, similar to yet simpler than that of mammals (5), to learn how networks of clock 

neurons produce circadian rhythms. 

The Drosophila brain contains ~150 clock neurons, of which 11 bilateral pairs of lateral 

neurons are necessary and sufficient for the insect’s normal activity rhythms (6) (Fig. 4.S1). 

Current models suggest that this network is organized into two coupled oscillators: the pigment-

dispersing factor (PDF) expressing lateral neurons that control the morning peak of activity and 

the remaining lateral neurons that control the evening peak of activity (6, 7) (Fig. 4.S1). The 

dual-oscillator model predicts that the PDF positive neurons serve as master pacemakers that 

reset the PDF negative neurons daily, thereby dictating the pace of behavioral rhythms in the 

absence of environmental time cues (8). We tested this prediction by introducing various clock 

speed discrepancies between the PDF positive and negative clock neurons. 

The intrinsic speed of the molecular clock can be manipulated through the activity of the 

kinases Doubletime (DBT) and Shaggy (SGG) (9, 10) (Fig. 4.1A, Fig. 4.S2, and Table 4.S1). 

Manipulating these kinases only in the PDF positive clock neurons resulted in a coherent change 

in clock speed in these neurons (Fig. 4.S3), thereby creating clock speed discrepancies between 

PDF positive and negative neurons. When these discrepancies were small, activity rhythms were 

strong and coherent with periodicities determined by the speed of the PDF neurons (Fig. 

4.1B, Figs. 4.S4 and 4.S5, and Table 4.S2). When speed discrepancies were larger, flies 

displayed variable free-running periods, reduced rhythm amplitudes, and a higher incidence of 

arrhythmicity (Fig. 4.1B, Figs. 4.S4 and 4.S5, and Table 4.S2). Flies with large discrepancies 

often displayed two periodicities simultaneously, one corresponding to the period of the PDF 

neurons and the other to that of the PDF negative neurons (Fig. 4.1B, Figs. 4.S4 and 4.S5). In 

flies lacking PDF receptor (PDFR) the speed of PDF neurons had no influence over activity 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#R5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#R6
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#SD2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#R6
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#R7
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#SD2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#R8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#R9
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#R10
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#SD2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#SD2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#SD2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#SD2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259399/#SD2
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rhythms (Fig. 4.1C, Fig. 4.S6, and Table 4.S3), indicating that PDFR signaling is required for 

PDF neuron control over the network. We conclude that the clock neuron network can produce 

coherent activity rhythms only when the mismatch between the PDF positive and negative 

neurons is less than approximately 2.5 hours. 

The presence of near 24-hour periodicities despite altered PDF neuron speed suggested 

that, contrary to the prevailing model, PDF negative clock neurons have independent control of 

activity rhythms under constant darkness and temperature (DD) (6-8, 11, 12). When we altered 

the clock speed of PDF negative neurons, flies displayed increased arrhythmicity and 

desynchronization and reduced rhythm amplitudes (Fig. 4.S7), though the effects were less 

severe than those seen when PDF positive neurons were manipulated (Fig. 4.2A,Fig. 4.S8, and 

Table 4.S4)(8). In the absence of PDFR signaling the PDF negative neurons determined the pace 

of free-running rhythms (Fig. 4.2B, Fig. 4.S8, and Table 4.S4). 

We hypothesized that the phenotypes caused by large clock speed discrepancies (Fig. 

4.1B and Figs. 4.S4, 4.S5, and 4.S7) were caused by conflicts between PDF positive and 

negative clock neurons, both of which drive rhythms. PDF neurons alone are sufficient to drive 

activity rhythms (6). We predicted that in the absence of clocks in PDF negative neurons PDF 

neurons could coherently drive strong behavioral rhythms at any speed. We restored period (per) 

expression only in the PDF neurons of per01 mutants (6) (Fig. 4.2, C and E). When such per-

rescued PDF neurons overexpressed DBTS, flies displayed a strong ~17 h period and showed 

improved rhythmicity, coherence and rhythm amplitude relative to DBTS overexpression in 

a wild-type background (Fig. 4.2, C and F, and Table 4.S5). Such improvements were also 

apparent for DBTLoverexpression in per-rescued PDF positive neurons (Fig. 4.S9 and Table 

4.S5). We conclude that the ~24 h periodicities displayed by desynchronized per+ individuals 
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with fast- or slow-running PDF neurons (Fig. 4.2D and Fig. 4.S4) were driven by PDF negative 

neurons. 

PDF signaling is required for the PDF neurons to influence the pace of behavioral 

rhythms (Fig. 4.1C and Fig. 4.S6), presumably through the resetting of molecular clocks within 

PDF negative neurons (8), but only about half of the PDF negative clock neurons are predicted to 

express PDFR (13, 14). Thus, the limited control of the PDF neurons over activity rhythms might 

be due to a lack of PDF receptivity among PDF negative neurons. We examined PDF receptivity 

within the PDF negative lateral neurons, a 5th small ventral lateral neuron (5th s-LNv) and six 

dorsal lateral neurons (LNds) per hemisphere (Fig. 4.S1). The 5th s-LNv responds to bath-applied 

PDF with cAMP increases (15). Using the cAMP sensor Epac1-camps (15), (16) we found that 

approximately half the LNds do not display cAMP increases in response to PDF, observing both 

responding and non-responding LNds within the same brains (Fig. 4.3, A to D, and G). 

Restricting the expression of cAMP sensor to the PDFR+ LNds (14, 17) or the PDFR- LNds (7), 

we found that all PDFR+ LNds (18 neurons from 7 brains) displayed cAMP responses to PDF 

(Fig. 4.3, E and G), while none of the PDFR- LNds (11 neurons from 6 brains) responded (Fig. 

4.3, F and G). All LNds responded to forskolin, an activator of adenylyl cyclases (Fig. 4.3H) 

(18). Thus, PDF modulates only subsets of PDF negative neurons. 

Given such differential receptivity to PDF, we hypothesized that PDF positive neurons 

reset the molecular clocks only in subsets of PDF negative lateral neurons. We visualized 

PERIOD (PER) protein rhythms in the lateral neuron network of control flies and flies with a 

large clock speed discrepancy, in this case flies with the PDF neurons slowed down through 

expression of DBTL. We chose this manipulation because the internal desynchronization in these 

flies was usually not accompanied by arrhythmicity (Table 4.S2). In control flies, the PDF 
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positive and negative lateral neurons all displayed similar phases of PER accumulation on day 

four of constant darkness (DD4) (Fig. 4.4, A and D). In contrast, there were differences in PER 

expression between PDF positive and most PDF negative lateral neurons in flies with slow PDF 

neurons (Fig. 4.4, B and E). Only two LNds per hemisphere were synchronized with the PDF 

neurons (Fig. 4.4B). These were the two PDFR+ LNds that express short neuropeptide F (sNPF) 

(Fig. 4.4, G to J, and Fig. 4.S10) (19). Synchronization of these two neurons to PDF neurons 

required PDFR signaling (Fig. 4.4, C and F). Thus, most PDF negative lateral neurons were not 

reset by the slow PDF neurons (Fig. 4.4, B and E). These uncoupled neurons were likely 

responsible for the wild-type periodicities displayed by these flies (Fig. 4.1B, Figs. 4.S4, 4.S5, 

and 4.S11). Two of the PDFR+ lateral neurons, a single LNd and the 5ths-LNv, both of which 

express ion transport peptide (ITP) (Fig. 4.S11) (19), were synchronized not with the PDF 

neurons, but rather with the PDFR- LNds (Fig. 4.4, B and E), despite their receptivity to PDF. 

Thus, the slowed PDF neurons reset only two of the seven PDF negative lateral neurons per 

hemisphere, despite the fact that four out of seven of these neurons are receptive to PDF, 

revealing that physiological connections between PDF positive and negative neurons do not 

insure the coupling of their molecular oscillations. 

Our results reveal that the PDF negative lateral neurons consist of at least three 

functionally and neurochemically distinct oscillatory units: Two pairs of sNPF+/PDFR+ neurons 

that are strongly coupled to PDF neurons, two pairs of ITP+/PDFR+ neurons that are less strongly 

coupled to PDF neurons, and three pairs of PDFR- neurons that are not directly coupled to PDF 

neurons (Fig. 4.S11). Each of these oscillatory units is unified by its neuropeptide output and 

characterized by a distinct mode of coupling to the other oscillatory units (Fig. 4.S11). We 

conclude that the clock neuron network consists of multiple independent oscillators, each 
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capable of orchestrating bouts of activity (Fig 4.S11) and that behavioral rhythms emerge from 

the interactions of many independent oscillators rather than from a unique group of master 

pacemakers. 

 

 
Figure 4.1. The PDF positive clock neurons 
coherently set free-running periods via 
PDF signaling over a limited temporal 
range. 
(A to C) Scatter plots of the predominant 
free-running periods of rhythmic flies 
overexpressing different forms 
of DBT or SGGin both PDF-positive and -
negative clock neurons (driven byClk-GAL4) 
(A), or in only the PDF-positive neurons 
(driven byPdf-GAL4) of WT flies (B) or Pdfr–

 mutants (C). Circles indicate the highest-
amplitude free-running period for individual 
rhythmic flies; lines represent mean ± SEM 
(error bars). DBTS, DBTShort; SGGCA, 
constitutively active SGG; SGGWT, WT SGG; 
SGGHypo, hypomorphic SGG; SGGKD, kinase-
dead SGG; DBTWT, WT DBT; DBTL, DBTLong. 
Kruskal-Wallis one-way analysis of variance 
(ANOVA) reveals a significant difference 
among groups in (A) and (B) (P < 0.0001 for 
both), but no significant difference among 
groups in (C) (P = 0.4829). h, hours. 
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Figure 4.2 The PDF negative clock neurons exert independent control over free-running 
activity rhythms. 
(A and B) Scatter plots of the predominant free-running periods of rhythmic flies 
overexpressing DBTS, SGGHypo, or DBTL only in the PDF-negative neurons (driven by Clk-
GAL4/Pdf-GAL80) of WT flies (A) or Pdfr– mutants (B). Kruskal-Wallis one-way ANOVA 
reveals a significant difference among groups in both (A) and (B) (P < 0.0001 for both). (C) 
Scatter plots of the predominant free-running periods of rhythmic flies with different 
compositions of PDF-positive and -negative clock neurons. Specific genotypes 
are: per+, Pdf>DBTS for “Fast PDF+, normal (Norm) PDF–”; per01, Pdf>PER for 
“per+ PDF+, per01 PDF–”; and per01, Pdf>PER+DBTS for “Fast PDF+, per01 PDF–.” (D to F) 
Representative actograms (upper panels) and χ-square periodograms (lower panels) of individual 
flies with different compositions of PDF-positive and -negative neurons under constant darkness. 
Genotypes are as follows: (D) per+, Pdf>DBTS; (E) per01, Pdf>PER; and (F) 
per01, Pdf>PER+DBTS. 

