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ABSTRACT

Advances in Underactuated Spacecraft Control

by

Christopher Petersen

Chair: Ilya V. Kolmanovksy

This dissertation addresses the control of a spacecraft which either

becomes underactuated as a consequence of onboard failures or is made

underactuated by design. Successfully controlling an underactuated space-

craft can extend spacecraft operational life in orbit and improve the ro-

bustness of space missions. The novel contributions of the dissertation

include the following.

Firstly, switching feedback controllers are developed for the atti-

tude control of an underactuated spacecraft equipped with two pairs of

thrusters, or two reaction wheels (RWs), or two control moment gyros

(CMGs). The problem is challenging; e.g., even in the zero total angular

momentum case, no smooth or even continuous time-invariant feedback

law for stabilizing a desired orientation exists. The overall method ex-

ploits the separation of the system states into inner-loop base variables

and outer-loop fiber variables. The base variables track periodic reference

trajectories, the amplitude of which is governed by parameters that are

adjusted to induce an appropriate change in the fiber variables towards

the desired pointing configuration.

xiii



Secondly, nonlinear Model Predictive Control (MPC) is applied to

the attitude dynamics of an underactuated spacecraft with two RWs and

zero angular momentum. Though such a system cannot be stabilized

by any smooth or continuous time-invariant feedback law, MPC has the

remarkable ability, which is exploited in this research, to generate control

laws that are discontinuous in the state. By utilizing nonlinear MPC, the

obstruction to stabilizability is overcome and attitude maneuvers can be

performed while enforcing constraints.

Thirdly, an unconventional pathway is discussed for recovering the

linear controllability of an underactuated spacecraft with two RWs by

accounting for the effects of solar radiation pressure (SRP) in the space-

craft attitude model. A comprehensive analysis of the addition of SRP

torques into the attitude model is given, including necessary and sufficient

conditions for recovering linear controllability. With linear controllabil-

ity restored, conventional controllers can be designed for underactuated

spacecraft.

Lastly, a set of coupled translational and rotational equations of mo-

tion for a spacecraft in a central gravity field are derived. The spacecraft

is assumed to have only internal attitude actuators and the equations of

motion are such that they are relative with respect to an equilibrium orbit.

These equations are then approximated, and for certain orbits, yield dy-

namics very similar to Hill-Clohessy-Wiltshire (HCW) dynamics. Under

reasonable assumptions on the spacecraft configuration and equilibrium

orbit, it is proven that the coupled dynamics are small-time locally con-

trollable (STLC), which opens a path to utilizing conventional control

techniques to move translationally in space by employing attitude control

only.

xiv



CHAPTER 1

Introduction

1.1 Underactuated Spacecraft

If the number of degrees-of-freedom is greater than the number of degrees-of-actuation,

a system may be viewed as underactuated [2]. This is a large concern for spacecraft

systems in particular, as being underactuated can shorten its operational life and

reduce its capabilities while on orbit.

There are two ways in which a spacecraft becomes underactuated. Firstly, a space-

craft can be underactuated by design. This is typically the case for small spacecraft,

such as cubesats, which have stringent constraints on volume, power, and weight that

may not allow for full actuation. Secondly, and more detrimental to the mission of

the spacecraft, is the failure of an actuator. The general rule of thumb for larger

spacecraft is to equip the bus with redundant actuators so that in case of failure the

other actuators can compensate. However, in some cases multiple actuator failures

can occur. For example, the satellite FUSE had three out of its four reaction wheels

(RWs) fail within their expected lifetime and consequently had to perform attitude

maneuvers using magnetic actuators and one RW [3]. The Kepler telescope lost two

out of its four RWs before its extended mission was complete. While its gas thruster

can also be used to perform attitude maneuvers, this type of actuation expends fuel

and was not designed to provide the precise orientation needed [4]. The Japanese
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Hayabusa spacecraft, which was involved in an asteroid sample return mission, also

lost two out its four RWs. Its mission profile had to be modified to conserve fuel in

order to have enough propellant to return to Earth after performing the necessary

attitude maneuvers with gas thrusters [5].

The general problem can be stated as follows: “What methods can be developed

to control an underactuated spacecraft?” This dissertation specifically addresses this

question for two different spacecraft situations:

• The control of the attitude (orientation) of a spacecraft when equipped with

either two pairs of thrusters, two RWs, or two control moment gyros (CMGs).

• The orbit and attitude control of a spacecraft when equipped with only RWs

or CMGs.

1.2 Attitude Control of Underactuated Spacecraft

1.2.1 Background

Underactuated attitude control with thruster pairs and RWs was first discussed in

the 1980’s by P. Crouch [6]. For the case of thruster pair actuation, it was proven

that asymmetric spacecraft systems (and some symmetric systems) were globally

controllable on the attitude and angular velocity space SO(3)× R3 if actuation was

provided by two pairs of thrusters generating two independent torques or with one

pair of thrusters generating a torque about a non-principal axis of the spacecraft.

Furthermore, a spacecraft with two pairs of thrusters was proven small-time locally

controllable (STLC) from all equilibria if and only if it was globally controllable. For

the case of RW actuation, however, [6] showed that the spacecraft dynamics were

inaccessible with less than two RWs due to angular momentum conservation. A

decade later, Krishnan et al. [7] proved that if the total spacecraft system had two

2



reaction wheels and zero total angular momentum, then a reduced set of attitude

dynamics were STLC from all at-rest attitudes.

Results on controllability properties of an underactuated spacecraft with CMGs

began to appear in the late 2000s. Since CMGs are internal momentum devices like

RWs, they suffer the same obstruction to controllability due to angular momentum

conservation. Using a reduced set of equations of motion defined by constant angular

momentum, a spacecraft system can be globally controllable with only one CMG

[8]. STLC for at-rest equilibria, on the other-hand, is more difficult to achieve, as

the property depends heavily on the arrangement and momentum of the individual

CMGs [9–11].

The difficulty of the underactuated attitude control problem arises from the fact

that even if the system is STLC from any at-rest equilibria by either thrusters, RWs,

or some configurations of CMGs, the dynamics cannot be stabilized by any smooth or

continuous time-invariant feedback law [7, 9, 12–14] because the equations of motion

violate Brockett’s necessary condition [15,16]. Stabilization is still possible with time-

periodic feedback laws, but exponential convergence rates cannot be achieved if the

feedback law is smooth [17].

Despite this obstruction to stabilizability, there is a great deal of literature on

techniques for underactuated attitude control. For thruster actuation and RW actua-

tion where the spacecraft system has total zero angular momentum, the control laws

fall into several different categories:

• Open-loop methods that induce a sequence of rotations [7, 13,18,19];

• Nonlinear, Lyapunov-based, feedback control using local representations of

attitude [10,20–23];

• Diffeomorphic transformations of the equations of motion to a simpler form

for control design [7, 13,24];
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• Time-varying/parameter varying feedback techniques [25–28];

• Nonholonomic approaches based on averaging [29–32];

• Geometric phase exploitation [13,18,32].

There are fewer results for CMG actuation where the spacecraft system has zero total

angular momentum, in part because the issue of singularity prevents most feedback

techniques from being used. However, there are open-loop maneuvers [33] and non-

linear, Lyapunov-based techniques [34–36] that can be used to stabilize the attitude

with two CMGs.

The total zero angular momentum assumption for a spacecraft with two RWs or

CMGs may be limiting in practical applications as it is difficult to achieve it in a

space environment. It is undesirable for spacecraft with less than four RWs to have

total zero angular momentum since the wheels must be spinned down during inertial

pointing and operated in the zero crossing region, where their accuracy is decreased,

the friction coefficient is increased and their operational life is reduced. In the case of

CMGs, the total zero angular momentum can result in the CMGs entering a singular

configuration at equilibrium.

The case of nonzero total angular momentum for internal momentum actuation

is less studied. For RWs, [37] defines a subspace of feasible attitudes defined by the

law of angular momentum conservation and gives a procedure for constructing an

open-loop control. A spin-axis stabilization is performed about the uncontrollable

axis of a spacecraft with nonzero total angular momentum and two RWs in [38],

but the topic of inertial pointing is not discussed. Reference [39] discusses the topic

of control of an underactuated spacecraft with two RWs and initial nonzero angular

momentum, but the control law proposed can send the spacecraft into an uncontrolled

rotation for some initial conditions. The inclusion of constant angular momentum for

underactuated attitude control with CMGs is more easily found in the literature, but
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the control laws are limited to being either Lyapunov-based, feedback techniques [14]

or parameter-varying techniques [40].

1.2.2 Contributions & Outline

The contributions of this disseration to the underactuated attitude control problem

are as follows:

1. The development of geometric switching schemes for attitude stabilization of

an underactuated spacecraft with two thrusters, two RWs, or two CMGs. For

RWs, the constant nonzero angular momentum case is treated.

2. The analysis and demonstration that nonlinear model predictive control

(MPC) can be used to generate a discontinuous control law for the stabilization

of an underactuated spacecraft with two RWs and zero angular momentum.

3. The derivation of sufficient and necessary conditions to recover linear con-

trollability of the attitude of a spacecraft with two RWs and Solar Radiation

Pressure (SRP). This result enables the application of conventional linear con-

trol design techniques to control the underactuated spacecraft with two RWs

and SRP.

These contributions are reflected in Chapters 2-5.

To begin the dissertation, the attitude equations of motion for thruster pair, RW,

and CMG actuation are derived in Chapter 2 with all assumptions outlined. These

equations will be basis for all control analysis and design in subsequent chapters.

Chapter 3 discusses the first contribution of the dissertation. The general approach

utilizes switching feedback stabilization techniques which exploit the decomposition

of the system variables into base variables and fiber variables. The base variables are

stabilized to periodic motions with feedback, and the parameters of these periodic

motions are adjusted at discrete time instants to induce a change in the fiber variables
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towards the desired values. The method is applied to spacecraft with thruster pairs,

RWs, and CMGs.

Chapter 4 discusses the second contribution. While MPC has been used for atti-

tude control when the spacecraft is fully actuated by either thrusters and RWs, it has

not been previously utilized in the underactuated case. It is known, however, that

MPC has the remarkable ability to construct control laws that are discontinuous in

terms of state [41, 42]. In this chapter, it is proven that MPC can generate a stabi-

lizing control law for a set of approximate, discrete attitude dynamics which cannot

be stabilized by smooth feedback. Furthermore, numerical simulations demonstrate

that the control law is discontinuous in terms of state, and can be used to stabilize

the actual nonlinear, underactuated attitude dynamics.

Chapter 5 discusses the third contribution and demonstrates a framework for

restoring linear control by including the effects of SRP torques, modeled following [43],

into the spacecraft model. The analysis shows that under appropriate assumptions,

linear controllability is regained and hence spacecraft stabilization can be achieved

with conventional control schemes. In particular, a Linear Quadratic (LQ) approach

is first applied. The LQ approach is chosen due to its robustness, its optimal control

properties and its familiarity to aerospace engineers. A pole placement scheme will

also be used to improve convergence time. By taking advantage of the change in the

dynamics induced by SRP torques, two RWs are able to slowly correct the attitude

errors over time.
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1.3 Rotational and Translational Underactuated

Control in a Gravity Field

1.3.1 Background

For satellite orbits about a large central body, the ratio between a spacecraft’s largest

dimension and the radius of its orbit is small. Thus in the orbit and attitude equations

of motion, terms higher than first-order in this “dimension ratio” are typically ne-

glected, resulting in decoupled translational and rotational dynamics. In the 1960’s,

the equations of motion of a rigid spacecraft under the influence of spherical and

oblate gravitational fields were developed [44–46], revealing that if second-order and

higher terms in the dimension ratio are included, then a spacecraft’s translational

motion is affected by its attitude and vice versa. In particular for very large space-

craft, terms up to third and fourth-order in the dimension ratio must be included for

accurate orbital motion analysis and simulation [47].

The primary use of these coupled rotational and translational dynamics has been

to determine conditions for the existence of free (unforced) motions in a central grav-

ity field [48–51] as well as their stability when they exist [50,52–54]. Some literature

relaxes the assumption of a central gravity field and analyzes the existence and stabil-

ity of free motion of satellites when the central body is oblate [55] and non-spherical

(produced by asteroids and small bodies) [56, 57]. While the stability analysis is

extensive, there exists limited literature on the controllability of these coupled dy-

namics [58–61].

In Chapter 6, we consider the question of controllability of the coupled rotational

and translational dynamics if the spacecraft is only equipped with internal attitude

actuation. The only controllability analysis of a spacecraft in a central gravity field

with attitude actuation was performed by Lian et al. [58]. It was proven that under

certain assumptions on spacecraft configurations, a spacecraft was globally control-
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lable in terms of translation and orientation as long as the spacecraft could generate

three independent torques via either thruster pairs or RWs. However, because the

translational dynamics are expressed in inertial space, the topic of local controllability

about an equilibrium orbit has not been explored. In addition, even though control-

lability has been proven, no control law has been developed that can take advantage

of this gravity-induced coupling between translational and attitude dynamics.

1.3.2 Contributions & Outline

The contributions of the dissertation towards underactuated spacecraft control are as

follows:

1 The derivation of exact and approximate, coupled translational and rotational

equations of motion that are relative with respect to an unforced trajectory and

which evolve on a manifold defined by constant angular momentum.

2. The small-time local controllability proof for specific spacecraft assemblies

equipped with three RWs.

3. The proof that the approximate coupled translational and rotational equa-

tions of motion are linearly controllable for certain spacecraft assemblies with

great circle equilibrium orbits, facilitating the construction of linear controllers

for stabilization.

One of the interesting consequences of this analysis is that the relative dynamics are

similar to that of Hill-Clohessy-Wiltshire (HCW) relative spacecraft dynamics [62].

The local controllability analysis is of particular interest, as to the author’s knowledge,

it has never been explored in the literature. These developments are contained in

Chapter 6 of the dissertation.
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1.4 Relevant Publications

Below is a list of relevant publications pertaining to the subject matter of this disser-

tation:
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ing Law for Two Reaction Wheels and Constant Angular Momentum.” Journal

of Guidance, Control, and Dynamics, (to appear), AIAA, 2016.

• Petersen, C., Leve, F., Flynn, M., and Kolmanovsky, I., ”Recovering Linear

Controllability of an Underactuated Spacecraft by Exploiting Solar Radiation

Pressure.” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 4, 2016,

pp. 826–837.

• Petersen, C., Leve, F., and Kolmanovsky, I., ”On Controllability of an Under-

actuated Spacecraft with Two Wheels and Constant Nonzero Angular Momen-

tum.” Journal of Guidance, Control, and Dynamics, (in preparation), AIAA,

2016.

• Petersen, C., Leve, F., and Bloch, A., Kolmanovsky, I., Using Geometric

Phase for Attitude Control of a Spacecraft with Two Control Moment Gyros.”

Journal of Guidance, Control, and Dynamics, (in preparation), AIAA, 2016

• Petersen, C., Leve, F., and Kolmanovsky, I., ”Hybrid Switching Attitude Con-

trol of Underactuated Spacecraft Subject to Solar Radiation Pressure,” Space
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Flight Mechanics, Proceedings of the AIAA/AAS Meeting on, Paper 15-327,

AIAA/AAS, Williamsburg, VA, 2015.

• M. Flynn, F. Leve, C. Petersen, and I. Kolmanovsky, Linear Control of Un-

deractuated Spacecraft with Two Reaction Wheels Made Feasible by Solar Ra-

diation Pressure, American Control, Proceedings of the IEEE Conference on,

IEEE, Chicago, IL, 2015, pp. 3193-3198.

Underactuated Rotational and Translational Control

• Petersen, C., Leve, F., Bloch, A., and Kolmanovsky, I., ”Local Controllabil-

ity of a Spacecraft in a Central Gravity Field with only Attitude Actuation.”

Journal of Guidance, Control, and Dynamics, (in preparation), AIAA, 2016.

1.5 Notation

Throughout this dissertation the following notation is used.

• Frames are denoted by script font, S.

• Bodies (i.e., collections of mass particles) are given by Fraktur font, S.

• The mass of a body S is given by m
S

.

• General physical vectors are designated by an overscript arrow ~∗.

• The physical position vector of A with respect to point B is given by ~r
A/B

.

• The physical angular velocity vector of S with respect to T is given by ~ωS/T .

• The physical linear angular momentum of A with respect to point B in frame

S is given by ~p
A/B/S .

• The physical angular momentum of A with respect to point B in frame S is

given by ~H
A/B/S .
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• Physical unit vectors are expressed with an overscript hat, ∗̂ .

• The physical inertia matrix of body S with respect to B is denoted by ~J
S/B

.

Note that the physical inertia matrix is coordinate-independent and operates

by dyadic product on a physical vector to produce a physical vector, see [63].

• The time derivative of a physical vector or matrix ~∗ with respect to a given

frame S is
S·
~∗ .

• The notation for a mathematical vector obtained by resolving a physical vector

~r in a given frame S is ~r|S .

• All orientation matrices are denoted by bold font, B.

• All mathematical vectors/matrices are designated by overbars, ∗̄.

• All mathematical unit vectors are given by overscript checks, ∗̌ .

• An n× n identity matrix is denoted as In.

• The trace of a mathematical matrix J̄ is denoted by tr
[
J̄
]
.

• The determinant of a mathematical matrix J̄ is denoted by det
[
J̄
]
.

• The skew-symmetric operator is given by [∗]×. This operator is related to

the cross product between physical vectors or mathematical vectors, i.e., ~r
A/B
×

~r
C/B

=
[
~r
A/B

]×
~r
C/B

and ā× b̄ = [ā]× b̄. In particular, for mathematical vectors

of the general form ā = [ a1 a2 a3 ]T,

[ā]× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (1.1)

• The double cross operator is given by [∗]2× =
(
[∗]×

)2
.
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CHAPTER 2

Attitude Equations of Motion

The following chapter derives equations of motion which are subsequently used in

Chapters 3, 4, and 5. Step-by step derivations are given, with a summary of the

equations, variables, and assumptions provided afterwards. Please refer to Section

1.5 for clarifications on the notation. While the equations of motion are derived in

other references (e.g. see [1, 63, 64]), in this chapter we provide relevant derivations

and assumptions in one place, utilizing common notation. In addition, there are

derivations which include the general treatment of reduced attitude equations which

are novel.

2.1 Spacecraft Configuration

For the underactuated attitude control problem, we will consider a rigid spacecraft

bus equipped with one of three types of actuators,

• External moment actuation via pairs of gas thrusters or of cold gas jets;

• RW actuation;

• CMG actuation.

Each type of actuation has its advantages and disadvantages, which are discussed

below.
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2.1.1 External Moment Actuation

External moment actuation using thrusters or jets is a simple way to perform attitude

maneuvers, and is advantageous in that it is not restricted by the law of angular

momentum conservation. The disadvantage is that thrusters are typically on-off,

and thus any intermediary values of thrust must be obtained through pulse-width

modulation (PWM), resulting in coarse attitude maneuvers. The most limiting factor

to thruster-based actuation is that fuel must be expended. Thus thrusters are used

sparingly for attitude maneuvers and desaturation of RWs [65,66].

2.1.2 Reaction Wheel Actuation

RWs are flywheels with spin axes fixed relative to the spacecraft bus and with the

wheel speeds controlled using electric motors. By spinning up and down the wheel,

momentum is exchanged to and from the spacecraft bus, resulting in a torque that

causes the spacecraft to rotate. There are two large incentives to using RWs. Firstly,

because RWs only require electric power, no fuel is expended while performing maneu-

vers. Secondly, since the spinning of the wheel can be commanded accurately, RWs

can be used for precise-pointing missions. However, RWs are internal moment devices

and must obey the law of angular momentum conservation. In addition, operating

the wheels in the so called “zero crossing” region (near zero speed), where friction

and stiction are high, can increase power consumption and degrade the operational

life of the actuator. RWs also cannot exert constant torques for long periods of time.

Since constant torque corresponds to constant wheel acceleration, the RWs may reach

their saturation limits, preventing the further transfer of momentum necessary for a

desired attitude maneuver. To desaturate the wheels, momentum dumping maneu-

vers can be performed with actuators that provide an external torque and are not

constrained by angular momentum conservation, such as external thrusters [65, 66],

magnetorquers [67–69], or both [70].
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Figure 2.1: Simplified RW [1].

Figure 2.2: RW major parts [1].

2.1.3 Control Moment Gyro Actuation

CMGs are also momentum exchanging devices and can be thought of as extensions

of RWs [1], in that the spin axes are free to rotate within the spacecraft bus. Though

torques can be generated by accelerating the wheel as in the RW case, larger torques

can be produced by rotating the spin axis of the wheel. CMG actuators are advan-

tageous in that they can be used for precise pointing, do not expend fuel, and can

generate a larger magnitude of torque. However, because these actuators are inter-

nal moment devices, they are, similarly to RWs, constrained by the law of angular

momentum conservation. Furthermore, because the main contribution to the total
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torque is produced by rotating the spin axis, there are configurations in which all of

the CMG torque axes lie in a plane. This is known as CMG singularity, and while

such configurations can be avoided using some steering laws [71], the problem in deal-

ing with such singularities is still being actively researched. In this thesis, we will

consider the most common type of CMG, a single gimbaled control moment gyro in

which the spin axis spans a plane and whose wheel is spinning at a constant rate.

Figure 2.3: Simplified CMG [1].

Figure 2.4: CMG major parts [1].

2.2 Frames

The rotational equations of motion are derived with the help of several frames:

• An inertial frame I;

15



• A frame B with an orthonormal coordinate system defined by b̂x , b̂y , b̂z which

is attached to the spacecraft bus;

• FramesWi with orthonormal coordinate systems defined by ŵ
ix
, ŵ

iy
, ŵ

iz
which

are attached to the principal frames for each ith RW;

• Frames Gj with orthonormal coordinate systems defined by ĝ
jx
, ĝ

jy
, ĝ

jz
which

are attached to the principal frames for each jth gimbal. The coordinate systems

are also assumed to align with the principal axes of the jth rotor;

• Frames Rj attached to the jth rotor.

Without loss of generality, we assume that frame I is aligned to coincide with the

desired inertial pointing attitude, the unit vectors ŵ
ix

and ĝ
jx

are aligned with the

spin axes of the RW and rotor, respectively, and the unit vector ĝ
jy

is aligned with

the gimbal spin axis. The objective in Chapters 3, 4, and 5 is to align B with I. Note

as well that at this point, we do not assume that any frame’s origin coincides with

the center-of-mass (COM) of the spacecraft bus.

2.3 Attitude Representations & Kinematics

In this dissertation we will use two different types of attitude representations to

describe the orientation of B relative to I; orientation matrices and 3-2-1 Euler angles.

Orientation matrices, also known as direction cosine matrices (DCMs), are the

most direct way of describing attitude. All orientation matrices belong to the matrix

representation of the mathematical group SO(3) (which stands for the special or-

thogonal group of 3×3 matrices with determinant equal to 1). If B is the orientation

matrix of B relative to I and ω̄ = [ ω1 ω2 ω3 ]T is the angular velocity of B relative

to I expressed in B (i.e., ω̄ = ~ωB/I
∣∣
B), then the orientation kinematics, given by [64],
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are

Ḃ = − [ω̄]×B. (2.1)

Equation (2.1) is simple and linear, but since orientation matrices are constrained

to have a determinant of 1, the nine matrix entries are constrained by six algebraic

equations.

The second type of attitude parameterization used is a sequence of 3-2-1 Euler

angles ψ (yaw), θ (pitch), and φ (roll). With this representation, the matrix B can

be constructed as

B =


θcψc θcψs −θs

φsθsψc − φcψs φsθsψs + φcψc φsθc

φcθsψc + φsψs φcθsψs − φsψc φcθc

 , (2.2)

where sin(∗) = ∗s and cos(∗) = ∗c. The kinematic equations using Euler angles, given

in [64], are

˙̄Θ = M̄(Θ̄)ω̄, (2.3)

where Θ̄ = [ φ θ ψ ]T and

M̄(Θ) =
1

cos(θ)


cos(θ) sin(φ) sin(θ) cos(φ) sin(θ)

0 cos(φ) cos(θ) − sin(φ) cos(θ)

0 sin(φ) cos(φ)

 . (2.4)

Note that (2.3) is undefined at θ = 90◦. This is due to that fact that there is no

unique mapping from an orientation matrix to an Euler sequence with θ = 90◦.

This phenomenon is called gimbal lock, and it is a natural consequence of any three

parameter representation of orientation. Thus 3-2-1 Euler angles are primarily used

when small attitude maneuvers are considered.
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2.4 Angular Momentum

The total angular momentum of the spacecraft system T about a point O (which we

will take to be fixed in the spacecraft bus) in the inertial frame I can be given as the

sum of individual terms,

~H
T/O/I = ~H

B/O/I +

NRW∑
i=1

~H
Wi/O/I

+

NCMG∑
j=1

~H
CMGj/O/I

, (2.5)

where ~H
B/O/I is the angular momentum of the spacecraft bus about O, ~H

Wi/O/I
is

the angular momentum of the ith RW about O, and ~H
CMGj/O/I

is the angular mo-

mentum of the jth CMG about O. Note that the individual momentum components

in (2.5) are with respect to the inertial frame I. Each of the individual momentum

components are characterized in the subsections that follow.

2.4.1 Spacecraft Bus Angular Momentum

The angular momentum of the spacecraft bus about point O is given by

~H
B/O/I =

∫
B

(
~r
Bc/O

+ ~r
ρ/Bc

)
×
(
I·
~r
Bc/O

+
I·
~r
ρ/Bc

)
dm, (2.6)

where point Bc is a point at the bus’ COM and ρ designates an infinitesimal point

mass in the bus. Using the transport theorem on (2.6) yields

~H
B/O/I =

∫
B

(
~r
Bc/O

+ ~r
ρ/Bc

)
×
(
B·
~r
Bc/O

+
B·
~r
ρ/Bc

+ ~ωB/I ×
(
~r
Bc/O

+ ~r
ρ/Bc

))
dm.

(2.7)

We now make the following assumption:

Assumption 2.1 The spacecraft bus is a rigid body.
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By Assumption 2.1,
B·
~r
ρ/O

= 0 and
B·
~r
Bc/O

= 0. Since
∫
B

~r
ρ/Bc

dm = 0, (2.7) simplifies to

~H
B/O/I = −

∫
B

([
~r
ρ/Bc

]2×
+
[
~r
ρ/Bc

]2×
)
~ωB/Idm. (2.8)

Integrating over the entire body in (2.8) gives the final inertial angular momentum

expression

~H
B/O/I =

(
−m

B

[
~r
Bc/O

]2×
+ ~J

B/Bc

)
~ωB/I

= ~J
B/O

~ωB/I .

(2.9)

2.4.2 Reaction Wheel Angular Momentum

Consider an ith RW wheel in the spacecraft bus with the following assumptions:

Assumption 2.2 The RW rotors are rigid with constant density.

Assumption 2.3 The RWs are symmetric about their spin axes.

Let the location of the ith RW’s COM be denoted by point Wic. Then the angular

momentum of the ith RW about point O is

~H
Wi/O/I

=

∫
Wi

(
~r
Wic/O

+ ~r
ρ/Wic

)
×
(
I·
~r
Wic/O

+
I·
~r
ρ/Wic

)
dm, (2.10)

where ρ designates an infinitesimal point mass within the ith RW. Recalling that the

RW is spinning and using the transport theorem in (2.10) gives

~H
Wi/O/I

=

∫
Wi

~r
Wic/O

×
(
B·
~r
Wic/O

+ ~ωB/I × ~rWic/O +
Wi·
~r

ρ/Wic
+ ~ωWi/I × ~rρ/Wic

)
dm

+

∫
Wi

~r
ρ/Wic

×
(
B·
~r
Wic/O

+ ~ωB/I × ~rWic/O +
Wi·
~r

ρ/Wic
+ ~ωWi/I × ~rρ/Wic

)
dm.

(2.11)
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Assumption 2.2 implies that
Wi·
~r

ρ/Wic
= 0. Assumption 2.3 implies that the COM of

the RW lies along its spin axis. Combined with Assumption 2.2, this gives that the

COM of the RW remains fixed in B, (i.e.,
B·
~r
Wic/O

= 0). Then (2.11) simplifies to

~H
Wi/O/I

= −

∫
Wi

(([
~r
Wic/O

]2×
+
[
~r
ρ/Wic

]2×
)
~ωB/I +

[
~r
ρ/Wic

]2×
~ωWi/B

)
dm. (2.12)

Integrating (2.12) yields the final angular momentum of the ith RW,

~H
Wi/O/I

=

(
−m

Wi

[
~r
Wic/O

]2×
+ ~J

Wi/Wic

)
~ωB/I + ~J

Wi/Wic
~ωWi/B

= ~J
Wi/O

~ωB/I + ~J
Wi/Wic

~ωWi/B .

(2.13)

2.4.3 Angular Momentum of the Control Moment Gyro

For the jth CMG, we make the following assumptions:

Assumption 2.4 Both the gimbal and the rotor of each CMG are two separate

rigid bodies of constant density.

Assumption 2.5 Both the gimbal and rotor of each CMG are symmetric about

their spin axes.

Assumption 2.4 and Assumption 2.5 will play similar roles as they did in the RW case.

Since the CMG is a configuration of two rigid bodies, the total angular momentum

contribution of the jth CMG is the sum of its parts. Thus,

~H
CMGj/O/I

= ~H
Rj/O/I

+ ~H
Gj/O/I

. (2.14)

The derivation of the gimbal’s angular momentum is the same as for the RW case.

Denote by Gjc the location of the jth gimbal’s COM. As in the RW case, Assumption
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2.4 and Assumption 2.5 imply that the COM of the gimbal alone is along its spin

axis and is fixed in frame B. Thus its angular momentum about O is

~H
Gj/O/I

= ~J
Gj/O

~ωB/I + ~J
Gj/Gjc

~ωGj/B . (2.15)

Now consider the rotor of the jth CMG. Denoting its COM by Rjc, the rotor

angular momentum contribution about O is

~H
Rj/O/I

=

∫
Rj

(
~r
Rjc/O

+ ~r
ρ/Rjc

)
×
(
I·
~r
Rjc/O

+
I·
~r
ρ/Rjc

)
dm. (2.16)

In a similar fashion as when deriving the dynamics for the spacecraft bus, RW, and

CMG gimbal, we use the transport theorem in (2.16) and obtain

~H
Wi/O/I

=

∫
Rj

~r
Rjc/O

×
(
B·
~r
Rjc/O

+ ~ωB/I × ~rRjc/O +
Rj ·
~r

ρ/Rjc
+ ~ωRj/I × ~rρ/Rjc

)
dm

+

∫
Rj

~r
ρ/Rjc

×
(
B·
~r
Rjc/O

+ ~ωB/I × ~rRjc/O +
Rj ·
~r

ρ/Rjc
+ ~ωRj/I × ~rρ/Rjc

)
dm.