 



 103 

 
 
 
Figure 4.3. Pigment-dispersing factor modulates only half of the PDF-negative dorsal 
lateral neurons. 
(A) A representative micrograph showing the dorsal lateral neurons (LNds) from a Clk>Epac1-
camps fly brain. Four of the six LNds (labeled 1 to 4) were present in the optical section. Scale 
bar, 5 μm. (B to F) cAMP dynamics of LNds in response to bath-applied 10−5 M PDF peptide 
(green triangles). Responses of 45 LNds imaged from 13Clk>Epac1-camps brains shown in (B) 
fell into two classes: responsive LNds [22 out of 45 (22/45)] that displayed large cAMP increases 
(>10% change in CFP/YFP ratio) (C) and nonresponsive LNds (23/45) (<10% changes) (D). The 
colored traces in (B) to (D) are from the LNds shown in (A) circled with the same color as their 
plots. All PDFR+ LNds (18 neurons imaged from seven Mai179>Epac1-campsbrains) displayed 
cAMP increases in response to PDF application (E). None of the PDFR– LNds (11 neurons 
imaged from six Clk/cry-GAL80>Epac1-camps brains) displayed cAMP increases (F). CFP, 
cyan fluorescent protein; YFP, yellow fluorescent protein. (G) Summary of maximum cAMP 
responses of LNds to 10−5 M PDF. NR, nonresponsive LNds from (D); R, responsive LNds from 
(C); PDFR+ and PDFR– are from (E) and (F), respectively. The letters “a” and “b” denote 
significantly different groups (P< 0.0001) by Kruskal-Wallis one-way ANOVA and Dunn’s 
multiple comparisons test. (H) cAMP responses of LNds to bath-applied 10−5 M forskolin, a 
direct activator of adenylyl cyclases. “All” represents forskolin responses of LNds recorded 
from Clk>Epac1-camps brains, in which the cAMP sensor was expressed in both PDFR+ and 
PDFR– LNds. The numbers of neurons and brains examined were: All (16 neurons, five brains), 
PDFR+ (12 neurons, five brains), and PDFR– (10 neurons, six brains). NS, not significant by 
Kruskal-Wallis one-way ANOVA and Dunn’s multiple comparisons test. For all histograms, 
data are presented as mean ± SEM (error bars). 
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Figure 4.4. Physiological connectivity does not ensure molecular clock coupling in the 
lateral neuron network. 
(A to C) Immunostaining of PER protein in PDF-positive and -negative lateral neurons across 
different time points on day 4 of constant darkness (DD4). In UAS-DBTL control fly brains, PER 
accumulated in the PDF-positive (s-LNvs) and -negative (LNds and fifth s-LNv) neurons with the 
same phase (A). In Pdf>DBTL flies in which the PDF neurons were slowed down, only two LNds 
(marked by yellow arrows) were coupled with the s-LNvs, displaying a shifted phase of PER 
cycling relative to the other LNds (B). In Pdfr–,Pdf>DBTL flies, all PDF-negative neurons (LNds 
and fifth s-LNv) had similar phases of PER cycling, and none were coupled to the uniformly 
delayed s-LNvs (C). Scale bars, 5 μm. (D to F) Quantification of PER immunostaining intensity 
within lateral neurons of UAS-DBTL flies (D),Pdf>DBTL flies (E), and Pdfr–, Pdf>DBTL flies (F). 
The LNds in (E) were divided into two groups based on their phase differences and quantified 
separately: The two LNds coupled to the s-LNvs were quantified as “LNd (shifted)” and the 
others as “LNd (unshifted).” (G to J) The two shifted LNds express neuropeptide sNPF. LNds 
were coimmunostained for PER and sNPF at CT0 and CT12 on DD4 (CT0 and CT12 correspond 
to the light-on and light-off times had the 12 hour:12 hour light:dark cycles continued). In UAS-
DBTL control flies, the two sNPF+ LNds and four sNPF– LNds had similar subcellular PER 
distribution (G) and expression levels (I) at each of these time points. InPdf>DBTL flies, the 
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sNPF+ LNds differ in their PER distribution [(H), yellow arrows] and intensity (J) from the 
sNPF– LNds. Scale bars, 5 μm. Asterisks in (G) and (H) indicate sNPF+ cells that are not clock 
neurons (lack of PER expression). The letters “a” and “b” in (I) and (J) denote significantly 
different groups (P < 0.0001 for both) by Kruskal-Wallis one-way ANOVA and Dunn’s multiple 
comparisons test. Sample sizes are reported in Table 4.S6 for (D) to (F) and in Table 4.S7 for (I) 
and (J). Data are presented as mean ± SEM (error bars). 

 

 

4.3 Materials and Methods 

4.3.1 Fly strains 

Flies were reared on cornmeal-yeast-sucrose media at 25 °C under a 12hr: 12hr light: 

dark cycle or under the diurnal conditions of the lab. All fly strains used in this study have been 

described previously. These were: Clk(-856[8/2])-GAL4 (20), Mai179-GAL4 (6, 21), Pdf-GAL4 

(22), Pdf-GAL80 and cry-GAL80 (7), UAS-Epac1-camps(50A) (15), UAS-PER16 (23), per01 (also 

known as per0) (24), the Pdfr- mutant Pdfr5304 (25), the UAS-Shaggy (SGG) lines, UAS-

SGG10(wild-type), UAS-SGGS9A(constitutively active), UAS-SGGY214F(hypomorphic), and UAS-

SGGKK83-84MI(kinase-dead) (9) (26), and the UAS-Doubletime (DBT) lines, UAS-DBTWT(21M1C), 

UAS-DBTS(10F5A), and UAS-DBTL(22F1C) (10). 

4.3.2 Live-imaging 

The measurement of relative cAMP levels within single neuron soma during bath 

application of PDF peptide or forskolin was done as previously described (15) with minor 

modifications. Living brains expressing the cAMP sensor Epac1-camps in neurons of interest 

were dissected under standard saline consisting of 128 mM NaCl, 2 mM KCl, 4 mM MgCl2, 1.8 

mM CaCl2, 36 mM sucrose, and 5 mM HEPES (pH 7.1) (27). Dissected brains were placed in a 

35 × 10 mm Falcon Petri Dish containing 1.8 mL standard saline and allowed to settle and 
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adhere to the bottom of the dish for 5 to 10 minutes before imaging. After 30s of baseline 

scanning, 0.2 mL of 10-4 M PDF peptide or forskolin was gently added into the dish with a 

micropipette to yield a final peptide or drug concentration of 10-5 M. cAMP responses of neurons 

of interest were monitored for a total of 5 min with an Olympus Fluoview 1000 confocal 

microscope equipped with the Fluoview software (Olympus, Center Valley, PA, USA). cAMP 

imaging and data analysis were done as previously described (28). Drosophila PDF peptide was 

synthesized by PolyPeptide Laboratories (San Diego, CA, USA), and forskolin was purchased 

from Sigma (St. Louis, MO, USA). 

4.3.3 Analysis of activity rhythms 

Adult locomotor activity monitoring and data processing were done as previously 

described (29, 30) with only the minor modifications described below. Adult male flies were 

placed individually in glass capillary tubes and these were loaded onto the TriKinetics DAM2 

Drosophila Activity Monitors (Waltham, MA, USA) for locomotor activity recording. Flies were 

entrained to 12 hr: 12 hr light: dark cycles at 25 °C for at least 5 days, and then released into 

constant darkness for at least 7 days. Data analysis and the generation of actograms were done 

with the ClockLab software from Actimetrics (Wilmette, IL, USA). Rhythmicity and free-

running period of individual flies were determined by χ-square periodogram analysis with a 

confidence level of 0.01 (31). The range of free-running periods analyzed for most of the 

genotypes was from 14 hr to 34 hr, with 0.5 hr intervals, the only exception being for Pdfr-;Clk-

GAL4,Pdf-GAL80/+;UAS-DBTS/+ and per01,w;Pdf-GAL4/+;UAS-PER/UAS-DBTS flies whose 

free-running periods were analyzed from 10 hr to 30 hr because of the very short periods 

displayed by these flies. For individuals with more than one significant periodicity, the period 

with the highest amplitude over significance was used for the determination of average periods. 
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Flies often displayed secondary peaks at 0.5× and 1.5× the predominant periodicity in the 

periodogram due to the bimodal organization of their activity rhythms, we therefore did not 

include these periodicities in our analysis. The “Power” and “Significance” values generated 

from χ-square analysis were used to calculate “Rhythmic Power” as a measure of the strength of 

each rhythm. “Power” is the measured periodogram value for an individual fly at the peak 

periodicity (i.e. the amplitude of the peak in the periodogram), and “Significance” is the 

minimum periodogram value considered rhythmic at the indicated period based on the 

confidence level (i.e. the amplitude of the significance line at the peak periodicity). “Rhythmic 

Power” was calculated as Rhythmic Power = Power – Significance, and therefore represents the 

amplitude of the peak over significance. The rhythmic power of arrhythmic flies was considered 

“0” and rhythmic power values of both rhythmic and arrhythmic flies were used in average 

rhythmic power calculations. 

4.3.4 Immunocytochemistry 

The immunocytochemistry methods used here have been previously described (32). We 

dissected brains under ice-cold Ca2+-free Drosophila Ringer’s solution (182 mM KCl, 46 mM 

NaCl, 10 mM Tris, pH 7.2) and fixed them in 4% paraformaldehyde in phosphate buffered saline 

(PBS) for 1 hr at room temperature. We rinsed brains with PBS-TX (PBS with 0.3% Triton X-

100), and blocked them with 3% normal goat serum in PBS-TX for 1 hr at room temperature. 

After a brief rinse with PBS-TX, we incubated brains with primary antibodies diluted in PBS-TX 

at 4 °C for two nights. Rat anti-PER was provided by Dr. Michael Rosbash (Brandeis University, 

Waltham, MA, USA ) and was used at a dilution of 1:500 (33). Rabbit anti-sNPF precursor was 

provided by Dr. Dick Nässel (Stockholm University, Stockholm, Sweden) and was diluted to 

1:1000 (34). Mouse monoclonal anti-PDF was obtained from the Developmental Studies 
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Hybridoma Bank at the University of Iowa (Iowa City, Iowa, USA), and was diluted to 1:200. 

After five 15-min washes with PBS-TX, we incubated brains in 1:1000 dilutions of Alexa Fluor 

conjugated secondary antibodies (Invitrogen, Grand Island, NY, USA) at 4 °C overnight. After 

five washes with PBS-TX (15 min each), followed by two exchanges of PBS, we mounted brains 

on poly-L-lysine-coated cover slips, dehydrated the mounted brains in a graded glycerol series 

(30%, 50%, and 70% glycerol in PBS for 5 minutes each) and mounted the cover slips on 

microscope slides with Vectashield HardSet Mounting Medium (Vector Laboratories, 

Burlingame, CA, USA). We imaged brains on an Olympus Fluoview 1000 confocal microscope 

with a 60×/1.10 NA objective (Olympus, Center Valley, PA, USA). We maintained all imaging 

settings between genotypes for each class of neurons for each experiment, and adjusted settings 

for each neuronal class to optimize image quality. PER immunostaining intensity of clock 

neurons was quantified using the ImageJ software (National Institutes of Health, USA) as 

previously described (35). For the comparison of PER subcellular distribution and intensity in 

sNPF+ and sNPF- LNds, the sNPF+ LNds were identified and imaged based on their anatomical 

positions and co-expression of both PER and sNPF. Only brains in which the sNPF+ LNds could 

be observed were used for these experiments. Specific sample sizes are reported in figure 

legends and in Table 4.S6 and 4.S7. 
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4.4 Supplementary Results 

 
 
 
 

 
 
Figure 4.S1. The hierarchical dual-oscillator model of the Drosophila’s circadian clock 
neuron network. 
(A) A somatic map of the clock neuron network of Drosophila. A single hemisphere (left) is 
shown and the various classes of clock neurons are labeled. The lateral neurons (LN) consist of 
large ventral lateral neurons (l-LNvs), small ventral lateral neurons (s-LNvs), a 5th small ventral 
lateral neuron (5th s-LNv), and dorsal lateral neurons (LNds). The dorsal neurons (DN) contain 
DN1as (anterior), DN1ps (posterior), DN2s, and DN3s. LPN: lateral posterior neurons. The l-
LNvs and s-LNvs express pigment-dispersing factor (PDF); all other clock neurons are PDF 
negative. (B) The dual-oscillator model of the lateral clock neuron network and its control of 
activity rhythms. The LNds and 5th s-LNv (evening (E) oscillator) control evening activity. The s-
LNvs (morning (M) oscillator) control morning activity and reset the evening oscillator through 
daily advances (+) or delays (-), thereby maintaining clock network synchrony under constant 
conditions. The neuropeptides expressed by the lateral clock neurons are shown. PDF, pigment-
dispersing factor; sNPF, short neuropeptide F; NPF, neuropeptide F; ITP, ion transport peptide. 
Only subsets of the evening oscillator neurons express PDF receptor (PDFR). 
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Figure 4.S2. The free-running periods of activity rhythms can be genetically manipulated 
over a wide temporal range. 
(A to G) Representative actograms (upper panels) and periodograms (lower panels) of individual 
flies overexpressing different forms of DBT or SGG in all clock neurons under constant darkness 
(DD). Genotypes are indicated above the actograms. DBTS, DBTShort; SGGCA, constitutively 
active SGG; SGGWT, wild-type SGG; SGGHypo, hypomorphic SGG; SGGKD, kinase-dead SGG; 
DBTWT, wild-type DBT; DBTL, DBTLong. Asterisks indicate a secondary peak at 1.5× the 
predominant peak due to the bimodal organization of the fly’s activity rhythms, which is not 
considered as a real significant periodicity. Note that when overexpressed in all clock neurons, 
all the DBT and SGG transgenes support coherent and high-amplitude free-running rhythms. 
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Figure 4.S3. The overexpression of DBTS and DBTL coherently accelerates and decelerates 
the molecular clocks of the PDF positive s-LNvs. 
(A) Representative micrographs of PERIOD (PER) expression in the s-LNvs of control UAS-
DBTS flies (top row) and experimental Pdf>DBTS flies (bottom row) on day 3 of constant 
darkness (DD3).  The overexpression of DBTS resulted in a coherent change of phase consistent 
with a fast-running molecular clock. Scale bars, 5 µm. (B) Quantification of PER intensity from 
the genotypes shown in (A). The numbers of neurons and brains examined for UAS-DBTS were 
CT0 (67, 10), CT6 (70, 11), CT12 (65, 11), CT18 (67, 11), and for Pdf>DBTS CT0 (70, 10), CT6 
(75, 12), CT12 (65, 10), CT18 (47, 9). (C) Representative micrographs of PER expression in the 
s-LNvs of control UAS-DBTL flies (top row) and experimental Pdf>DBTL flies (bottom row) on 
DD4. The overexpression of DBTL resulted in a coherent change of phase consistent with a slow-
running molecular clock. Scale bars, 5 µm. (D) Quantification of PER intensity from the 
genotypes shown in (C). The numbers of neurons and brains examined for UAS-DBTL are CT0 
(94, 14), CT6 (80, 11), CT12 (80, 11), CT18 (88, 12), and for Pdf>DBTL CT0 (89, 13), CT6 (79, 
13), CT12 (80, 12), CT18 (62, 11). Data of (C) and (D) are the same as those in Figure 4.4. 
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Figure 4.S4. The PDF positive neurons coherently set free-running periods only within a 
narrow temporal range. 
The PDF positive neurons coherently set free-running periods only within a narrow temporal 
range. (A to G) Representative actograms (upper panels) and periodograms (lower panels) of 
individual flies overexpressing different forms of DBT or SGG only in the PDF positive neurons 
under DD. Genotypes are indicated above the actograms. When the clock speed discrepancies 
between PDF positive and negative neurons are small, flies display coherent activity rhythms 
with single periodicities determined by the speed of the PDF positive neurons (D to F). Large 
clock speed discrepancies between PDF positive and negative neurons weaken rhythms and often 
result in internal desynchronization wherein individual flies display multiple significant 
periodicities in their activity rhythms reflective of both the PDF positive and negative oscillator 
speed (A to C, and G). 
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Figure 4.S5. Comparison of rhythmicity, internal desynchronization and rhythmic power 
between flies overexpressing different forms of DBT or SGG in both PDF positive and 
negative clock neurons and in PDF positive neurons only. 
(A) Pairwise comparison of rhythmicity and internal desynchronization: The percentage of 
arrhythmic flies and the percentages of rhythmic flies displaying either single or multiple 
significant periodicities are shown, with the numbers of flies in each category displayed on each 
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bar of the histogram. * P < 0.05; *** P < 0.001; NS, not significant, by the Freeman-Halton 
extension of the Fisher's exact test. (B) The percentages within the rhythmic subset of flies with 
modified PDF positive neuron speed displaying a single significant free-running period (FRP) 
determined by the PDF positive neuron speed (FRP(PDF+)), a single FRP determined by the 
PDF negative neuron speed (FRP(PDF-)), and multiple FRPs reflective of both PDF positive and 
negative neuron speeds (FRP(PDF+ and PDF-)). The numbers of flies in each category are 
displayed on each bar of the histogram. (C) Pairwise comparison of rhythmic power between 
flies overexpressing different forms of DBT or SGG in both PDF positive and negative neurons 
and in the PDF positive neurons only. Data are presented as mean ± SEM. ** P < 0.01; *** P < 
0.001; NS, not significant, by Mann–Whitney U test. 
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Figure 4.S6. PDFR signaling is required for the PDF neuron influence over free-running 
periods. 
(A to G) Representative actograms (upper panels) and periodograms (lower panels) of rhythmic 
Pdfr- flies overexpressing different forms of DBT or SGG only in PDF positive clock neurons 
under DD. Genotypes are indicated above the actograms. Without a functional PDFR, free-
running periods of rhythmic individuals are not influenced by the clock speed of the PDF 
positive neurons. Note that approximately 40% to 70% of flies containing the loss-of-function 
Pdfr mutation were rhythmic in this study. The proportion of rhythmic Pdfr mutants has varied 
significantly from study to study (e.g., (14, 25, 36)), and the proportions of rhythmic Pdfr5304 
mutant flies we report here are similar to those reported in previous studies (14, 36). 
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Figure 4.S7. Comparison of rhythmicity, internal desynchronization and rhythmic power 
between flies overexpressing different forms of DBT or SGG in both PDF positive and 
negative clock neurons and in PDF negative clock neurons only. 
(A) Pairwise comparison of rhythmicity and internal desynchronization: The percentage of 
arrhythmic flies and the percentages of rhythmic flies with either single or multiple significant 
periodicities are shown, with the numbers of flies in each category indicated within each bar of 
the histogram. ** P < 0.01; *** P < 0.001; NS, not significant, by the Freeman-Halton extension 
of the Fisher's exact test. (B) The percentages within the rhythmic subset of flies with modified 
PDF negative neuron speed displaying a single significant free-running period (FRP) determined 
by the PDF negative neuron speed (FRP(PDF-)), a single FRP determined by the PDF positive 
neuron speed (FRP(PDF+)), and multiple FRPs reflective of both PDF positive and negative 
neuron speeds (FRP(PDF+ and PDF-)). The numbers of flies in each category are indicated 
within each bar of the histogram. (C) Pairwise comparison of rhythmic power between flies 
overexpressing DBTS, SGGHypo or DBTL in both PDF positive and negative neurons and in PDF 
negative neurons only. Data are presented as mean ± SEM. ** P < 0.01; *** P < 0.001; NS, not 
significant, by Mann–Whitney U test. 
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Figure 4.S8. In the absence of PDFR signaling, the PDF negative neurons determine free-
running periods. 
(A to C) Representative actograms (upper panels) and periodograms (lower panels) of individual 
rhythmic flies overexpressing DBTS (A), SGGHypo (B), or DBTL (C) only in the PDF negative 
clock neurons under DD in a wild-type (Pdfr+) background. In this case the PDF negative 
neurons do not coherently set free-running periods. (D to F) Representative actograms (upper 
panels) and periodograms (lower panels) of rhythmic Pdfr- flies overexpressing DBTS (D), 
SGGHypo (E), or DBTL (F) only in the PDF negative neurons under DD. Without functional 
PDFR, the clock speed of PDF negative neurons determines the free-running period of activity 
rhythms. 
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Figure 4.S9. The PDF positive neurons can coherently drive activity rhythms with very 
long free-running periods in the absence of functional molecular clocks in PDF negative 
neurons. 
(A) Scatter plots of the predominant free-running periods of rhythmic flies with different 
compositions of PDF positive and negative neurons. Specific genotypes are: per+, Pdf>DBTL for 
“Slow PDF+, Norm PDF-”, per01, Pdf>PER+DBTL for “Slow PDF+, per01 PDF-”, and per01, 
Pdf>PER for “per+ PDF+, per01 PDF-”. (B to D) Representative actograms (upper panels) and χ-
square periodograms (lower panels) of individual flies with different compositions of PDF 
positive and negative neurons under constant darkness. Genotypes are as follows: (B) per+, 
Pdf>DBTL, (C) per01, Pdf>PER+DBTL, and (D) per01, Pdf>PER. (D) is a repeat of Fig. 4.2E. 
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Figure 4.S10. Comparison of PER expression rhythms in sNPF+ and sNPF- LNds from flies 
with slow-running PDF positive neurons (Pdf>DBTL) on DD4. 
PER accumulation is delayed in the sNPF+ LNds, consistent with coupling to the PDF positive 
neurons (Fig. 4.4, B and E). The numbers of neurons and brains examined for sNPF+ LNds were 
CT0 (34, 13), CT6 (38, 12), CT12 (36, 11), CT18 (42, 11), and for sNPF- LNds CT0 (69, 13), 
CT6 (76, 12), CT12 (73, 11), CT18 (82, 11). 
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Figure 4.S11. A multi-oscillator interpretation of free-running activity rhythms. 
(A) A representative actogram of a single Pdfr+,Pdf>DBTL fly. (B) A model for the complex 
rhythm displayed by the individual in (A) based on our PER immunostaining results (Fig. 4.4). In 
light: dark (LD) conditions, different oscillators are entrained by light: dark cycles and the 
animal displays a strong and coherent bimodal 24-hour rhythm. Under constant darkness (DD), 
the slow PDF positive oscillators, the morning (M) oscillators, free-run with an intrinsic free 
running period (FRP) of ~27 hours (green circles) whereas the PDF negative oscillators, the 
evening (E) oscillators, split into two components: The E1 oscillators are entrained by the M 
oscillators and run at a pace slower than their intrinsic clock speed (blue circles, drawn here with 
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a FRP of ~26 hours). The E2 oscillators are not strongly coupled to the M oscillators and free-
run at a pace that is close to their intrinsic clock speed (purple circles, depicted with a FRP of 
~23.5 hours). (C) A representative actogram of a rhythmic Pdfr-, Pdf>DBTL fly. (D) A model for 
the activity rhythm of the individual in (C). In the absence of PDFR signaling, the E1 and E2 
oscillators free-run with their intrinsic clock speeds and remain synchronized in DD (blue and 
purple circles). The M oscillators free-run with their intrinsic FRP of ~27 hours in DD, but have 
no apparent influence on behavioral rhythms in the absence of PDFR signaling (dashed green 
circle above the actogram).  (E) A summary model for the lateral clock neuron network and its 
control of activity rhythms. The PDF negative evening (E) oscillator neurons are divided into 
three functional units. The E3 oscillators (three PDFR- LNds) are unresponsive to M oscillator 
outputs, while the E1 (two sNPF+/PDFR+ LNds) and E2 (ITP+/PDFR+ LNd and 5th s-LNv) 
oscillators both respond to PDF with cAMP increases (magenta arrows). The E1 oscillators are 
strongly coupled to the M oscillators by PDF signaling (solid magenta arrow), while the E2 
oscillators are more strongly coupled with the E3 oscillators (dashed gray arrow). Arrows 
beneath the oscillators represent output pathways for locomotor activity control. 
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Table 4.S1. Locomotor activity rhythms of control flies, and flies overexpressing different 
forms of DBT or SGG in all the clock neurons in constant darkness.   
 

Genotype 
Number 

of flies 
% Rhythmic 

% Multi-

periodicity* 

Period ± 

SEM (h) 

Rhythmic 

Power ± SEM 

w;Clk-GAL4/+;UAS-DBT(S)/+ 30 100 3.3 18.5 ± 0.3 57.7 ± 7.9 

w;Clk-GAL4/+;UAS-SGG(CA)/+ 32 81.2 0 20.0 ± 0.3 30.6 ± 5.7 

w;Clk-GAL4/UAS-SGG(WT); 19 94.7 5.6 21.3 ± 0.6 40.9 ± 7.4 

w;Clk-GAL4/+;UAS-SGG(Hypo)/+ 32 100 0 22.1 ± 0.1 71.0 ± 5.8 

w;Clk-GAL4/+;UAS-SGG(KD)/+ 29 89.7 0 23.7 ± 0.1 48.5 ± 6.7 

w;Clk-GAL4/+;UAS-DBT(WT)/+ 21 100 0 24.7 ± 0.1 97.2 ± 7.1 

w;Clk-GAL4/+;UAS-DBT(L)/+ 32 100 0 26.8 ± 0.1 77.3 ± 7.6 

w;Clk-GAL4/+; 47 95.7 6.7 23.8 ± 0.1 45.0 ± 4.9 

w;;UAS-DBT(S)/+ 16 93.8 0 23.5 ± 0 80.3 ± 11.1 

w;;UAS-SGG(CA)/+ 16 93.8 13.3 23.8 ± 0.1 50.9 ± 7.4 

w;UAS-SGG(WT)/+; 16 100 0 23.8 ± 0.1 61.3 ± 7.6 

w;;UAS-SGG(Hypo)/+ 15 86.7 0 23.5 ± 0.1 39.1 ± 7.9 

w;;UAS-SGG(KD)/+ 15 100 13.3 23.4 ± 0.3 32.4 ± 5.7 

w;;UAS-DBT(WT)/+ 13 100 7.7 23.7 ± 0.1 89.7 ± 11.9 

w;;UAS-DBT(L)/+ 16 100 6.3 23.7 ± 0.1 102.2 ± 7.4 

 
* % Multi-periodicity indicates the percentage of rhythmic individuals that display more than 
one significant periodicity. 
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Table 4.S2. Locomotor activity rhythms of control flies, and flies overexpressing different 
forms of DBT or SGG only in the PDF positive clock neurons in constant darkness.   
 