(2.17)

Under Assumption 2.4 and 2.5, the location of the rotor’s COM is along its rotation

axis, but due to the rotation of the gimbal, it could be changing with time in B (i.e.,
B·
~r
Rjc/O

6= 0 in contrast to the gimbal and the RW case). Thus the following assumption

is now made:

Assumption 2.6 The COM of each rotor is located at the intersection of the

rotor spin axis and the gimbal spin axis.

Assumption 2.6 is valid as manufacturers of CMGs will balance the gimbals and rotors

in such a fashion. With Assumption 2.6, the rotor’s COM remains fixed in B, and its
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angular momentum becomes

~H
Rj/O/I

= −

∫
Rj

(([
~r
Rjc/O

]2×
+
[
~r
ρ/Rjc

]2×
)
~ωB/I +

[
~r
ρ/Rjc

]2×
~ωRj/B

)
dm. (2.18)

Integrating (2.18) over the entire rotor gives

~H
Rj/O/I

= (−m
Rj

[
~r
Rjc/O

]2×
+ ~J

Rj/Rjc
)~ωB/I + ~J

Rj/Ric
~ωRj/B

= ~J
Rj/O

~ωB/I + ~J
Rj/Ric

~ωGj/B + ~J
Rj/Ric

~ωRj/Gj .

(2.19)

The total angular momentum due to the jth CMG is then

~H
CMGj/O/I

=
(
~J
Gj/O

+ ~J
Rj/O

)
~ωB/I +

(
~J
Gj/Gjc

+ ~J
Rj/Rjc

)
~ωGj/B + ~J

Rj/Rjc
~ωRj/Gj . (2.20)

2.4.4 Total Angular Momentum

The total angular momentum of the spacecraft using (2.9), (2.13) and (2.20) is

~H
T/O/I = ~J

T/O
~ωB/I +

NRW∑
i=1

~J
Wi/Wic

~ωWi/B

+
NCMG∑
j=1

(
~J
Gj/Gjc

+ ~J
Rj/Rjc

)
~ωGj/B + ~J

R/Rjc
~ωRj/Gj ,

(2.21)

where

~J
T/O

= ~JB/O +
NRW∑
i=1

~J
Wi/O

+
NCMG∑
j=1

~J
Gj/O

+ ~J
Rj/O

. (2.22)

Note that since frames Wi and Gj by construction coincide with the principal

frames of the RWs and the CMG gimbals/rotors, respectively, the actuator physical
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inertia matrices can be expressed as

~J
Wi/Wic

= J
wsi
ŵ
ix
ŵ′
ix

+ J
wti
ŵ
iy
ŵ′
iy

+ J
wti
ŵ
iz
ŵ′
iz
,

~J
Gj/Gjc

= J
gsj
ĝ
jx
ĝ′
jx

+ J
ggj
ĝ
jy
ĝ′
jy

+ J
gtj
ĝ
jz
ĝ′
jz
,

~R
Rj/Rjc

= J
rsj
ĝ
jx
ĝ′
jx

+ J
rtj
ĝ
jy
ĝ′
jy

+ J
rtj
ĝ
jz
ĝ′
jz
,

(2.23)

where ∗′ is the dual of a physical vector ∗ [63]. Note that the constant density and

symmetry assumptions about the spin axes are reflected in these expressions. We can

also express the rotations of the RW, gimbal, and rotor by the following expressions:

~ωWi/B = ν
i
ŵ
ix
,

~ωGj/B = δ̇
j
ĝ
jy
,

~ωRj/Gj = η
j
ĝ
jx
,

(2.24)

where ν
i

is the speed of the ith RW, δ̇
j

is the gimbal rate of the jth CMG, and η
j

is

the rotor speed of the jth CMG. From (2.23) and (2.24), we note that

1 The vector ~J
Wi/Wic

~ωWi/B is the angular momentum component about the RW

spin axis;

2 The vector ~J
GRj/Gjc

~ωGj/B is the angular momentum component of the rotor

and the gimbal about the gimbal axis;

3 The vector ~J
Rj/Rjc

~ωRj/Gj is the angular momentum component of the rotor

about the rotor axis.

Therefore, substituting in (2.23) and (2.24) into (2.21) gives the final angular mo-
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mentum relation

~H
T/O/I = ~J

T/O
~ωB/I +

NRW∑
i=1

J
wsi
ν
i
ŵ
ix

+
NCMG∑
j=1

(
J
ggj

+ J
rtj

)
δ̇
j
ĝ
jy

+ J
rsi
η
j
ĝ
jx
.

(2.25)

2.5 Dynamics

From the angular momentum properties, it follows that

I·
~H

T/O/I +m
T
~r
Tc/O
×
I··
~r
O/A

= ~M
T/O

, (2.26)

where ~M
T/O

are the external moments acting on the spacecraft system about point

O, A is a point fixed in I, and Tc is a point coinciding with the COM of the entire

spacecraft system T. At this point we make the following assumption:

Assumption 2.7 The COM of the spacecraft system that includes the space-

craft bus, RWs, and CMGs coincides with O,

which eliminates the second term on the left in (2.26). In order to calculate the time

derivative of the total angular momentum with respect to the inertial frame, we will

separate the problem into parts and use various transport theorems.

Firstly, we analyze the time derivative of the first term of (2.25), yielding

I·︷ ︸︸ ︷
~J
T/O

~ωB/I =

B·︷ ︸︸ ︷
~J
T/O

~ωB/I + ~ωB/I × ~J
T/O

~ωB/I ,

=
B·
~J
T/O

~ωB/I + ~J
T/O

B·
~ωB/I + +~ωB/I × ~J

T/O
~ωB/I .

(2.27)

Note that the spacecraft bus is a rigid body and thus its inertia matrix does not

change with time in B,
B·
~J
B/O

= 0. (2.28)
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By Assumption 2.2 and Assumption 2.3, the RWs are symmetric and of constant

density. Thus the inertia matrix does not change in time with respect to frame B,

regardless of whether the wheels accelerate,

B·
~J
Wi/O

= 0. (2.29)

The inertia of gimbal of the CMG can, however, change in B, and thus

B·
~J
Gj/O

=
B·
~J
Gj/Gjc

,

=
[
~ωGj/B

]×
~J
Gj/Gjc

− ~J
Gj/Gjc

[
~ωGj/B

]×
.

(2.30)

The rotor’s inertia does not change with time in Gj, but it does change with time in

B, and therefore

B·
~J
Rj/O

=
B·
~J
Rj/Rjc

,

=
[
~ωGj/B

]×
~J
Rj/Rjc

− ~J
Rj/Rjc

[
~ωGj/B

]×
.

(2.31)

Substituting (2.28)-(2.31) into (2.27) gives

I·︷ ︸︸ ︷
~J
T/O

~ωB/I = ~J
T/O

B·
~ωB/I + ~ωB/I × ~J

T/O
~ωB/I +

(
NCMG∑
j=1

[
~ωGj/B

]×
( ~J

Gj/Cjc
+ ~J

Rj/Cjc
)

)
~ωB/I

−

(
NCMG∑
j=1

( ~J
Gj/Cjc

+ ~J
Rj/Cjc

)
[
~ωGj/B

]×)
~ωB/I .

(2.32)

For the RWs, note that

NRW∑
i=1

I·︷ ︸︸ ︷
J
wsi
ν
i
ŵ
ix

=

NRW∑
i=1

J
wsi

(
ν̇
i
ŵ
ix

+ ν
i

[
~ωB/I

]×
ŵ
ix

)
. (2.33)
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Similarly for the gimbals of the CMGs,

NCMG∑
j=1

I·︷ ︸︸ ︷(
J
ggj

+ J
rtj

)
δ̇
j
ĝ
jy

=

NCMG∑
j=1

(
J
ggj

+ J
rtj

)(
δ̈
j
ĝ
jy

+ δ̇
j

[
~ωB/I

]×
ĝ
jy

)
. (2.34)

The rotors of the CMGs are a little different, as the spin axis of the rotor changes in

B, therefore

NCMG∑
j=1

I·︷ ︸︸ ︷
J
rsi
η
j
ĝ
jx

=
NCMG∑
j=1

J
rsi

(
η̇
j
ĝ
jx

+ η
j

[
~ωGj/I

]×
ĝ
jx

)

=
NCMG∑
j=1

J
rsi

(
η̇
j
ĝ
jx

+ η
j

[
δ̇
j
ĝ
jy

+ ~ωB/I

]×
ĝ
jx

)

=
NCMG∑
j=1

J
rsi

(
η̇
j
ĝ
jx

+ η
j
δ̇
j
ĝ
zj

+
[
~ωB/I

]×
ĝ
jx

)
.

(2.35)

The full dynamics, substituting in (2.32), (2.33), (2.34), and (2.35) into (2.26) is

given by

~J
T/O

B·
~ωB/I = −

[
~ωB/I

]×
~H

T/O/I + ~M
ext/O
−

NRW∑
i=1

J
wsi
ν̇
i
ŵ
ix
−

NCMG∑
j=1

(
J
ggj

+ J
rtj

)
δ̈
j
ĝ
jy

−
NCMG∑
j=1

J
rsi

(
η̇
j
ĝ
jx

+ η
j
δ̇
j
ĝ
zj

)
+

(
NCMG∑
j=1

[
~ωGj/B

]×
( ~J

Gj/Cjc

)
~ωB/I

−

(
NCMG∑
j=1

( ~J
Gj/Cjc

+ ~J
Rj/Cjc

)
[
~ωGj/B

]×)
~ωB/I .

(2.36)
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2.6 Summary and Resolved Equations of Motion

The total angular momentum and dynamics of the spacecraft system, when physical

vectors are resolved (notation is given after the equations), are described by the fol-

lowing equations:

Angular Momentum

BH̄ = J̄ ω̄ +

NRW∑
i=1

J
wsi
ν
i
w̌
i
+

NCMG∑
j=1

(
J
ggj

+ J
rtj

)
δ̇
j
ǧ
j

+ J
rsi
η
j
ȟ
j
, (2.37)

where

J̄ = J̄
B

+
NRW∑
i=1

J̄
Wj

+
NCMG∑
j=1

GT
j

(
J̄

Gj
+ J̄

Rj

)
G

j . (2.38)

Dynamics

J̄ ˙̄ω = [ω̄]×BH̄ + M̄ext −
NRW∑
i=1

J
wsi
ν̇
i
w̌
i

−
NCMG∑
j=1

(
J
ggj

+ J
rtj

)
δ̈
j
ǧ
j
−

NCMG∑
j=1

J
rsi

(
η̇
j
ȟ
j

+ η
j
δ̇
j
τ̌
j

)

−
NCMG∑
j=1

δ̇
j

([
ǧ
j

]×
GT

j
(J̄

Gj
+ J̄

Rj
)G

j
−GT

j
(J̄

Gj
+ J̄

Rj
)G

j

[
ǧ
j

]×)
ω̄.

(2.39)

The following notation corresponds to all related variables

Orientation Matrices

• B : Orientation matrix of B relative to I,

• G
j

: Orientation matrix of Gj relative to B.
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Rotational Vectors

• ω̄ = ~ωB/I
∣∣
B : Angular velocity of B relative to I expressed in B,

• H̄ = ~H
T/O/I

∣∣
I : Total spacecraft system angular momentum

about point O expressed in I,

• M̄ext = ~M
ext/O

∣∣
B : External moments acting on the spacecraft system

expressed in B.

Resolved Inertia Matrices

• J̄ = ~J
T/O

∣∣
B : Locked inertia matrix expressed in B about point O,

• J̄
B

= ~J
B/Bc

∣∣
G : Bus inertia matrix expressed in B about point Bc,

• J̄
Wi

= ~J
Wi/Wic

∣∣
B : ith RW inertia matrix expressed in B about point Wic,

• J̄
Gj

= ~J
Gj/Gjc

∣∣
Gj

: jth gimbal inertia matrix expressed in Gj about

point Gjc,

• J̄
Rj

= ~J
Rj/Rjc

∣∣
Gj

: jth rotor inertia matrix expressed in Gj about

point Rjc.

Specific Inertias

• J
wsi

: ith RW inertia about its spin axis,

• J
gsj

: jth gimbal inertia about its spin axis,

• J
rsj

: jth rotor inertia about its spin axis,

• J
rtj

: jth rotor inertia about its transversal axis.

Actuator Unit Vectors

• w̌
i

= ŵ
ix

∣∣
B : Spin axis of ith RW expressed in B,

• ȟ
j

= ĝ
jx

∣∣
B : Spin axis of jth rotor expressed in B,

• ǧ
j

= ĝ
jy

∣∣
B : Spin axis of jth gimbal expressed in B,

• τ̌
j

= ĝ
jz

∣∣
B : Torque axis of jth gimbal expressed in B.
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Actuator Parameters

• ν
i

: ith RW rate,

• δ
j

: jth gimbal angle,

• η
j

: jth rotor rate.

And recall that the following assumptions were made:

Assumption 2.1 The spacecraft bus is a rigid body.

Assumption 2.2 The RW rotors are rigid with constant density.

Assumption 2.3 The RWs are symmetric about their spin axes.

Assumption 2.4 Both the gimbal and the rotor of each CMG are two separate

rigid bodies of constant density.

Assumption 2.5 Both the gimbal and rotor of each CMG are symmetric about

their spin axes.

Assumption 2.6 The COM of the rotor is located at the intersection of the

rotor spin axis and the gimbal spin axis.

Assumption 2.7 The COM of the spacecraft system that includes the space-

craft bus, RWs, and CMGs coincides with O.

2.6.1 External Moment Actuation Only

If only external moment actuation is considered, the dynamics of the spacecraft sys-

tem simplify to

J̄
B

˙̄ω = − [ω̄]× J̄
B
ω̄ + ū+ M̄ext . (2.40)

In these dynamics, the following assumption is made:

Assumption 2.8 The expulsion of gas does not affect the spacecraft system’s

mass,
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and therefore, for instance, the effects due to fuel slosh do not need to be accounted

for. In general this assumption may be relaxed as there are control techniques that

account for the effects of mass expulsion [72,73].

2.6.2 Reaction Wheel Actuation Only

Considering only RW actuation, the dynamics of the spacecraft system become

J̄ ˙̄ω = − [ω̄]×
(
J̄ ω̄ +

NRW∑
i=1

J
wsi
ν
i
w̌
i

)
−

NRW∑
i=1

J
wsi
ν̇
i
w̌
i
+ M̄ext , (2.41)

where

J̄ = J̄
B

+

NRW∑
i=1

J̄
Wi
. (2.42)

The angular momentum of the system can be simply given as

BH̄ = J̄ ω̄ +

NRW∑
i=1

J
wsi
ν
i
w̌
i
. (2.43)

The control inputs to the system are RW accelerations

u
i

= ν̇
i
, i = 1 . . . NRW . (2.44)

2.6.3 Control Moment Gyro Actuation Only

For the control moment gyro actuation, the angular momentum is given by

BH̄ = J̄ ω̄ +

NCMG∑
j=1

(
J
ggj

+ J
rtj

)
δ̇
j
ǧ
j

+ J
rsi
η
j
ȟ
j

+ M̄ext (2.45)

where

J̄ = J̄
B

+
NCMG∑
j=1

GT
j

(
J̄

Gj
+ J̄

Rj

)
G

j (2.46)

To simplify the treatment, we make the following assumptions
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Assumption 2.9 The rotors spin at constant nonzero speeds.

Assumption 2.10 The torque on the spacecraft due to gimbal acceleration is

neglectable.

Assumption 2.11 The time rate of change of J̄ in B negligible.

These assumptions are reasonable and commonly made in the treatment of CMG

actuation [1]. The dynamics of the spacecraft system with just CMG actuation then

become

J̄ ˙̄ω = [ω̄]×
(
J̄ ω̄ +

NCMG∑
j=1

(
J
ggj

+ J
rtj

)
δ̇
j
ǧ
j

+ J
rsi
η
j
ȟ
j

)
−

NCMG∑
j=1

δ̇
j
J
rsi
τ̌
j

+ M̄ext .

(2.47)

The total angular momentum for the system reduces to

BH̄ = J̄ ω̄ +

NCMG∑
j=1

(
J
ggj

+ J
rtj

)
δ̇
j
ǧ
j

+ J
rsi
η
j
ȟ
j
. (2.48)

Recall that the gimbal axis ǧ
j

is fixed in the spacecraft bus and therefore, using the

orientation matrix G
j
, can be explicitly given by

ǧ
j

= GT
j


0

0

1

 , (2.49)

whereas the angular momentum axis ȟ
j

and the torque axis τ̌
j

depend on the gimbal

angle δ
j

and are given by

ȟ
j

= GT
j


cos(δ

j
)

sin(δ
j
)

0

 , τ̌
j

= GT
j


sin(δ

j
)

− cos(δ
j
)

0

 . (2.50)
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For CMGs, the control inputs are the gimbal rates

u
i

= δ̇
i
, i = 1 . . . NCMG. (2.51)

2.7 Reduced Attitude Equations of Motion

Consider now the special case in which there are no external moments acting on the

spacecraft system (i.e., M̄ext = 0). When attitude control is provided by RWs or

CMGs, angular momentum is conserved and the spacecraft’s motion is constrained.

However, this conservation relation can also be exploited to derive a reduced set of

attitude equations of motion, denoted as RAE’s. In this dissertation, we use two sets

of reduced dynamics, one for RWs and one for CMGs.

For RWs, the angular momentum (2.43) can be rewritten as

ω̄ = J̄−1

(
BH̄ −

NRW∑
i=1

J
wsi
ν
i
w̌
i

)
. (2.52)

We will choose Euler angles to parameterize the attitude in the case of RW actua-

tion. Substituting (2.52) into (2.3), and noting that the control inputs are the RW

accelerations, the RAE’s for RWs are

˙̄Θ = M̄(Θ̄)J̄−1

(
BH̄ −

NRW∑
i=1

J
wsi
ν
i
w̌
i

)
,

ν̇
i

= u
i
, i = 1 . . . NRW .

(2.53)

For CMGs, the angular momentum (2.48) can be similarly rewritten as

ω̄ = J̄−1

(
BH̄ −

NCMG∑
j=1

(
J
ggj

+ J
rtj

)
δ̇
j
ǧ
j
− J

rsi
η
j
ȟ
j

)
. (2.54)

32



For attitude parametrization, SO(3) is used. Substituting (2.54) into (2.1), and

noting that the control is given by (2.51), the RAE’s for CMGs are

Ḃ =

[
J̄−1

(
BH̄ −

NCMG∑
j=1

(
J
ggj

+ J
rtj

)
δ̇
j
ǧ
j
− J

rsi
η
j
ȟ
j

)]×
B,

δ̇
i

= u
i
, i = 1 . . . NCMG.

(2.55)

Note that (2.53) and (2.55) are two systems that evolve in time on the kinematic

level, defined by some constant inertial angular momentum H̄.
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CHAPTER 3

Underactuated Attitude Control Using

Geometric Switching Feedback Control

3.1 Introduction

This chapter describes new attitude control schemes for an underactuated spacecraft

equipped with two external thrusters, or two RWs, or two CMGs. The general ap-

proach pursued in this section utilizes the switching feedback stabilization techniques

of [74, 75] that exploit the decomposition of the system variables into base variables

and fiber variables. The base variables are stabilized to periodic motions with feed-

back, and the parameters of these periodic motions are adjusted at discrete time

instants to induce a change in the fiber variables towards the desired equilibrium.

For a spacecraft actuated with either two thrusters or two RWs, the Euler angles and

the angular velocities corresponding to the two actuated axes are treated as base vari-

ables while the Euler angle and angular velocity corresponding to the uncontrolled

axis are treated as the fiber variables. When the spacecraft is actuated by two CMGs,

the base variables are chosen as the gimbal angles while the fiber variable is taken

as the orientation matrix in SO(3). There are several advantages to these control

schemes. Firstly, exponential convergence rates can be achieved. Secondly, these

methods are analytic and can be run rapidly onboard in real-time. Thirdly, for the

RW case, the method is not restricted to the zero angular momentum assumption.
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Finally, for the CMG case, stabilization is possible even though the uncontrollable

axis varies with time with respect to a spacecraft bus fixed frame.

3.2 External Moment Actuation

3.2.1 Spacecraft Configuration & Equations of Motion

In this section, we consider a spacecraft system consisting of a bus equipped with two

pairs of external thrusters. Recall that without loss of generality we assume frame I

is aligned to coincide with the desired inertial pointing attitude. We also make the

following assumptions:

Assumption 3.2.1 The axes b̂x , b̂y , b̂z of the spacecraft bus fixed frame B

coincide with the spacecraft bus’ principal axes.

Assumption 3.2.2 The two pairs of thrusters exert torques about b̂x and b̂y .

Assumption 3.2.3 There are no other external moments acting on the space-

craft system.

Assumption 3.2.4 The maneuvers being performed involve relatively small

attitude adjustments near the desired pointing orientation.
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Under the above assumptions, and choosing Euler angles to represent the attitude,

the equations of motion (2.3), (2.40) become

˙̄Θ = M̄(Θ̄)ω̄,

ω̇1 = 1
J1

(u1 + (J2 − J3)ω2ω3) ,

ω̇2 = 1
J2

(u2 + (J3 − J1)ω1ω3) ,

ω̇3 = J1−J2

J3
ω1ω2,

(3.1)

where J1, J2, and J3 are the principal moments of inertia of the spacecraft bus. Note

that since attitude maneuvers are small by Assumption 3.2.4, (3.1) will never reach

the Euler angle singularity.

3.2.2 Hybrid Controller

In the following switching scheme, the 6-dimensional state vector, consisting of Euler

angles and angular velocities, is divided into base variables and fiber variables. For

the spacecraft with two external moments, we choose the base variables as φ, θ, ω1,

and ω2, and the fiber variables as ψ and ω3.

3.2.2.1 Base Variables

Consider a small angle assumption for the kinematics of φ and θ in (3.1)

φ̇ = ω1,

θ̇ = ω2.

(3.2)
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Let the external moments be governed by the feedback law

u1 = J1

(
−J2−J3

J1
ω2ω3 − k11φ− k12ω1 + v1

)
,

u2 = J2

(
−J3−J1

J2
ω3ω1 − k21θ − k22ω2 + v2

)
,

(3.3)

where k11, k12, k21 and k22 are constants. Under the control law (3.3) and defining

x̄ = [ φ ω1 θ ω2 ]T and v̄ = [ v1 v2 ]T, the base dynamics can be written as a linear

system,

˙̄x = Āx̄+ B̄v̄, (3.4)

where

Ā =



0 1 0 0

−k11 −k12 0 0

0 0 0 1

0 0 −k21 −k22


, B̄ =



0 0

1 0

0 0

0 1


. (3.5)

The constants k11, k12, k21 and k22 are chosen to make Ā Hurwitz.

Now let the base variables be excited by the T = 2π
n

periodic inputs,

v1 = α1(nt+ σ1)c,

v2 = α2(nt+ σ2)c,
(3.6)

where n is the excitation frequency, α1, α2, σ1 and σ2 are parameters, and (∗)c =

cos(∗). Since the base dynamics are exponentially stable, the steady-state trajectories

of (3.4) induced by the inputs in (3.6) will be periodic and at the excitation frequency

n, determined by

x̄ss(t) = Re

(njI4×4 − Ā)−1B̄

α1exp(jσ1)

α2exp(jσ2)

 exp(jnt)

 , (3.7)
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where Re{∗} denotes the real part. More specifically, these steady-state trajectories

have the following form,

x̄ss(t) =



φss(t)

ωss1 (t)

θss(t)

ωss2 (t)


=



α1β1(nt+ σ1 + γ1)c

α1β2(nt+ σ1 + γ2)c

α2β3(nt+ σ2 + γ3)c

α2β4(nt+ σ2 + γ4)c


, (3.8)

where

β1 = |k2
11 − 2k11n

2 + k2
12n

2 + n4|− 1
2 ,

β2 = n|k2
11 − 2k11n

2 + k2
12n

2 + n4|− 1
2 ,

β3 = |k2
21 − 2k21n

2 + k2
22n

2 + n4|− 1
2 ,

β4 = n|k2
21 − 2k21n

2 + k2
22n

2 + n4|− 1
2 ,

(3.9)

γ1 = tan−1
(
−nk12

k11−n2

)
,

γ2 = tan−1
(
−n2+k11

nk12

)
,

γ3 = tan−1
(
−nk22

k21−n2

)
,

γ4 = tan−1
(
−n2+k21

nk22

)
.

(3.10)

In the sequel, σ1 and σ2 are constants chosen by the designer while α1 and α2 are

treated as new control parameters that are adjusted at every periodic cycle.

3.2.2.2 Fiber Variables

Consider now the change in fiber variables induced by one cycle of steady-state motion

of the base variables. The change in ω3, based on (3.1), is computed as

ω3((k + 1)T )− ω3(kT ) =

(k+1)T∫
kT

J1 − J2

J3

ωss1 ω
ss
2 dt, (3.11)
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where T = 2π
n

. Substituting expressions from (3.8) into (3.11) and integrating gives

ω3((k + 1)T )− ω3(kT ) =
πβ2β4(J1 − J2)

nJ3

cos (σ1 + γ2 − (σ2 + γ4))α1α2. (3.12)

Likewise the change in the fiber variable ψ can be computed as,

ψ((k + 1)T )− ψ(kT ) =
π2β2β4(J1 − J2)

n2J3

cos (σ1 + γ2 − (σ2 + γ4))α1α2. (3.13)

Let ȳ(kT ) = [ψ(kT ) ω3(kT )]T be the vector of fiber variables. Then discrete dynamics

of the fiber variables over one period T are

ȳ((k + 1)T ) = Āyȳ(kT ) + B̄y (α1(kT )α2(kT )) ,

Āy =

1 2π
n

0 1

 , B̄y =

π2β2β4(J1−J2)
n2J3

cos(σ1 + γ2 − σ2 − γ4)

πβ2β4(J1−J2)
nJ3

cos(σ1 + γ2 − σ2 − γ4)

 .
(3.14)

3.2.3 Switching LQ Control

At this point, we make the following assumption on the spacecraft’s dynamics:

Assumption 3.2.5 The spacecraft principal moments of inertia J1 and J2 are

not equal.

Under Assumption 3.2.5 and suitable choices of σ1 and σ2, the system (3.14) is linear

and controllable because the controllability gramian is full rank [76]. We can thus

use a discrete-time LQ controller to stabilize ȳ(kT ) to zero.

The discrete-time LQ controller prescribes the linear time-invariant feedback law

(α1(kT )α2(kT )) = K̄yȳ(kT ), (3.15)
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where K̄y is the controller gain. Rewriting (3.15) yields the required amplitudes

α1(kT ) = c
√∣∣K̄yȳ(kT )

∣∣,
α2(kT ) = 1

c

√∣∣K̄yȳ(kT )
∣∣sign(K̄yȳ(kT )).

(3.16)

for some real constant c 6= 0.

The underlying idea behind the controller is straightforward. Assuming that the

base dynamics are sufficiently fast, the base variables achieve their steady-states

quickly, inducing the change in fiber variables predicted by the steady-state relation-

ship in (3.14) towards the equilibrium. This, in turn, leads to progressively smaller

base variables. See Reference [75] for convergence results for systems in cascade form

similar to the one considered in this section.

Remark 3.2.1: If J1 and J2 are equal, the pair (Āy, B̄y) becomes uncontrollable.

However, under the assumption that J1 = J2, (3.1) can be simplified to

φ̇ = ω1 + ω2 sin(φ) tan(θ) + ω3 cos(φ) tan(θ),

θ̇ = ω2 cos(φ)− ω3 sin(φ),

ψ̇ = ω2 sin(φ) sec(θ) + ω3 cos(φ) sec(θ),

ω̇1 = J2−J3

J1
ω2ω3 + u2,

ω̇2 = J3−J1

J2
ω2ω3 + u1,

ω̇3 = 0.

(3.17)
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If the maneuver is rest-to-rest, then ω3 = 0 and

φ̇ = ω1 + ω2 sin(φ) tan(θ)

θ̇ = ω2 cos(φ)

ψ̇ = ω2 sin(φ) sec(θ)

ω̇1 = u1,

ω̇2 = u2.

(3.18)

The simplified equations of motion in (3.18) are similar to the equations of motion

in the next section for RWs. Using a controller scheme similar to the one outlined in

Section 3.3, (3.18) can be stabilized to φ = θ = ψ = ω1 = ω2 = 0 even if J1 = J2. The

controllability properties of (3.18) can be shown similarly to that of the RW RAE’s,

given in Appendix A.

3.2.4 Simulation Results

To validate this control law, we consider a spacecraft bus with the principal moments

of inertia of 430, 1210, and 1300 kg m2. For the feedback law (3.3), the constants that

yield the linear base dynamics in (3.4) and (3.5) are k11 = k21 = 0.1 and k12 = k22 = 1.

The sinusoidal excitation is applied at a frequency of n = 0.03 sec−1 with phase angles

σ1 = σ2 = π
2
. For the fiber dynamics, the discrete LQ controller was created using a

state weight matrix of identity and a control weight matrix of R = 1×106, with c = 1

in (3.16). The large control weight is used to induce the time scale separation between

the closed-loop fiber variable response and base variable closed-loop response.

Two simulations are performed and presented in Figures 3.1 and 3.2. For Figure

3.1, the initial conditions are φ(0) = 0 rad, θ(0) = 0 rad, ψ(0) = 0.1 rad, ω̄(0) = 0

while for Figure 3.2, φ(0) = −0.05 rad, θ(0) = 0.1 rad, ψ(0) = −0.2 rad, ω̄(0) = 0. In

both simulations, the controller is able to guide the Euler angles and angular velocities

to zero.
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Figure 3.1: First simulation for an underactuated spacecraft with two gas thrusters (a)
Euler angles, (b) angular velocities, (c) control moments, (d) excitation parameters,
(e) 2-norm of attitude error.
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Figure 3.2: Second simulation for an underactuated spacecraft with two gas thrusters
(a) Euler angles, (b) angular velocities, (c) control moments, (d) excitation parame-
ters, (e) 2-norm of attitude error.
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3.3 Reaction Wheel Actuation

3.3.1 Spacecraft Configuration & Equations of Motion

In this section, we consider a spacecraft system consisting of a bus equipped with two

RWs. The assumptions on the spacecraft system are the following:

Assumption 3.3.1 The RW spin axes are non-parallel and lie in the plane de-

fined by b̂x and b̂y , i.e., unit vectors along the x and y direction of the spacecraft

bus fixed frame B.

Assumption 3.3.2 There are no external moments acting on the spacecraft

system.

Assumption 3.3.3 The maneuvers being performed involve relatively small

attitude adjustments near the desired pointing orientation.

Note that we do not assume B is a principal frame as we did for the external thruster

actuation case. Thus we treat the attitude control problem for an underactuated

spacecraft in a more general setting. The plane spanned by b̂x and b̂y may be thought

of as a plane of controllability where all body-fixed torques induced by RWs must lie.

The unit vector b̂z is orthogonal to this plane and corresponds to the underactuated

axis.

Under the above assumptions and choosing Euler angles as the attitude parame-

terization, the equations of motion (2.3), (2.41) become

˙̄Θ = M(Θ̄)ω̄,

J̄ ˙̄ω = − [ω̄]×
(
J̄ ω̄ + W̄ ν̄

)
− W̄ ū,

(3.19)
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where

W̄ = [ Jws1w̌1 Jws2w̌2 ],

ν̄ = [ ν1 ν2 ]T,

ū = [ u1 u2 ]T = [ ν̇1 ν̇2 ]T.

(3.20)

The total angular momentum of the spacecraft system, using the above notation, is

given as

BH̄ = J̄ ω̄ + W̄ ν̄. (3.21)

Let the locked inertia matrix J̄ have the following form,

J̄ =


j11 j12 j13

j12 j22 j23

j13 j23 j33

 . (3.22)

3.3.1.1 Angular Momentum Conservation Law

Proposition 3.3.1 presents a requirement for Θ̄ = ω̄ = 0 to be an equilibrium when

there are no external moments acting on the spacecraft. This corresponds to main-

taining inertial pointing at the desired attitude.

Proposition 3.3.1: Let H̄ = [ h1 h2 h3 ]T and assume that M̄ext = 0 for an

underactuated spacecraft satisfying the above assumptions. Then Θ̄ = ω̄ = 0 is an

equilibrium if and only if h3 = 0.

Proof: If Θ̄(t) = ω̄(t) = 0 for all t, then (3.21) reduces to

H̄ = W̄ ν̄. (3.23)

From the assumptions on the spacecraft configuration, [ 0 0 1 ]W̄ν = 0. Premulti-
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plying (3.23) by [ 0 0 1 ] yields

h3 = 0. (3.24)

�

Note that throughout this chapter we assume that the total angular momentum is

conserved by Assumption 3.3.2, but we do not require that H = 0.

The angular velocity component ω3 can also be found from the angular momentum

expression in (3.21). Define ζ̄1 = [ ω1 ω2 0 ]T and ζ̄2 = [ νT ω3 ]T. Then (3.21) can

be written as

BH̄ − J̄ Z̄1ζ̄1 = (J̄ Z̄2 + W̄ Z̄3)ζ̄2, (3.25)

where

Z̄1 =

I2×2

01×2

 ,

Z̄2 = diag(0, 0, 1),

Z̄3 =

[
I2×2 02×1

]
.

(3.26)

Solving for ζ̄2 and extracting ω3 gives

ω3 = −j13

j33

ω1 −
j23

j33

ω2 +
h1

j33

(φcθsψc + φsψs) +
h2

j33

(φcθsψs − φsψc) +
h3

j33

φcθc, (3.27)

where again sin(∗) = ∗s and cos(∗) = ∗c.

3.3.2 Base and Fiber Variables

In the following switching scheme, the 6-dimensional state vector, consisting of Euler

angles and angular velocities, is divided into base variables and fiber variables. The

base variables are chosen to be the controllable variables φ, θ, ω1, ω2. The uncon-
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trolled angle ψ is treated as a fiber variable. The reason why ω3 is not included in

either the base or fiber variables is mentioned in Subsection 3.3.2.2.

3.3.2.1 Base Variables

The description of the base variable set-up is very similar to that in Section 3.2.2.1.

First we consider a small angle assumption in the kinematics of φ and θ in (5.1).

This results in φ̇ = ω1, θ̇ = ω2. Then let the RW accelerations be determined by the

feedback law

ū =
(
Z̄3J̄

−1W̄
)−1 (

Z̄3J̄
−1(−ω̄ × (J̄ ω̄ + W̄ ν̄)) + (v̄fb − v̄)

)
, (3.28)

where

v̄fb =

k11φ+ k12ω1

k21θ + k22ω2

 , v̄ =

v1

v2

 , (3.29)

Z̄3 is from (3.26), and k11, k12, k21, k22 are constants. Under the above control law

and by defining x = [ φ ω1 θ ω2 ]T, the base dynamics can again be written as the

linear system

˙̄x = Āx̄+ B̄v̄, (3.30)

where Ā and B̄ are the same as in (3.5). Now if the base variables are excited by the

T = 2π
n

periodic inputs,

v1 = α1(nt+ σ1)c,

v2 = α2(nt+ σ2)c,
(3.31)

where n is the excitation frequency and α1, α2, σ1 and σ2 are parameters, the steady-

state trajectories of (3.4) induced by the inputs in (3.31) will be periodic and at the
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excitation. These trajectories are given in (3.8) and repeated below

x̄ss(t) =



φss(t)

ωss1 (t)

θss(t)

ωss2 (t)


=



α1β1(nt+ σ1 + γ1)c

α1β2(nt+ σ1 + γ2)c

α2β3(nt+ σ2 + γ3)c

α2β4(nt+ σ2 + γ4)c


. (3.32)

3.3.2.2 Fiber Variables

We treat ψ as the only fiber variable in our switching scheme. Note that ω3 is

determined by (3.27) (i.e., conservation of angular momentum) and hence we choose

not to consider it as a fiber variable explicitly. To control ψ, its change over one period

of excitation induced by steady-state base variable motions needs to be characterized.

If the base variables are in steady-state, ψ evolves in time according to

ψ̇ = ωss2 φ
ss
s θ

ss
se +

(
− j13

j33
ωss1 −

j23

j33
ωss2

)
φssc θ

ss
se

+
(
h1

j33
(φssc θ

ss
s ψc + φsss ψs) + h2

j33
(φssc θ

ss
s ψs − φsss ψc) + h3

j33
φssc θ

ss
c

)
φssc θ

ss
se,

(3.33)

where φss, θss, ωss1 , ω
ss
2 are the steady-state trajectories from (3.32) and sec(∗) = ∗se.

Assuming small angles simplifies (3.33) to

ψ̇ =

(
h1

j33

φss +
h2

j33

θss
)
ψ + ωss2 φ

ss +
h1

j33

θss − h2

j33

φss − j13

j33

ωss1 −
j23

j33

ωss2 +
h3

j33

. (3.34)
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Using (3.32), (3.34) becomes

ψ̇ =
(
h1αβ1

j33
(nt+ δ1 + γ1)c + h2α2β3

j33
(nt+ δ2 + γ3)c

)
ψ

+α1α2β1β4(nt+ δ1 + γ1)c(nt+ δ2 + γ4)c

+h1α2β3

j33
(nt+ δ2 + γ3)c − h2α1β1

j33
(nt+ δ1 + γ1)c

−α1β2j13

j33
(nt+ δ1 + γ2)c − j23α2β4

j33
(nt+ δ2 + γ4)c + h3

j33
.

(3.35)

We note that while the approximations (3.34) and (3.35) are used as a basis for the

subsequent control law design, the simulation results in Subsection 3.3.5 are performed

on the original nonlinear model, given by (3.19).

3.3.3 Switching Feedback Law

We now develop a switching feedback law that adjusts parameters of periodic excita-

tion amplitude of the base dynamics (α1 and α2), in order to induce a change in the

fiber variable (ψ) towards the desired pointing equilibrium. The switching feedback

law construction is based on [74] and relies on the characterization of the change in

ψ induced by one cycle of periodic, steady-state base variable motion.

Let the exact change in ψ, determined by the integration of (3.33), be denoted as

∆ψ. Note that equation (3.33) cannot be analytically integrated. Thus an approx-

imation of ∆ψ, denoted as ∆aψ and based on the integration of (3.35), is used for

analysis.

Two cases are considered when analyzing ∆aψ. First studied is the zero total

angular momentum case, i.e., h1 = h2 = h3 = 0, which yields an exact integration

of (3.35). Then the nonzero total angular momentum with h3 = 0 (consistent with

Proposition 3.3.1) is studied using a second order Taylor-series expansion. In both
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cases, it is required that the mappingGa : (α1, α2)→ ∆aψ be open at (α1, α2) = (0, 0),

i.e., an image of an open neighborhood of (α1, α2) = (0, 0) is an open interval, and

hence the change of ψ over one period of steady-state base variable motion can be

made in any direction, regardless of how small the magnitude of α1 and α2 is. This

can be seen as a controllability-like property of the fiber variables by periodic base

variable motions. It is shown that if Ga is open at (α1, α2) = (0, 0), then the map for

the actual change in ψ, defined as G : (α1, α2)→ ∆ψ, is also open at (α1, α2) = (0, 0).

3.3.3.1 Zero Inertial Angular Momentum

If h1 = h2 = h3 = 0, (3.35) reduces to

ψ̇ = α1α2β1β4(nt+ σ1 + γ1)c(nt+ σ2 + γ4)c

−α1β2j13

j33
(nt+ σ1 + γ2)c − j23α2β4

j33
(nt+ σ2 + γ4)c.

(3.36)

The right hand side of (3.36) is not a function of ψ. The change in ψ induced by one

period of steady-state base variable motion is then approximated as

∆aψ = α1α2Γ, (3.37)

where

Γ =
πβ1β4

n
(σ1 − σ2 + γ1 − γ4)c. (3.38)

Note that (3.36) defines a function of α1 and α2, with all other parameters considered

fixed. Assuming that Γ 6= 0, which can be assured by choosing suitable values for

k11, k12, k21, k22, σ1 and σ2, it follows that the map Ga is open at (α1, α2) = (0, 0).

We note that the derivation of (3.37) relies on the assumption of small angles that

was made in obtaining (3.34) and (3.35). The predicted change ∆aψ is very close to

∆ψ provided that α1 and α2 are sufficiently small. Figure 3.3 demonstrates this by
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showing the change predicted by (3.37) along with a numerical integration of (3.33)

using the spacecraft parameters outlined in Subsection 3.3.5.1 and the controller

parameters listed in Table 3.1 in Subsection 3.3.5.
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Figure 3.3: Change in ψ due to periodic base dynamic excitation for the zero angular
momentum case (a) exact change based on (3.33) (solid) versus approximation based
on (3.37) (dashed), (b) error magnitude.

3.3.3.2 Nonzero Inertial Angular Momentum with h3 = 0

Suppose now h1 and/or h2 are nonzero while h3 = 0, which is the case consistent with

Proposition 1. Note that (3.35) is linear with respect to ψ. As (3.35) is also a scalar

differential equation, its state transition matrix is computed as

Φ̄(t, t0) = exp(h1α1β1

nj33
(nt+ σ1 + γ1)s + h2α2β3

nj33
(nt+ σ2 + γ3)s)

∗ exp(−h1α1β1

nj33
(nt0 + σ1 + γ1)s − h2α2β3

nj33
(nt0 + σ2 + γ3)s).

(3.39)
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Note that the state transition matrix is T periodic. Thus the change in ψ over one

period does not depend on the initial state at the beginning of the period. Then

∆aψ =

T∫
0

Φ̄(t, τ)b(τ)dτ, (3.40)

where

b(τ) = α1α2β1β4(nτ + σ1 + γ1)c(nτ + σ2 + γ4)c

+h1α2β3

j33
(nτ + σ2 + γ3)c − h2α1β1

j33
(nτ + σ1 + γ1)c

−α1β2j13

j33
(nt+ σ1 + γ2)c − j23α2β4

j33
(nt+ σ2 + γ4)c.

(3.41)

While ∆aψ can be constructed by fitting numerical values, it turns out that accurate

analytical approximations can also be developed. For sufficiently small α1 and α2, a

second order Taylor-series expansion about α1 = α2 = 0 can approximate (3.40),

∆aψ = αTΞ̄α, (3.42)
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where

α = [α1 α2]T,

Ξ̄ =

 Γ1
1
2
Γ3

1
2
Γ3 Γ2

 ,

Γ1 = πj13β1β2h1

j233n
2 (γ1 − γ2)s,

Γ2 = πj23β3β4h2

j233n
2 (γ3 − γ4)s,

Γ3 = πβ1β4

n
(σ1 − σ2 + γ1 − γ4)c − πβ1β3

j233n
2 (h2

1 + h2
2)(σ1 − σ2 + γ1 − γ3)s,

−πj13β2β3h2

j233n
2 (σ1 − σ2 + γ2 − γ3)s + πj23β1β4h1

j233n
2 (σ1 − σ2 + γ1 − γ4)s.

(3.43)

Note that the map Ga given by (3.42) is open at (α1, α2) = (0, 0) if the symmetric

matrix Ξ is indefinite, i.e., has a positive and a negative eigenvalue. Under this

condition, which can be satisfied by choosing suitable values for k11, k12, k21, k22, σ1

and σ2, the exact map G can also be shown to be open at (α1, α2) = (0, 0). Note that

(3.37) is recovered from (3.42) if h1 = h2 = 0.

Figure 3.4 shows, based on the spacecraft parameters in Subsection 3.3.5.1 and

control parameters in Table 4.1, that when h1 = h2 = 1 kg m2 sec−1 and h3 = 0

the approximation ∆aψ from (3.42) is a fairly accurate approximation to the actual

change ∆ψ and that the mapping is open at (α1, α2) = (0, 0).
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Figure 3.4: Change in ψ for the nonzero angular momentum using the switching
scheme (a) exact change based on (3.33) (solid) versus approximation based on (3.42)
(dashed), (b) error magnitude.

3.3.3.3 Hybrid Controller Scheme

A switching scheme, based on [74], that stabilizes the fiber and base variables is now

implemented for the case when h3 = 0. This is consistent with Proposition 3.3.1 and

hence stabilization to the desired pointing equilibrium is possible. The parameters

that this algorithm concerns itself with are α2 and ε, with α1 = εα2. Each of these

parameters are adjusted at the beginning of each cycle of duration T and are kept

constant throughout the cycle,

α2(t) = α2(kT ) = αk2, kT ≤ t < (k + 1)T,

ε(t) = ε(kT ) = εk, kT ≤ t < (k + 1)T.

(3.44)

Note that as an abuse of notation, αk2 and εk represent the values of α2(t) and ε(t)

at time kT (not α2(t) and ε(t) raised to the kth power). Let k ≥ 0 represent the

cycle number, ψk = ψ(kT ), and choose µ1 ∈ (0, 1), ξ1 to be sufficiently small, and ξ2

to be such that ξ1ξ2 is sufficiently small. The switching scheme is then outlined by
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Algorithm 1. Note that the computation involved for α1, α2, v1, v2 and the control

law in (3.28) rely on closed-form, algebraic manipulations that do not require much

processing power to execute.

Algorithm 1: Control Computation for RWs when h3 = 0

Given:

k ≥ 0 , µ1 ∈ (0, 1), ξ1 sufficiently small, and ξ2 such that ξ1ξ2 is sufficiently
small

if k = 0 then
if ψk = 0 then
αk2 = 0, εk = 0

else
αk2 = ξ1, ε

k = −ξ2sign(Γ3ψ
0)

end if
else {k > 0}

Compute Ga(ε
k−1αk−1

2 , αk−1
2 )ψk using (3.42)

if ψk = 0 or Ga(ε
k−1αk−1

2 , αk−1
2 )ψk < 0 then

αk = αk−1
2 , εk = εk−1

else {Ga(ε
k−1αk−1

2 , αk−1
2 )ψk ≥ 0}

αk = µ1α
k−1
2 , εk = −εk−1,

end if
end if
Control During Cycle k:

v1(t) = αk2ε
k(nt + σ1)c, v2(t) = αk2(nt + σ2)c, v(t) = [ v1(t) v2(t) ]T, for

t ∈ [kT, (k + 1)T )

Compute u(t) from the feedback law in (3.28)

The methodology of Algorithm 1 is as follows. The sign of ε dictates the direction

of ∆aψ (which can be seen from Figures 3.3 and 3.4). Furthermore, the magnitude

of ∆aψ is dictated by α2. If the direction of ∆aψ is to be reversed, the sign of ε is

changed and the magnitude of α2 is reduced by a factor of µ1. As α2 approaches zero,

so does ψ, which in turn causes the base variables to converge to zero. The initial

values for α2 and ε, i.e., α0
2 and ε0, are governed by ξ1 and ξ2, which are chosen to

not cause large transients in ψ.
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3.3.3.4 Convergence Properties

In [74], global asymptotic convergence was proven for a cascade connection of a linear

time-invariant subsystem, representing the base dynamics, and a subsystem of non-

linear integrators, representing the fiber dynamics. Related local stabilization results

have been obtained in [75] for the more general case of fiber dynamics with drift. For

the zero angular momentum case, h1 = h2 = h3 = 0, the results in [74] can be applied

directly to demonstrate exponential convergence. In the case when h1 and/or h2 are

nonzero while h3 = 0, the rationale for our switching feedback law is very similar;

however, existing theoretical guarantees appear to be insufficient, in particular, due

to the form of the fiber dynamics in (3.35) not being explicitly treated in prior pub-

lications. For the proofs in [74] to carry over to our present case, it is necessary to

guarantee (a) that Ga does not depend on the initial conditions of the fiber variable

and (b) the boundedness of the error between the fiber variable trajectory, ψ, induced

by exponentially convergent base variable motions to a periodic steady-steady state

and the fiber variable trajectory, ψss, induced by the base variable motion in the

periodic steady-state. Equation (3.39) shows that the state transition matrix is T

periodic, and therefore Ga is independent of the initial condition of ψ. Lemma 3.3.1

proves the boundedness of the error between ψ and ψss if the dynamics of the fiber

variable are given by (3.34).

Lemma 3.3.1: Let the fiber variable dynamics for ψ be given by (3.34) with

h3 = 0. Then the error between ψ and ψss remains bounded over time.

Proof: Define eψ = ψ − ψss. Then

ėψ = ψ̇ − ˙ψss. (3.45)
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Using (3.34) with h3 = 0, (3.45) can be rewritten as

ėψ =

(
h1

j33

φ+
h2

j33

θ

)
ψ+d(φ, θ, ω1, ω2)−

(
h1

j33

φss +
h2

j33

θss
)
ψss−d(φss, θss, ω1

ss, ωss2 ),

(3.46)

where

d(φ, θ, ω1, ω2) = ω2φ+
h1

j33

θ − h2

j33

φ− j13

j33

ω1 −
j23

j33

ω2. (3.47)

Adding and subtracting
(
h1

j33
φss + h2

j33
θss
)
ψ from (3.46), and simplifying yields,

ėψ =

(
h1

j33

φss +
h2

j33

θss
)
eψ+

(
h1

j33

eφ +
h2

j33

eθ

)
ψ+(d(φ, θ, ω1, ω2)−d(φss, θss, ωss1 , ω

ss
2 )),

(3.48)

where eφ = φ− φss and eθ = θ− θss. Equation (3.48) is linear with respect to eψ and

its solution at time t can be written as

eψ(t) = Φ̄(t, 0)eψ(0) +

t∫
0

Φ̄(t, τ)f(τ)dτ, (3.49)

where eψ(0) is the initial error, Φ̄(t, 0) is the state transition matrix from (3.39) and

f(t) =

(
h1

j33

eφ +
h2

j33

eθ

)
ψ + (d(φ, θ, ω1, ω2)− d(φss, θss, ωss1 , ω

ss
2 )). (3.50)

The base variables converge exponentially to the steady-state periodic motions (i.e.,

φ(t) → φss(t), θ(t) → θss(t), ω1(t) → ωss1 (t), ω2(t) → ωss2 (t) as t → ∞), and ψ(0) is

initially known and bounded. The function f(t) given by (3.50) hence converges to

zero exponentially. This implies that there exists a constant c1 > 0 such that

|eψ(t)| ≤ |Φ̄(t, 0)eψ(0)|+
t∫

0

|Φ̄(τ, 0)||f(τ)|dτ ≤ |Φ̄(t, 0)eψ(0)|+ c1. (3.51)

The state transition matrix Φ̄(t, 0) in (3.39) is bounded, and therefore the error eψ is
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bounded. �

We summarize the theoretical convergence guarantees as follows:

Theorem 3.3.1: Consider the fiber dynamics (3.34) with h3 = 0 and base dy-

namics (3.30) with the switching controller given in Algorithm 1 and (3.6). Under

the above assumptions, αk1, α
k
2 → 0 as k → ∞, and φ(t), θ(t), ψ(t) → 0 as t → ∞.

�

Remark 3.3.1: The development and analysis of convergence for the above con-

troller have relied on small angle approximations to simplify the representation for

the base variable kinematics and fiber variable dynamics. Our subsequent simulations

are performed on a model that does not use these approximations, thereby validating

these desirable convergence properties. Note also the theoretical results in [74] allow

for inexact knowledge of G in maintaining convergence properties.

3.3.3.5 Switching Scheme when h3 6= 0

Now consider the case when h3 6= 0. Stabilization at Θ̄ = ω̄ = 0 is not possible

by Proposition 3.3.1 (i.e., it violates the law of angular momentum conservation). If

α1 = α2 = 0 at Θ̄ = ω̄ = 0, (3.33) becomes

ψ̇ =
h3

j33

, (3.52)

which can be integrated over one steady-state cycle to give

∆ψ =
2πh3

nj33

. (3.53)

Equation (3.53) shows that G is not open at (α1, α2) = (0, 0) and thus Algorithm 1

cannot be used. By modifying the algorithm, however, controlled oscillations of Euler

angles in a neighborhood of Θ̄ = 0 can be achieved.

Remark 3.3.2: The fact that G is not open in the case of h3 6= 0 gives insight
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into the system’s controllability. In this case, if α1 and α2 are made arbitrarily small,

then the drift in ψ can only be induced in one direction. This is in contrast to the

case of h3 = 0, when a controlled drift in ψ can be made in both directions regardless

of how small α1 and α2 are.

Let the approximation of the change in ψ induced by one steady-state cycle of

base variable motions when h3 6= 0 be denoted by ∆a,h3ψ and define the map Ga,h3 :

(α1, α2) → ∆a,h3ψ. This approximation is based on (3.35) and the small angles

assumption. Note that even if h3 6= 0, the state transition matrix for (3.35) remains

the same as in (3.39). Then

∆a,h3ψ =

T∫
0

Φ̄(T, τ)

(
b(τ) +

h33

j33

)
dτ, (3.54)

where b(t) is defined in (3.41). Performing a second order Taylor-series expansion of

(3.54) about (α1, α2) = (0, 0), ∆ψ for sufficiently small α1 and α2 can be approximated

by

∆a,h3ψ = Γ̃0 +Γ̃1,1α1 +Γ̃1,2α2 +(Γ1 +Γ̃2,1)α2
1 +(Γ2 +Γ̃2,2)α2

2 +(Γ3 +Γ̃2,3)α1α2, (3.55)
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where Γ1, Γ2, and Γ3 are given in (3.43) and

Γ̃0 = 2πh3

j33n
,

Γ̃1,1 = 2πβ1h1h3

j233n
2 (σ1 + γ1)s,

Γ̃1,2 = 2πβ3h2h3

j233n
2 (σ2 + γ3)s,

Γ̃2,1 =
πβ2

1h
2
1h3

2j333n
3 (1 + 2(σ1 + γ1)2

s),

Γ̃2,2 =
πβ2

3h
2
2h3

2j333n
3 (1 + 2(σ2 + γ3)2

s),

Γ̃2,3 = −πβ1β3h1h2h3

j333n
3 ((σ1 + σ2 + γ1 + γ3)c − 2(σ1 − σ2 + γ1 − γ3)c).

(3.56)

Let α1 = εα2. Then (3.55) implies

∆a,h3ψ = Λc + Λbα2 + Λaα
2
2, (3.57)

where

Λa = (Γ1 + Γ̃2,1)ε2 + (Γ2 + Γ̃2,2) + (Γ3 + Γ̃2,3)ε,

Λb = Γ̃1,1ε+ Γ̃1,2,

Λc = Γ̃0.

(3.58)

Since (3.57) is quadratic in α2, the equation ∆a,h3ψ = 0 can be solved if a specific

constant εe is chosen for the quadratic equation (3.57). Denote α2,e as a solution

to ∆a,h3ψ = 0 in (3.57) when ε = εe in (3.58). By selecting k11, k12, k21, k22,

σ1, σ2, and εe appropriately, the quadratic equation (3.57) will have a positive real

solution. The significance of α2,e is that it corresponds to the periodic excitation of

the base dynamics, which on average counteracts the drift caused by h3 6= 0. Let
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α2 = α2,e + δα2,e. Since Ga,h3(εeα2,e, α2,e) = 0, (3.57) can be rewritten as

∆a,h3ψ = Λ̃1δα2,e + Λ̃2δα
2
2,e, (3.59)

where

Λ̃1 = Γ̃1,1εe + Γ̃1,2 + 2α2,e

(
(Γ1 + Γ̃2,1)εe

2 + (Γ2 + Γ̃2,2) + (Γ3 + Γ̃2,3)εe

)
,

Λ̃2 = (Γ1 + Γ̃2,1)εe
2 + (Γ2 + Γ̃2,2) + (Γ3 + Γ̃2,3)εe.

(3.60)

Define the map Ga,δα2,e : δα2,e → ∆a,h3ψ. If δα2,e is sufficiently small, the linear

term in (3.59) dominates the quadratic term. Therefore Ga,δα2,e is open at δα2,e = 0

provided that Λ̃1 6= 0.

Now the modified switching scheme is described. Let δα2,e be adjusted at the

beginning of each time interval of length T and held constant,

δα2,e(t) = δα2,e(kT ) = δαk2,e, kT ≤ t < (k + 1)T. (3.61)

Furthermore, let µ1 ∈ (0, 1), µ2 be sufficiently small, and ξ3 > µ2 be such that

|Λ̃1ξ3| > |Λ̃2ξ
2
3 |. Then the control scheme for the case when h3 6= 0 is outlined by

Algorithm 2.

The methodology of Algorithm 2 is as follows. It can be seen that |∆a,h3ψ| is

dictated by |δα2,e| while the direction of ∆a,h3ψ is determined by the sign of δα2,e.

The initial value of |δα0
2,e| is determined by ξ3 and it can be shown that |δαk2,e| is

nonincreasing. Furthermore, as k →∞, |δαk2,e| → µ2, and in the limit αk2 can assume

either the value of α2,e + µ2 or α2,e − µ2. This steady-state “dither” in δαk2,e is

introduced to compensate for the error/uncertainty in the approximation of ∆ψ by

∆a,h3ψ. The value of µ2 must be chosen as small as possible to minimize the “dither,”
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Algorithm 2: Control Computation for RWs when h3 6= 0

Given:

k ≥ 0, α2,e and εe from (3.57)-(3.58), µ1 ∈ (0, 1), µ2, sufficiently small, and
ξ3 > µ2 such that |Λ̄1ξ3| > |Λ̄2ξ

2
3 |

if k = 0 then
if ψk = 0 then
δα0

2,e = 0
else {ψk 6= 0}
δα0

2,e = −ξ3sign(Λ̄1ψ
0),

end if
else {k > 0}

Compute Ga,δα2,e(δα
k−1
2,e )ψk using (3.59)

if ψk = 0 or Ga,δα2,e(δα
k−1
2,e )ψk < 0 then

δαk2,e = δαk−1
2,e

else {Ga,δα2,e(δα
k−1
2,e )ψk ≥ 0}

δαk2,e = −min{µ1δα
k−1
2,e , µ2}

end if
end if
Control at Cycle k:

αk1 = εe(α2,e + δαk2,e), α
k
2 = α2,e + δαk2,e

v1(t) = αk1(nt + σ1)c, v2(t) = αk2(nt + σ2)c, v(t) = [ v1(t) v2(t) ]T, for
t ∈ [kT, (k + 1)T )

Compute u(t) from the feedback law in (3.28)
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while satisfying the following property,

G(εe(α2,e + µ2), αe + µ2)G(εe(α2,e − µ2), α2,e − µ2) < 0, (3.62)

for Algorithm 2 to be able to induce the changes in ∆ψ by the intended sign even in

the presence of the approximation error.

Lemma 3.3.2 is a similar result to Lemma 3.3.1.

Lemma 3.3.2: Let the fiber variable dynamics for ψ be given in (3.34). The error

between fiber variable trajectory, ψ, induced by base variable motions exponentially

convergent to periodic steady-state (not necessarily zero) and fiber variable trajectory

induced by base variable motion in periodic steady-state, ψss, remains bounded.

Proof: If h3 6= 0, then (3.47) in the proof of Lemma 2.1 changes to

dh3(φ, θ, ω1, ω2) = ω2φ+
h1

j33

θ − h2

j33

φ− j13

j33

ω1 −
j23

j33

ω2 +
h3

j33

(3.63)

and (3.50) changes to

fh3(t) =

(
h1

j33

eφ +
h2

j33

eθ

)
ψ + (dh3(φ, θ, ω1, ω2)− dh3(φss, θss, ωss1 , ω

ss
2 )). (3.64)

Since

dh3(φ, θ, ω1, ω2)− dh3(φss, θss, ω̄1, ω̄2) = d(φ, θ, ω1, ω2)− d(φss, θss, ω̄1, ω̄2), (3.65)

it follows that fh3(t) = f(t) and fh3(t) converges exponentially to zero. The rest of

the proof proceeds similarly to the proof of Lemma 3.3.1 �

While Lemma 3.3.2 is a similar result to Lemma 3.3.1, a convergence result similar

to Theorem 3.3.1 does not hold if h3 6= 0, as steady-state oscillations in ψ, θ, and φ

in a vicinity of zero will occur to accommodate nonzero h3.
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The amplitude of oscillations about Θ̄ = 0 using this switching law can be uni-

formly upper bounded. Consider the situation when α1 = εeα2,e, α2 = α2,e, the base

variable motion is in steady-state, and ψ(0) = 0. If this is the case, then from (3.8),

|φ(t)| = |εeα2,eβ1(nt+ σ1 + γ1)c| ≤ |εeα2,eβ1| ∀t ≥ 0,

|θ(t)| = |α2,eβ3(nt+ σ2 + γ3)c| ≤ |α2,eβ3| ∀t ≥ 0.