Genotype 
Number 

of flies 
% Rhythmic 

% Multi-

periodicity* 

Period ± 

SEM (h) 

Rhythmic 

Power ± SEM 

w;Pdf-GAL4/+;UAS-DBT(S)/+ 59 59.3 20.0 21.0 ± 0.7 9.0 ± 1.6 

w;Pdf-GAL4/+;UAS-SGG(CA)/+ 49 63.3 35.5 21.7 ± 0.6 11.1 ± 2.2 

w;Pdf-GAL4/UAS-SGG(WT); 39 48.7 21.1 21.6 ± 0.5 5.3 ± 1.3 

w;Pdf-GAL4/+;UAS-SGG(Hypo)/+ 36 83.3 0 23.1 ± 0.2 46.6 ± 7.8 

w;Pdf-GAL4/+;UAS-SGG(KD)/+ 39 84.6 0 24.4 ± 0.1 48.1 ± 6.6 

w;Pdf-GAL4/+;UAS-DBT(WT)/+ 32 90.6 3.4 25.0 ± 0.1 57.5 ± 7.3 

w;Pdf-GAL4/+;UAS-DBT(L)/+ 75 89.3 25.4 26.7 ± 0.2 25.4 ± 2.4 

w;Pdf-GAL4/+; 16 100 6.3 24.1 ± 0.1 76.2 ± 8.0 

 
* % Multi-periodicity indicates the percentage of rhythmic individuals that display more than 
one significant periodicity. 
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Table 4.S3. Locomotor activity rhythms of control flies, and Pdfr- mutant flies 
overexpressing different forms of DBT or SGG only in the PDF positive neurons in 
constant darkness.   
 

Genotype 
Number 

of flies 
% Rhythmic 

% Multi-

periodicity* 

Period ± 

SEM (h) 

Rhythmic 

Power ± SEM 

Pdfr-;Pdf-GAL4/+;UAS-DBT(S)/+ 61 60.7 10.8 23.3 ± 0.5 12.8 ± 2.3 

Pdfr-;Pdf-GAL4/+;UAS-SGG(CA)/+ 33 72.7 8.3 22.4 ± 0.5 14.1 ± 3.4 

Pdfr-;Pdf-GAL4/UAS-SGG(WT); 36 58.3 9.5 23.1 ± 0.5 7.8 ± 2.5 

Pdfr-;Pdf-GAL4/+;UAS-SGG(Hypo)/+ 46 60.9 14.3 22.6 ± 0.1 8.5 ± 1.7 

Pdfr-;Pdf-GAL4/+;UAS-SGG(KD)/+ 42 52.4 9.1 23.5 ± 0.4 17.7 ± 4.1 

Pdfr-;Pdf-GAL4/+;UAS-DBT(WT)/+ 46 56.5 11.5 22.9 ± 0.6 7.7 ± 1.7 

Pdfr-;Pdf-GAL4/+;UAS-DBT(L)/+ 75 70.7 9.4 22.6 ± 0.2 14.3 ± 2.2 

Pdfr-;Pdf-GAL4/+; 32 43.8 0 22.8 ± 0.8 5.5 ± 1.6 

Pdfr-;; 46 43.5 20.0 23.1 ± 0.4 7.1 ± 1.8 

 
* % Multi-periodicity indicates the percentage of rhythmic individuals that display more than 
one significant periodicity. 
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Table 4.S4. Locomotor activity rhythms of control flies, and flies overexpressing different 
forms of DBT or SGG only in the PDF negative clock neurons in constant darkness.   
 

Genotype 
Number 

of flies 

% 

Rhythmic 

% Multi-

periodicity* 

Period ± 

SEM (h) 

Rhythmic 

Power ± SEM 

w;Clk-GAL4,Pdf-GAL80/+;UAS-DBT(S)/+ 41 80.5 12.1 23.8 ± 0.4 30.9 ± 5.0 
w;Clk-GAL4,Pdf-GAL80/+;UAS-SGG(Hypo)/+ 46 95.7 2.3 23.6 ± 0.1 70.0 ± 6.9 
w;Clk-GAL4,Pdf-GAL80/+;UAS-DBT(L)/+ 58 67.2 12.8 24.5 ± 0.2 16.0 ± 2.7 
w;Clk-GAL4,Pdf-GAL80/+; 31 87.1 7.4 23.6 ± 0.1 47.0 ± 7.3 
Pdfr-;Clk-GAL4,Pdf-GAL80/+;UAS-DBT(S)/+ 65 49.2 12.5 19.1 ± 0.5 10.7 ± 2.7 
Pdfr-;Clk-GAL4,Pdf-GAL80/+;UAS-SGG(Hypo)/+ 59 42.4 12.0 21.1 ±0.4 9.0 ± 2.2 
Pdfr-;Clk-GAL4,Pdf-GAL80/+;UAS-DBT(L)/+ 63 55.6 20.0 25.5 ± 0.6 8.5 ± 2.1 
Pdfr-;Clk-GAL4,Pdf-GAL80/+; 32 21.9 28.6 23.6 ± 1.5 2.7 ± 1.2 

 
* % Multi-periodicity indicates the percentage of rhythmic individuals that display more than 
one significant periodicity. 
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Table 4.S5. Locomotor activity rhythms of control flies, and flies with period-rescued PDF 
positive neurons with or without DBT co-overexpression in constant darkness.   
 

Genotype 
Number 

of flies 

% 

Rhythmic 

% Multi-

periodicity* 

Period ± 

SEM (h) 

Rhythmic 

Power ± SEM 

per(01),w;;UAS-PER/+ 44 22.7 0 21.4 ± 2.0 1.5 ± 0.5 

per(01),w;Pdf-GAL4/+;UAS-PER/+ 122 77.9 9.5 26.1 ± 0.2 24.8 ± 2.6 

per(01),w;Pdf-GAL4/+;UAS-PER/UAS-DBT(S) 57 77.2 6.8 17.8 ± 0.4 31.3 ± 5.2 

per(01),w;Pdf-GAL4/+;UAS-PER/UAS-DBT(L) 44 88.6 15.4 26.5 ± 0.5 14.0 ± 1.9 

 
* % Multi-periodicity indicates the percentage of rhythmic individuals that display more than 
one significant periodicity. 
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Table 4.S6. The numbers of neurons and brains examined for PER protein rhythms in Fig. 
4.4, D to F.   
 

Genotype Neuronal class 
Time-points on DD4* 

CT0 CT6 CT12 CT18 

Pdfr+,UAS-DBT(L) 

LNd 152, 14 121, 11 79, 11 141, 12 

5th s-LNv 25, 13 20, 11 10, 8 23, 12 

s-LNv 94, 14 80, 11 80, 11 88, 12 

Pdfr+,Pdf>DBT(L) 

LNd (shifted) 44, 13 45, 13 46, 12 26, 11 

LNd (unshifted) 85, 13 86, 13 85, 12 59, 11 

5th s-LNv 24, 13 24, 13 12, 9 20, 11 

s-LNv 89, 13 79, 13 80, 12 62, 11 

Pdfr-,Pdf>DBT(L) 

LNd 105, 10 86, 10 87, 8 85, 8 

5th s-LNv 18, 10 8, 6 7, 6 12, 8 

s-LNv 66, 10 63, 10 52, 8 46, 8 

 
* The two numbers within each cell of the table indicate the number of neurons and the number 
of brains examined respectively. 
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Table 4.S7. The numbers of neurons and brains examined for PER immunostaining 
intensity in Fig. 4.4, I and J.  
 

Genotype Neuronal class 
Time-points on DD4* 

CT0 CT12 

UAS-DBT(L) 
sNPF+ LNds 22, 9 14, 5 

sNPF- LNds 43, 9 28, 5 

Pdf>DBT(L) 
sNPF+ LNds 12, 6 16, 5 

sNPF- LNds 22, 6 29, 5 

 
* The two numbers within each cell of the table indicate the number of neurons and the number 
of brains examined respectively. 
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CHAPTER 5.  The Drosophila circadian clock neuron network features diverse coupling 

modes and requires network-wide coherence for robust free-running rhythms4 

5.1 Abstract 

In animals, neurons containing molecular clocks communicate through interneuronal 

connections to form a coherent and robust timekeeping network that orchestrates daily rhythms 

of activity and sleep. Here, we investigate how the molecular clocks of neurons are coupled and 

how coordination between clock neuron groups contributes to daily activity rhythms under both 

light/dark cycles (LD) and constant conditions in the brain of the fly Drosophila melanogaster. 

Upon altering the molecular clock speed specifically in the ventral lateral neurons (LNvs), we 

find that the molecular rhythms of the posterior dorsal neurons 1 (DN1ps) are tightly phase-

coupled to those of the LNvs, while the molecular oscillations of two other classes of clock 

neurons, the dorsal lateral neurons (LNds) and the fifth small LNv (5th s-LNv), are relatively 

independent of the LNvs. Despite the fact that the LNvs, LNds, and 5th s-LNv collectively 

determine the timing of daily activity bouts under LD, they are not sufficient to coherently 

produce activity rhythms under constant conditions when their clocks run at different speeds than 

the remaining components of the clock network. We find that coordinated free-running rhythms 

require clock synchrony not only in the LN classes, but also in the DN1ps. These results uncover 

new and unexpected patterns of coupling in the clock neuron network and reveal that robust free-

                                                 
4 A manuscript comprising this chapter is in preparation for publication, with authors listed as Zepeng Yao, Amelia 
J. Bennett, Jenna L. Clem, and Orie T. Shafer. 
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running behavioral rhythms require a coherence of molecular oscillations in an unexpectedly 

large proportion of the clock neuron network. 

 

5.2 Introduction 

Most organisms have a circadian clock that orchestrates daily rhythms of physiology and 

behavior. In animals, the master clock consists of a network of so-called “clock neurons”, each 

containing a molecular clock that generates molecular oscillations with periods of approximately 

24 hours (1). Through interneuronal communication, clock neurons coordinate their molecular 

clocks to form a coherent clock network that is capable of producing robust circadian 

timekeeping in various outputs (2) in the absence of environmental time cues. How this 

coordination occurs is not well understood. 

Drosophila melanogaster has proved a valuable model system in which to investigate 

clock neuron communication and coordination. The Drosophila clock network consists of 

approximately 150 clock neurons, several orders of magnitude fewer than those of mammals, yet 

it shares both anatomical and functional similarities with the mammalian clock network (3, 4). 

Studies of the Drosophila clock network suggest that it is organized into multiple oscillatory 

units that are differentially coupled to one another (5, 6). Three divisions of this clock neuron 

network have been studied most extensively: (i) the ventral lateral neurons (LNvs), consisting of 

four pairs of large LNvs (l-LNvs) and four pairs of small LNvs (s-LNvs), both of which express 

the neuropeptide pigment-dispersing factor (PDF); (ii) six pairs of dorsal lateral neurons (LNds) 

and one pair of PDF-negative s-LNvs (also called 5th s-LNvs); (iii) the posterior dorsal neurons 1 

(DN1ps), many of which express a deep-brain blue light photoreceptor Cryptochrome (CRY) (7).  
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These three groups of neurons are thought to cooperate to produce two daily peaks of 

activity near dawn and dusk, the so-called morning and evening peaks of activity. The LNvs are 

important for the morning peak of activity in anticipation of lights-on, and are therefore 

considered as a group to be the “Morning Oscillator” (8, 9). The LNvs are also critical 

pacemakers that help maintain free-running rhythms in constant environments (10) and the PDF 

they express is important for inter-clock-neuron coordination (11, 12). The LNds and 5th s-LNv 

are important for the evening peak of activity in anticipation of lights-off, and as a group are 

considered the “Evening Oscillator” (8). The CRY-expressing (CRY+) DN1ps can promote 

morning or evening activity depending on the specific experimental conditions, and they likely 

lie downstream of the LNvs and mediate circadian outputs (13-16). Much of the evidence for 

assignment of these timekeeping functions is based on genetic rescue experiments that restored 

molecular clock function in subsets of clock neurons in an otherwise clock-less mutant 

background (e.g., (8, 13)).  

Genetically altering molecular clock speed in clock neurons of interest offers another 

powerful approach to assess the influence of a specific group of neurons in the context of an 

otherwise functional clock network. This approach has revealed important features of clock 

network organization and coordination (5, 17, 18). In addition, the introduction of clock speed 

discrepancies between neuronal subsets offers a unique chance to experimentally study if and 

how molecular clocks are coupled between different classes of clock neurons. Here, by 

genetically altering the molecular clock speed in the LNvs, LNds and 5th s-LNv, and CRY+ 

DN1ps, alone or in combination with other neuronal groups, we investigate the coupling of their 

molecular clocks, and re-examine their contributions to daily activity peaks and free-running 

activity rhythms. Our results reveal that clock neuron groups display diverse modes of molecular 
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clock coupling and that coordinated free-running activity rhythms require coherence of 

molecular oscillations across an unexpectedly large proportion of the clock network. 

 

5.3 Results 

5.3.1 Neuronal clock speed determines the phases of morning and evening peaks in 

light:dark cycles. 