(3.66)

Furthermore, for 0 ≤ t ≤ T ,

|ψ(t)| =
t∫

0

∣∣∣Φ̄(t, τ)
(
b(τ) + h3

j33

)
dτ
∣∣∣ ,

≤
t∫

0

|Φ̄(t, τ)|
∣∣∣(b(τ) + h3

j33

)∣∣∣ dτ,
≤

t∫
0

|Φ̄(t, τ)|
(
|(b(τ)|+ |h3|

j33

)
dτ,

≤
T∫
0

exp(c2)
j33

(|α2,e|c3 + |h3|) dτ,

≤ 2πexp(c2)
nj33

(|α2,e|c3 + |h3|) ,

(3.67)

where

c2 =
∣∣∣ α2,e

nj33

∣∣∣ (|εeh1β1|+ |h2β3|),

c3 = |α2,eεeβ1β4j33|+ |h1β3|+ |εeh2β1|+ |εeβ2j13|+ |β4j23|.

(3.68)

The value of α2,e decreases with the value of h3, and furthermore lim
h3→0

α2,e = 0.

Therefore, the amplitude of the steady-state oscillation in φ, θ, and ψ around zero

(and consequently the upper bound on Euler angle oscillation) will decrease as h3

decreases.
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3.3.4 Analysis of High Frequency Response

We now consider the case where the base variable excitation frequency n is large and

analyze the motions of Euler angles φ, θ and ψ when the total angular momentum

is zero and when there is a nonzero total angular momentum component about the

uncontrollable axis.

3.3.4.1 Zero Angular Momentum Case

Let h1 = h2 = h3 = 0 and assume that φ(0) = θ(0) = ψ(0) = 0. Consider the

spacecraft excited by base variable motions (3.8) with constant α1 and α2, and let

˙̃ψ =
∆aψ

T
, (3.69)

where ∆aψ is given by (3.37). Equation (3.69) defines an average rate of change of

ψ over one steady-state cycle of period T . Substituting (3.37) and (3.38) into (3.69)

gives

˙̃ψ =
α1α2β1β4

2
(σ1 − σ2 + γ1 − γ4)c. (3.70)

If n is large, then it implies that (3.9) can be approximated by,

β1 ∼ O
(

1
n2

)
,

β2 ∼ O
(

1
n2

)
,

β3 ∼ O
(

1
n

)
,

β4 ∼ O
(

1
n

)
,

(3.71)
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and

˙̃ψ ∼ α1α2

n3
(σ1 − σ2 + γ1 − γ4)c, (3.72)

where γ1 and γ4 also depend on n. Let α1 and α2 be nonzero and proportional to n
3
2 ,

i.e.,

α1 = n
3
2ρ1,

α2 = n
3
2ρ2,

(3.73)

where ρ1, ρ2 ∈ R\{0}. The steady-state values of φ and θ from (3.8) when n is large

are approximated by

φss(t) ∼ ρ1√
n

cos(nt+ σ1 + γ1)c,

θss(t) ∼ ρ2√
n

cos(nt+ σ2 + γ3)c.

(3.74)

As n approaches infinity, for any t, it is clear from (3.74) that

lim
n→∞

φss(t, n) = 0,

lim
n→∞

θss(t, n) = 0.

(3.75)

Note that γ1 and γ4 have finite limits, γ̃1 and γ̃4, respectively, as n increases because

tan−1(∗) is a continuous function that is bounded. Then,

lim
n→∞

˙̃ψ(t, n) = ρ1ρ2(σ1 − σ2 + γ̃1 − γ̃4)c. (3.76)

Hence, as frequency increases, attitude trajectories of an underactuated spacecraft

with zero total angular momentum can approach arbitrary close attitude trajectories

of a spacecraft that has a nonzero total angular momentum component and rotates

at a constant angular velocity about the uncontrollable axis. Note that as frequency

n increases, the oscillation amplitudes in the spacecraft angular velocities ω1, ω2 and
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RW speeds ν1 , ν2 increases as
√
n.

3.3.4.2 Nonzero Angular Momentum Case

The same approach as in subsection 3.3.4.1 is used to analyze a spacecraft that

has nonzero total angular momentum about its uncontrollable axis. Assume that

φ(0) = θ(0) = ψ(0) = 0, h1, h2 ∈ R, and h3 6= 0. Define

˙̃ψh3 =
∆ψh3

T
(3.77)

where ∆a,h3ψ is given by (3.55). Let α1 and α2 be defined as in (3.73). If the frequency

n is increased to infinity, then

lim
n→∞

φss(t, n) = 0,

lim
n→∞

θss(t, n) = 0,

lim
n→∞

˙̃ψ(t, n) = h3

j33
+ ρ1ρ2(σ1 − σ2 + γ̃1 − γ̃4)c,

(3.78)

where γ̃1 and γ̃4 denote finite limits of γ1 and γ4 as n increases. Choosing ρ1 and ρ2

so that

ρ1ρ2 = − h3

j33(σ1 − σ2 + γ̃1 − γ̃4)c
, (3.79)

while assuming that the denominator is nonzero, results in

lim
n→∞

˙̃ψ(t, n) = 0. (3.80)

As n increases, attitude trajectories of the underactuated spacecraft with nonzero

total angular momentum component about the uncontrollable axis can approach ar-

bitrarily close to a fixed inertial pointing attitude. Similarly to the zero total angular
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momentum case, as n increases, the amplitude of the spacecraft angular velocity and

RW speed oscillation increase as
√
n.

Remark 3.3.3: The conclusions in this subsection may appear to be counter-

intuitive at first glance given the angular momentum conservation. In [77], similar

results were derived using averaging theory for a different system, a cylinder rotating

about a fixed axis with three movable links.

3.3.5 Simulation Results

For the simulations, we consider a spacecraft bus with principal moments of inertia

of 430, 1210, and 1300 kg m2. The two reaction wheels are assumed symmetric, thin,

and are mounted such that the COM of the spacecraft bus and total spacecraft system

coincide. The inertias of the two functioning RWs about their spin axes are given by

Jws1 = Jws2 = 0.043 kg m2. The matrices J̄ and W̄ will be different between simula-

tions as necessary to demonstrate that our approach can handle different spacecraft

scenarios. In the first simulation, the spacecraft has zero total angular momentum.

The second simulation involves a spacecraft with total angular momentum satisfying

Proposition 3.3.1 (i.e., h3 = 0). In the third simulation h3 6= 0. All simulations are

performed on the full nonlinear model and demonstrate successful convergence to the

desired pointing equilibrium in the case where h3 = 0 and controlled oscillation about

the desired pointing configuration when h3 6= 0. The parameters for the controller

and switching schemes, outlined by Algorithms 1 and 2, are given in Table 3.1.

68



Parameter Units Value

n sec−1 0.03

k11, k12 - 9× 10−4, 0.0180

k21, k22 - 9× 10−4, 0.0180

σ1, σ2 - π
4
, − π

4

ξ1, ξ2, ξ3 - 1× 10−4, 1.5, 2.5×10−5

µ1, µ2 - 0.5, 1×10−8

Table 3.1: Parameters for RW switching controller.

3.3.5.1 Simulation 1

Consider the case when the two RWs are aligned with the first two principal axes of

the spacecraft bus. Then

J̄ =


430.043 0 0

0 1210.043 0

0 0 1300

 , W̄ =


0.043 0

0 0.043

0 0

 . (3.81)

The initial conditions of the spacecraft are φ(0) = θ(0) = 0 rad, ψ(0) = 0.1 rad,

ω1(0) = ω2(0) = ω3(0) = 0 rad/sec, and ν1(0) = ν2(0) = 0 rad/sec. The total angular

momentum is hence zero, i.e., H̄ = [ 0 0 0 ]T kg m2 sec−1, and satisfies Proposition

3.3.1. The simulation shows that by using Algorithm 1, the spacecraft successfully

converges to the desired pointing orientation. See Figure 3.5. Note from Figure 3.5

(a) and (e) that when α1 changes sign (which is dictated by ε), the direction of ∆ψ

also changes.

Remark 3.3.4: It should be noted that even though the convergence time is

exponential, the convergence time for this simulation is over two hours. The conver-

gence time can be improved by tuning the parameters in Table 3.1, specifically ξ1 and
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ξ2, which govern the initial amplitude of the excitation, µ1, which controls the decay

of excitation, and n which defines when the control parameters are switched.

3.3.5.2 Simulation 2

Now consider the case where the RWs are not aligned with the first two principal axes

of the spacecraft bus. After an appropriate coordinate transformation, the matrices

J̄ and W̄ are

J̄ =


865 0 −0.435

0 1210.043 0

−0.435 0 865.043

 , W̄ =


0.043 0

0 0.043

0 0

 . (3.82)

The initial conditions for the spacecraft are the same as Simulation 1 with the excep-

tion that ν1(0) = ν2(0) = 10 rad/sec, yielding H̄ = [ 0.3849 0.4708 0 ]T kg m2 sec−1

which satisfies Proposition 3.3.1. The results are shown in Figure 3.6. As is demon-

strated, even though the RWs are not aligned with the principal axes, Algorithm 1 is

still able to guide the system to the pointing equilibrium. Note that the RW speeds

are not zero in steady-state and absorb the nonzero total angular momentum of the

spacecraft. The stabilization of this system takes a shorter amount of time in contrast

to Simulation 1. In this case, the added angular momentum and the non-diagonal

shape of J̄ induce nonlinear terms that improve the convergence time, but this may

not be always the case.

3.3.5.3 Simulation 3

Consider now the case where the RWs spin about the first two principal axes of the

spacecraft bus. In this case, the matrices J̄ and W̄ are the same as in Simulation 1.

Let φ(0) = 0.01 rad, θ(0) = 0 rad, ψ(0) = 0.1 rad, ω1(0) = ω2(0) = ω3(0) = 0 rad/sec,

and ν1(0) = ν2(0) = 10 rad/sec. In this case, H̄ = [ 0.3849 0.4708 0.0043 ]T kg m2

70



sec−1, and does not satisfy Proposition 3.3.1. Figure 3.7 demonstrates the response of

the spacecraft using Algorithm 2. Note that the attitude error in Figure 3.7 (f) reaches

near zero, but then increases. This is due to the fact that simultaneous convergence

of all three Euler angles to zero is impossible as the spacecraft is underactuated and

has a nonzero total angular momentum component about the uncontrollable axis

(Proposition 3.3.1). However, Figure 3.7 (a) demonstrates that by using Algorithm

2, controlled and bounded oscillations in a vicinity of Θ̄ = 0 can be performed.

Remark 3.3.5: As mentioned in the introduction, the treatment of an under-

actuated spacecraft with nonzero total angular momentum has been limited in the

previous literature. Even in the case where total angular momentum is taken into

account, some proposed control schemes can send a spacecraft into an uncontrolled

drift, see [39]. In [20, 23] it was shown that a Lyapunov-based controller designed

for zero total angular momentum could perform oscillations about the desired point-

ing configuration when there was a nonzero component of total angular momentum

about the uncontrollable axis. However, the Lyapunov functions used for controller

synthesis in each method become undefined at certain orientations near the desired

attitude, and thus singularity avoidance must be performed. The method described

in this chapter in contrast does not have these singularity issues. Another benefit to

the switching law presented is that the total angular momentum is taken into account

when designing the controller, which could improve overall performance.
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Figure 3.5: Response of a spacecraft using Algorithm 1 when the reaction wheels are
aligned with the first two principal axes and h1 = h2 = h3 = 0 (a) Euler angles, (b)
angular velocities, (c) wheel speeds, (d) wheel accelerations, (e) excitation magnitude,
(f) 2-norm of attitude error.
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Figure 3.6: Response of a spacecraft using Algorithm 1 when the reaction wheels are
not aligned with the first two principal axes and h3 = 0 (a) Euler angles, (b) angular
velocities, (c) wheel speeds, (d) wheel accelerations, (e) excitation magnitude, (f)
2-norm of attitude error.
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Figure 3.7: Response of a spacecraft using Algorithm 2 when the reaction wheels are
aligned with the first two principal axes and h3 6= 0 (a) Euler angles, (b) angular
velocities, (c) wheel speeds, (d) wheel accelerations, (e) excitation magnitude, (f)
2-norm of attitude error.
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3.4 Control Moment Gyro Case

3.4.1 Spacecraft Configuration & Equations of Motion

In this section we consider a spacecraft system consisting of a bus equipped with two

CMGs under the following assumption:

Assumption 3.4.1 There are no external moments acting on the total space-

craft system.

Since Assumption 3.4.1 holds, we can use the RAE’s for CMGs in (2.55) to model

the system dynamics:

Ḃ =

[
J̄−1

(
2∑
j=1

(
J
ggj

+ J
rtj

)
δ̇
j
ǧ
j

+ J
rsj
η
j
ȟ
j
−BH̄

)]×
B,

δ̇
j

= u
j
, j = 1, 2,

(3.83)

where

J̄ = J̄
B

+
2∑
j=1

GT
j

(
J̄

Gj
+ J̄

Rj

)
G

j
. (3.84)

Recall that the mathematical unit vector ǧ
j

specifies the gimbal axis of the jth CMG,

which remains fixed in B and is given by

ǧ
j

= GT
j


0

0

1

 . (3.85)

75



The mathematical unit vector ȟ
j

is in the direction of the angular momentum of the

jth CMG and depends on the gimbal angle δ
j
,

ȟ
j

= GT
j


cos(δ

j
)

sin(δ
j
)

0

 . (3.86)

Note that for attitude representation, in the CMG case, an SO(3)-based descrip-

tion is chosen instead of Euler angles. The two switching schemes for thrusters and

RWs relied on using Euler angles because, by construction, the uncontrollable axis

is isolated in the third Euler angle ψ (yaw). This is not the case for CMGs, as the

uncontrollable axis changes relative to the spacecraft bus, and may even become an

uncontrollable plane if the CMGs reach singularity. The switching scheme presented

in this section exploits the SO(3)-based attitude representation to avoid complications

due to the time-varying uncontrollable axis.

We now make the following assumptions:

Assumption 3.4.2 The inertia of the spacecraft bus is much larger than that

of the CMGs.

Assumption 3.4.3 The speed of the rotors is much larger than that of the

gimbals.

Assumption 3.4.4 The total angular momentum of the system is zero.

Assumption 3.4.2 implies that the locked inertia J̄ is approximately that of the space-

craft bus, i.e., J̄ ≈ J̄
B

, which is reasonable since actuator inertias are relatively small

when compared to the spacecraft bus inertia. Assumption 3.4.3 implies that the angu-

lar momentum contribution due to the gimbal rates can be neglected when compared

to the rotor angular momentum. This is also reasonable, as the rotor spins at much

higher speeds than the gimbal of the CMG. Assumption 3.4.4 simplifies the dynamics,
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and though not practical, yields a starting point for the preliminary development of

future control laws that have constant nonzero total angular momentum. Using all

of the assumptions, (3.83) becomes

Ḃ =

[
J̄−1

B

(
2∑
j=1

h̄
j

)]×
B,

δ̇
j

= u
j
, j = 1, 2,

(3.87)

where

h̄
j

= J
rsj
η
j
ȟ
j
. (3.88)

Note that h̄
j

depends on δ
j

as per (3.86).

3.4.2 State Transition Approximation

In order to construct a switching controller for a spacecraft with two CMGs, we ap-

proximate the state transition matrix using the following method; let the kinematics of

(3.87) be expanded using a Taylor-series about an at-rest configuration corresponding

to nominal gimbal angles δ1,0 = 0 and δ2,0 = 0. Note that the case when the nominal

gimbal angles are nonzero can be treated similarly. Then

Ḃ =

[
J̄−1

B

(
2∑
j=1

h̄
j
(δ
j,0

) +
∂h̄

j
(δ
j,0

)

∂δ
j

δ
j

+
1

2

∂2h̄
j
(δ
j,0

)

∂δ2
j

δ2
j

+O(|δ
j
|3)

)]×
B, (3.89)

where we explicitly show the dependency of h̄
j

on the gimbal angle δ
j
. Because the

total angular momentum of the spacecraft is zero, it follows that at the nominal

gimbal angle configuration,

h̄1(δ1,0) + h̄2(δ2,0) = 0. (3.90)
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From (2.50), we see that

∂h̄j
∂δj

(δ
j,0

) = τ̄
j
, j = 1, 2,

∂2h̄j
∂δ2
j

(δ
j,0

) = −h̄
j
(δ
j,0

), j = 1, 2,

(3.91)

where τ̄
j

= J
rsj
η
j
τ̌
j

corresponds to the torque provided by the jth CMG. Then from

(3.90) and (3.91), (3.89) becomes

Ḃ =

[
J̄−1

B

(
τ̄1δ1 + τ̄2δ2 −

h̄

2
(δ2

1
− δ2

2
) +

2∑
j=1

O(|δ
j
|3)

)]×
B, (3.92)

where h̄ = h̄1(δ1,0) = −h̄2(δ2,0).

Now let the gimbal angles be in steady-state, denoted by δ
j

= δss
j

, and let these

trajectories be periodic with period T while satisfying

T∫
0

δss
j

(σ)dσ = 0, j = 1, 2. (3.93)

Since (3.92) is linear with respect to B but time-varying, a Peano-Baker series [76] is

used to approximate the state transition matrix over the time period T ,

Φ̄(T, 0) = I +

T∫
0

Ā(σ)dσ +

T∫
0

Ā(σ)

σ∫
0

Ā(σ1)dσ1dσ + . . . , (3.94)

where the matrix Ā(t) is given by

Ā(t) =

[
J̄−1

B

(
τ̄1δ

ss
1

(t) + τ̄2δ
ss
2

(t)− h̄

2

((
δss

1
(t)
)2 −

(
δss

2
(t)
)2
)

+
2∑
j=1

O(|δss
j

(t)|3)

)]×
.

(3.95)
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Thus the evolution of B over the time interval T is

B(T ) = Φ̄(T, 0)B(0). (3.96)

Due to the periodicity of δss
j

, the first integral of the Peano-Baker series in

(3.94),(3.95) is

T∫
0

Ā(σ)dσ =
[
J̄−1

B
h̄
]×
α1 +

 T∫
0

2∑
j=1

O(|δss
j

(σ)|3)dσ

× , (3.97)

where

α1 = −1

2

T∫
0

{
(δss

1
(σ))2 − (δss

2
(σ))2

}
dσ. (3.98)

Likewise, the second integral term in the Peano-Baker series is

T∫
0

Ā(σ)
σ∫
0

Ā(σ1)dσ1dσ =
T∫
0

σ∫
0

(
[
J̄−1

B
τ̄1

]2×
δss

1
(σ)δss

1
(σ1) +

[
J̄−1

B
τ̄2

]2×
δss

2
(σ)δss

2
(σ1)

+1
4

[
J̄−1

B
h̄
]2×

((δss
1

(σ))2 − (δss
2

(σ))2)((δss
1

(σ1))2 − (δss
2

(σ1))2)

+
[
J̄−1

B
τ̄1

]× [
J̄−1

B
τ̄2

]×
δss

1
(σ)δss

2
(σ1)

+
[
J̄−1

B
τ̄2

]× [
J̄−1

B
τ̄1

]×
δss

2
(σ)δss

1
(σ1)

−1
2

[
J̄−1

B
τ̄1

]× [
J̄−1

B
h̄
]×
δss

1
(σ)((δss

1
(σ1))2 − (δss

2
(σ1))2)

−1
2

[
J̄−1

B
h̄
]× [

J̄−1
B
τ̄1

]×
((δss

1
(σ))2 − (δss

2
(σ))2)δss

1
(σ1)

−1
2

[
J̄−1

B
τ̄2

]× [
J̄−1

B
h̄
]×
δss

2
(σ)((δss

1
(σ1))2 − (δss

2
(σ1))2)

−1
2

[
J̄−1

B
h̄
]× [

J̄−1
B
τ̄2

]×
((δss

1
(σ))2 − (δss

2
(σ))2)δss

2
(σ1)

+
2∑
i=1

2∑
j=1

3∑
k=1

O(|δss
i

(σ)|3|δss
j

(σ1)|k))dσ1dσ.

(3.99)

Note that (3.99) utilizes properties involving multiplication and integration of big

“O” terms [78]. Using integration by parts and the skew symmetric matrix properties
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(which may be found in [79]),

[ā]×
[
b̄
]× − [b̄]× [ā]× =

[
ā× b̄

]×
,

[(
J̄ ā
)
× J̄ b̄

]×
= det

[
J̄
]
J̄−1

[
ā× b̄

]×
,

(3.100)

where ā and b̄ are arbitrary mathematical vectors, (3.99) reduces to

T∫
0

Ā(σ)
σ∫
0

Ā(σ1)dσ1dσ =
[
J̄

B
(τ̄1 × h̄)

]×
α2 +

[
J̄

B
(τ̄2 × h̄)

]×
α3 +

[
J̄

B
(τ̄1 × τ̄2)

]×
α4

+


T∫
0

σ∫
0

(
2∑
i=1

2∑
j=1

O(|δ
i
(σ)|2|δ

j
(σ1)|2)

)
dσ1dσ


×

+


T∫
0

σ∫
0

(
2∑
i=1

2∑
j=1

3∑
k=1

O(|δ
i
(σ)|3|δ

j
(σ1)|k)

)
dσ1dσ


×

,

(3.101)

where

α2 =
det[J̄−1

B
]

2

T∫
0

σ∫
0

{
((δss

1
(σ))2 − (δss

2
(σ))2)δss

1
(σ1)

}
dσ1dσ,

α3 =
det[J̄−1

B
]

2

T∫
0

σ∫
0

{
((δss

1
(σ))2 − (δss

2
(σ))2)δss

2
(σ1)

}
dσ1dσ,

α4 = det
[
J̄−1

B

] T∫
0

σ∫
0

δss
1

(σ)δss
2

(σ1)dσ1dσ.

(3.102)

Substituting (3.97) and (3.101) into (3.94), the state transition matrix for the

underactuated spacecraft system with two CMGs over one periodic cycle is

Φ̄(T, 0) = I3 +
[
J̄−1

B
h̄
]×
α1 + [J̄

B
(τ̄1 × h̄)]×α2 + [J̄

B
(τ̄2 × h̄)]×α3

+
[
J̄

B
(τ̄1 × τ̄2)

]×
α4 + [E]× + ...,

(3.103)
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where

E =
T∫
0

2∑
j=1

O(|δss
j

(σ)|3)dσ +
T∫
0

σ∫
0

2∑
i=1

2∑
j=1

3∑
k=1

O(|δss
i

(σ)|3|δss
j

(σ1)|k))dσ1dσ

+
T∫
0

σ∫
0

2∑
i=1

2∑
j=1

O(|δ
i
(σ)|2|δ

j
(σ1)|2)dσ1dσ.

(3.104)

We now make the following assumption:

Assumption 3.4.5 The magnitude of the steady-state gimbal angles is small,

which can be guaranteed by an appropriate control input. Assumption 3.4.5 implies

that E ≈ 0. Furthermore, since the steady-state gimbal angles are small, integral

terms of order three and higher in the Peano-Baker series can be neglected. Now

recall that the matrix exponential for an arbitrary m×m matrix D̄ is

exp(D̄) = Im +
∞∑
i=1

1

i!
D̄i. (3.105)

If second-order and higher order terms in D̄ are small, the matrix exponential can be

approximated by

exp(D̄) ≈ Im + D̄ (3.106)

Thus, from Assumption 3.4.5, (3.96), (3.103), and (3.106), the orientation matrix B

has the following approximate evolution over one periodic cycle T of gimbal angle

movement,

B(T ) ≈ exp
(
[w̄p(T )]×

)
B(0), (3.107)

where

w̄p = J̄−1
B
h̄α1 + J̄

B
(τ̄1 × h̄)α2 + J̄

B
(τ̄2 × h̄)α3 + J̄

B
(τ̄1 × τ̄2)α4. (3.108)

Note that we do not simply substitute (3.103) into (3.96). This is because if higher-
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order terms are neglected, the multiplication of (3.103) by B(0) does not necessarily

yield an orientation matrix. Therefore the matrix exponential is used to keep B(T )

consistently on SO(3).

Equation (3.107) represents an approximate eigenaxis maneuver, where the axis

of rotation is given by − w̄p
||w̄p ||

and the angle of rotation is given by ||w̄p ||.

3.4.3 State Transition Matrix Under Sinusoidal Gimbal An-

gle Trajectories

Assume that the steady-state periodic trajectories δss
1

and δss
2

have the form

δss
1

= a1 sin(nt) + b1 sin(2nt) + c1 sin(4nt),

δss
2

= a2 sin(nt) + b2 sin(2nt) + c2 sin(4nt),

(3.109)

where n is the frequency of excitation, i.e., T = 2π
n

, and ai, bi, ci, i = 1, 2, are sinusoidal

amplitudes (which will be chosen by the control law presented later in this section).

Then the integrals (3.98) and (3.102) become

T∫
0

(δss
1

(σ))2 − (δss
2

(σ))2dσ = π
n
(a2

1 + b2
1 + c2

1 − a2
2 − b2

2 − c2
2), (3.110)

T∫
0

σ∫
0

((δss
1

(σ))2 − (δss
2

(σ))2)δss
1

(σ1)σ1dσ = π
n2

(
a1 + b1

2

)
(a2

1 + b2
1 − a2

2 − b2
2)

− 3π
4n2a

2
1b1 + π

n2a1a2b2 − π
4n2a

2
2b1

− 3π
8n2 b

2
1c1 + π

2n2 b1b2c2 − π
8n2 b

2
2c1,

(3.111)
T∫
0

σ∫
0

((δss
1

(σ))2 − (δss
2

(σ))2)δss
2

(σ1)σ1dσ = π
n2

(
a2 + b2

2

)
(a2

1 + b2
1 − a2

2 − b2
2)

+ 3π
4n2a

2
2b2 − π

n2a1a2b1 + π
4n2a

2
1b2

+ 3π
8n2 b

2
2c2 − π

2n2 b1b2c1 + π
8n2 b

2
1c2,

(3.112)
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T∫
0

σ∫
0

δss
1

(σ)δss
2

(σ1)dσ1dσ = 0. (3.113)

Let the following variables be defined

γ1 = − π
2n
,

γ2 =
πdet[J̄−1

B
]

2n2 ,

γ3 = −πdet[J̄−1
B

]
2n2 ,

β1 = a2
1 + b2

1 − a2
2 − b2

2,

β2 =
(
a1 + b1

2

)
(a2

1 + b2
1 − a2

2 − b2
2)

−3
4
a2

1b1 + a1a2b2 − 1
4
a2

2b1 − 3
8
b2

1c1 + 1
2
b1b2c2 − 1

8
b2

2c1,

β3 =
(
a2 + b2

2

)
(a2

1 + b2
1 − a2

2 − b2
2)

+3
4
a2

2b2 − a1a2b1 + 1
4
a2

1b2 + 3
8
b2

2c2 − 1
2
b1b2c1 + 1

8
b2

1c2,

(3.114)

as well as the mathematical vectors

ḡ1 = τ̄1 × h̄ =
(
Jrs1η1

)2
ǧ1 ,

ḡ2 = −τ̄2 × h̄ = −
(
Jrs2η2

)2
ǧ2 .

(3.115)
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Note that ḡ1 and ḡ2 lie along the first and second gimbal axes, respectively. Then

using (3.110)-(3.115), (3.108) becomes

w̄p = N̄ [ β1 β2 β3 ]T, (3.116)

where N̄ = [ γ1J̄
−1
B
h̄ γ2J̄B

ḡ1 γ3J̄B
ḡ2 ].

3.4.4 Control Law when CMG Gimbal Axes are Not Aligned

In designing a control law for an underactuated spacecraft with two CMGs, as in the

thruster case and the RW case, we divide the system into base variables and fiber

variables. In contrast to the thruster case or the RW actuation case, the base variables

are chosen as the gimbal angles δ1 and δ2 whereas the fiber variable is chosen as the

orientation matrix B. If the gimbal angle trajectories are periodic with relatively small

amplitude, then (3.107) implies that the attitude approximately evolves according to

B((k + 1)T ) = exp
([
w̄p(T )

]×)
B(kT ), (3.117)

where w̄p is given by (3.116). To achieve the desired periodic gimbal angle movement,

the following control law is used

u1(t) = −k1δ1(t) + a1

√
k2

1 + n2 sin(nt) + b1

√
k2

1 + 4n2 sin(2nt)

+c1

√
k2

1 + 16n2 sin(4nt),

u2(t) = −k2δ2(t) + a2

√
k2

2 + n2 sin(nt) + b2

√
k2

2 + 4n2 sin(2nt)

+c2

√
k2

2 + 16n2 sin(4nt),

(3.118)
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where k1, k2 > 0 are chosen such that the gimbal angles reach their steady-state

trajectories sufficiently fast while keeping the transients small to satisfy Assumption

3.4.5. Then, if by using the proper choice of sinusoidal amplitudes we can obtain

any w̄p in an open neighborhood of the origin, i.e., 0 ∈ R3, a controlled drift can be

induced that guides the attitude towards the desired pointing configuration B = I3.

At this point we make the following assumption on gimbal axes:

Assumption 3.4.6 The gimbal axes are not aligned,

which gives rise to the following Lemma:

Lemma 3.4.1: Let the gimbal axes ǧ1 and ǧ2 be non-parallel. Then the matrix

N̄ defined in (3.116) is nonsingular.

Proof: For the matrix N̄ to be nonsingular, its columns must be nonzero and linearly

independent. Already the columns are nonzero. The dot product of the first and

second column of N̄ gives

(γ1J̄
−1h̄)Tγ2J̄B

ḡ1 = γ1γ2h̄
TJ̄−1

B
J̄

B
ḡ1 ,

= γ1γ2h̄
Tḡ1 .

(3.119)

Recall that h̄ is in the direction of the angular momentum vector while ḡ1 is in the

direction of the 1st gimbal axis. By the construction of the CMG, these two vectors

are orthogonal, and thus the first two columns are linearly independent. A similar

procedure can be used to show that h̄ and ḡ2 are linearly independent. Finally, if

ǧ1 and ǧ2 are non-parallel, then ḡ1 and ḡ2 are non-parallel, and the second and third

columns of N̄ are linearly independent. Therefore, all three columns are independent

from one another, and N̄ is nonsingular. �

With N̄ being nonsingular, the only requirement to achieve any w̄p in a neighbor-

hood of the origin is that the mapping from ai, bi, ci, i = 1, 2, to β1, β2, β3, must be

open at a1 = a2 = b1 = b2 = c1 = c2 = 0. While no theorem is given in this chapter,
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numerous tests via a numerical solver using a Levenberg-Marquardt method suggest

that the map is indeed open. The in-depth analysis of this property for the CMG

case is left to future work.

Remark 3.4.1: When the gimbal axes are aligned, N̄ becomes singular and the

switching scheme described in this section cannot be utilized. This configuration of

CMGs is more difficult to handle when the spacecraft has zero angular momentum,

as currently no claims can be made on STLC. A control law handling this situation

is left to future work.

We now present a switching feedback law to stabilize a spacecraft equipped with

only two skew CMGs (the explanation of the algorithm is given after):
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Algorithm 3: Control Computation for CMGs

Given:

The current attitude B, dmax > 0

for k > 0 do

1. Set µ = 1.

2. Compute the rotation vector w̄p such that exp
([
w̄p

]×)
= BT(kT ).

3. Compute a1, a2, b1, b2, c1, c2 such that [ β1 β2 β3 ]T = N̄−1w̄p .

if max{|ai|, |bi|, |ci|, i = 1, 2} > dmax then

µ = µ+ 1.

w̄p =
w̄p
µ

and go back to Step 3.

end if

end for

Control at Cycle k:

u1(t) = −k1δ1(t) + a1

√
k2

1 + n2 sin(nt)

+b1

√
k2

1 + 4n2 sin(2nt) + c1

√
k2

1 + 16n2 sin(4nt) for t ∈ [kT, (k + 1)T )

u2(t) = −k2δ2(t) + a2

√
k2

2 + n2 sin(nt)

+b2

√
k2

2 + 4n2 sin(2nt) + c2

√
k2

2 + 16n2 sin(4nt) for t ∈ [kT, (k + 1)T )

The intuition behind the algorithm is the following; at the beginning of each cycle,

the amplitudes of the sinusoids ai, bi, ci, i = 1, 2 are chosen to induce a change in the

kinematics that will approximately guide the system towards B = I3, the desired

orientation. If the magnitude of ai, bi, or ci, for i = 1, 2, exceeds that of the constant

value dmax , the rotation vector w̄p is reduced by a factor of µ (which grows larger when
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a solution cannot be found). The value dmax is chosen so the gimbal rates and gimbal

angles are kept small, thus satisfying Assumption 3.4.5. In the simulation section

below, ai, bi, ci, i = 1, 2, are computed by a numerical solver using a Levenberg-

Marquardt method since the mapping between ai, bi, ci, i = 1, 2, and β1, β2, β3 is

highly nonlinear. No convergence proofs are given in this chapter for this switching

controller, but numerical simulations on the full nonlinear model (3.87) demonstrate

successful stabilization to the desired attitude.

3.4.5 Simulation Results

To validate the switching scheme, we consider a spacecraft bus with the principal

moments of inertia of 100, 200, and 250 kg m2. The gimbal axes are given by

ǧ1 =


0

cos
(
π
6

)
sin
(
π
6

)
 , ǧ2 =


0

− cos
(
π
6

)
sin
(
π
6

)
 . (3.120)

The angular momentum contribution due to each spinning rotor is J
rsj
η
j

= 15 kg m2

sec−1, j = 1, 2. For the feedback law (3.118), the constants that yield the steady-

state base dynamics in (3.109) are k1 = k2 = 2. The sinusoidal excitation is applied

at a frequency of n = 0.01 sec−1. The constant dmax is set to 0.5 in order to keep

sinusoidal gimbal movement relatively small. All simulations are run on the nonlinear

model (3.87).

In Figures 3.8 and 3.9, two at-rest, underactuated attitude maneuvers are per-

formed (thus satisfying the assumption that total angular momentum of the system

must be zero). Figure 3.8 shows a small angle maneuver corresponding to the initial

3-2-1 Euler angle sequence φ(0) = 0.0873 rad (5 deg), θ(0) = −0.0873 rad (-5 deg),

ψ(0) = −0.0524 rad (-3 deg), with δ1(0) = δ2(0) = 0 rad. In the second simulation,

the attitude maneuver is much larger, corresponding to an initial 3-2-1 Euler sequence
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of φ(0) = −0.3491 rad (20 deg), θ(0) = 0.7854 rad (45 deg), ψ(0) = −0.1745 rad (-10

deg), with gimbal angles δ1(0) = δ2(0) = 0 rad. In both simulations, the attitude

error goes to zero (shown in Figures 3.8 (a) and 3.9 (a)). It should be noted that

though there are spikes in the attitude error, there is an overall decrease in the change

over each sample period T = 2π
n

= 0.17 hours.
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Figure 3.8: Small attitude maneuver for an underactuated spacecraft with two skew
CMGs (a) SO(3) error, (b) sinusoidal amplitudes, (c) gimbal angles, (d) gimbal rates.
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Figure 3.9: Large attitude maneuver for an underactuated spacecraft with two skew
CMGs (a) SO(3) error, (b) sinusoidal amplitudes, (c) gimbal angles, (d) gimbal rates.
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CHAPTER 4

Underactuated Attitude Control Using

Model Predictive Control

4.1 Introduction

MPC is a popular control technique due to its ability to generate feedback controllers

that enforce specified constraints. Its application to the spacecraft attitude control

problem began in the mid 1990’s with [80] and [81]. In [80], attitude tracking was

performed using a one-step ahead prediction of the states. On the other hand, [81]

used a function-space MPC approach to track a reference attitude, and differs from

standard MPC as it does not recompute the optimization solution at every discrete-

time step. Since then, the topic of MPC for spacecraft attitude has been approached

in numerous other publications. In [82], a spacecraft with multiple thrusters and one

RW is controlled by using explicit MPC. Reference [83] develops an MPC controller

that acts on the manifold SO(3) in order to avoid mappings with singularities (such

as Euler angles) and mappings that involve double covering (such as quaternions).

Robust MPC for attitude control was discussed in [84, 85]. MPC laws developed

specifically for the case of CMG and magnetic torque actuation are presented in [86]

and [87,88], respectively. An MPC algorithm suitable for fixed-point implementation

is applied to spacecraft attitude control with RWs in [89].

The existing references on applications of MPC have not, however, addressed the
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case of a spacecraft that is underactuated by design or that becomes underactuated as

a result of onboard failures. It was shown in [41,42,90] that MPC has the remarkable

ability to generate a stabilizing feedback law that is discontinuous as a function of

the state. Thus the obstruction to stabilization, which is a consequence of violating

Brockett’s condition, can be overcome. The use of MPC has several other advantages

over other discontinuous feedback stabilization approaches in the literature: The

design process is systematic, state and control constraints are handled, and a cost

function reflecting performance objectives is optimized in a receding horizon sense.

This chapter addresses the following issues for an underactuated spacecraft prob-

lem with two RWs and zero angular momentum:

• The introduction and analysis of a nonlinear MPC controller for the under-

actuated spacecraft problem, including showing that the control law generated

using the reduced, approximate dynamics is stabilizing. We also prove that the

control law must be a nonsmooth function of the state and our numerical results

indicate that the control law is actually a discontinuous function of the state.

• The implementation of the nonlinear MPC controller on the full nonlinear,

underactuated spacecraft model, with discussion on real-time implementation

of the controller.

The fact that MPC generates a feedback law that is discontinuous in the state is

interesting because stabilizing, continuous, time-invariant feedback laws do not exist.

Note that in other problems, the MPC feedback law is typically continuous in the

state. For example, in LQ type MPC the control law is typically piecewise affine and

continuous [91].
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4.2 Spacecraft Configuration & Equations of Mo-

tion

In this chapter, we consider an underactuated spacecraft equipped with two RWs

under the following assumptions:

Assumption 4.1 There are no external moments acting on the spacecraft sys-

tem.

Assumption 4.2 The maneuvers being performed involve relatively small at-

titude adjustments near the desired pointing orientation.

Assumption 4.3 The total angular momentum of the system is zero.

By Assumption 4.1, inertial angular momentum is conserved, and by Assumption 4.2,

singularity problems due to Euler angle representations are avoided. Therefore the

RAE’s in (2.53) can be used to model the spacecraft system. From Assumptions 4.1,

4.2, and 4.3, (2.53) becomes

˙̄Θ = −M̄(Θ̄)J̄−1W̄ ν̄,

˙̄ν = ū,

(4.1)

where

W̄ = [ Jws1w̌1 Jws2w̌2 ],

ν̄ = [ ν1 ν2 ]T,

ū = [ u1 u2 ]T = [ ν1 ν2 ]T,

J̄ = J̄
B

+
2∑
i=1

J̄
Wi
.

(4.2)
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We now make the additional assumption on the RW configuration:

Assumption 4.4 The RW spin axes are linearly independent and are orthog-

onal to b̂z , the unit axis aligned with the z direction in the spacecraft bus fixed

frame B.

Thus again, the uncontrollable axis is parallel to ω3, isolating ψ as the uncontrollable

angle. If −J̄−1W̄ = W̃ , then W̃ can be written as

W̃ =


α1 α2

β1 β2

0 0

 , (4.3)

where α1, α2, β1, β2 ∈ R. Substituting (4.3) into (4.1) yields

φ̇ = (α1ν1 + α2ν2) + (β1ν1 + β2ν2) sin(φ) tan(θ),

θ̇ = (β1ν1 + β2ν2) cos(φ),

ψ̇ = (β1ν1 + β2ν2) sin(φ) sec(θ),

ν̇1 = u1,

ν̇2 = u2.

(4.4)

We note that any equilibrium of (4.4) must be unforced, i.e., u1 = u2 = 0. Further-

more, since M̄(Θ̄) is invertible, ν1 = ν2 = 0 at an equilibrium. Thus all attitudes

with zero RW velocity are equilibria of (4.4).
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4.2.1 Approximation of the Equations of Motion

To simplify controller design, the dynamics in (4.4) are approximated by a set of

equations that do not contain any trigonometric functions. This is done by first

expanding the trigonometric functions in (4.4) by a Taylor-series about φ = θ = ψ =

0, yielding

φ̇ = (α1ν1 + α2ν2) + (β1ν1 + β2ν2)(φ− 1
6
φ3 + 1

120
φ5 + ...)(θ + 1

3
θ3 + 2

15
θ5 + ...),

θ̇ = (β1ν1 + β2ν2)(1− 1
2
φ2 + 1

24
φ4 + ...),

ψ̇ = (β1ν1 + β2ν2)(φ− 1
6
φ3 + 1

120
φ5 + ...)(1 + 1

2
θ2 + 5

24
θ4 + ...),

ν̇1 = u1,

ν̇2 = u2.

(4.5)

The equations (4.5) can be compactly written as

φ̇ = (α1ν1 + α2ν2) +O(||Θ̄(t)||2),

θ̇ = (β1ν1 + β2ν2) +O(||Θ̄(t)||2),

ψ̇ = (β1ν1 + β2ν2)φ+O(||Θ̄(t)||2),

ν̇1 = u1,

ν̇2 = u2,

(4.6)
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where O(||Θ̄(t)||2) denotes the remaining terms, which are higher order in Euler an-

gles. Since the desired attitude maneuvers being performed are small, in a neighbor-

hood of the desired pointing equilibrium Θ̄ = 0, (4.4) can be approximated based on

(4.6) by

φ̇ = (α1ν1 + α2ν2),

θ̇ = (β1ν1 + β2ν2),

ψ̇ = (β1ν1 + β2ν2)φ,

ν̇1 = u1,

ν̇2 = u2.

(4.7)

Remark 4.1: When α1 = β2 = 1 and α2 = β1 = 0, the model (4.7) is essen-

tially the same as the exact, transformed equations of motion of the underactuated

spacecraft with zero angular momentum given in [7]. This implies that the MPC law

presented in this paper can stabilize also the transformed dynamics of [7], and hence

the actual spacecraft’s attitude. The advantage to using the transformed dynamics is

that errors due to approximations like small angles are nonexistent. In this chapter,

the development of an MPC controller is based on (4.7), and the transformation is

not used in order to preserve the physical meaning and intuitive sense of state and

control variables, which, for instance, facilitates the imposition of constraints. The

controller is validated in simulations using the exact model based on (2.3), (2.41),

and (2.44).

Remark 4.2: The reduced, simplified, continuous dynamics in (4.7) are closely

related to nonholonomic problems that have been studied in [92]. While this paper

only considers and focuses on the application of nonlinear MPC to the underactuated
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spacecraft problem, the results may be extended to stabilize other systems with similar

characteristics. We leave such extensions to future work.

4.2.2 Discretization

In order to implement MPC, a discrete-time prediction model is needed. We assume

that the control input is generated by a zero-order hold with a sampling period T , so

that

u1(t) = u1,k, ∀t ∈ [kT, (k + 1)T ),

u2(t) = u2,k, ∀t ∈ [kT, (k + 1)T ),

(4.8)

where k is a positive integer. In addition, we adopt the following notations,

φk = φ(kT ), θk = θ(kT ), ψk = ψ(kT ), ν1,k = ν1(kT ), ν2,k = ν2(kT ),

xk = [ φk θk ψk ν1,k ν2,k ]T.

(4.9)

The discrete-time dynamics for RW velocities are determined by integrating the

last two equations of (4.6), yielding

ν1,k+1 = ν1,k + u1,kT,

ν2,k+1 = ν2,k + u2,kT.

(4.10)

Based on (4.7), the approximate discrete dynamics for Euler angles φ and θ can be

determined similarly as

φk+1 = φk + (α1ν1,k + α2ν2,k)T + (α1u1,k + α2u2,k)
T 2

2
,

θk+1 = θk + (β1ν1,k + β2ν2,k)T + (β1u1,k + β2u2,k)
T 2

2
.

(4.11)
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In order to determine the approximate discrete dynamics for ψ, the equation

ψ̇ = (φk + (α1ν1,k + α2ν2,k) t+ (α1u1,k + α2u2,k)
t2

2
)(β1(ν1,k + u1,kt))

+(φk + (α1ν1,k + α2ν2,k) t+ (α1u1,k + α2u2,k)
t2

2
)(β2(ν2,k + u2,kt))

(4.12)

must be integrated over the sampling period T , where (4.12) is obtained from substi-

tuting (4.10) and (4.11) into the kinematic equation for ψ in (4.7). Integrating (4.12)

and collecting (4.10) and (4.11) gives the full set of approximate discrete dynamics

φk+1 = φk + (α1ν1,k + α2ν2,k)T + (α1u1,k + α2u2,k)
T 2

2
,

θk+1 = θk + (β1ν1,k + β2ν2,k)T + (β1u1,k + β2u2,k)
T 2

2
,

ψk+1 = ψk + φk(β1ν1,k + β2ν2,k)T

+(β1φku1,k + β2φku2,k + α1β1ν
2
1,k + α2β2ν

2
2,k + α1β2ν1,kν2,k + α2β1ν1,kν2,k)

T 2

2

+(3α1β1ν1,ku1,k + 3α2β2ν2,ku2,k + 2α1β2ν1,ku2,k + 2α2β1ν2,ku1,k)
T 3

6

+(α1β2ν2,ku1,k + α2β1ν1,ku2,k)
T 3

6

+(α1β1u
2
1,k + α2β2u

2
2,k + α1β2u1,ku2,k + α2β1u1,ku2,k)

T 4

8
,

ν1,k+1 = ν1,k + u1,kT,

ν2,k+1 = ν2,k + u2,kT.

(4.13)
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Thus under the assumption that all attitude maneuvers are relatively small, the dis-

crete dynamics in (4.13) approximate the actual discrete dynamics of the underactu-

ated spacecraft system. We note that the approximate model (4.13) is nonlinear. The

use of a nonlinear prediction model rather than linearized model is essential to be

able to achieve discontinuous stabilization with MPC. This is due to the fact that the

linearized model is not controllable and thus a linear controller cannot be designed

for this problem. In contrast, the simplified nonlinear model is locally controllable

and stabilizable, which is discussed in the next section.

4.3 Controllability and Stabilizability Analysis

In this section, controllability and stabilizability properties of the approximate dy-

namics, given by the continuous-time equations (4.7) and the discrete-time equations

(4.13), are analyzed and compared with the properties of the actual nonlinear dy-

namics (4.4). This analysis indicates that (4.7) retains similar local controllability

properties to (4.4) which are necessary to be able to use (4.7) as a basis for control

design for an underactuated spacecraft. Controllability and stabilizability proper-

ties of the discrete-time system (4.13) will subsequently be needed to demonstrate

closed-loop stability with MPC.

4.3.1 Controllability Analysis

The definition of STLC, as given by [2], is the following:

Definition 4.1 [2]: A system ˙̄x = f(x̄, ū) is small-time locally controllable

(STLC) from x̄0 if there exists a time T > 0 such that x̄0 for all time in-

stants t > 0, t ≤ T is in the interior of the reachable set from x0, R(x̄0, t), at

time instant t.

Intuitively if x̄0 is STLC, the reachable set from x̄0 will remain an open neighborhood
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of x̄0 as time becomes infinitesimally small. In [7], the exact, reduced, underactuated

attitude equations are proven STLC from any at-rest attitude. This property also

holds for (4.4) (the proof of which is given in Appendix A). It is now demonstrated by

Theorem 4.1 that the approximate, continuous-time dynamics in (4.7) remain STLC

from any equilibrium. The proof of the theorem utilizes the concept of Lie brackets,

which are reviewed in Appendix A.

Theorem 4.1: The approximate, underactuated spacecraft attitude equations

(4.7) are STLC from all equilibria.

Proof: Let x̄ = [ φ θ ψ ν1 ν2 ]T. The drift vector field and the control vector fields

of (4.7) are then given by

f0 = [ α1ν1 + α2ν2 β1ν1 + β2ν2 (β1ν1 + β2ν2)φ 0 0 ]T,

f1 = [ 0 0 0 1 0 ]T,

f2 = [ 0 0 0 0 1 ]T.

(4.14)

Using (A.2) from Appendix A, three Lie brackets are generated

B1 = [ f1, f0 ] = [ α1 β1 β1φ 0 0 ]T, (4.15)

B2 = [ f2, f0 ] = [ α2 β2 β2φ 0 0 ]T, (4.16)

B3 = [ B1, B2 ] = [ 0 0 (α1β2 − α2β1) 0 0 ]T. (4.17)

Note the following:

i. The top two entries of B1 and B2 are equivalent to the top two entries of the

1st and 2nd columns of W̃ , respectively. Since the columns of W̃ are linearly

independent (which consequently results in α1 6= α2 and β1 6= β2), B1 and B2
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are linearly independent for all φ.

ii. The top three entries of B3 are equivalent to the cross product of the columns of

W̃ . Since the columns of W̃ are linearly independent, B3 is nonzero.

From the above, it can be seen that the vector fields f1, f2, B1, B2, B3, when evaluated

at any equilibrium (i.e., any orientation with zero RW velocity), span R5. By Theorem

A1 in Appendix A, (4.7) is accessible from any equilibrium.

Now note that bracket B3 has a 1-degree of 4, the largest out of this set of brackets.

The only bad brackets that can be generated by f0, f1, f2 with 1-degree less than 4

are [ f1, B1 ] and [ f2, B2 ], both of which have a 1-degree of 3 (other bad brackets of

1-degree of 3 can be written as linear combinations of these two due to the symmetric

properties of the brackets themselves, see [93]). These brackets are zero and thus can

be constructed trivially with good brackets of 1-degree of 1 or 2. From Theorem A2

in Appendix A, the system is STLC from all equilibria. �

The above analysis demonstrates that the approximate dynamics of (4.7) retain

the STLC property of the actual nonlinear dynamics (4.4). Thus, even though the

system is approximate, its nonlinear dynamics can be exploited by control designs

that depend on local controllability properties.

Remark 4.3: Consider now the discrete-time system (4.13). We note that there

are accessibility properties that can be obtained for discrete-time systems through

the use of Lie brackets [94, 95], but currently there is no Lie bracket analysis that

can demonstrate nonlinear, local controllability properties for discrete-time that are

similar to that of STLC in continuous-time. Hence we present a direct construc-

tion of a control input which demonstrates the needed local controllability property

in discrete-time in Appendix B. The open-loop control sequence that we construct

brings any at-rest equilibrium of (4.13) to any state in six-steps, regardless of sample

time. Thus the reachable set from any attitude equilibrium in six steps is an open

neighborhood. Moreover the elements of the control sequence depend continuously on
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the initial state, a property that will be used in the proof of the closed-loop stability

of the MPC controller.

4.3.2 Stabilizability Analysis

As stated previously, the actual continuous-time attitude dynamics cannot be sta-

bilized by any smooth or continuous, time-invariant feedback law due to Brockett’s

condition. This was proven in [7] and can be similarly shown for (4.4). To show

that this obstruction to stabilization is still retained by (4.13) (the exact discretiza-

tion of the reduced, approximate continuous-time dynamics in (4.7)) the following

discrete-time variant of Brockett’s condition from [96] is used.

Lemma 4.1: [96] Consider a discrete-time nonlinear control system governed by

x̄k+1 = Fd(x̄k, ūk), (4.18)

with Fd(0, 0) = 0 and Fd being smooth (i.e., C∞) in a neighborhood of (0, 0). A

necessary condition for the existence of a smooth state feedback control law ūk = ū(x̄k)

which renders (0, 0) locally asymptotically stable is that the mapping Φ̄ : (x̄, ū) →

x̄− Fd(x̄, ū) be onto in an open neighborhood of the origin. �

Lemma 4.1 is now used to prove the result of Theorem 4.2.

Theorem 4.2: There does not exist a smooth state feedback law that locally

asymptotically stabilizes the discrete-time dynamics in (4.13) to the origin.

Proof: If the map Φ̄ is open, the equation

z̄ = x̄− Fd(x̄, ū), (4.19)

is solvable for all z̄ sufficiently small. Let Fd represent the discrete dynamics in (4.13)

and z̄ = [ 0 0 z 0 0 ]T for z ∈ R. For (4.19) to be satisfied, u1, u2, ν1, and ν2

must be zero, which results in x̄ − Fd(x̄, ū) = 0. Given that W̃ in (4.3) is rank 2,
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(4.19) is not solvable for all |z| > 0 and implies that the mapping Φ̄ is not open. The

conclusion of the theorem follows from Lemma 4.1. �

Theorem 4.2 demonstrates that even though the dynamics are approximated and

discretized, the obstruction to stabilizability present in (4.4) is retained by (4.13).

However, since the approximate nonlinear system is locally controllable, a discontin-

uous feedback law to stabilize the system to the desired equilibrium can be generated

using MPC techniques.

4.4 Model Predictive Control

Model Predictive Control optimizes a control sequence over a finite horizon into the

future to minimize a specified cost function subject to constraints [97]. Then, the

first element of the optimal sequence is applied over the first discrete time interval.

The optimization horizon afterwards recedes by one step and the process is repeated

starting with the current state as the initial condition.

Subsequently, we consider an MPC objective function for the underactuated space-

craft attitude control problem of the form

JN(x̄0, u1,0, ..., u1,N−1, u2,0, ..., u2,N−1) =
N−1∑
i=0

L(x̄i, [u1,i, u2,i]
T), (4.20)

where N is the optimization horizon, L(x̄, [u1, u2]T) is the incremental cost function

given by

L(x̄, [u1, u2]T) = x̄TQ̄x̄+ r1u
2
1 + r2u

2
2, (4.21)

and where Q̄ = Q̄T > 0 and r1, r2 > 0. The optimal control problem is given by

min
ui,j , i=1,2, j=0,1,...,N−1

JN(x̄0, u1,0, ..., u1,N−1, u2,0, ..., u2,N−1), (4.22)
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subject to

x̄k+1 = Fd(x̄k, [u1,k, u2,k]
T), ∀k = 0, 1, ..., N − 1,

x̄0 = x̄(t),

max{|u1,k|, |u2,k|} ≤ umax, k = 0, 1, ..., N − 1,

x̄k ∈ Xk, k = 0, 1, ..., N − 1,

x̄N = 0,

(4.23)

where x̄(t) is the current state, umax is the maximum bound on control, Xk is the

state constraint set at a discrete time instant k assumed to be compact, and Fd are

the approximate discrete dynamics (4.13). The value function of this optimization at

x̄0 is defined as

VN(x̄0) = min
ui,j , i=1,2, j=0,1,...N−1

JN(x̄0, u1,0, ..., u1,N−1, u2,0, ..., u2,N−1). (4.24)

4.4.1 Asymptotically Stabilizing Control Generated by MPC

To demonstrate that MPC generates an asymptotic stabilizing control law for the

approximate discrete dynamics (4.13), the following theorem from [42] is used.

Theorem 4.3: [42] For a discrete-time MPC control problem with a terminal

state condition x̄N = 0, if VN is continuous at x̄0 = 0 and L satisfies the following:

R.4.1: L(0, 0) = 0,

R.4.2: There exists a non-decreasing function γ : [0,∞)→ [0,∞] such that γ(0) = 0

and 0 < γ(||(x̄, ū)||) ≤ L(x̄, ū) for all (x̄, ū) 6= 0, where ||(∗, ∗)|| is a norm on

the pair (x̄, ū),

then the origin is an asymptotically stable equilibrium of the discrete-time system.

�

Note that Theorem 4.3 only requires continuity of the value function at x̄0 = 0.

Theorem 4.3 is now used to prove that the nonlinear MPC problem generates an
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asymptotically stabilizing control law for when the input is unconstrained (Theorem

4.4) and constrained (Corollary 4.1).

Theorem 4.4: For the MPC problem (4.22)-(4.23), (4.13), let Xk = R5 for

k = 0, 1, ...N − 1 and umax = ±∞. Then the solution to the MPC optimization

problem generates an asymptotically stabilizing control law to the origin when the

horizon length satisfies N ≥ 6.

Proof: Requirements R.4.1 and R.4.2 are satisfied from the construction of L in

(4.21). It is now only necessary to show that VN is continuous at x̄0 = 0 in order

to apply Theorem 4.3. A sufficient condition for the continuity of VN at x̄0 = 0 is

that it is bounded from below and above by continuous functions that are zero at

x̄0 = 0 [42]. The value function is bounded from below by a function x̄TQx̄ due to

(4.21), which is continuous and zero at x̄0 = 0. To show that VN is bounded from

above, it is sufficient to show that an open-loop trajectory exists, is feasible under

control constraints, and has a maneuver cost that is continuous in the initial state x̄0

and is zero at x̄0 = 0.

Such an open-loop control sequence can be constructed as follows. Let the states

φ, θ, ν1, ν2 be called base variables, as the linear system consisting of these states is

completely controllable in 2 discrete-time steps. Define x̄0 = [ φ0 θ0 ψ0 ν1,0 ν2,0 ]T

as the initial state vector, ȳ0 = [ φ0 θ0 ν1,0 ν2,0 ]T as the initial base variable vector

and ȳc = [ φ̃ θ̃ ν̃1 ν̃2 ]T as a chosen base variable vector (to be explicitly defined

later in the proof). Then the control sequence {ui,j, i = 1, 2, j = 0, 1, ..., 5}, defined

by

[ u1,0 u2,0 u1,1 u2,1 ]T = −
(
[ ĀB̄ B̄ ]

)−1
Ā2ȳ0, (4.25)

[ u1,2 u2,2 u1,3 u2,3 ]T =
(
[ ĀB̄ B̄ ]

)−1
ȳc, (4.26)

105



[ u1,4 u2,4 u1,5 u2,5 ]T = −
(
[ ĀB̄ B̄ ]

)−1
Ā2ȳc, (4.27)

and

Ā =



1 0 α1T α2T

0 1 β1T β2T

0 0 1 0

0 0 0 1


, B̄ =



α1
T 2

2
α2

T 2

2

β1
T 2

2
β2

T 2

2

T 0

0 T


, (4.28)

will drive any x̄0 to 0 as long as

∆c = − 12

5T
ψ2, (4.29)

where

∆c = φ̃(β1ν̃1 + β2ν̃2)− θ̃(α1ν̃1 + α2ν̃2), (4.30)

and

ψ2 = ψ0 +
5T

24
(φ0(β1ν1,0 + β2ν2,0)− θ0(α1ν1,0 + α2ν2,0))− 1

2
θ0φ0. (4.31)

Note that since umax = ±∞, the control in (4.25)-(4.27) will always satisfy con-

straints, and therefore the trajectory generated by such a control sequence is feasible.

The logic of the open-loop maneuver is the following. The control sequence in

(4.25) drives ȳ0 to 0 and ψ0 to ψ2. The remaining control sequences in (4.26) and

(4.27) guide the base variables in a closed trajectory that travels from 0 to ȳc and

back to 0. The influence of this closed trajectory on ψ is reflected by ψ3, ψ4, ψ5 and

ψ6,

ψ3 = ψ2 + ∆c
T

16
+ θ̃φ̃

1

8
+ (α1ν̃1 + α2ν̃2)(β1ν̃1 + β2ν̃2)

T 2

32
− φ̃(β1ν̃1 + β2ν̃2)

T

8
, (4.32)
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ψ4 = ψ2 + ∆c
5T

24
+

1

2
θ̃φ̃, (4.33)

ψ5 = ψ2 + ∆c
17T

48
+ θ̃φ̃

1

8
+ (α1ν̃1 + α2ν̃2)(β1ν̃1 + β2ν̃2)

T 2

32
+ φ̃(β1ν̃1 + β2ν̃2)

T

8
, (4.34)

ψ6 = ψ2 + ∆c
5T

12
. (4.35)

As can be seen, if (4.29) is satisfied, ψ6 = 0, and thus x̄0 reaches zero in six steps.

Let ȳc be chosen as

φ̃ = |ψ2|
2
3 ,

θ̃ = −|ψ2|
2
3 ,

ν̃1 = − 6
5T (α1+β1)

(ψ2)
1
3 ,

ν̃2 = − 6
5T (α2+β2)

(ψ2)
1
3 .

(4.36)

Then condition (4.29) is satisfied assuming that α1 + β1 6= 0 and α2 + β2 6= 0. Note

that if α1 +β1 = 0 or α2 +β2 = 0, another ȳc that satisfies (4.29) can be chosen. Also

note that α1 + β1 = 0 and α2 + β2 = 0 will never occur at the same time since the

columns of W̃ are linearly independent. Using (4.36) above, the control sequences in

(4.26)-(4.27) become continuous functions of ψ2, which is consequently a continuous

function of x̄0.

Since the control sequence (4.25)-(4.27) steers the state to the origin and is con-

tinuous as a function of the initial state x̄0, it follows that VN is upper bounded by

the cost of this feasible control sequence, which is a continuous function of x̄0 and is

zero at x̄0 = 0. Since VN is upper and lower bounded by continuous functions of x̄0

which are zero at x̄0 = 0, VN is continuous at x̄0 = 0. By Theorem 4.3, the control

law is asymptotically stabilizing for all horizon lengths satisfying N ≥ 6. �

The argument of Theorem 4.4 can be extended to demonstrate the following result
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under control constraints.

Corollary 4.1: For the MPC problem in (4.22)-(4.23), (4.13), let Xk = R5 for

k = 0, 1, ..., N − 1. Then for any umax > 0, there exists a sufficiently large horizon

length N∗ ≥ 6 such that MPC generates a locally asymptotic stabilizing control to

the origin when the horizon length satisfies N ≥ N∗.