In Drosophila, the molecular clock can be cell-autonomously sped-up and slowed-down 

through the overexpression of two mutant forms of the Doubletime (DBT) kinase, DBTShort 

(DBTS) and DBTLong (DBTL), respectively (19). DBTS overexpression shortens the period of the 

molecular clock by 5 to 6 hours, while DBTL overexpression lengthens the period of the 

molecular clock by about 3 hours (19). We overexpressed DBTS and DBTL in all or most clock 

containing cells using the Clk(856)-GAL4 driver (Table 5.S1 and Fig. 5.1) to assess the extent to 

which these kinase manipulations are able to affect the timing of morning and evening peaks of 

activity under a 12hr:12hr light:dark cycle (LD). DBTS overexpression driven by Clk(856)-GAL4 

advanced the morning peak of activity under LD by about 1.5 hours, and advanced the evening 

peak of activity by about 2 hours (Fig. 5.1A-B). The overexpression of DBTL with Clk(856)-

GAL4 delayed the evening peak by about an hour, but had no significant effect on the phase of 

the morning peak (Fig. 5.1A-B). Molecular clocks are expressed not only in the central nervous 

system, but also in peripheral tissues (reviewed by (20) ). When we overexpressed DBTS and 

DBTL exclusively in the nervous system using the pan-neuronal driver neuronal synaptobrevin-

GAL4 (nSyb-GAL4) (Table 5.S1), we observed similar changes in the timing of morning and 

evening peaks (Fig. 5.1C-D), consistent with the notion that neuronal clocks set the phase of 

daily activity peaks under LD. We note here that the overexpression of DBTL failed to 
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measurably delay the morning peak of activity, even when uniformly and strongly expressed 

throughout the clock neuron network, indicating that a three-hour increase in the period of the 

molecular clock is not sufficient to delay the morning peak under these LD conditions. 

5.3.2 The LNvs can delay but not advance the phase of evening activity under LD. 

We next overexpressed DBTS and DBTL specifically in the LNvs (using Pdf-GAL4), and 

in the LNds and 5th s-LNv (using a combination of Mai179-GAL4 and Pdf-GAL80 elements; see 

Table 5.S1 for details) to evaluate their influence on the phase of activity peaks under LD. 

Consistent with the previous designation of the LNds and 5th s-LNv as the evening oscillator (8), 

speeding-up and slowing-down these neurons significantly advanced and delayed the phase of 

the evening activity peak, respectively, but had no significant effects on the phase of the morning 

activity peak (Fig. 5.2A-B). Speeding-up the LNvs advanced the morning peak without affecting 

the phase of the evening peak (Fig. 5.2C-D), consistent with the previous designation of these 

neurons as the morning oscillator (8). However, quite unexpectedly, when the LNv clocks were 

slowed-down, the evening activity peak was significantly delayed while the phase of the morning 

peak was unaffected (Fig. 5.2C-D). This result is not predicted by the morning/evening dual-

oscillator model of the fly’s clock neuron network (8, 9, 17).  

5.3.3  A subset of the LNd clocks displays a delay-specific coupling to the LNv clocks. 

We previously found that the LNvs can delay the clocks in a subset of the LNds through 

PDF signaling when LNv clocks were slowed-down (5). This provides an explanation for the 

delaying of the evening activity peak by the LNvs (Fig. 5.2C-D). If this is the case, our above 

finding that the LNvs are not capable of advancing the evening activity peak (Fig. 5.2C-D) would 

suggest that the LNvs are not capable of advancing the molecular clocks in any of the evening 

oscillator neurons. To test this prediction, we performed time-course immunostaining of the 
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PERIOD (PER) protein, an essential component of the molecular clock (reviewed by (21)), in the 

LNds and 5th s-LNv to see if their molecular oscillations were influenced by increasing the speed 

of the LNv clocks. In brains in which only the LNvs were specifically sped-up or slowed-down, 

the PER rhythms of LNvs were clearly phase-shifted compared to un-manipulated controls after 

three or four days in DD (Fig. 5.3A-C). While a subset of LNds was phase-coupled to the LNvs 

when the LNv clocks were slowed-down through DBTL overexpression ((5); replotted in Fig. 

5.3B), none of the LNds nor the 5th s-LNv were phase-coupled to the LNvs when the LNv clocks 

were sped-up through DBTS overexpression (Fig. 5.3C). The LNds and 5th s-LNv failed to couple 

with the LNvs, even when the LNv clocks were sped-up by only about 2 hours per cycle through 

the overexpression of a hypomorphic allele of the Shaggy kinase (5, 22) (in contrast to about 5 to 

6 hours per cycle for DBTS overexpression) (Fig. 5.3D-E). These results are consistent with our 

observation that the LNvs were not capable of advancing the evening peak when their molecular 

clocks were sped-up (Fig. 5.2C-D). Taken together, a subset of LNds displays a delay-specific 

coupling to the LNvs as their molecular clocks can be slowed-down but not sped-up by the LNvs, 

while the clocks of remaining LNds and the 5th s-LNv are independent of LNv molecular 

oscillations. 

5.3.4 The molecular clocks of CRY-expressing DN1ps are tightly phase-coupled to those of 

the LNvs.  

Cavanaugh and colleagues have proposed that the CRY+ DN1ps are postsynaptic to the 

LNvs and mediate neuronal output from the clock neuron network to drive activity rhythms (16). 

We therefore wondered if and how the molecular clocks of the CRY+ DN1ps are functionally 

coupled to those of the LNvs. When the LNv clocks were sped-up or slowed-down, the PER 

rhythms of the CRY+ DN1ps were phase-shifted compared to un-manipulated controls. Indeed, 
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the molecular clocks of the CRY+ DN1ps closely followed those of the LNvs, despite the 

molecular clocks in the DN1ps not being genetically altered (Fig. 5.4A-C). Therefore, the LNvs 

are capable of both advancing and delaying the molecular clocks in the CRY+ DN1ps under free-

running conditions. In contrast to the neurons that make up the relatively independent evening 

oscillator, the CRY+ DN1ps are tightly phase-coupled to the LNvs in their molecular oscillations.   

Speeding-up the molecular clocks of the CRY+ DN1ps advanced the morning peak 

without affecting the evening peak phase, while slowing-down the molecular clocks in the CRY+ 

DN1ps delayed the evening peak without affecting the morning peak phase (Fig. 5.4D-E). These 

are strikingly similar to the effects of altering the clock speed of the LNvs (compare Fig. 5.4D-E 

to Fig. 5.2C-D). Furthermore, altering the clock speed of the LNvs and the CRY+ DN1ps 

simultaneously (using a combination of Pdf-GAL4 and Clk4.1M-GAL4 drivers, Table 5.S1) 

resulted in similar changes in the phase of activity peaks to those of altering the clock speed in 

either group alone, except that the morning peak was advanced to a greater extent for DBTS 

overexpression when the two drivers were used simultaneously (compare Fig. 5.4F-G to Fig. 

5.2C-D and Fig. 5.4D-E). These results are consistent with our finding that the molecular 

oscillations of the CRY+ DN1ps are tightly phase-coupled to those of the LNvs. 

5.3.5 The lateral neuron classes alone are sufficient for setting the timing of daily activity 

peaks under LD. 

Given the relative independence of the LNds and 5th s-LNv (the evening oscillator) from 

the LNvs (the morning oscillator), we asked if simultaneously altering the clock speeds of all of 

these lateral neuron groups would be sufficient to set the phases of the morning and evening 

peaks of activity under LD conditions. Overexpressing DBTS and DBTL using Mai179-GAL4, 

which is expressed in the 5th s-LNv and in subsets of the LNvs and LNds (see Table 5.S1 for 
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details), resulted in a near-complete resetting of the phase of the evening peak, but not the 

morning peak of activity (compare Fig. 5.5A-B to Fig. 5.1). DBTS and DBTL overexpression 

driven by another lateral neuron driver, DvPdf-GAL4 (Table 5.S1), was also not sufficient to 

fully reset the phases of activity peaks (Fig. 5.S1). However, when DBTS and DBTL were 

overexpressed in all of the lateral neurons, through the combined use of the Mai179-GAL4 and 

DvPdf-GAL4 drivers (see Table 5.S1 for details), the phases of both morning and evening 

activity peaks were completely reset (compare Fig. 5.5C-D to Fig. 5.1). Thus, the lateral clock 

neurons can fully control the timing of activity peaks under entrained conditions when their 

clock speeds are collectively altered. 

5.3.6 Coherent free-running activity rhythms require molecular clock coherence between 

the lateral neurons and dorsal neurons. 

We previously showed that the LNvs are not the only component in the clock network 

that determines the pace of free-running activity rhythms under constant darkness, i.e., clock 

neurons other than the LNvs also have control over such rhythms (5). Here, by genetically 

altering the clock speed in different combinations of clock neuron classes, we systemically 

investigate how they contribute to free-running rhythms in the context of an otherwise normally 

functional clock network. As previously reported, DBTS overexpression in all or most clock 

containing cells using the Clk(856)-GAL4 driver shortened the free-running period to about 18.5 

hours, while DBTL overexpression driven by Clk(856)-GAL4 lengthened the free-running period 

to about 27 hours, and these “all clock” manipulations resulted in strong, well organized rhythms 

((5); Fig. 5.6A and Table 5.S2). Overexpressing DBTS and DBTL exclusively in the nervous 

system using the pan-neuronal nSyb-GAL4 driver also resulted in coherent changes in the free-
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running period (Fig. 5.6B, Fig. 5.S2B, and Table 5.S2), supporting the notions that the speed of 

neuronal clocks determines the pace of free-running rhythms.  

The LNds/5th s-LNv and the CRY+ DN1ps each have minimal influence on the free-

running period of the activity rhythm (Fig. 5.6C-D and Table 5.S2), though altering the clock 

speed in the LNds/5th s-LNv resulted in an increased level of arrhythmicity and an increased 

incidence of internal desynchrony, wherein single flies displayed complex rhythms with more 

than one periods (Fig. 5.S3C and Table 5.S2). As reported previously, the LNvs have a strong 

influence over free-running activity rhythms in that they are capable of imposing their intrinsic 

period to the overt activity rhythms (Fig. 5.6E and Table 5.S2), but this was accompanied by 

increased levels of arrhythmicity and internal desynchrony (Fig. 5.S3E and Table 5.S2;(5, 17, 

23)). Altering the clock speed in both the LNvs and the CRY+ DN1ps simultaneously resulted in 

nearly identical effects as those of altering the LNv clock speed alone (Fig. 5.6F, Fig. 5.S3F, and 

Table 5.S2), consistent with our finding that the CRY+ DN1p clocks are tightly phase-coupled to 

LNv clocks. 

Surprisingly, even though the lateral clock neurons can fully control the timing of activity 

peaks under LD when their clock speed is altered (Fig. 5.5C-D), they cannot coherently reset 

free-running period in DD when other clock cells remain un-manipulated (Fig. 5.6G-I, Fig. 

5.S2G-I, Fig. 5.S3G-I, and Table 5.S2). This was the case even when the clock speed of all the 

lateral neurons was altered (Fig. 5.6I, Fig. 5.S2I, and Table 5.S2). Although our results indicate 

that the molecular clocks of the CRY+ DN1ps are tightly phase-coupled to those of the LNvs (Fig. 

5.4A-C), we reasoned that the resetting of the CRY+ DN1p clocks by the LNvs may not always be 

complete, especially when a large clock speed discrepancy exists between the DN1ps and LNvs. 