Proof: Define the following quantities,

ũmax,1 = max{|u1,0|, |u1,1|, |u2,0|, |u2,1|}, (4.37)

ũmax,2 = max{|ui,j|, i = 1, 2, j = 2, 3, 4, 5}, (4.38)

and the following set

G(ρ) = {x̄0 ∈ R5 : ∀||x̄0|| ≤ ρ, ũmax,1 ≤ umax}. (4.39)

Since the base variable system is linear (defined by the matrices Ā and B̄ from (4.28))

and umax > 0, there exists a ρ∗ > 0 such that ∀ρ ∈ (0, ρ∗], G(ρ) 6= {∅} (i.e., there exists

a ball of radius ρ∗ centered at the origin where for all x̄0 in the ball, ũ1,max ≤ umax).

Now define Nψ ≥ 1 as a positive integer and let ȳc be chosen as

φ̃ = |ψ2|
2
3/
√
Nψ,

θ̃ = −|ψ2|
2
3/
√
Nψ,

ν̃1 = − 6

5T (α1+β1)
√
Nψ

(ψ2)
1
3 ,

ν̃2 = − 6

5T (α2+β2)
√
Nψ

(ψ2)
1
3 .

(4.40)
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From the logic used in Theorem 4.4, if (4.40) holds, ψ6 becomes

ψ6 = ψ2 −
ψ2

Nψ

. (4.41)

The control sequence {ui,j, i = 1, 2, j = 2, 3, 4, 5} can be repeated n times, which

gives the following discrete evolution of ψ,

ψ2+4n = ψ2 −
ψ2

Nψ

n. (4.42)

If n = Nψ, ψ and the base variables reach zero in finite time. As Nψ increases, ||ȳc||

decreases, which consequently decreases ũmax,2. Therefore, there exists a N∗ψ ≥ 1 such

that for all Nψ ≥ N∗ψ, ũmax,2 ≤ umax.

From the above it can be seen that for all x̄0 in a neighborhood of the origin defined

by G(ρ∗), the MPC problem with control constraints is feasible for any horizon lengths

satisfying N ≥ 2 + 4N∗ψ = N∗. The control sequence for this maneuver is continuous

in the initial condition x̄0, and therefore the cost of such a maneuver is continuous

in x̄0 and zero at x̄0 = 0. The cost of this maneuver constitutes an upper bound

on the value function, and hence the conclusions of this corollary follow similarly to

Theorem 4.4, but only apply in a neighborhood of the origin defined by G(ρ∗). �

Remark 4.4: It may be possible to increase ρ∗ if the control sequence that drives

ȳ0 to 0 is allowed to take longer than two discrete-time steps. Therefore, by increasing

N further, it may be possible to expand the local region of attraction G(ρ∗) for the

MPC law defined in (4.22)-(4.23), (4.13).

Theorem 4.4 only approaches the subject of control constraints. MPC, however,

also has the ability to enforce state constraints. Though no formal proof is given

in this chapter for stabilization in the presence of state constraints, simulations in

Section 4.5 show that MPC can indeed generate stabilizing feedback laws when some

state constraints are included.
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Recall that the discrete dynamics used in the MPC formulation are only approx-

imate. Simulation results on the full nonlinear model (2.3) (2.41), and (2.44) in

Section 4.5 demonstrate successful convergence in a neighborhood of the origin where

Euler angles, and thus model mismatch between the exact and approximate models,

is sufficiently small.

4.4.2 Discontinuous Control Law

To illustrate that MPC generates a control law that is discontinuous in terms of state,

the optimization problem (4.22)-(4.23), (4.13) is solved for various initial attitudes

ranging between −0.1 and 0.1 rad and initial RW velocities of 0 rad/sec. The space-

craft and the controller in these tests have the same parameters as those in Section

4.5.

Figure 4.1 (a) shows the control action u1,0 when θ = 0 and φ and ψ are sampled

on a unit circle of radius 0.05 rad (for a given λ, φ = 0.05 cos(λ) and ψ = 0.05 sin(λ)).

Likewise, Figure 4.1 (b) shows the control action u1,0 when φ = 0 and θ and ψ

are sampled on a unit circle of radius 0.05 rad, (for a given λ, θ = 0.05 cos(λ) and

ψ = 0.05 sin(λ)). In both figures, the discontinuity, represented by the dashed line,

occurs at φ = θ = 0.

To demonstrate the discontinuity further, Figure 4.2 (a) shows the control action

u1,0 when θ = 0 and φ and ψ are varied across a grid of initial conditions. Figure

4.2 (b) likewise shows the control action u1,0 when φ = 0 and θ and ψ are varied

across a grid. The discontinuity is present, and in addition passes through the origin.

This can be reasoned from Figure 1 as well, since as the radius of the sampled unit

circle decreases, the discontinuity still remains at φ = θ = 0 while ψ decreases in

magnitude.
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Figure 4.1: Discontinuous feedback law generated by solving the MPC optimization
problem for initial conditions sampled on a circle of radius 0.05 rad.
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Figure 4.2: Discontinuous feedback law generated by solving the MPC optimization
problem for a grid of initial conditions.

4.5 Simulation Results

In this section, the MPC control problem defined in (4.22)-(4.23), (4.13) is applied

to the actual nonlinear model (2.3), (2.41), and (2.44). The spacecraft bus in these

simulations is assumed to have principal moments of inertia equal to 430, 1210, and
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1300 kg m2, respectively. The reaction wheels are assumed symmetric, thin, and

are mounted such that the COM of the spacecraft bus and total spacecraft system

coincide. The inertias of the RWs about their spin axes are Jws1 = Jws2 = 0.043 kg

m2. The two RWs are aligned with the minor and intermediate principal axes of the

spacecraft bus, yielding

J̄ =


430.043 0 0

0 1210.043 0

0 0 1300

 , W̄ =


0.043 0

0 0.043

0 0

 . (4.43)

The model and control parameters used in all the simulations are listed in Table 4.1.

Parameter Units Value

umax rad/sec2 5

T sec 10

N - 30

Q̄ - diag( 1× 105, 1× 105, 1× 105, 0.01, 0.01)

r1, r2 - 10, 10

Table 4.1: Simulation parameters for nonlinear MPC.

4.5.1 Beginning Simulations

For the first simulation, the initial conditions of the spacecraft are

Θ̄(0) = [ − 0.05 0.03 0.1 ]T rad, ω̄(0) = [ 0 0 0 ]T rad/sec, ν̄(0) = [ 0 0 ]T rad/sec.

In this simulation, only RW control constraints are enforced. The results are given

in Figure 4.3. In the second simulation, the initial conditions of the spacecraft are

Θ̄(0) = [ 0 0 −0.1 ]T rad, ω̄(0) = [ 0 0 0 ]T rad/sec, ν̄(0) = [ 0 0 ]T rad/sec. In this

simulation, we impose an additional RW speed constraint of ||ν̄||∞ ≤ 100 rad/sec.

The results are given in Figure 4.4. Both simulations demonstrate that the MPC

112



formulation (4.22)-(4.23), which uses (4.13) as an approximate model for prediction,

is able to stabilize the attitude of the underactuated spacecraft to the desired pointing

orientation while enforcing control constraints on the exact model of the spacecraft.

Moreover, the convergence rates in both simulations appear to be exponential.

Observe that in both Figures 4.3 and 4.4 the Euler angles φ and θ (roll and

pitch) oscillate while ψ (yaw) converges to equilibrium. For problems related to

nonholonomic systems, such as the underactuated spacecraft problem, a controlled

drift in the underactuated axis can be induced by performing oscillatory motion in the

states that are controllable. This phenomenon is related to geometric phase, which is

closely connected to the controllability analysis given by Lie brackets. Thus it appears

that MPC utilizes this effect in order to stabilize the underactuated spacecraft to

equilibrium.
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Figure 4.3: Closed-loop response of underactuated spacecraft with MPC, simulation
1. (a) Euler angles, (b) angular velocities, (c) wheel velocities, (d) wheel accelerations.
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Figure 4.4: Closed-loop response of underactuated spacecraft with MPC, simulation
2. (a) Euler angles, (b) angular velocities, (c) wheel velocities, (d) wheel accelerations.

4.5.2 Simulations with Various Sampling Times

To demonstrate that the nonlinear MPC controller can handle different sampling pe-

riods, two simulations are now performed using the same initial conditions, control

parameters, and constraints as the first simulation (results in Figure 4.3), but the

sampling period T is changed from 10 sec to 6 sec and 40 sec, respectively. The re-

sults are shown in Figure 4.5. In both cases, the nonlinear MPC controller stabilizes

the attitude while satisfying constraints. While this has not been done in simulations
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shown, the design parameters in Table 1, in particular, the prediction horizon, may

need to be adjusted if the sampling period changes to improve closed-loop perfor-

mance.
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Figure 4.5: Closed-loop response of underactuated spacecraft with MPC and various
sample periods. (a) Euler angles when T = 6 sec, (b) Euler angles when T = 40 sec,
(c) wheel accelerations when T = 6 sec (d) wheel accelerations when T = 40 sec.

4.5.3 Large Angle Maneuver Simulations

As mentioned in the previous section, the nonlinear MPC controller is able to stabilize

the attitude of the underactuated spacecraft in a neighborhood where model mismatch
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is small. This neighborhood can be easily reached by external thrusters or cold gas

jets, types of actuation which can be used for large maneuvers but not for precise

pointing. However, it can be demonstrated that the nonlinear MPC controller can

also stabilize an at-rest spacecraft with initially large Euler angles. An example is

given in Figure 4.6, where the control parameters used are in Table 4.1, the initial

conditions are Θ̄(0) = [ 0.6 − 0.8 1 ]T rad, ω̄(0) = [ 0 0 0 ]T rad/sec, ν̄(0) =

[ 0 0 ]T rad/sec and the only constraint being enforced is the control constraint. The

figure demonstrates successful convergence while satisfying constraints even though

the small angle assumption is clearly violated.
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Figure 4.6: Closed-loop response of underactuated spacecraft with MPC for large
initial Euler angles. (a) Euler angles, (b) wheel accelerations.

To further demonstrate the range of at-rest initial conditions that the nonlinear

MPC controller can stabilize, one thousand random test simulations were run with

initial Euler angles belonging to the interval of [ −180, 180 ] deg, initial zero angular

velocity, and RW speeds initially at 0 rad/sec. Figure 4.7 gives an approximation of

the region of attraction based on whether the controller was able to converge to a

0.01 rad (0.573 deg) Euler angle box and a 0.001 rad/sec angular velocity box during

a given simulation time of 3000 sec. As can be seen, the region of attraction is quite
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large, despite the small angle assumption being used in the controller design.

Figure 4.7: Approximation of nonlinear MPC region of attraction for at-rest maneu-
vers.

4.5.4 Discussion on Real-Time Applications

The MPC optimization problem in all simulations was solved using an interior-point

method with MATLAB’s fmincon function. The average and worst case computation

time needed to solve the optimization problem in Section 4.5.1 using a standard com-

puter with 2.4 GHz clock speed were 1.2 sec and 2.4 sec, respectively. Both times are

less than the sample time T in these simulations, which is 10 sec (found in Table 4.1).

Using custom solvers optimized for real-time implementation as a C code will clearly

reduce computation time. For instance, see [98], which shows that symbolic computa-

tions and code optimization can drastically improve the computation time. Though

common spaceflight hardware has processing power typically in the MHz range, the

general trend has been towards growing computing power. In fact, there are now

more powerful spaceflight processors available such as the 1 GHz PROTON-200k, the

1.5 GHz PROTON-400k-3X, and the 3 GHz PROTON-200k-3X [99]. Reconfigurable

Field Programmable Gate Arrays (FPGAs) can also be used for spacecraft missions

with large processing demands [100]. It should finally be noted that RWs are used
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for nonagile maneuvers [1]. As such, the closed-loop bandwidth for actuation is in

the range 0.01 Hz to 1 Hz [1], hence control solutions do not need to be computed

as rapidly as for other real-time systems. Thus our application may not be dissimilar

from other applications for which successful real-world implementations of nonlinear

MPC have been reported [101–104]. For spacecraft with limited onboard compu-

tational ability, an explicit implementation may be used where the nonlinear MPC

is precomputed offline and approximately function-fitted; the fitted function is then

used online [91, 105–107]. Such an implementation is still fundamentally based on

computational optimization.

Remark 4.5: Note that the underlying optimization problem is nonlinear and

non-convex. Thus there are no a priori guarantees other than offline testing by

running multiple simulations that the solver used will converge to a solution. Contin-

uation and warm starting strategies can mitigate the risk of the solver not converg-

ing [108–110]. For some implementations, convergence is not required, only feasibility

and cost decrease (this property is not analyzed for the problem in this chapter).
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CHAPTER 5

Recovering Controllability By Exploiting

Solar Radiation Pressure

5.1 Introduction

This chapter discusses an approach to controlling an underactuated spacecraft by in-

cluding the effects of SRP torques, modeled following [43], into the spacecraft model.

Our analysis shows that under appropriate assumptions, linear controllability is re-

gained and hence spacecraft stabilization can be achieved with conventional control

schemes. In particular, an LQ approach will be first applied. The LQ approach

is chosen due to its robustness, its optimal control properties and its familiarity to

aerospace engineers. A pole placement scheme will also be used to improve conver-

gence time. By taking advantage of the change in the dynamics induced by SRP

torques, two RWs are able to slowly correct the attitude errors over time. This

method is different from any of the control techniques mentioned in the Introduction,

as well as those techniques mentioned in this dissertation up to this point. Firstly,

it exploits external disturbance torques, which in many control approaches are either

neglected or rejected. Secondly, this method is not restricted to zero total angular

momentum or the constant angular momentum assumption. Thirdly, utilizing SRP

torques allows designers to use conventional and familiar feedback control schemes

that are guaranteed to locally stabilize the equilibrium.
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This chapter contains the following results:

• The characterization and discussion of the effects of SRP, specifically on sym-

metric body spacecraft;

• Sufficient conditions for zero SRP torque acting on a symmetric spacecraft;

• Results on the fixed attitude stability of an underactuated spacecraft with

and without SRP;

• Necessary and sufficient conditions under which linear controllability is re-

gained with SRP;

• Extending a novel pathway to recover linear controllability and perform con-

trol of underactuated spacecraft by taking advantage of SRP torques to a

broader class of spacecraft.

After [111] was submitted for publication (which contained our preliminary find-

ings), the press release [112] appeared, suggesting that SRP is currently being used (in

an unspecified control scheme) to restore Kepler’s mission controllability. The con-

trollability analysis and results, obtained independently of [112], are thus indirectly

corroborated by experimental evidence in [112].

5.2 Spacecraft Modeling

5.2.1 Spacecraft Configuration & Assumptions

The spacecraft configuration considered in this chapter consists of a rigid bus and

four RWs. During the spacecraft’s mission, two of the RWs fail and spin down to zero

speed, leaving two operational RWs. Recall that frame I is aligned with the desired

inertial pointing configuration. We also make the following assumptions:
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Assumption 5.1 The axes of the spacecraft bus fixed frame B are aligned with

the spacecraft bus’ principal axes.

Assumption 5.2 All RWs rotors are assumed thin and identical, with the in-

ertias about the spin axis being Jw (i.e., J
wsi

= Jw for all i) and inertia about

axes transversal axis being zero (i.e., J
wti
≈ 0 for all i).

Assumption 5.3 The RWs are mounted such that the COM of the entire space-

craft system is the same as that of the spacecraft bus.

Assumptions 5.1-5.3 enable us to simplify the dynamics, and are common in practice.

5.2.2 Equations of Motion

We choose 3-2-1 Euler angles ψ (yaw), θ (pitch), and φ (roll) as our attitude repre-

sentation, and assume the following:

Assumption 5.4 The maneuvers being performed involve relatively small at-

titude adjustments near the desired pointing orientation,

which implies that the Euler angles will avoid singularity. This assumption is reason-

able considering that we are interested in using RWs for accurate pointing near the

target orientation. The kinematics from Section 2.3 are

˙̄Θ = M̄(Θ̄)ω̄. (5.1)

Since only RW actuation is considered, the dynamics of the system are given in

Section 2.6.2 by

J̄ ˙̄ω = − [ω̄]×
(
J̄ ω̄ +

4∑
i=1

Jwνiw̌i

)
−

4∑
i=1

Jw ν̇iw̌i
+ M̄ext , (5.2)
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where

J̄ = J̄
B

+
4∑
i=1

J̄
Wi
. (5.3)

If we denote the following

W̄c = [ w̌1 w̌2 w̌3 w̌4 ],

ν̄c = [ ν1 ν2 ν3 ν4 ]T,

(5.4)

then (5.2) and (5.3) become

J̄ ˙̄ω = − [ω̄]×
(
J̄ ω̄ + JwW̄c ν̄c

)
− JwW̄c

˙̄νc + M̄ext , (5.5)

J̄ = diag(J1, J2, J3) + JwW̄cW̄
T
c
, (5.6)

where J1, J2, J3 are the spacecraft bus principal moments of inertia. We now make

the following assumption:

Assumption 5.5 The only external moments acting upon the spacecraft are

torques induced by SRP, i.e., ~M
ext/O

= ~τsrp.

In subsequent sections, we denote τ̄srp = ~τsrp
∣∣
B.

The contribution of the failed RWs to the dynamics in (5.5) vanishes once their

speeds reach zero. Assuming that the failed RWs are at zero speed, the dynamics

(5.5) and inertia matrix (5.6) can be rewritten to account for the contributions of

only operational RWs,

J̄ ˙̄ω = − [ω̄]×
(
J̄ ω̄ + JwW̄a ν̄a

)
− JwW̄a

˙̄νa + M̄ext , (5.7)

J̄ = diag(J1, J2, J3) + JwW̄aW̄
T
a
, (5.8)
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where

ν̄a = [. . . ν
b
. . . ]T, b ∈ {1, 2, 3, 4}, (5.9)

is the vector of all operational RWs angular rates and

W̄a = [. . . w̌
b
. . . ], b ∈ {1, 2, 3, 4}, (5.10)

is a matrix whose columns are the unit vectors of the spin axes of the operational RWs.

For instance, if wheels 3 and 4 have failed, then ν̄a = [ ν1 ν2 ]T and W̄a = [ w̌1 w̌2 ].

The operational RW accelerations are treated as the control inputs,

˙̄νa = z̄a , (5.11)

where

z̄a = [. . . z
b
. . . ]T, b ∈ {1, 2, 3, 4}. (5.12)

For instance, if wheels 1 and 2 are operational but wheels 3 and 4 have failed, z̄a =

[ z1 z2 ]T.

5.2.3 Solar Radiation Pressure Torque Model

Assume that the spacecraft is covered with ρ flat panels. The SRP torques induced

by the panels are modeled based on the developments in [43]. Define

αi,j =
Φsun,tot

c(
di,j
d0

)2
, (5.13)

βj =
4

9
Cdiff,j, (5.14)

where c is the speed of light, d0 is the nominal distance from the Sun equal to 1AU ,

Φsun,tot is the solar flux at d0, Cdiff,j is the diffusion coefficient for panel j, and di,j is
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the distance to a point i on panel j from the center of the Sun. The SRP at point i

on panel j is given by

~Pi,j = −αi,j(ûn,j · ûs)(ûn,j + βjûs), (5.15)

where ûn,j is the normal to panel j pointing outward from the spacecraft and ûs is

the unit vector representing the Sun direction. Figure 5.1 depicts the Sun direction

ûs and normal vectors ûn,j, j = 1, 2, 3, as they apply to a cuboid spacecraft.

Figure 5.1: Cuboid spacecraft with physical vector description.

The distance between two points i and l on panels j and k (where j and k can

represent the same panel) is very small when compared to di,j and dl,k. Therefore

the difference between
di,j
d0

and
dl,k
d0

becomes negligible, and αi,j can be treated as

a constant parameter, α, for all points across all panels. Thus the SRP exerted at

every point along the same panel is assumed to be identical. Note that there will be a

variation in SRP between panels j and k if βj and βk are different. The SRP exerted

at each point on panel j is then

~Pj = −α(ûn,j · ûs)(ûn,j + βjûs). (5.16)

Under the assumption that SRP acts identically across all points on the same

panel, the total SRP torque about the spacecraft’s COM, located at point O, due to
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the jth panel, can be expressed as

~τj,srp = (~rj/B − ~rO/B)×Aj ~Pj, (5.17)

where ~rj/B is the vector from a reference point B to the center of the jth panel, ~rO/B

is the vector from B to the COM of the spacecraft bus, and Aj is the area of the jth

panel. Since SRP is additive across all panels,

~τsrp =

ρ∑
j

~τj,srpĨj, (5.18)

where Ĩj is an indicator function used to identify which panels are facing the Sun and

are acted on by solar pressure. Assuming a regular, convex shape of the spacecraft,

the indicator function is given by

Ĩj =

 1 if (ûn,j · ûs) > 0,

0 otherwise.
(5.19)

Observe that the total SRP torque in (5.18) is only a function of Θ̄. In reality SRP

is a pressure based torque and hence strictly speaking also depends on spacecraft

velocities due to dynamic pressure effects. These effects are very small and assumed

to be negligible.

5.2.4 Linearized Model

For analysis and controller design, the equations of motion (5.1) and (5.7) are lin-

earized. Without loss of generality, Θ̄ = 0 is chosen as the desired attitude since I

can be oriented to reflect desired pointing. Theorem 5.1 gives the requirement for

the spacecraft to maintain Θ̄ = ω̄ = 0 in steady-state (assuming no constraints on

functioning RW speeds).
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Theorem 5.1: Θ̄ = ω̄ = 0 can be maintained as a (relative) equilibrium by the

closed-loop system if and only if τ̄srp(0) is in the range of W̄a .

Proof : For the spacecraft bus, if ω̄(t) = 0 for all t, then ˙̄Θ(t) = 0 and ˙̄ω(t) = 0. If

˙̄ω = 0 then (5.7) implies

0 = −JwW̄a z̄a + τ̄srp(0). (5.20)

Equation (5.20) can be satisfied if and only if τ̄srp(0) is in the range of W̄a . �

Remark 5.1: Theorem 5.1 gives conditions under which Θ̄ = ω̄ = 0 can be

maintained as a (relative) equilibrium for the spacecraft bus. The reaction wheels may

be accelerating to compensate for SRP torque, in which case the (relative) equilibrium

can be maintained until the RWs reach their saturation limits.

For three or more RWs, assuming that W̄a is full rank, Θ̄ = ω̄ = 0 will always be a

feasible equilibrium. With two or fewer RWs, Theorem 5.1 restricts the set of physical

pointing orientations that can be maintained in steady-state with functioning RWs.

Assuming that τ̄srp(0) is in the range of W̄a , (5.1) and (5.7) are linearized about

Θ̄ = ω̄ = 0, ν̄a = ν̄a,0 , and z̄a = z̄a,0 = Ξ̄, where Ξ̄ is the commanded RW accelerations

to make Θ̄ = ω̄ = 0 a feasible equilibrium, i.e.,

Ξ̄ =


1
Jw

(W̄T
a
W̄a)

−1W̄T
a
τ̄srp(0) if rank(W̄a) ≤ 3,

an arbitrary z̄a such that JwW̄a z̄a = τ̄srp(0) otherwise.
(5.21)

Assuming that there are m operational RWs and the failed RWs are at zero speed,

the linearization yields the system of equations

 ˙̄Θ

˙̄ω

 =

 0 I3

J̄−1T̄ J̄−1Jw
[
W̄a ν̄a,0

]×

Θ̄

ω̄

+

 0

−J̄−1JwW̄a

 δz̄a , (5.22)

where δz̄a = z̄a − z̄a,0 and T̄ is the linearized matrix of τ̄srp, i.e., τ̄srp = τ̄srp(0) + T̄ Θ̄.
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Letting x̄ = [ Θ̄ ω̄ ]T, it follows that

˙̄x = Āx̄+ B̄δz̄a , (5.23)

where

Ā =

 0 I3

J̄−1T̄ J̄−1Jw
[
W̄a ν̄a,0

]×
 , B̄ =

 0

−J̄−1JwW̄a

 . (5.24)

5.3 Solar Radiation Pressure Torque on a Sym-

metric Body Spacecraft

To provide insight into the effects of SRP, a general class of symmetric body spacecraft

that have pairs of panels with the same area and diffusion coefficients (i.e., same βj),

located on the opposite ends of the spacecraft, is now considered. The panels are

equal distance away from the reference point B, and the normals to the panels are

parallel but opposite in direction. Denote one panel in this pair by ‘p+’ and another

by ‘p−’. Then,

~rp+/B = −~rp−/B = ~rp,

ûn,p+ = −ûn,p− = ûp,

βp+ = βp− = βp,

Ap− = Ap+ = Ap.

(5.25)
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The SRP torque exerted by each individual panel, assuming they are exposed to the

Sun, is

~τp+ = (~rp+ − ~rO/B)×Ap+ ~Pp+,

= γp((~rp × ûp) + βp(~rp × ûs)− (~rO/B × ûp)− βp(~rO/B × ûs)),

(5.26)

~τp− = (~rp− − ~rO/B)×Ap− ~Pp−,

= γp(−(~rp × ûp) + βp(~rp × ûs)− (~rO/B × ûp) + βp(~rO/B × ûs)),

(5.27)

where γp = −αAp(ûp · ûs). The total SRP torque induced by the two panels is

~τp = ~τp+Ĩp+ + ~τp−Ĩp−. (5.28)

By the assumption on directions of ûp+ and ûp−, Ĩp+ takes on the opposite binary

value of Ĩp− if γp 6= 0. If γp = 0, then the pair of panels does not induce any SRP

torque. Knowing this, and noting that the second and third terms of (5.26) and (5.27)

are the same while the first and fourth terms differ by a sign, (5.28) can be written

as

~τp = γp((−~rO/B × ûp) + βp(~rp× ûs) + sign(ûp · ûs)((~rp× ûp)− βp(~rO/B × ûs))). (5.29)

5.4 Conditions for Zero Solar Radiation Pressure

Torque for All Orientations

There are cases in which the total SRP torque exerted on the spacecraft is zero

for all possible orientations. Hence utilization of SRP for control is not possible.

Theorem 5.2 gives a condition for which a symmetric body spacecraft covered in
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pairs of symmetric panels will experience zero SRP torque, regardless of Θ̄.

Theorem 5.2: Let a symmetric body spacecraft be covered with ρs pairs of

panels, having characteristics satisfying (5.25). Then the SRP torque induced on the

spacecraft is zero for all Θ̄ if the three relations,

~ri || ûi, i = 1, . . . , ρs,

~rO/B = 0,

∃a ∈ R :
ρs∑
i=1

βiAir̄iǔ
T
i = aI3,

(5.30)

are all satisfied, where r̄i = ~ri|B and ǔi = ûi|B.

Proof: The total SRP torque exerted on the symmetric spacecraft can be written

using (5.29),

~τsrp =

ρs∑
i=1

γi
(
(−~rO/B × ûi) + βi(~ri × ûi) + sign(ûi · ûs)

(
(~ri × ûi)− βi(~rO/B × ûs)

))
.

(5.31)

If the first two conditions of (5.30) hold, (5.31) becomes

~τsrp =

ρs∑
i=1

γiβi(~ri × ûi). (5.32)

Let ǔs = ûs
∣∣
I
. Resolving (5.32) in B yields

τ̄srp = −α

((
ρs∑
i=1

βiAir̄iǔ
T
i

)
Bǔs

)
× (Bǔs) . (5.33)

If the third condition of (5.30) holds, then there exists an a ∈ R such that

τ̄srp = −aαBǔs ×Bǔs = 0. (5.34)
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Therefore regardless of orientation, the SRP will not exert any torques on the space-

craft. �

An example of when Theorem 5.2 holds is for a cuboid spacecraft where the reference

point B coincides both with the COM and the center of solar radiation pressure of

the spacecraft. See Section 5.7.1.

5.5 Stability of a Spacecraft

In general, the open-loop spacecraft attitude dynamics for a fixed attitude equilibrium

without SRP are unstable, though the dynamics of the angular velocities can be stable

depending on the axis of rotation [64]. As we discuss in this section, a fixed attitude

equilibrium of an underactuated spacecraft with SRP has similar open-loop instability

properties.

5.5.1 Linear Stability with Zero Solar Radiation Pressure

Consider the case of an underactuated spacecraft with two operational RWs where

effects of SRP torques are zero (i.e., ~τsrp = 0). The state matrix Ā in (5.24) becomes

Ā =

0 I3

0 J̄−1Jw
[
W̄a ν̄a,0

]×
 . (5.35)

The eigenvalues of matrix Ā, denoted as λ, are given by

λ = 0, 0, 0, 0, ± Jw
√

(W̄a ν̄a,0)TD̄(W̄a ν̄a,0), (5.36)

where D̄ = −(diag(J2J3, J1J3, J1J2))−1. The matrix D̄ is negative definite, and,

therefore, Ā might have one pair of purely imaginary eigenvalues, provided at least

one of the RW speeds at the equilibrium is nonzero. Therefore, all eigenvalues lie on

131



the imaginary axis.

The requirement for stability of a linear system with eigenvalues on the imaginary

axis and in the open left half plane is that each eigenvalue with zero real part must

be semi-simple, i.e.,, the geometric multiplicity of the eigenvalue must be equal to

its algebraic multiplicity. There is only one pair of purely imaginary eigenvalues,

and so both are semi-simple. Any instability may thus be caused only by the zero

eigenvalue. It can be shown that the algebraic multiplicity of the zero eigenvalue

of A is four, while its geometric multiplicity is three. Thus the linearized system is

open-loop unstable.

We note that the angular velocity variables are decoupled from the orientation

variables for this linearized system. The state matrix for the angular velocities, de-

noted as Āω, is given by

Āw = J̄−1Jw
[
W̄a ν̄a,0

]×
, (5.37)

whose eigenvalues, λw, are

λw = 0, ± Jw
√

(W̄a ν̄a,0)TD̄(W̄a ν̄a,0). (5.38)

All the eigenvalues of Āw are semi-simple, and hence it can be shown that the lin-

earized angular velocity dynamics are stable but not asymptotically stable. Due to the

double integrator structure of Ā, bounded angular velocities may cause unbounded

drift in the attitude, resulting in instability.

5.5.2 Stability Analysis of Linearized Underactuated Space-

craft Dynamics with Solar Radiation Pressure Torque

We now consider the case with nonzero SRP torque (i.e., ~τsrp 6= 0) and two functioning

RWs spinning about the first and second principal axes. We analyze the stability

properties of the spacecraft bus (relative) equilibrium corresponding to Θ̄ = ω̄ =
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0. It is assumed that τ̄srp(0) is consistent with Theorem 5.1 so that the (relative)

equilibrium can be maintained. Let the RW accelerations be set according to the

following control law,

δz̄a = −(C̄TC̄)−1C̄TJ̄−1T̄ Θ̄, (5.39)

where C̄ = −(J̄−1JwW̄a). The feedback law in (5.39) cancels out the SRP torque

components that are in the range of W̄a . Then the dynamics matrix has the following

form,

Ā =

 0 I3

T̄3 J̄−1Jw
[
W̄a ν̄a,0

]×
 , (5.40)

where

T̄3 =


0 0 0

0 0 0

t̃31 t̃32 t̃33

 , (5.41)

and t̃3j ∈ R, j = 1, 2, 3. Computing the eigenvalues of Ā yields three zero eigenvalues,

a pair of complex eigenvalues, and an eigenvalue that is purely real. The zero eigen-

value has a geometric multiplicity of two and is, therefore, not semi-simple. Hence the

equilibrium is unstable based on the linearized model. In addition, as apparent from

(5.23), the SRP torque causes a coupling between the attitude and angular velocity

dynamics which does not allow the independent analysis of the stability of angular

velocity dynamics.

5.5.3 Nonlinear Stability

The analysis above is based on the linear model in (5.23). Since the linearized model

has eigenvalues on the imaginary axis, the stability analysis is inconclusive as the

stability/instability of an equilibrium in such a case may depend on nonlinear terms.

Note that without SRP, there do exist stable equilibria where the spacecraft can
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maintain directional pointing while rotating about an axis parallel to the pointing

direction [64]. However, the analysis above suggests that a fixed attitude equilibrium

either with or without SRP can be unstable. Intuitively, if one of the angular velocities

is perturbed away from 0, a bounded drift in the Euler angles away from equilibrium

can occur. This instability conclusion, supported by the linear analysis, has been ver-

ified through extensive simulations on a nonlinear model. The formal mathematical

proof of instability, e.g., based on an application of Chetaev’s theorem [113], is left

to future work.

5.6 Regaining Linear Controllability Using Solar

Radiation Pressure

5.6.1 Necessary and Sufficient Conditions for Regaining Lin-

ear Controllability

Without the effects of SRP included in (5.23), the spacecraft dynamics are linearly

uncontrollable by RW accelerations if only two RWs are functioning. The following

theorem gives necessary and sufficient conditions for restoring linear controllability

to a spacecraft with two functioning RWs when SRP torques are included.

Theorem 5.3: Let the spacecraft have two operational RWs whose spin axes are

non-parallel (i.e., rank(W̄a)=2). The system (5.23) is linearly controllable if and only

if for every eigenvalue λ of Ā, and for any vector η̄u in the null space of W̄T
a

,

η̄T
u (J̄λ2 −

[
W̄a ν̄a,0

]×
λ− T̄ ) 6= 0. (5.42)

Proof: The Popov-Belevitch-Hautus (PBH) test for controllability implies that (5.23)
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is linearly controllable if and only if

rank

([
λI6 − Ā B̄

])
= dim(Ā) (5.43)

for every eigenvalue λ of Ā, see [76]. By the converse, the system in (5.23) is uncon-

trollable if and only if there exists a nonzero vector η̄ ∈ C6 such that

η̄CT

[
λI6 − Ā B̄

]
= 0, (5.44)

for at least one eigenvalue, where ∗̄CT is the conjugate transpose of ∗̄. Equation (5.44)

can be reduced to two conditions,

η̄CT(λI6 − Ā) = 0,

η̄CTB̄ = 0.
(5.45)

Let η̄ = [ η̄CT
1 η̄CT

2 ]CT, η̄1, η̄2 ∈ C3. Expanding the first condition of (5.45), it follows

that

η̄CT
1 λ− η̄CT

2 J̄−1T̄ = 0,

−η̄CT
1 + η̄CT

2 (I3 − J̄−1Jw
[
W̄a ν̄a,0

]×
) = 0.

(5.46)

Multiplying the second equation of (5.46) by λ and adding it together with the first

equation of (5.46) gives

η̄CT
2

(
I3λ

2 − J̄−1Jw
[
W̄a ν̄a,0

]× − J̄−1T̄
)

= 0. (5.47)

The second condition of (5.45) can be simplified to

η̄CT
2 J̄−1JwW̄a = 0. (5.48)
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Taking the conjugate transpose of (5.48), and noting that W̄CT
a

= W̄T
a

, JCT
w

= Jw ,

and (J̄−1)CT = J̄−1, yields

JwW̄
T
a
J̄−1η̄2 = 0. (5.49)

Let η̃2 be the real part of η̄2. Then J̄−1η̃2 is in null space of W̄T
a

. Denoting η̄u = J̄−1η̃2,

(5.47) can be written as

η̄T
u (J̄λ2 −

[
W̄a ν̄a,0

]×
λ− T̄ ) = 0. (5.50)

Thus for (5.23) to be uncontrollable, there must exist an η̄u in the null space of

W̄T
a

and an eigenvalue λ such that (5.50) holds. Reversing the arguments, it can be

similarly show that if for each eigenvalue of Ā (5.50) cannot be satisfied with η̄u in

the null space of W̄T
a

, then the system is controllable. �

Corollary 5.1: Theorem 5.3 can be simplified for the case when there are two

operational RWs about the first two principal moments of inertia, i.e.,

W̄a =


1 0

0 1

0 0

 . (5.51)

Let t3,i, i = 1, 2, 3, be the ith entry of the 3rd row of T̄ . Since η̃u is in the null of

W̄T
a

, η̄u = [ 0 0 η ]T, where η ∈ R. Equation (5.50) can be rewritten as

ηλ2

[
0 0 J3

]
− ηλ

[
−Jwν0,2 Jwν0,1 0

]
= η

[
t31 t32 t33

]
, (5.52)

136



which gives the following three equations

J3λ
2 = t̃33,

Jwν0,2λ = t̃31,

Jwν0,1λ = −t̃32.

(5.53)

For the system to be uncontrollable, the three equations of (5.53) must all hold for

at least one eigenvalue of Ā. By the converse, if for each eigenvalue of Ā, one of the

equations in (5.50) is not satisfied (it does not have to be the same equation for each

eigenvalue), the system is controllable. �

Theorem 5.4 presented below is a consequence of Theorem 5.3 and provides a

sufficient condition for an underactuated system to remain linearly uncontrollable

even if SRP torques are added into the math model.

Theorem 5.4: Let the spacecraft be equipped with two operational RWs whose

spin axes are not parallel. The system (5.23) is linearly uncontrollable if η̄T
u T̄ = 0 for

η̄u in the null space of W̄T
a

.

Proof : Suppose that for η̄u in the null space of W̄T
a

,

η̄T
u T̄ = 0. (5.54)

By Theorem 5.3, if there exists an eigenvalue λ of Ā such that

η̄T
u (J̄λ2 −

[
W̄a ν̄a,0

]×
λ− T̄ ) = 0, (5.55)

then the system is uncontrollable. Equation (5.54) simplifies (5.55) to

η̄T
u (J̄λ2 −

[
W̄a ν̄a,0

]×
λ) = 0. (5.56)
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If (5.54) holds then T̄ is not full rank, which implies that Ā is not full rank and

contains a zero eigenvalue. The eigenvalue λ = 0 satisfies (5.56), and therefore the

system is uncontrollable. �

Remark 5.2: The results in Theorem 5.3, Corollary 5.1, Theorem 5.4, and nu-

merical examples suggest that the dynamics of the spacecraft with two RWs and

SRP effects included are linearly controllable in a broad range of cases. Theorem

5.4 indicates that the linearized SRP torque must have nonzero projection on the

uncontrolled direction for linear controllability to hold.

5.6.2 Relative Controllability

To assess the relative controllability of different spacecraft configurations, we consider

the following controllability index:

J = λmax

(
eĀ

T(tf−t0)Ḡ(tf , t0)−1eĀ(tf−t0)
)
, (5.57)

where λmax denotes the maximum eigenvalue of a matrix, t0 is the initial time of the

maneuver, tf is the final time of the maneuver, and Ḡ(tf , t0) denotes the controllability

gramian. The controllability index J corresponds to the maximum effort (where effort

is defined as the minimum of the integral of the input squared) required to bring an

initial state x̄(t0) of unit norm to zero. Note that the metric is defined over a finite

time interval given that the system is open-loop unstable. This metric will be used

later to assess the controllability of the cuboid spacecraft.

138



5.7 Solar Radiation Pressure Effects on a Cuboid

Spacecraft

Suppose that the spacecraft of interest is a cuboid which is a commonly used space-

craft shape. This spacecraft has a symmetric body and has dimensions Lx, Ly and

Lz. Let û1 û2 and û3 be the normals to the panels covering the spacecraft sides which,

due to the structure of the cuboid, are parallel to the principal axes. The reference

point B is chosen as the geometric center of the cuboid spacecraft. Using the notation

from Section 5.3, the parameters to obtain the SRP torque are defined as

r̄1 =


Lx
2

0

0

 , r̄2 =


0

Ly
2

0

 , r̄3 =


0

0

Lz
2

 , (5.58)

ǔ1 =


1

0

0

 , ǔ2 =


0

1

0

 , ǔ3 =


0

0

1

 , (5.59)

A1 = LyLz, A2 = LxLz, A3 = LxLy. (5.60)

The COM of the spacecraft bus will also be offset from B, and

r̄O/B = ~rO/B
∣∣
B = [ lx ly lz ]T. (5.61)

This offset is of particular importance, as it influences the relative controllability of

the system.
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5.7.1 Conditions for Zero Solar Radiation Pressure

Based on Theorem 5.2, it may be shown that, under certain conditions, the cuboid

spacecraft can experience zero SRP torque for all Θ̄. By the physical structure of the

cuboid spacecraft, ~ri || ûi, i = 1, 2, 3, and so the first condition of (5.30) in Theorem

5.2 is satisfied. If B is aligned with the COM (i.e., ~rO/B = 0), the second condition

of (5.30) is satisfied. Assume that the diffusion coefficient is the same for all panels

(β1 = β2 = β3 = β). Then, using the definitions in (5.58)-(5.60),

3∑
i=1

βiAir̄iǔ
T
i =

βLxLyLz
2

I3×3, (5.62)

which satisfies the third condition of (5.30) with a = LxLyLz
2

. Therefore by Theorem

5.2, if ~rO/B = 0 and all panels have the same diffusion properties, a cuboid spacecraft

will experience zero SRP torque. It should be noted that if βi, i = 1, 2, 3, were

different, the conditions for zero SRP torque given by Theorem 5.2 may not hold and

it may be possible to take advantage of SRP torques to recover linear controllability.

5.7.2 Equilibrium Analysis

Let ~τsrp,x, ~τsrp,y and ~τsrp,z be the SRP torques exerted on the cuboid spacecraft by pan-

els whose normals are parallel with the principal axes. Suppose that ǔs = [ n1 n2 n3 ]T

and let Θ̄ = 0. Then the SRP torques exerted on the spacecraft, given by (5.29),

resolved in B, are

~τsrp,x
∣∣
B

= τ̄srp,x =
A1αn1

2


0

2lz + Lxβn3

−2ly − Lxβn2

+ sign(n1)A1αn1β


lyn3 − lzn2

lzn1 − lxn3

lxn2 − lyn1

 , (5.63)
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~τsrp,y
∣∣
B

= τ̄srp,y =
A2αn2

2


−2lz − Lyβn3

0

2lx + Lyβn1

+ sign(n2)A2αn2β


lyn3 − lzn2

lzn1 − lxn3

lxn2 − lyn1

 , (5.64)

~τsrp,z
∣∣
B

= τ̄srp,z =
A3αn3

2


2ly + Lzβn2

−2lx − Lzβn1

0

+ sign(n3)A3αn3β


lyn3 − lzn2

lzn1 − lxn3

lxn2 − lyn1

 . (5.65)

The conditions for Θ̄ = ω̄ = 0 to be a feasible closed-loop (relative) equilibrium

are given by Theorem 5.1 and supported by (5.63)-(5.65). Suppose, for instance,

lx = lz = 0 while ly is nonzero, while the operational RWs have spin axes aligned

with the first and second principal axes. If n1 = 0, n2 = 1, and n3 = 0, then based

on the above expressions, τsrp(0) = 0, and the spacecraft can remain at the relative

equilibrium with Θ̄ = ω̄ = 0 without any RWs accelerating. If the possibility of RWs

accelerating to maintain the (relative) equilibrium at Θ̄ = ω̄ = 0 is acceptable (e.g.,

to enable the spacecraft to obtain images while compensating for nonzero SRP with

RWs), then the condition can be relaxed. In this case, as long as n1 = 0 (i.e., the

third principal axis is not pointed towards the Sun), the SRP torque is of the form

τsrp(0) = [ ∗ ∗ 0 ]T (where ∗ is an arbitrary entry) and can be compensated by

the available RWs that are along the first and second principal axes.

5.7.3 Relative Controllability of the Cuboid Spacecraft

To demonstrate controllability of the cuboid spacecraft, it is assumed that the space-

craft has parameters listed in Table 5.1, the first and second RWs are operational,

and ν̄a,0 = [ 100 100 ]T rad/sec . The third and fourth RWs are assumed to have
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previously failed and are now at zero speed. The plot of J in (5.57) versus ly and

the time of the maneuver tf (t0 = 0) is given in Figure 5.2. The spacecraft is more

controllable for larger ly, and the control effort decreases if longer maneuver time is

available. Intuitively, more SRP torque is produced when the distance between the

center-of-pressure and the COM is greater. This torque can be exploited to enhance

controllability.
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Figure 5.2: Controllability metric (scaled by 106) versus ly and maneuver time, tf .

5.8 Controller Design

Since the linearized dynamics of a spacecraft body with certain asymmetry properties

are linearly controllable with the addition of SRP torques to the spacecraft model, a

controller based on conventional Linear Quadratic (LQ) theory [114] can be used to

stabilize the system to equilibrium. The LQ controller minimizes the cost

JLQ =

∫ ∞
0

x̄(τ)TQ̄x̄(τ) + δz̄a(τ)TR̄δz̄a(τ)dτ, (5.66)

where Q̄ = Q̄T ≥ 0 and R̄ = R̄T > 0 are weighting matrices. The controller has the

following form,

δz̄a = K̄LQx̄, (5.67)
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where K̄LQ is the LQ gain.

In the subsequent simulations, R̄ = 1000Im, where m is the number of operational

RWs. If m ≥ 3, Q̄ = diag(10, 10, 10, 0.01, 0.01, 0.01) is used. If m = 2 and the only

operational RWs spin about the first and second principal axes,

Q̄ = diag(40, 10, 10, 0.04, 0.01, 0.01) is used to emphasize faster regulation of φ and

ω1 which improves the transient response.

5.9 Results

In this section, nonlinear simulations are presented where four wheels are initially

operational. Two separate wheel failures occur during these simulations: one wheel

fails at 5 hours and the other at 20 hours. The speed response of a failed wheel

spinning down is modeled by a first order lag with a 10 min settling time. The

simulations are run on the full nonlinear model of the spacecraft kinematics and

dynamics, including the nonlinear model of SRP torques. All spacecraft parameters

are given by Table 5.1. Nominally, ǔs = [ 0 1 0 ]T, and simulation results are

presented for two different sequences of wheel failures. Additional simulation results

are then reported for the case when ǔs = [ 0 1/
√

2 1/
√

2 ]T, creating a situation

where the RWs must accelerate to maintain spacecraft pointing. Finally, convergence

times from different initial conditions are quantified.
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Parameter Units Value

J̄
B

kg m2 diag(430, 1210, 1300)

Jw kg m2 0.043

Lx m 2

Ly m 2.5

Lz m 5

lx m 0

ly m 0.1 and 0.5

lz m 0

W̄c -


1 0 0 1/

√
3

0 1 0 1/
√

3

0 0 1 1/
√

3


Φ̄sun W/m2 1367

Cdiff,j - 0.2

c m/sec 299792458.0

Table 5.1: Model and control parameters for attitude control with SRP.

5.9.1 Wheel 3 Fails First

The first case considered is when RW 3 fails first, followed by RW 4. The offset of

the center-of-pressure from the COM is given by ly = 0.5 m and lx = lz = 0 m. The

responses are shown in Figure 5.3. There is a much larger disturbance to orientation

when the second wheel fails. The controller manages the first wheel failure quickly,

then reconfigures and handles the second wheel failure over a longer period of time,

coordinating two operational RWs in the presence of SRP.
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Figure 5.3: (a) Euler angles, (b) angular velocities, (c) RW speeds, and (d) RW
accelerations in the nonlinear simulation when wheel 3 fails first, ly = 0.5 m.

5.9.2 Wheel 4 Fails First, Reduced ly

Now the case is considered when ly is reduced to 0.1 m so that the spacecraft is less

controllable (see Section 5.6.2). In this simulation, RW 4 fails first, followed by RW 3.

The responses are shown in Figure 5.4. The controller is able to manage the failures

and reduce the spacecraft orientation error over time. However, the responses are

slower due to worse spacecraft controllability.
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Figure 5.4: (a) Euler angles, (b) angular velocities, (c) RW speeds, and (d) RW
accelerations in the nonlinear simulation when wheel 4 fails first, ly = 0.1 m.

5.9.3 Wheel 4 Fails First, Skewed Pointing

In this case study, which is referred to as the skewed pointing, ly = 0.1 m while

ūs = [ 0 1/
√

2 1/
√

2 ]T. The controller is modified with an additional feed-forward

term which cancels out τ̄srp(0). Note that the third component of τ̄srp(0) is zero,

hence canceling the steady-state value of SRP torque by the acceleration of RWs 1

and 2 is feasible. The response is shown in Figure 5.5. Observe that the controller

handles RW 3 and 4 failures and that RWs 1 and 2 continue to accelerate to be able

to maintain the spacecraft orientation in steady-state with desired pointing.

146



0 50 100 150 200
−1

−0.5

0

0.5

1

Time (hrs)

E
ul

er
 a

ng
le

s 
(r

ad
)

 

 

Roll (φ)
Pitch (θ)
Yaw (ψ)

10 20 30
−0.2

0

0.2

(a)

0 50 100 150 200
−2

−1

0

1

2

3

4
x 10

−3

Time (hrs)

A
ng

ul
ar

 v
el

oc
iti

es
 (

ra
d/

se
c)

 

 

ω
1

ω
2

ω
3

10 20 30
−1

0

1
x 10

−5

(b)

0 50 100 150 200
0

50

100

150

200

250

300

Time (hrs)

W
he

el
 s

pe
ed

s 
(r

ad
/s

ec
)

 

 

ν
1

ν
2

ν
3

ν
4

(c)

0 50 100 150 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time (hrs)

W
he

el
 a

cc
el

er
at

io
ns

 (
ra

d/
se

c
2 )

 

 

u
1

u
2

u
3

u
4

10 20 30
−0.02

0

0.02

(d)

Figure 5.5: (a) Euler angles, (b) angular velocities, (c) RW speeds, and (d) RW
accelerations in the nonlinear simulation when wheel 4 fails first, skewed pointing.

5.9.4 Achieving Faster Closed-loop Response Time

A faster linear controller may be designed using the pole placement method. As

confirmed by simulations, more aggressive controllers, however, have smaller regions of

attraction (ROA) for the nonlinear system, and are not able to always recover after the

simulated sequence of wheel failures. If spacecraft thrusters (which are not as precise

as reaction wheels) are employed to first reduce the attitude and angular velocity

errors before the two functional RWs are used, the implementation of more aggressive

controllers for RWs becomes feasible. Towards this end, a pole placement-based linear
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controller was designed with the closed-loop poles of −0.0137 ± 0.0068i, −0.0208 ±

.0021i, −0.0001, and −0.0075 (versus −0.0012±0.0068i, −0.0019± .0021i, −6.4906×

10−6, and −0.007 for the nominal LQ controller), and Monte Carlo simulations were

performed to characterize the closed-loop response from various initial conditions. For

each simulation, the initial Euler angles were selected from a uniform distribution in

the interval [−2 , 2 ] deg and the angular velocity was initially zero. Only two RWs

(those aligned with the first two principal axes) were assumed to be functional, each

initially rotating at a speed of 100 rad/sec. 1900 simulation runs were performed. The

average time it took for the spacecraft orientation to enter a 0.001 deg box around

the equilibrium was 35.1554 hours, with a standard deviation of 4.2532 hours. In all

cases, the controller was convergent and able to bring the Euler angles to the target

box. The maximum angular speed and accelerations of the wheels in these simulations

were 247.5929 rad/sec and 9.7833 rad/sec2, respectively, which are within actuator

capability limits.

5.9.5 Regions of Attractions

Each controller has associated with it a unique ROA such that if the spacecraft

starts within this region, the controller will stabilize the system to equilibrium. Such

regions can be estimated by using scaled sublevel sets of the Lyapunov function for the

linearized system, but these estimates may be quite conservative [113]. The ROA in

our case cannot be easily or analytically described for an arbitrary spacecraft since the

dynamics depend on the shape of spacecraft, the desired inertial pointing direction,

the spin axis directions of operational RWs and the chosen control scheme. Therefore,

nonlinear simulations are used to approximate the ROA for a cuboid spacecraft using

the LQ and the pole placement controllers in this work. Five thousand random test

simulations were run using each controller with initial Euler angles belonging to the

interval of [−60, 60] deg, initial zero angular velocity, and RW speeds initially at 100
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rad/sec. The operational RWs are aligned with the first and second principal axes.

The results for both controllers are shown in Figures 5.6 and 5.7, in which the red

“x’s” designate all the initial attitudes that the controllers can stabilize to the desired

pointing equilibrium. As to be expected, the LQ controller has a larger ROA than

the more aggressive pole placement controller.

Figure 5.6: Numerical region of attraction calculation for the LQ controller.
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CHAPTER 6

Rotational and Translational

Underactuated Control in a Gravity Field

In this chapter, the controllability of a spacecraft in a central gravity field equipped

with only internal attitude actuators is addressed. The topic of controlling a space-

craft in a central gravity field when the translational and rotational dynamics are

coupled has been discussed for dumbbell shaped [59,60] and arbitrary shaped space-

craft [61], but in all cases the spacecraft was assumed to have actuation in the transla-

tional and rotational space, and in some cases, the spacecraft was fully actuated both

in terms of translational and rotational degrees-of-freedom. The only work that has

studied controllability of a spacecraft with only attitude actuators is that of Lian et.

al [58], but its analysis is limited in that the translational equations are expressed in

the inertial frame. In contrast to the previous literature, this chapter develops exact

and approximate equations of motion that are relative to an equilibrium orbit (in a

similar fashion to how the classical HCW equations are derived [62]). These new equa-

tions of motion yield controllability results that prove that controlled translational

motion is possible by changing the attitude of a spacecraft.
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6.1 Equations of Motion

The spacecraft under consideration in this chapter is a rigid spacecraft bus in a

central gravity field equipped with either RWs or CMGs. Let this spacecraft system

be denoted by T. In addition, we make the following assumption:

Assumption 6.1 The only force acting on the spacecraft system is gravity.

Since gravity is a conservative force, Assumption 6.1 implies that the total inertial

angular momentum of the system (consisting of the spacecraft and the central body

inducing the central gravity field) is conserved. Thus the attitude dynamics derived

in Chapter 2 can be extended to coupled rotational and translational equations of

motion with the help of an additional frame:

• A frame C rotating at a constant rate, associated with an equilibrium orbit

of constant radius and with unit vectors ĉx , ĉy , and ĉz . The vector ĉz is aligned

with the rotation vector of the frame and is normal to the orbital plane, ĉy is in

the direction of the velocity vector (i.e., in-track), and ĉx is given by the right

hand rule ĉx × ĉy = ĉz and in the direction of the orbital radius projected onto

the orbital plane.

Frame C can be seen as an intermediary frame between I and B. In the following

sections, we will let C and D, respectively, be the orientation matrices of C relative

to I and B relative to C. Thus B = DC.

For a spacecraft modeled as a point mass, ĉx is perfectly aligned with the or-

bital radial direction and C can be thought of as the traditional HCW frame [62].

These orbits, more commonly known as great circle orbits, have the orbit plane pass-

ing through the center of the gravitational field, see Figure 6.1 (a). For a general

rigid spacecraft, such great circle orbits may not exist. In fact, if the spacecraft is

asymmetric, it may have what is known as a non-great circular orbit, where ĉx is not
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aligned with the orbital radius and the orbit plane does not intersect the center of the

gravitational field, see Figure 6.1 (b). There will always be for a general spacecraft at

least one of these types of orbits, and conditions under which they occur is discussed

in [48].

(a) (b)

Figure 6.1: (a) Great circle orbit. (b) Non-great circle orbit.

In the following subsections, we derive a set of exact relative dynamics for con-

trollability analysis and a set of approximate relative dynamics for simple controller

analysis and design. We use the word relative as the equations of motion are written

with the equilibrium orbit in mind. A summary of the equations, notations, and

assumptions is given after the complete derivation.

6.1.1 Translational Equations Of Motion

6.1.1.1 Exact Translational Relative Equations

The linear momentum of the entire spacecraft system (including RWs and CMGs)

COM, located at point O, relative to the center of the gravitational field, located at

a point A, can be given as

~p
O/A/I = m

T

I·
~r
O/A

. (6.1)
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The time rate of change of the linear momentum can expressed as

I·
~p
O/A/I

= m
T

I··
~r
O/A

= −

∫
T

µ
(
~r
O/A

+ ~r
ρ/O

)
∣∣∣~rO/A + ~r

ρ/O

∣∣∣3 dm, (6.2)

where µ is the gravitational constant. Noting that C rotates at a constant rate, we

can use the transport theorem to give

C·
~p
O/A/C

=
I·
~p
O/A/C

− 2~ωC/I × ~pO/A/C −mT
~ωC/I ×

(
~ωC/I × ~rO/A

)
.

= −
∫
T

µ
(
~r
O/A

+~r
ρ/O

)
∣∣∣~r
O/A

+~r
ρ/O

∣∣∣3 dm− 2~ωC/I × ~pO/A/C −mT
~ωC/I ×

(
~ωC/I × ~rO/A

)
.

(6.3)

We now use the following notation

• r̄ = ~r
O/A

∣∣
C : Position vector of O relative to A expressed in C,

• ρ̄
O

= ~r
ρ/O

∣∣
B : Position vector of an infinitesimal mass element

relative to O expressed in B,

• p̄ = ~r
T/A/C

∣∣
C : Relative linear momentum vector of the spacecraft

relative to point A expressed in C,

• ω̄e = ~ωC/I
∣∣
C : Angular velocity of C relative to I expressed in C.

Resolving (6.3) in C and combining it with the kinematics gives the total, exact,

relative translational equations of motion

˙̄r = p̄
m

T
,

˙̄p = −
∫
T

µ(r̄+DTρ̄
O)

|r̄+DTρ̄
O |

3 dm− 2 [ω̄e ]
× p̄−m

T
[ω̄e ]

2× r̄.

(6.4)
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6.1.1.2 Approximated Translational Relative Equations

We will now approximate the exact relative equations of motion (6.3) about an equi-

librium trajectory by constructing equations in a similar fashion to how the traditional

HCW dynamics are derived.

First, assume that there is a spacecraft of the same configuration as the deputy

spacecraft T, fixed in C, whose COM is moving in an unforced equilibrium orbit with

position vector ~r
C/A

. We will call this spacecraft the “chief” and denote it by C.

The objective is to determine the motion of spacecraft T, which we will refer to as

the “deputy”, relative to the chief. This is done by determining the relative linear

momentum,

I·
~p

T/C/I
=

I·
~p

T/A/I
−
I·
~p

C/A/I
,

= −
∫
T

µ
(
~r
O/A

+~r
ρ/O

)
∣∣∣~r
O/A

+~r
ρ/O

∣∣∣3 dm+
∫
C

µ
(
~r
C/A

+~r
ρ/C

)
∣∣∣~r
C/A

+~r
ρ/C

∣∣∣3 dm.
(6.5)

Using the transport theorem, (6.5) becomes

C·
~p

T/C/C
= −

∫
T

µ
(
~r
C/A

+~r
O/C

+~r
ρ/O

)
∣∣∣~r
C/A

+~r
O/C

+~r
ρ/O

∣∣∣3 dm+
∫
C

µ
(
~r
C/A

+~r
ρ/C

)
∣∣∣~r
C/A

+~r
ρ/C

∣∣∣3 dm

−2~ωC/I × ~pO/C/C −mT
~ωC/I ×

(
~ωC/I × ~rO/C

)
.

(6.6)

We now introduce the following notations:
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• R = |~r
C/A
| : Radius of the equilibrium orbit,

• r̄r = ~r
O/C

∣∣
C : Position vector of O relative to C expressed in C,

• r̄e = ~r
C/A

∣∣
C : Position vector of C relative to A expressed in C,

• ρ̄
C

= ~r
ρ/O

∣∣
C : Position of an infinitesimal mass element relative

to O expressed in C,

• ře = r̄e
R

: Unit vector in the direction of r̄e expressed in C,

• p̄r = ~p
T/C/C

∣∣
C : Relative linear momentum of the spacecraft relative

to C expressed in C.
Resolving (6.6) in C gives

˙̄pr = −
∫
T

µ(r̄e+r̄r+DTρ̄
O)

|r̄e+r̄r+DTρ̄
O |

3 dm+
∫
C

µ(r̄e+ρ̄
C )

|r̄e+ρ̄
C |

3 dm− 2 [ω̄e ]
× p̄r −mT

[ω̄e ]
2× r̄r . (6.7)

The denominators in the integral terms of (6.7) can be given as

∣∣r̄e + r̄r + DTρ̄
O

∣∣−3
=

(
(r̄e + r̄r + DTρ̄

O
)T(r̄e + r̄r + DTρ̄

O
)
)− 3

2 ,

=
(
r̄T
e
r̄e + 2r̄T

e
(r̄r + DTρ̄

O
) + (r̄r + DTρ̄

O
)T(r̄r + Drρ)

)− 3
2 ,

= R−3
(

1 +
2r̄T
e

(r̄r+DTρ̄
O

)

R2 +
|r̄r+DTρ̄

O
|2

R2

)− 3
2
,

= R−3 (1 + 2ε1 cos(κ1) + ε21)
− 3

2 ,

(6.8)
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|r̄e + ρ̄
C
|−3 =

(
(r̄e + ρ̄

C
)T(r̄e + ρ̄

C
)
)− 3

2 ,

=
(
r̄T
e
r̄e + 2r̄T

e
ρ̄
C

+ ρ̄T
C
rρ
)− 3

2 ,

= R−3
(

1 +
2r̄T
e
ρ̄
C

R2 +
|ρ̄
C
|2

R2

)− 3
2
,

= R−3 (1 + 2ε2 cos(κ2) + ε22)
− 3

2 ,

(6.9)

where ε1 =
|r̄r+DTρ̄

O
|

R
, ε2 =

|ρ̄
C
|

R
, κ1 is the angle between r̄e and r̄r + DTρ̄

O
, and κ2 is

the angle between r̄e and ρ̄
C

. We now perform a Taylor-series expansion of (6.8) and

(6.9) about ε1 = ε2 = 0, yielding

∣∣r̄e + r̄r + DTρ̄
O

∣∣−3
= R−3

(
1− 3

r̄T
e

(r̄r+DTρ̄
O

)

R2 + 15
(r̄T
e

(r+DTρ̄
O

))2

2R4

)

+R−3
(
−3
|r+DTρ̄

O
|2

2R2 +O(ε31)
)
,

|r̄e + ρ̄
C
|−3 = R−3

(
1− 3

r̄T
e
ρ̄
C

R2 + 15
(r̄T
e
ρ̄
C

)2

2R4 − 3
|ρ̄
C
|2

2R2 +O(ε32)
)
.