We therefore wondered if the free-running period would be more coherently reset when the clock 
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speed of the DN1ps is simultaneously altered with the clocks of all of the lateral neurons. We 

drove DBTS and DBTL expression in the CRY+ DN1ps along with subsets of the lateral neurons 

using a combination of Mai179-GAL4 and Clk4.1M-GAL4 drivers, or a combination of DvPdf-

GAL4 and Clk4.1M-GAL4 drivers (see Table 5.S1 for details of expression patterns of each 

driver). Free-running period was not fully reset in either case, especially when DBTS expression 

was driven by these combinations of GAL4s (Fig. 5.6J-K, Fig. 5.S2J-K, Fig. 5.S3J-K, and Table 

5.S2). Finally, we drove the expression of DBTS and DBTL in the CRY+ DN1ps and in all the 

lateral neurons using a combination of the DvPdf-GAL4, Mai179-GAL4 and Clk4.1M-GAL4 

drivers (see Table 5.S1 for details). For these flies, the free-running period was almost 

completely reset (Fig. 5.6L, Fig. 5.S2L, Fig. 5.S4, and Table 5.S2). However, even these flies 

displayed an increased incidence of arrhythmicity and relatively weak free-running activity 

rhythms (Fig. 5.S3L and Table 5.S2). Thus, the CRY+ DN1ps and all the lateral neurons together 

represent a minimal subset of clock neurons that are capable of resetting free-running period of 

activity rhythms, albeit with weaker rhythms than those observed when all neuronal clocks are 

altered. 
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Figure 5.1. Neuronal clock speed determines the phase of activity peaks in LD cycles. 
(A,C) Population averaged activity profiles of DBTS and DBTL overexpressing flies and GAL4 
control flies for Clk(856)-GAL4 (A) and nSyb-GAL4 (C) in LD. (B,D) The average phases of 
morning and evening activity peaks in LD of the indicated genotypes. “0” marks the time of 
lights-on for the left panels and the time of lights-off for the right panels. Dark gray indicates 
darkness and light gray indicates light. The numbers of flies analyzed are indicated on the right 
of the phase panels. ** P < 0.01; *** P < 0.001. Details of statistical analysis are described in 
Materials and Methods. For all the plots, lines represent mean ± SEM (standard error of the 
mean). 
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Figure 5.2. Differential influence on the phase of activity peaks in LD by the LNd/5th s-LNv 
clocks and the LNv clocks. 
(A,C) LD population averaged activity profiles of flies overexpressing DBTS and DBTL in the 
LNds and 5th s-LNv (A), in the LNvs (C), and their respective GAL4 controls. (B,D) The average 
phases of morning and evening activity peaks under LD of the indicated genotypes. “0” marks 
the time of lights-on for the left panels and the time of lights-off for the right panels. Dark gray 
indicates darkness and light gray indicates light. The numbers of flies analyzed are indicated on 
the right. * P < 0.05; ** P < 0.01; *** P < 0.001. See Materials and Methods for details of the 
statistics. All the data are presented as mean ± SEM.  
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Figure 5.3. A subset of the LNd clocks displays delay-specific coupling to the LNv clocks. 
(A) Normalized PER immunostaining intensity of the s-LNvs, the 5th s-LNv, and the LNds of 
UAS-DBTS control flies. Similar results were observed for these clock neuron classes in UAS-
DBTL control flies (5). (B,C) Normalized PER immunostaining intensity of different clock 
neuron classes of Pdf>DBTL flies (B) and Pdf>DBTS flies (C). For Pdf>DBTL flies (B), the LNds 
were divided into two groups based on their phase differences in PER staining and quantified 
separately: those phase-coupled to the s-LNvs were quantified as “LNd (shifted)”, and the others 
as “LNd (unshifted)”. Results in panel (B) are based on data first reported in (5). (D,E) 
Normalized PER immunostaining intensity of different clock neuron classes of UAS>SGGHypo 
control flies (D) and Pdf>SGGHypo flies (E). Note that for UAS>SGGHypo flies (D), the troughs of 
PER oscillations in s-LNv, 5th s-LNv, and LNd are all at CT12, whereas for Pdf>SGGHypo flies 
(E), the trough of PER oscillation in s-LNv is at CT6 while those of 5th s-LNv and LNd remain at 
CT12. All the data are presented as mean ± SEM. 
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Figure 5.4. The CRY+ DN1p clocks are tightly phased-coupled to the LNv clocks. 
(A-C) Normalized PER immunostaining intensity of the CRY+ DN1ps of Pdf-GAL4 flies (A), 
Pdf>DBTL flies (B), and Pdf>DBTS flies (C). The PER rhythms of the s-LNvs and the 5th s-LNv 
are shown for comparison, which are the same data as those shown in Fig. 5.3A-C. (D,F) LD 
population averaged activity profiles of flies overexpressing DBTS and DBTL in the CRY+ DN1ps 
only (D), in both the LNvs and the CRY+ DN1ps (F), and their respective GAL4 controls. (E,G) 
The average phases of morning and evening activity peaks in LD of the indicated genotypes. “0” 
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marks the time of lights-on for the left panels and the time of lights-off for the right panels. Dark 
gray indicates darkness and light gray indicates light. The numbers of flies analyzed are 
indicated on the right. * P < 0.05; ** P < 0.01; *** P < 0.001. See Materials and Methods for 
details of the statistics. All the data are presented as mean ± SEM. 
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Figure 5.5. The lateral clock neurons are sufficient to set the timing of activity peaks under 
LD. 
(A,C) LD population averaged activity profiles of control flies and flies overexpressing DBTS and 
DBTL in the lateral clock neurons driven by Mai179-GAL4 (A) or a combination of Mai179-
GAL4 and DvPdf-GAL4 (C). See Table 5.S1 for details of the expression patterns of these GAL4 
drivers. (B,D) The average phases of morning and evening activity peaks in LD of the indicated 
genotypes. “0” marks the time of lights-on for the left panels and the time of lights-off for the 
right panels. Dark gray indicates darkness and light gray indicates light. The numbers of flies 
analyzed are indicated on the right. The phases of activity peaks are almost completely reset 
when DBTS and DBTL are expressed in all the lateral clock neurons using a combination of 
Mai179-GAL4 and DvPdf-GAL4 drivers (compare panel (D) to Fig. 5.1B). *** P < 0.001. Details 
of statistical analysis are described in Materials and Methods. All the data are presented as mean 
± SEM. 
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Figure 5.6. Coherent free-running activity rhythms require synchrony in all of the lateral 
clock neurons as well as the CRY+ DN1ps. 
(A-L) Scatter plots of the predominant free-running periods of rhythmic GAL4 control flies and 
flies overexpressing DBTS and DBTL under the indicated drivers. See Table 5.S1 for details of the 
expression pattern of each GAL4 driver. Results of panel (A) and panel (E) are based on data first 
reported in (5). For all the plots, lines represent mean ± SEM. 
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5.4 Discussion 

5.4.1 Diverse modes of phase coupling between clock neuron classes 

The genetic alteration of molecular clock speed in a subset of clock neurons results in a 

desynchronized clock network. This provides a means to address how clock neurons are phase-

coupled with respect to their molecular timekeeping. Though such network desynchrony is 

artificially induced, animals do experience transient desynchrony of similar magnitudes under 

normal physiological conditions. For example, an abrupt shift of the LD cycle induces transient 

desynchrony in the rodent circadian center, the suprachiasmatic nuclei (SCN), wherein clock 

neurons of the ventral SCN adapt to the new light schedule rapidly while those of the dorsal SCN 

require several days to resynchronize (24, 25). We therefore think that our genetic manipulations 

are relevant to our understanding of the physiological basis of phase coupling within the clock 

network.  

Here, by genetically speeding-up and slowing-down the molecular clocks in the LNvs, 

neurons required for robust circadian timekeeping, we investigated if and how their molecular 

oscillations are coupled to those of the LNds, 5th s-LNv, and CRY+ DN1ps. Our results suggest 

that the molecular oscillations of the CRY+ DN1ps are tightly phase-coupled to those of the LNvs 

– they can be sped-up as well as slowed-down by the LNvs (Fig. 5.4A-C). This is consistent with 

a recent study suggesting that the CRY+ DN1ps are downstream targets of the LNvs (16). In 

contrast, the molecular oscillations of the LNds and 5th s-LNv are relatively independent of LNv 

molecular oscillations – only the two LNds that express short neuropeptide F (sNPF) can be 

delayed by the LNvs, but none can be sped-up by the LNvs (Fig. 5.3, (5)). We have previously 

established that the delaying of molecular clocks in the two sNPF-positive LNds by LNvs is 

mediated by PDF signaling (5). The coupling of CRY+ DN1ps to the LNvs is also likely to 
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depend on PDF signaling, as a subset of the former expresses PDF receptor and responds 

physiologically to synthetic PDF peptide (26-28). Given that PDF is required for molecular clock 

oscillations in the CRY+ DN1ps under constant conditions (29), we could not experimentally 

address this possibility. Our analysis reveals that various clock neuron classes are differentially 

coupled to the LNvs. An extension of our experimental approach will make it possible to address 

coupling between other pairs of clock neuron groups, determine their modes of coupling (i.e., 

unidirectional or bidirectional), and uncover the mechanisms underlying differential coupling 

among the various clock neuron groups. 

5.4.2 Control of the anticipatory morning and evening peaks of activity under LD cycles 

Under LD cycles, Drosophila displays an anticipatory morning peak and an anticipatory 

evening peak of activity, both of which are under circadian control (reviewed by (30) ). Previous 

work employing cell ablation and genetic rescue approaches established that the LNvs function 

as a “morning oscillator” that generates the morning peak of activity, and the LNds and 5th s-LNv 

collectively function as an “evening oscillator” that generates the evening peak of activity (8). 

Similar experimental approaches revealed that the CRY+ DN1ps promote both morning and 

evening activity, depending on the experimental conditions (13, 15). Here, we have re-evaluated 

the roles of these three groups of clock neurons in the control of morning and evening bouts of 

activity in the context of an otherwise fully functional clock network, by genetically accelerating 

or decelerating the LNv, LNd, and CRY+ DN1p molecular clocks and examining the effects on 

the timing of morning and evening activity bouts.  

Consistent with their previous designation as the “evening oscillator”, speeding-up and 

slowing-down the molecular clocks of LNds and 5th s-LNv resulted in significantly advanced and 

delayed evening peaks, respectively, without significant influence on the phase of the morning 
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peak (Fig. 5.2A-B). Quite unexpectedly, we found that both the LNvs and the CRY+ DN1ps 

advanced the morning peak but not the evening peak when their clocks were sped-up, and 

delayed the evening peak but not the morning peak when their clocks were slowed-down (Fig. 

5.2C-D and Fig. 5.4D-G). This result is not predicted by current models, which predict that under 

a 12:12 bright LD cycle at 25°C the LNvs and the CRY+ DN1ps should only contribute to the 

timing of the morning peak of activity (8, 9, 13). Our finding that their clock speed can also 

affect the timing of the evening peak suggests that they might have direct control over the 

evening peak as well, or alternatively that they influence the evening peak via the LNds and 5th s-

LNv. We consider the latter likely, given our finding that the LNvs are capable of delaying a 

subset of the “evening oscillator” neurons, but not advancing any of them (Fig. 5.3). We note 

that this unexpected influence on the evening peak was apparent only when their molecular 

clocks were slowed-down, highlighting the importance of bidirectional manipulations of clock 

speed in the context of clock interactions. The LNvs and CRY+ DN1ps were not capable of 

delaying the morning peak when DBTL was overexpressed in these neurons, but this was the case 

even when DBTL was expressed in all circadian clock expressing cells (Fig. 5.1A-B), suggesting 

that the three-hour increase in period caused by the manipulation is never enough to overcome 

the light entrainment and masking of the morning peak. Finally, changing the clock speed only in 

the lateral neurons (LNvs, 5th s-LNv, and LNds) is sufficient to reset the phases of morning and 

evening peaks under LD. This is not in conflict with the contention that the CRY+ DN1ps 

contribute to the timing of activity peaks, as we have shown that their molecular clocks would be 

coupled to those of the LNvs even when they are not genetically altered. We propose that clock 

neurons do not act in isolation to control the daily activity peaks.  Rather, we propose that 

coupling and interactions among clock neuron groups influence the timing of activity peaks and 
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shape activity patterns, and that changes in these interactions are the basis for clock network 

plasticity in response to environmental changes. 

5.4.3 A distributed clock network controls free-running activity rhythms 

It has been known for more than a decade that the PDF-expressing LNvs are critical for 

free-running activity rhythms. Genetic ablation of the LNvs, or loss-of-function mutations in Pdf 

or Pdf receptor genes result in severely weakened free-running activity rhythms (10, 31-33). 

Restoring period expression only in the LNvs of the period null mutant was sufficient to generate 

free-running activity rhythms (8). Finally, the LNvs are capable of imposing their intrinsic period 

on the overt free-running activity rhythm when their clock speed is genetically altered (5, 17, 

23). Nevertheless, clock neurons other than the LNvs also exert control over free-running activity 

rhythms (5, 34). For example, the LNds and 5th s-LNv control the evening peak of activity (8), 

which is largely maintained under constant conditions, and rescuing period expression only in 

the LNds and 5th s-LNv restored free-running rhythms in a large proportion of flies under constant 

dim light conditions (35).  

By genetically changing the clock speed in the LNvs, the LNds and 5th s-LNv, and the 

CRY+ DN1ps, we examined how these three groups of clock neurons, alone or in combination, 

influence free-running activity rhythm in the context of an otherwise normally functional clock 

network. When the clock speed is altered in each of the three groups alone, only the LNvs have 

significant influence on free-running period, consistent with the longstanding notion that LNvs 

have the strongest control on the pace of free-running activity rhythms among these three groups 

(Fig. 5.6C-E and Table 5.S2). Surprisingly, even though the lateral neurons together are capable 

of coherently resetting the phase of activity peaks in LD (Fig. 5.5C-D), they are not capable of 

coherently driving free-running rhythms under DD (Fig. 5.6G-I and Table 5.S2). This is most 
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apparent when they were sped-up through DBTS overexpression. Even when DBTS was 

overexpressed in the CRY+ DN1ps and a large subset of lateral neurons, the free-running activity 

rhythm was not coherently reset (Fig. 5.6J-K and Table 5.S2). Only when DBTS was 

overexpressed in the CRY+ DN1ps and in every lateral neuron, did we observe a nearly complete 

and coherent resetting of free-running period (Fig. 5.6L and Table 5.S2). Therefore, a strong and 

coherent free-running activity rhythm requires a surprisingly large proportion of the fly’s 150 

clock neurons to cycle in synchrony.  

Based on our results, we suggest that the lateral neurons plus the CRY+ DN1ps likely 

represent the minimal subset of clock neurons that must oscillate in synchrony to drive a 

coherent free-running rhythm in locomotion. Nevertheless, flies overexpressing DBTS in this 

minimal subset still display weaker rhythms and a higher incidence of arrhythmicity when 

compared to those overexpressing DBTS in all clock cells (Fig. 5.S3L and Table 5.S2), 

suggesting that some or all of the remaining neurons in the network normally contribute to free-

running rhythms. Thus, free-running rhythms in activity are controlled by a larger and more 

distributed clock network than previously thought. 

 

5.5 Materials and Methods 

5.5.1 Fly strains 

Flies were reared on cornmeal-sucrose-yeast media at 25 °C under 12-hour light: 12-hour 

dark (LD) cycles, or at room temperature under the quasi-diurnal conditions of the lab. All of the 

fly strains used in this study have been described previously, they are: UAS-DBTS(10F5A) and 

UAS-DBTL(22F1C)(19), UAS-SGGY214F(hypomorphic SGG mutant) (Bloomington Stock # 6817) 
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(5, 36), nSyb-GAL4 (37), Clk(856)-GAL4 (38), Pdf-GAL4 (10, 39), Clk4.1M-GAL4 (13, 14), 

Mai179-GAL4 (8, 40), Pdf-GAL80 (9), and DvPdf-GAL4 (41). 

5.5.2 Locomotor activity rhythm recording and analysis 

Locomotor activity rhythms of adult male flies were recorded using the TriKinetics 

DAM2 Drosophila Activity Monitors (Waltham, MA). Flies aged a week or less were placed 

individually in recording glass tubes containing 2% agar-4% sucrose food, and these were loaded 

onto the DAM2 monitors for locomotor activity recording. Flies were entrained to 12:12 LD 

cycles for at least 5 days, and subsequently released into constant darkness (DD) for at least 7 

days, at a constant temperature of 25°C. Activity counts were collected in either 5-minute or 1-

minute bins that were subsequently summed into 30-minute bins for time-series analysis. 

Averaged population activity profiles (also known as “eduction plots”) of specific 

genotypes in LD were generated using the Counting Macro, an Excel-based program, which has 

been described previously (42). First, activity levels were normalized among individual flies, 

such that for each individual fly the average activity value of all bins for the last four days in LD 

equals 1. Second, the population average of normalized activity is determined for any given 30-

min bin for the last four days in LD. Finally, the population activity for these four days is 

averaged into a single 24-hour day, and the results are displayed in the figures. 

The phases of morning and evening peaks of individual flies were determined as follows. 

First, activity of the last three days in LD was averaged to generate an average activity profile for 

each individual fly. This average single-day activity profile was filtered with a zero-phase 

Butterworth filter to diminish oscillations with periods of less than 20 hours (43). The filtered 

activity profile was plotted in Matlab (MathWorks, Natick, MAMathworks, Inc.), and the 

‘Findpeaks’ function in the Signal Processing Toolbox of Matlab was used to identify the 
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morning and evening peaks of activity, and their corresponding phases. An experimenter who 

was blind to the genotypes manually confirmed the accuracy of morning and evening peaks 

identified by the ‘Findpeaks’ function. The phases of morning and evening peaks of an 

experimental genotype were compared to those of the corresponding GAL4 and UAS controls 

using the Kruskal-Wallis one-way ANOVA and Dunn’s multiple comparison test. Significance 

was only reported if the experimental genotypes differed significantly from both controls in the 

same direction, and only the smaller significance value is reported in the figures. 

The analysis of free-running activity rhythms was done using the ClockLab software 

from Actimetrics (Wilmette, IL) as previously described (5). In brief, rhythmicity and free-

running period of individual flies were determined using the χ-square periodogram function 

implemented in ClockLab, with a confidence level of 0.01 (44). For all the genotypes, the range 

of free-running periods analyzed was from 14 hours to 34 hours, with 0.5-hour intervals. For 

individuals with more than one significant period, only the period with the highest amplitude 

over significance was used for the scatter plots of free-running periods in the figures and the 

determination of average periods in Table 5.S2. For each significant period, the χ-square analysis 

in Clock Lab returns a “Power” value and a “Significance” value. “Rhythmic Power” was 

calculated as “Rhythmic Power = Power – Significance” for rhythmic flies, and considered “0” 

for arrhythmic flies, as previously described (5, 42). 

5.5.3 Immunocytochemistry 

Immunostaining of whole-mount Drosophila brains was done as previously described 

(5). Flies were entrained to LD cycles for a minimum of three days and then released into DD. 

Flies were collected every six hours for four time points on the third day under DD for DBTS 

overexpressing flies, and on the fourth day under DD for the other manipulations. Dissected 
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brains were fixed in 4% paraformaldehyde for 1 hour at room temperature, blocked with 3% 

normal goat serum for 1 hour at room temperature, and stained with rat anti-PER antibodies 

(1:500) (provided by Dr. Michael Rosbash, (45)) at 4 °C for two nights and then rinsed in PBS-

TX. LNvs were identified by co-staining the brains with mouse anti-PDF antibodies (1:200) 

(Developmental Studies Hybridoma Bank, contributed by Dr. Justin Blau). CRY+ DN1ps were 

identified by co-staining the brains with rabbit anti-CRY antibodies (1:500) (provided by Dr. 

Charlotte Helfrich-Förster, (46)). Alexa Fluor conjugated secondary antibodies were used at 

1:1000 (Invitrogen, Grand Island, NY) at 4 °C overnight and then rinsed in PBS-TX.  Brains 

were mounted for imaging in Vectashield HardSet Mounting Medium (Vector Laboratories, 

Burlingame, CA). All samples were imaged on an Olympus Fluoview 1000 confocal microscope 

with a 60×/1.10 NA objective (Olympus, Center Valley, PA). Imaging settings were tailored for 

each class of clock neurons, but were kept constant for all time points and genotypes within a 

neuronal class. PER immunostaining intensity of individual clock neurons was quantified using 

the ImageJ software (National Institutes of Health, USA) as previously described (47). Both 

hemispheres of about ten brains were used for quantification at each time point. 
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5.6 Supplementary Results 

 
 

 
 
 
 
Figure 5.S1. The DvPdf-GAL4 expressing neurons are not sufficient to fully reset the phases 
of activity peaks under LD. 
(A) LD population averaged activity profiles of flies overexpressing DBTS and DBTL in subsets 
of the lateral clock neurons under the DvPdf-GAL4 driver (Table 5.S1) and the DvPdf-GAL4 
control flies. (B) The average phases of morning and evening activity peaks under LD of the 
indicated genotypes. “0” marks the time of lights-on for the left panel and the time of lights-off 
for the right panel. Dark gray indicates darkness and light gray indicates light. The numbers of 
flies analyzed are indicated on the right. * P < 0.05; ** P < 0.01. See Materials and Methods for 
details of the statistics. All the data are presented as mean ± SEM. 
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Figure 5.S2. Deviation of free-running periods for each GAL4 manipulation from the 
expected free-running periods. 
(A-L) The absolute deviation of free-running periods from the expected periods for GAL4 control 
flies and flies overexpressing DBTS and DBTL under the indicated drivers. The means of the free-
running periods of the Clk(856)-GAL4 manipulations are taken as the expected free-running 
periods, i.e. the expected period for DBTS overexpression is 18.5h, for DBTL overexpression 
26.8h, and for GAL4 control 23.8h. For each GAL4 manipulation, the absolute deviation (without 
signs) of free-running periods from the respective expected period was calculated and plotted as 
mean ± SEM in the graphs. A small deviation value indicates that the free-running periods are 
close to the expected period for that specific manipulation. For each panel, groups that do not 
share a letter (“a”, “b”, or “c”) are significantly different from each other (P < 0.05, by Kruskal-
Wallis one-way ANOVA and Dunn’s multiple comparisons test). 
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Figure 5.S3. Rhythmicity and internal desynchronization of free-running rhythms for each 
GAL4 manipulation. 
(A-L) The percentages of arrhythmic flies, rhythmic flies displaying a single significant period, 
and rhythmic flies displaying multiple significant periods for GAL4 control flies and flies 
overexpressing DBTS and DBTL under the indicated drivers. The numbers of flies in each 
category are displayed on each bar of the histogram. * P < 0.05; ** P < 0.01; *** P < 0.001; ns, 
not significant, by the Freeman-Halton extension of the Fisher's exact test. 
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Figure 5.S4. The CRY+ DN1ps and all of the lateral clock neurons together are capable of 
coherently resetting free-running activity rhythms. 
(A-C) Representative individual actograms of the GAL4 control (B) and flies overexpressing 
DBTS (A) and DBTL (C) in the CRY+ DN1ps and all of the lateral clock neurons, through a 
combined use of DvPdf-GAL4, Mai179-GAL4, and Clk4.1M-GAL4 (Table 5.S1). The actograms 
are double-plotted for two consecutive days. Yellow indicates light and gray indicates darkness. 
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Table 5.S1. Expression patterns of GAL4 drivers. 
 
GAL4 driver Expression pattern 

nSyb-GAL4 All neurons (37) 

Clk(856)-GAL4 All major groups of clock neurons (38) 

Pdf-GAL4 l-LNvs, s-LNvs (10, 39) 

Clk4.1M-GAL4 High expression in ~4-5 DN1ps, weaker expression in another ~4-5 DN1ps; 

the majority express CRY (13, 14). 

Mai179-GAL4 s-LNvs, 3 CRY+ LNds, 5th s-LNv, weak and variable expression in l-LNvs, 

and many non-clock neurons (8, 46, 48). 

Mai179-GAL4/Pdf-GAL80 3 CRY+ LNds, 5th s-LNv, and many non-clock neurons 

DvPdf-GAL4 l-LNvs, s-LNvs, 4 LNds (1 CRY+, 3CRY-), 5th s-LNv (34, 41) 

 
  



 162 

 
Table 5.S2. Summary of free-running locomotor activity rhythms. 
 

Genotype 
Number 

of flies 

% 

Rhythmic 

% Multi-

periodicity* 

Period ± 

SEM (h) 

Rhythmic 

Power ± SEM 

;;UAS-DBT(S)/+ 37 94.6 0 23.5 ± 0.1 54.4 ± 7.2 

;;UAS-DBT(L)/+ 44 97.7 7.0 23.6 ± 0.2 72.9 ± 6.2 

;Clk(856)-GAL4/+; 47 95.7 6.7 23.8 ± 0.1 45.0 ± 4.9 

;Clk(856)-GAL4/+;UAS-DBT(S)/+ 30 100 3.3 18.5 ± 0.3 57.7 ± 7.9 

;Clk(856)-GAL4/+;UAS-DBT(L)/+ 32 100 0 26.8 ± 0.1 77.3 ± 7.6 

;;nSyb-GAL4/+ 32 93.8 10.0 23.8 ± 0.1 41.7 ± 8.1 

;;nSyb-GAL4/UAS-DBT(S) 48 77.1 0 18.5 ± 0.3 21.7 ± 3.7 

;;nSyb-GAL4/UAS-DBT(L) 46 84.8 12.8 26.9 ± 0.3 33.6 ± 5.3 

;Mai179-GAL4/Pdf-GAL80; 44 88.6 2.6 23.5 ± 0.1 41.0 ± 4.7 

;Mai179-GAL4/Pdf-GAL80;UAS-DBT(S)/+ 61 73.8 22.2 23.8 ± 0.2 17.8 ± 2.4 

;Mai179-GAL4/Pdf-GAL80;UAS-DBT(L)/+ 93 63.4 13.6 23.9 ± 0.2 9.8 ± 1.5 

;;Clk4.1M-GAL4/+ 32 87.5 3.6 23.8 ± 0.1 34.0 ± 4.9 

;;Clk4.1M-GAL4/UAS-DBT(S) 48 91.7 25.0 23.4 ± 0.1 31.6 ± 3.3 

;;Clk4.1M-GAL4/UAS-DBT(L) 32 81.3 0 24.0 ± 0.2 18.1 ± 2.6 

;Pdf-GAL4/+; 33 87.9 3.4 24.2 ± 0.1 59.7 ± 6.9 

;Pdf-GAL4/+;UAS-DBT(S)/+ 59 59.3 20.0 21.0 ± 0.7 9.0 ± 1.6 

;Pdf-GAL4/+;UAS-DBT(L)/+ 75 89.3 25.4 26.7 ± 0.2 25.4 ± 2.4 

;Pdf-GAL4/+;Clk4.1M-GAL4/+ 34 100 0 24.7 ± 0.1 91.8 ± 6.9 

;Pdf-GAL4/+;Clk4.1M-GAL4/UAS-DBT(S) 90 70.0 19.0 19.5 ± 0.3 13.7 ±1.7 

;Pdf-GAL4/+;Clk4.1M-GAL4/UAS-DBT(L) 82 95.1 3.8 26.0 ± 0.2 55.1 ± 3.7 

;Mai179-GAL4/+; 24 87.5 14.3 23.8 ± 0.1 24.5 ± 4.8 

;Mai179-GAL4/+;UAS-DBT(S)/+ 55 67.3 10.8 22.0 ± 0.5 6.6 ±1.2 

;Mai179-GAL4/+;UAS-DBT(L)/+ 56 82.1 26.1 25.6 ± 0.1 22.1 ± 2.3 

DvPdf-GAL4/Y;; 30 96.7 3.4 24.6 ± 0.2 46.1 ± 4.9 

DvPdf-GAL4/Y;;UAS-DBT(S)/+ 121 28.1 5.9 20.8 ± 0.9 1.5 ± 0.3 

DvPdf-GAL4/Y;;UAS-DBT(L)/+ 40 65.0 15.4 27.4 ± 0.1 17.7 ± 3.5 

DvPdf-GAL4/Y;Mai179-GAL4/+; 48 54.2 23.1 24.3 ± 0.5 17.6 ± 4.6 

DvPdf-GAL4/Y;Mai179-GAL4/+;UAS-DBT(S)/+ 127 35.4 2.2 23.2 ± 0.9 2.7 ± 0.5 

DvPdf-GAL4/Y;Mai179-GAL4/+;UAS-DBT(L)/+ 48 47.9 21.7 26.0 ± 0.5 8.3 ± 2.1 

;Mai179-GAL4/+;Clk4.1M-GAL4/+ 32 93.8 3.3 23.4 ± 0.2 20.3 ± 3.1 

;Mai179-GAL4/+;Clk4.1M-GAL4/UAS-DBT(S) 71 53.5 10.5 21.3 ± 0.6 4.1 ± 0.7 

;Mai179-GAL4/+;Clk4.1M-GAL4/UAS-DBT(L) 66 86.4 12.3 26.0 ± 0.1 19.8 ± 2.1 
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DvPdf-GAL4/Y;;Clk4.1M-GAL4/+ 30 100 13.3 23.6 ± 0.1 66.9 ± 7.1 

DvPdf-GAL4/Y;;Clk4.1M-GAL4/UAS-DBT(S) 118 37.3 11.4 20.6 ± 0.8 5.3 ± 1.1 

DvPdf-GAL4/Y;;Clk4.1M-GAL4/UAS-DBT(L) 70 54.3 15.8 26.6 ± 0.3 8.9 ± 1.6 

DvPdf-GAL4/Y;Mai179-GAL4/+;Clk4.1M-

GAL4/+ 
31 83.9 7.7 23.0 ± 0.3 31.8 ± 5.6 

DvPdf-GAL4/Y;Mai179-GAL4/+;Clk4.1M-

GAL4/UAS-DBT(S) 
47 57.4 3.7 17.7 ± 0.6 9.2 ± 1.9 

DvPdf-GAL4/Y;Mai179-GAL4/+;Clk4.1M-

GAL4/UAS-DBT(L) 
48 64.6 12.9 26.0 ± 0.4 12.4 ± 2.9 

 
* % Multi-periodicity indicates the percentage of rhythmic individuals that display more than 
one significant periodicity. 
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CHAPTER 6.  Concluding Remarks 

Using Drosophila as a simple yet conserved model system, my thesis research aims to 

understand how circadian clock neurons are physiologically connected and how their molecular 

timekeeping is functionally coordinated to produce robust and coherent circadian rhythms. In 

support of these aims I first developed a new experimental approach to address physiological 

connectivity in the Drosophila brain, and characterized several important connections within the 

Drosophila clock neuron network using this approach. I have provided the first 

electrophysiological characterization of the critical LNd clock neurons and revealed how they 

integrate distinct fast synaptic inputs to control the daily timing of sleep and activity. 

Furthermore, I have found that the Drosophila clock neuron network features diverse modes of 

coupling between the various clock neuron classes. Lastly, I revealed that the Drosophila clock 

neuron network consists of multiple independent oscillators and requires network-wide 

coherence for robust circadian rhythms in activity and sleep. My thesis research greatly advances 

our understanding of how the circadian clock neuron network is wired, organized, and 

coordinated. Given that disruption of circadian rhythms is associated with increased risks of a 

large spectrum of diseases, including obesity, heart diseases, cancer, and mood disorders 

(Albrecht, 2012), my thesis research may help address the widespread adverse effects of 

circadian rhythm disorders. Here, I summarize the key findings and implications of my thesis 

research as follows. 
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6.1 A new approach to address functional neuronal connectivity in the Drosophila brain 

Chapter 2 describes a new experimental approach that my colleagues and I developed for 

analyzing functional neuronal connections in the Drosophila brain. In this approach, the 

mammalian ATP-gated cation channel P2X2 is genetically expressed in neurons of interest to 

render them excitable by ATP on demand, while genetically encoded fluorescent sensors are 

simultaneously expressed in putative postsynaptic neurons to monitor their response upon the 

excitation of P2X2-expressing neurons. This approach has proved powerful, versatile, yet 

technically facile, and is now being widely used in the field of Drosophila neurobiology (e.g., 

Haynes et al., 2015; Kallman et al., 2015).  

 

6.2 Physiological connectivity within the Drosophila clock neuron network 

Using the experimental approach my colleagues and I developed for neuronal 

connectivity analysis, I have confirmed a long predicted peptidergic connection from the LNvs to 

the LNds mediated by PDF, and showed that it is a modulatory connection that results in cAMP 

increases without causing acute excitation in the LNds (Chapter 2). Furthermore, I show that 

within the LNv group, PDF secreted from the l-LNvs acts to specifically increase cAMP levels 

but not calcium levels in the s-LNvs (Fig. 6.1 and Chapter 2). Lastly, using ATP/P2X2-mediated 

excitation of the glutamatergic DN1ps in conjunction with whole-cell patch-clamp recording of 

the LNds and l-LNvs, I uncover inhibitory connections from the DN1ps to the LNds and to the l-

LNvs (Chapter 3). Together, I have begun to delineate the neuronal connections between 

important groups of clock neurons. An extension of this experimental approach will allow the 

characterization of functional connectivity between other groups of clock neurons, and between 

clock neurons and potential input and output pathways. 
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6.3 Electrophysiological characterization of the critical LNd clock neurons 

In Chapter 3, I have provided the first electrophysiological analysis of the critical LNd 

clock neurons, which are considered collectively as the evening oscillator of the clock neuron 

network (Grima et al., 2004; Stoleru et al., 2004). I found that the LNds fire spontaneous tonic 

and bursting patterns of action potentials, and that the LNd neuronal activity is modulated by 

multiple fast neurotransmitters. Specifically, the LNds are excited by acetylcholine via nicotinic 

acetylcholine receptors, and inhibited by GABA and glutamate via GABAA receptors and the 

glutamate-gated chloride channel GluClα, respectively. The LNds’ receptivity to multiple fast 

neurotransmitters is in striking similarity to that of the LNvs (McCarthy et al., 2011; Lelito and 

Shafer, 2012). Using genetic and behavioral approaches, I found that while GABAergic 

inhibition of the lateral clock neurons functions to promote sleep at night, glutamatergic 

inhibition of the same neurons functions to promote wakefulness during specific times of the 

day. These results advance our understanding of the neurophysiological properties of central 

clock neurons and reveal how the various clock neuron classes integrate distinct synaptic inputs 

to orchestrate circadian rhythms in sleep and activity. 

 

6.4 Diverse modes of coupling between the various clock neuron groups 

In Chapter 4 and Chapter 5, using a genetic strategy to specifically speed-up or slow-

down the LNv molecular clocks, I experimentally investigated if and how molecular clocks of the 

various clock neuron classes are coupled to the critical LNv clocks. I found that the molecular 

clocks of the 5th s-LNv and most of the LNds are not coupled to the LNvs, while the two pairs of 

sNPF-expressing LNds can only be delayed but not advanced by the LNvs. In contrast, the CRY-

expressing DN1ps can be both delayed and advanced by the LNvs. These results reveal that the 
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various classes of clock neurons do not display a uniform mode of coupling. Rather, they display 

unique and complex coupling relationships that vary from group to group. This may have 

important implications in the clock network plasticity in the face of changing environments. 

 

6.5 The Drosophila clock neuron network consists of multiple oscillators and requires 

network-wide coherence for robust free-running rhythms 

Despite the fact that the clock neuron network features a diversity of cell types that are 

anatomically and neurochemically distinct, it has been long modeled as a hierarchical two-

oscillator network, in which the morning oscillator (the LNvs) functions as a master pacemaker 

in the absence of environmental cues. In Chapter 4, through the genetic speeding-up and 

slowing-down the LNv clocks to different extents, I find that the LNvs can set the pace of the 

clock network only when their intrinsic period differs less than ~2.5 hours from that of the rest of 

the network. In contrast to the widely accepted “Master Pacemaker” model, my results 

demonstrate that the clock network consists of multiple oscillatory units, each of which drives 

rhythms in activity. Furthermore, I find that each oscillatory unit is unified by its neuropeptide 

output, which might be a general organizing principle that might apply to the circadian clock 

neuron networks of other animals. Lastly in Chapter 5, by genetically altering the clock speed in 

different subsets of clock neurons, I show that coherent free-running activity rhythms require 

molecular clock synchrony at least in all of the lateral clock neurons as well as the DN1ps, which 

constitute a much larger proportion of the clock neuron network than previously thought. These 

findings provide insights into the organization and network coordination of the Drosophila 

circadian clock. 
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Figure 6.1. The l-LNvs modulate cAMP levels in the s-LNvs. 
(A) Averaged Epac1-camps inverse FRET plot (±SEM) of l-LNvs imaged in c929-Gal4/Pdf-
LexA,LexAop-Epac1-camps;UAS-P2X2/+ brains, before, during and after 30s perfusion of 1mM 
ATP (indicated on the bottom plot in each column). ATP/P2X2 mediated excitation caused clear 
inverse FRET increases. (B) Averaged Epac1-camps inverse FRET plot (±SEM) of s-LNvs from 
the same brains as (A). Excitation of the c929 network produced inverse FRET increases in the 
s-LNvs. (C) Averaged Epac1-camps inverse FRET plot (±SEM) of l-LNvs imaged in a Pdfr 
mutant background using han5304;c929-GAL4/Pdf-LexA,LexAop-Epac1-camps;UAS-P2X2/+ 
brains. c929 network excitation caused clear inverse FRET increases in these neurons. (D) 
Averaged Epac1-camps plot (±SEM) of s-LNvs from the same brains as (C). Excitation of the 
c929 network failed to produce inverse FRET increases in the s-LNvs in the absence of PdfR 
function. (E) Averaged Epac1-camps inverse FRET plot (±SEM) of l-LNvs imaged in Pdf-
LexA,LexAop-Epac1-camps/+;UAS-P2X2/+ brains. ATP failed to produce inverse FRET 
increases in the absence of the GAL4 driver. The scale bars in (E) also apply to (A) and (C). (F) 
Averaged Epac1-camps inverse FRET plot (±SEM) of s-LNvs from the same brains as (E). ATP 
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caused no obvious inverse FRET increases. The scale bars in (F) also apply to (B) and (D). (G) 
Comparison of maximum Epac1-camps responses for the l-LNv data shown in (A), (C), and (E). 
ATP (1mM) perfusion caused significant inverse FRET increases in both the experimental 
(“Exp” c929-GAL4/Pdf-LexA,LexAop-Epac1-camps;UAS-P2X2/+) and PdfR mutant (“-PDFR” 
han5304 ;c929-GAL4/Pdf- LexA,LexAop-Epac1-camps;UAS-P2X2/+) conditions, relative to the 
negative control lacking the GAL4 driver for P2X2 expression (“-P2X2” Pdf-LexA,LexAop-
Epac1-camps/+;UAS-P2X2/+). (H) Comparison of maximum Epac1-camps responses for the s-
LNv data shown in (B), (D), and (F). ATP (1mM) perfusion caused significant inverse FRET 
increases in experimental (Exp) flies relative to both PdfR mutant (-PDFR) and -P2X2 controls. 
Genotypes were identical to those in (G). For (G) and (H), *** indicates P < 0.001 and n.s. 
indicates no significant difference (P ≥ 0.05), by Kruskal—Wallis one-way ANOVA and Dunn's 
multiple comparison test. The methods and materials used in this figure are the same as those 
described in Chapter 2. 
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