(6.10)

Substituting (6.10) into the integral terms of (6.7) gives
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−
∫
T

µ(r̄e+r̄r+DTρ̄
O)

|r̄e+r̄r+DTρ̄
O |

3 dm = − µ
R3

∫
T

(
r̄e + r̄r + DTρ̄

O

) (
1− 3

r̄T
e (r̄r+DTρ̄

O
)

R2

)
dm

− µ
R3

∫
T

(
r̄e + r̄r + DTρ̄

O

) (
15

(r̄T
e

(r̄r+DTρ̄
O

))2

2R4

)
dm

+ µ
R3

∫
T

(
r̄e + r̄r + DTρ̄

O

) (
3
|r̄r+DTρ̄

O
|2

2R2 +O(ε31)
)
dm,

= − µ
R3

∫
T

(
r̄e + r̄r + DTρ̄

O

)
dm

− µ
R3

∫
T

(
−3

r̄e r̄
T
e r̄r
R2 − 3

r̄e r̄
T
e
DTρ̄

O

R2 − 3
r̄r r̄

T
e r̄r
R2

)
dm

− µ
R3

∫
T

(
−3

r̄r r̄
T
e D

Tρ̄
O

R2 − 3
DTρ̄

O
r̄T
e r̄r

R2 − 3
DTρ̄

O
r̄T
e D

Tρ̄
O

R2

)
dm

− µ
R3

∫
T

(
15

(r̄T
e r̄r r̄

T
r r̄e+2r̄T

e r̄r r̄
T
e D

Tρ̄
O

+r̄T
e
DTρ̄

O
ρ̄T
O
Dr̄e )

2R4 r̄e

)
dm

− µ
R3

∫
T

(
−3

r̄T
r
r̄r+2r̄T

r
DTρ̄

O
+ρ̄T

O
ρ̄
O

2R2 r̄e +O (ε31)
)
dm,

(6.11)
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−
∫
C

µ(r̄e+ρ̄
C )

|r̄e+ρ̄
C |

3 dm = − µ
R3

∫
C

(r̄e + ρ̄
C

)
(

1− 3
r̄T
e ρ̄C
R2 + 15

(r̄T
e ρ̄C )2

2R4 − 3
|ρ̄
C
|2

2R2 +O(ε32)
)
dm,

= − µ
R3

∫
C

(
r̄e + ρ̄

C
− 3

r̄e r̄
T
e
ρ̄
C

R2 − 3
ρ̄
C
r̄T
e
ρ̄
C

R2 + 15
r̄T
e
ρ̄
C
ρ̄T
C
r̄e

2R4 r̄e

)
dm

− µ
R3

∫
C

(
−3

ρ̄T
C
ρ̄
C

2R2 r̄e +O (ε32)
)
dm.

(6.12)

We now make the following assumption:

Assumption 6.2 The inertia of the chief spacecraft, when resolved in C, is the

same as the inertia matrix of the deputy spacecraft, when resolved in B.

Assumption 6.2 is made in order to relate (6.11) and (6.12), and as a consequence

gives the following relationship

−
∫
T

[ρ̄
C

]2× dm = −
∫
T

[ρ̄
O

]2× dm = J̄ . (6.13)

Recalling that

[ρ̄
C

]2× + I3ρ̄
T
C
ρ̄
C

= ρ̄
C
ρ̄T
C
,

[ρ̄
O

]2× + I3ρ̄
T
O
ρ̄
O

= ρ̄
O
ρ̄T
O
,

∫
T

ρ̄
C
dm =

∫
T

ρ̄
O
dm = 0,

∫
T

ρ̄T
C
ρ̄
C
dm =

∫
T

ρ̄T
O
ρ̄
O
dm =

tr[J̄ ]
2
,

(6.14)
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the terms within the integrals of (6.11) and (6.12) become

−
∫
D

µ(r̄e+r̄r+DTρ̄
O)

|r̄e+r̄r+DTρ̄
O |

3 dm = −µm
T

R3 (r̄e + r̄r) + 3µmd
R5 (r̄e r̄

T
e

)r̄r + 3µmd
2R5 (2r̄r r̄

T
r

+ r̄T
r
r̄r)r̄e

−15µm
T

2R7

(
r̄T
e
r̄r r̄

T
r
r̄e
)
r̄e − 3µ

R5 DTJ̄Dr̄e + 15µ
2R7 (r̄T

e
DTJ̄Dr̄e)r̄e

−3µtr[J̄ ]
2R5 r̄e +O(ε31),

(6.15)

−
∫
D

µ(r̄e+ρ̄
C )

|r̄e+ρ̄
C |

3 dm = −µm
T

R3 r̄e − 3µ
R5 J̄ r̄e + 15µ

2R7 (r̄T
e
J̄ r̄e)r̄e −

3µtr[J̄ ]
2R5 r̄e +O(ε32). (6.16)

Substituting in (6.15) and (6.16) into (6.7) and neglecting terms of third order in ε1

and ε2, the full, approximate translational equations of motion become

˙̄rr = p̄r
m
,

˙̄pr =
(

2µm
T

R3 I3 +
3µ,m

T

R3 [ře ]
2× −m

T
[ω̄e ]

2×
)
r̄r − 2 [ω̄e ]

× p̄r

+
3µm

T

2R4

(
2r̄r r̄

T
r

+ r̄T
r
r̄rI3 − 5

(
řT
e
r̄r r̄

T
r
ře
)
I3

)
ře

− 3µ
2R4

(
2DTJ̄D− 2J̄ − 5

(
řT
e

(
DTJ̄D− J̄

)
ře
)
I3

)
ře .

(6.17)

Neglecting third-order terms is a reasonable assumption for a spacecraft in orbit

around a large central body, but if the spacecraft is very large, i.e., |~r
ρ/O
| ∼ 10 km or

ε2 ∼ 10−4, then higher-order terms must be added for accuracy [47].

The following can be said about the new approximate equations of motions (6.17):
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1. If terms of second-order in ε1 and ε2 are neglected, then (6.17) become the

traditional HCW equations if r̄e = [ R 0 0 ]T and ω̄e = [ 0 0 Ω ]T, where

n2 = µ
R3 .

2. If the attitude is aligned with the equilibrium attitude for all time and r̄e =

[ R 0 0 ]T and ω̄e = [ 0 0 Ω ]T, then (6.17) become the second-order HCW

equations, whose derivation and approximate solution is given in [115].

3. If the spacecraft is completely symmetric, i.e., has an inertia matrix J̄ = αI3

for α > 0, there is no coupling in the translational dynamics by the attitude of

the spacecraft.

Remark 6.1: The dynamics (6.17) were obtained by approximating the total gravity

force via a Taylor-series expansion and neglecting terms of higher than third-order

in ε1 and ε2. Generally coupled rotational and translational equations are derived by

first approximating the gravity potential function, and the total force is obtained by

taking the negative gradient of the simplified potential. Both methods are given in

Appendix C, with advantages and disadvantages given for both.

6.1.2 Rotational Equations of Motion

6.1.2.1 Exact Rotational Relative Equations

To derive the rotational equations of motion, it is necessary to determine the total

angular momentum of the spacecraft system. Note that the angular momentum

contribution due to the spacecraft rotating about the central gravity field’s center at

point A must also be taken into consideration. Thus we consider the total angular

momentum of the spacecraft system (consisting of the spherical body inducing the

central gravity field and the spacecraft itself) about point A, given as

~H
T/A/I = ~H

T/O/I + ~r
O/A
× ~p

T/A/I . (6.18)
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The total angular momentum of the spacecraft system about its COM is given by

(2.25),

~H
T/O/I = ~J

T/O
~ωB/I +

NRW∑
i=1

J
wsi
ν
i
ŵ
ix

+
NCMG∑
j=1

(
J
ggj

+ J
rtj

)
δ̇
j
ĝ
jy

+ J
rsi
η
j
ĝ
jx
,

(6.19)

while from the transport theorem,

~p
T/A/I = ~p

T/A/C + ~ωC/I ×mT
~r
O/A

. (6.20)

We define the following notation:

• ω̄r = ~ωB/C
∣∣
B : Angular velocity of B relative to C expressed in B

• H̄
T

= ~H
T/A/I

∣∣
I : Total inertial angular momentum of the system

(spacecraft and central body) expressed in I
Substituting (6.20) and (6.19) into (6.18) and resolving in B gives

DCH̄
T

= J̄(ω̄r + Dω̄e) + D([r̄]× p̄−m
T

[r̄]2× ω̄e) + h̄a , (6.21)

where

h̄a =

NRW∑
i=1

J
wsi
ν
i
w̌
i
+

NCMG∑
j=1

+J
rsi
η
j
ȟ
j

(6.22)

is the angular momentum contribution due to the actuators, and where we use again

the assumption that the angular momentum contribution due to the gimbals is much

smaller than that of the RWs or rotor. Note that from Assumption 6.1, H̄
T

is constant.

Solving (6.21) for ω̄r gives the relative kinematic equations

Ḋ = − [ω̄r ]
×D,

=
[
J̄−1

(
h̄a + J̄Dω̄e + D([r̄]× p̄−m

T
[r̄]2× ω̄e)−DCH̄

T

)]×
D.

(6.23)

The control input to the system will either be reaction wheel accelerations or
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gimbal rates

u
i

= ν̇
i
, i = 1, . . . , NRW ,

u
i+NRW

= δ̇
i
, i = 1, . . . , NCMG.

(6.24)

6.1.2.2 Approximate Rotational Relative Equations

For the relative, approximate, rotational equations of motion, note that

~p
T/A/C = ~p

T/C/C + ~p
C/A/C . (6.25)

The linear momentum of C relative to A in the constant rotating frame C is zero.

Resolving (6.25) in C gives

p̄ = p̄r . (6.26)

Recalling that r̄ = r̄e + r̄r , the kinematics in (6.23) become

Ḋ =
[
J̄−1

(
h̄a + J̄Dω̄e + D([r̄e + r̄r ]

× p̄r −mT
[r̄e + r̄r ]

2× ω̄e)−DCH̄
T

)]×
D.

(6.27)

For completeness, the control input, as stated in the last subsection, will be taken as

either RW accelerations or gimbal rates, see (6.24).

6.1.3 Summary of Equations of Motion

As a summary, the exact relative equations of motion and the approximate equations

of motion are given below, resolved in their appropriate frames. Note that the locked

inertia of the spacecraft is given by

J̄ = J̄
B

+
NRW∑
i=1

J̄
Wj

+
NCMG∑
j=1

GT
j

(
J̄

Gj
+ J̄

Rj

)
G

j
, (6.28)
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and the angular momentum due to the actuators is

h̄a =

NRW∑
i=1

J
wsi
ν
i
w̌
i
+

NCMG∑
j=1

+J
rsi
η
j
ȟ
j
. (6.29)

Exact Relative Equations of Motion

˙̄r = p̄
m

T
,

˙̄p = −
∫
T

µ(r̄+DTρ̄
O)

|r̄+DTρ̄
O |

3 dm− 2 [ω̄e ]
× p̄−m

T
[ω̄e ]

2× r̄,

Ḋ =
[
J̄−1

(
h̄a + J̄Dω̄e + D([r̄]× p̄−m

T
[r̄]2× ω̄e)−DCH̄

T

)]×
D,

u
i

= ν̇
i
, i = 1, . . . , NRW ,

u
i+NRW

= δ̇
i
, i = 1, . . . , NCMG.

(6.30)
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Approximate Relative Equations of Motion

˙̄rr = p̄r
m
,

˙̄pr =
(

2µm
T

R3 I3 +
3µm

T

R3 [ře ]
2× −m

T
[ω̄e ]

2×
)
r̄r − 2 [ω̄e ]

× p̄r

+
3µm

T

2R4

(
2r̄r r̄

T
r

+ r̄T
r
r̄rI3 − 5

(
řT
e
r̄r r̄

T
r
ře
)
I3

)
ře

− 3µ
2R4

(
2DTJ̄D− 2J̄ − 5

(
řT
e

(
DTJ̄D− J̄

)
ře
)
I3

)
ře ,

Ḋ =
[
J̄−1

(
h̄a + J̄Dω̄e + D([r̄e + r̄r ]

× p̄r −mT
[r̄e + r̄r ]

2× ω̄e)−DCH̄
T

)]×
D,

u
i

= ν̇
i
, i = 1, . . . , NRW ,

u
i+NRW

= δ̇
i
, i = 1, . . . , NCMG.

(6.31)

The following notation corresponds to all related variables:

Orientation Matrices

• C : Orientation matrix of C relative to I,

• D : Orientation matrix of B relative to C,

• G
j

: Orientation matrix of Gj relative to B.

Rotational Vectors

• ω̄e = ~ωC/I
∣∣
C : Angular velocity of C relative to I expressed in B,

• ω̄r = ~ωB/C
∣∣
B : Angular velocity of B relative to C expressed in B,

• H̄
T

= ~H
T/A/I

∣∣
I : Total spacecraft system angular momentum

about point A expressed in I.
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Resolved Inertia Matrices

• J̄ = ~J
T/O

∣∣
B : Locked inertia matrix expressed in B about point O,

• J̄
B

= ~J
B/Bc

∣∣
G : Bus inertia matrix expressed in B about point Bc,

• J̄
Wi

= ~J
Wi/Wic

∣∣
B : ith RW inertia matrix expressed in B about point Wic,

• J̄
Gj

= ~J
Gj/Gjc

∣∣
Gj

: jth gimbal inertia matrix expressed in Gj about

point Gjc,

• J̄
Rj

= ~J
Rj/Rjc

∣∣
Gj

: jth rotor inertia matrix expressed in Gj about

point Rjc.

Specific Inertias

• J
wsi

: ith RW inertia about its spin axis,

• J
rsj

: jth rotor inertia about its spin axis.

Resolved Position Vectors

• r̄ = ~r
O/A

∣∣
C : Position of O relative to A expressed in C,

• ρ̄
O

= ~r
ρ/O

∣∣
B : Position of an infinitesimal mass element relative to O

expressed in B,

• p̄ = ~r
T/A/C

∣∣
C : Relative linear momentum of the spacecraft relative to A

expressed in C,

• R = |~r
C/A
| : Radius of the equilibrium orbit

• r̄r = ~r
O/C

∣∣
C : Position of O relative to C expressed in C,

• ře =
~r
C/A

R

∣∣
C : Unit vector of C relative to A expressed in C,

• p̄r = ~r
T/C/C

∣∣
C : Relative linear momentum of the spacecraft relative to C.

Actuator Unit Vectors

• w̌
i

= ŵ
ix

∣∣
B : Spin axis of ith RW expressed in B,

• ȟ
j

= ĝ
jx

∣∣
B : Spin axis of jth rotor expressed in Gj.
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Actuator Parameters

• ν
i

: ith RW rate,

• δ
j

: jth gimbal angle,

• η
j

: jth rotor rate.

And recall that the following assumptions were made:

Assumption 2.1 The spacecraft bus is a rigid body.

Assumption 2.2 The RW rotors are rigid.

Assumption 2.3 The RWs are symmetric about their spin axes.

Assumption 2.4 Both the gimbal and the rotor of each CMG are two separate

rigid bodies.

Assumption 2.5 Both the gimbal and rotor of each CMG are symmetric about

their spin axes.

Assumption 2.6 The COM of the rotor is located at the intersection of the

rotor spin axis and the gimbal spin axis.

Assumption 2.7 The COM of the spacecraft system that includes the space-

craft bus, RWs, and CMGs coincides with O.

Assumption 2.9 The rotors spin at constant nonzero speeds.

Assumption 3.4.3 The speed of the rotors is much larger than that of the

gimbals.

Assumption 6.1 The only force acting on the spacecraft system is gravity.

Assumption 6.2 The inertia of the chief satellite, when resolved in C is the

same as the inertia matrix of the deputy when resolved in B.
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We also note that in all the above derivations, the equations of motion are written

with respect to a nominal circular orbit, which can be either of great circle or non-

great circle type; the existence and properties of which are briefly discussed in the

next section.

6.2 Relative Orbits

The equations of motion (6.30) and (6.31) are general and only require that the

equilibrium orbital radius and angular velocity be constant and known. However,

analysis of non-great circle orbits are a challenge as currently there do not exist any

closed-form solutions for such orbits, and thus numerical methods must be used [48].

This presents issues for spacecraft with only non-great circle orbits, for example, a

spacecraft comprising of six point masses, two on each principal axis, for which the

distances from the COM along the principal axes are not equal (i.e., when x1 6=

x2, x3 6= x4, x5 6= x6 in Figure 6.2 ) [44, 48].

Figure 6.2: Spacecraft with no great circle equilibria.

If approximations are allowed be made to (6.30), then non-great circle orbits

can be determined in the following way; consider the motion of a spacecraft in its

equilibrium orbit, corresponding to r̄ = r̄e (i.e., O coincides with C), p̄ = 0, and

D = I3 in (6.30). The exact time rate of change of linear momentum from (6.30)
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then gives the following constraint:

0 = −

∫
T

µ (r̄e + ρ̄
C

)

|r̄e + ρ̄
C
|3
dm−m

T
[ω̄e ]

2× r̄e . (6.32)

Using the second order approximation from above in (6.9), (6.32) can be explicitly

written as

0 = −µmT

R3
r̄e −

3µ

R5
J̄ r̄e +

15µ

2R7
(r̄T

e
J̄ r̄e)r̄e −

3µtr
[
J̄
]

2R5
r̄e −mT

[ω̄e ]
2× r̄e +O(ε32). (6.33)

For non-great circle orbits, the rotation vector and the radius vector can be given,

without loss of generality, as ω̄e = [ 0 0 Ω ]T and r̄e = [ σ1R 0 σ2R ]T, where Ω > 0,

σ1 ∈ (0, 1] and σ2 =
√

1− σ2
1. Using this notation, (6.33) explicitly becomes

0 =

(
−µm

T

R3 + 15µ
2R5 (σ1(σ1j11 + σ2j13) + σ2(σ1j13 + σ2j33))− 3µtr[J̄]

2R5 +m
T
Ω2

)
σ1

− 3µ
R5 (σ1j11 + σ2j13) +O(ε32),

0 = − 3µ
R5 (σ1j12 + σ2j23) +O(ε32),

0 =

(
−µm

T

R3 + 15µ
2R5 (σ1(σ1j11 + σ2j13) + σ2(σ1j13 + σ2j33))− 3µtr[J̄]

2R5

)
σ2

− 3µ
R5 (σ1j13 + σ2j33) +O(ε32),

(6.34)

where the locked inertia matrix is

J̄ =


j11 j12 j13

j12 j22 j23

j13 j23 j33

 . (6.35)
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If terms higher than third-order in ε2 are neglected, then the relations in (6.34) can

be solved for a given spacecraft with inertia matrix J̄ and a desired orbital radius r̄e .

Now consider the case of great circle orbits, in the limiting case where σ1 = 1.

Then r̄e = [ R 0 0 ]T and ω̄e = [ 0 0 Ω ]T, just as in HCW dynamics. The algebraic

relations in (6.34) become

0 = −µm
T

R3 − 3µ
R5 j11 + 15µ

2R5 j11 −
3µtr[J̄]

2R5 +m
T
Ω2 +O(ε32),

0 = − 3µ
R5 j12 +O(ε32),

0 = − 3µ
R5 j13 +O(ε32).

(6.36)

All three equations in (6.36) must hold if a great circle trajectory exists. If third-order

terms in ε2 are neglected, then the existence of such orbits imply that j12 and j13 must

be zero. This is possible if the spacecraft, in its equilibrium orbit, is symmetric with

respect to an axis orthogonal to the orbital plane and ĉx [49]. Though this result is

valid up to third-order in ε2, it is supported by an analysis on the exact dynamics

(6.30) by [48], summarized by the following Lemma:

Lemma 6.1 [48] : For a rigid body having a plane of symmetry, there are at

least four great circle relative equilibria. Furthermore, if the rigid body is symmetric

with respect to two planes, there are at least eight great circle relative equilibria, and

for a rigid body with three planes of symmetry, there are at least twenty-four great

circle relative equilibria. �

If the assumption j12 = j13 = 0 holds for the spacecraft, we obtain the following

relationship:

m
T
Ω2 =

µm
T

R3
+ Ωε , (6.37)
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where

Ωε = − 9µ

2R5
j11 +

3µtr
[
J̄
]

2R5
. (6.38)

Note that if Ωε = 0, then Ω is the mean motion of a point-mass satellite in a cir-

cular orbit with radius R. The results above will be useful in the analysis of local

controllability of the approximate coupled equations of motion.

6.3 Small-Time Local Controllability of Coupled

Dynamics

While global controllability of a rigid body in an inertial frame with just attitude ac-

tuation was discussed in [58], the subject of STLC about an equilibrium orbit was not.

In the following section, we give sufficient conditions for the exact dynamics (6.30)

to be STLC through the use of Lie brackets. For the approximate system (6.31),

linearization is performed about the equilibrium orbit, and sufficient and necessary

conditions for linear controllability are given, which in turn lead to sufficient condi-

tions for STLC. With STLC established, control techniques can be used to locally

stabilize the spacecraft’s rotational and translational dynamics to its equilibrium or-

bit by only adjusting its attitude. Furthermore, if internal attitude actuation is used,

then a spacecraft can move translationally in space without the use of propellant.

For all analysis, the following assumption is made:

Assumption 6.3 The spacecraft system’s attitude is fully actuated by 3 RWs

whose spin axes are linearly independent.

The controllability of a spacecraft equipped with CMGs is more intensive and is left

for future work.
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6.3.1 Local Controllability Lie Brackets for Exact Equations

of Motion

The exact equations of motion (6.30) are highly nonlinear, affine in the control, and

evolve on the space R6 × SO(3) × Tm, where m is the number of actuators. A Lie

bracket analysis can be used to determine local controllability of the exact dynamics,

but since part of the dynamics evolve on SO(3), the brackets must be computed

differently than in Appendix A. For this section, we will use the method outlined in

Appendix D.

For the controllability result we will use the following Lemma, which is an ex-

tension of the result when ∞−degree brackets are considered for Theorem A2 in

Appendix D:

Lemma 6.2 [2]: Let M be a C∞-manifold on which the system

ẋ = f(x) +
m∑
i=1

gi(x)ui, (6.39)

evolves. The system (6.39) is STLC from x0 ∈ M if f(x0) = 0 and if brackets

constructed with only one control vector field gi span the tangent space of M when

evaluated at x0. � With Lemma 6.2, the following result can be stated,

Theorem 6.1: The dynamics (6.30) of a spacecraft actuated by three RWs (m =

3) with linearly independent spin axes are STLC from the spacecraft’s equilibrium

orbit of radius r̄e if the matrix P̄ , given as

P̄ =

∫
T

(
I3

|r̄e + ρ̄
C
|3
−

3(r̄e + ρ̄
C

)r̄T
e

|r̄e + ρ̄
C
|5

)
[ρ̄
C

]× dm, (6.40)

is nonsingular.
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Proof: For the exact equations of motion in (6.30), the drift and control vectors are

f =



p̄
m

T

−
∫
T

µ(r̄+DTρ̄
O)

|r̄+DTρ̄
O |

3 dm− 2[ω̄e ]
×p̄−m

T
[ω̄e ]

2×r̄[
J̄−1

(
h̄a + J̄Dω̄e + D ([r̄]×p̄−m

T
[r̄]2×ω̄e)−DCH̄

T

)]×
D

0


, gi =



, 0

0

0

ei


,

(6.41)

where ei is the zero vector with a 1 in the ith entry (i.e., ei = [ . . . 0 1 0 . . . ]T) and

the angular momentum due to the three RWs is given by

h̄a =
3∑
i=1

J
wsi
ν
i
w̌
i
. (6.42)

Using the method outlined in [8], the Lie brackets necessary for STLC, which are

denoted by Lj,i, i, j = 1, 2, 3, can be computed as

L1,i = [f, gi] =



0

0[
−J̄−1 ∂h̄a

∂νi

]×
D

0


, (6.43)

L2,i = [f, [f, gi]] =



0

−µ
∫
T

(
I3

|r̄+DTρ̄
O |

3 −
3(r̄+DTρ̄

O
)r̄T

|r̄+DTρ̄
O |

5

)
DT [ρ̄

O
]× J̄−1 ∂h̄a

∂νi
dm[(

J̄−1h̄a
)
×
(
J̄−1 ∂h̄a

∂νi

)
+ E1DE2

]×
D

0


,

(6.44)
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where

E1 =

(
J̄−1

[
J̄−1 ∂h̄a

∂νi

]×
−
[
J̄−1 ∂h̄a

∂νi

]×
J̄−1

)
,

E2 =
(
[r̄]×p̄−m

T
[r̄]2×ω̄e −CH̄

T

)
,

(6.45)

L3,i = [f, [f, [f, gi]]] =



µ
m

T

∫
T

(
I3

|r̄+DTρ̄
O |

3 −
3(r̄+DTρ̄

O
)r̄T

|r̄+DTρ̄
O |

5

)
DT [ρ̄

O
]× J̄−1 ∂h̄a

∂νi
dm

∗

∗

0


,

(6.46)

and where ∗ is an entry that is not of concern currently. A step-by-step computation

of these brackets is given in Appendix D.

We now evaluate the Lie brackets at r̄ = r̄e , p̄ = 0, and D = I3. The brackets gi

span the tangent space associated with the control. The brackets L1,i for i = 1, 2, 3

will always span the tangent space of SO(3) since the spin axes of the RWs are

linearly independent by assumption. The Lie brackets L2,i and L3,i will span the

tangent space of position and linear momentum, respectively, since by assumption,

the RW spin axes span 3-dimensional space and P̄ from (6.40) is nonsingular. Then

by Lemma 6.2, the system is STLC from the equilibrium orbit. �

The integral in (6.40) can be challenging to compute exactly. By performing

a Taylor-series expansion about (6.40), the following corollary to Theorem 6.1 is

obtained:

Corollary 6.1: Let ε2 << 1. Then if

1

R5

(
15ře ř

T
e

(
tr
[
J̄
]

2
[ře ]
× −

[
J̄ ře
]×)

+ 3
[
J̄ ře
]× − 3J̄ [ře ]

×

)
(6.47)

is nonsingular for a given equilibrium orbit corresponding to r̄e , the dynamics (6.30)
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are STLC from the equilibrium orbit.

Proof: Performing a Taylor-series expansion of P̄ in (6.40) about ε2 yields

P̄ =

∫
T

1

R5

(
15

R7
r̄e r̄

T
e

[
ρ̄
C
ρ̄T
C
r̄e
]×

+ 3ρ̄
C
ρ̄T
C

[r̄e ]
× − 3

[
ρ̄
C
ρ̄T
C
r̄e
]×)

dm+O(ε32). (6.48)

Noting that ∫
T

ρ̄
C
ρ̄T
C
dm =

∫
T

(
[ρ̄
C

]2× + I3ρ̄
T
C
ρ̄
C

)
dm,

= −J̄ + I3
tr[J̄]

2
,

(6.49)

P̄ can be approximated by integrating (6.48) and neglecting terms of third-order in

ε2,

P̄ ≈ 1

R5

(
15ře ř

T
e

(
tr
[
J̄
]

2
[ře ]
× −

[
J̄ ře
]×)

+ 3
[
J̄ ře
]× − 3J̄ [ře ]

×

)
. (6.50)

The result of the corollary follows from Theorem 6.1 and Lemma 6.2. �

Note that Theorem 6.1 and Corollary 6.1 give sufficient, but not necessary condi-

tions for (6.30) to be STLC. For several test cases, spacecraft in non-great circle orbits

satisfy Theorem 6.1 and Corollary 6.1, though general claims are difficult to make.

For a great circle equilibrium with a symmetric spacecraft, both Theorem 6.1 and

Corollary 6.1 fail. However in the next section, the approximate system is linearized,

and controllability claims can be made for great circle equilibrium orbits. This sug-

gests that higher-order Lie brackets could yield stronger controllability conditions

than the ones presented here.

175



6.3.2 Linear Controllability of the Translational, Approxi-

mate Relative Equations about Great Circle Equilibria

We now analyze the linear controllability properties of (6.31). Since non-great circle

orbits are hard to generalize, this analysis will only be performed for spacecraft on

great circle orbits. From Section 6.2, the spacecraft system requires the following

assumption:

Assumption 6.4 The spacecraft inertia matrix about its COM has a least one

plane of symmetry.

For the linear analysis, let the attitude be parameterized by Euler angles φ, θ, ψ,

contained in the vector Θ̄. Linearizing the translational equations of (6.31) about the

relative equilibrium r̄r = p̄r = Θ̄ = 0 gives the following dynamics

˙̄rr =
˙̄pr
m

T
,

˙̄pr = Ārr̄r + Āpp̄r + ĀΘΘ̄,
(6.51)

where because r̄e = [ R 0 0 ]T, ω̄e = [ 0 0 Ω ]T, and by Assumption 6.4 frame B

can be chosen such that j12 = j13 = 0, the matrices in (6.51) are

Ār =
2µm

T

R3
I3 +

3µm
T

R3
[ře ]

2× −m
T

[ω̄e ]
2× =


3m

T
Ω2 − 2Ωε 0 0

0 Ωε 0

0 0 −m
T
Ω2 + Ωε

 ,
(6.52)

Āρ = −2 [ω̄e ]
× =


0 2Ω 0

−2Ω 0 0

0 0 0

 , (6.53)
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ĀΘ = − 3µ
2R4

(
2
R

(
J̄ [r̄e ]

× −
[
J̄ r̄e
]×)

+ 10
R2 r̄

T
e
r̄e
[
J̄ r̄e
]×)

,

= 3µ
R4


0 0 0

0 j23 (j11 − j22)

0 (j33 − j11) −j23

 .
(6.54)

Since the attitude dynamics are completely controllable by assumption, we do not lin-

earize them. With the above linear dynamics, the following controllability statement

can be made

Theorem 6.2: The approximate spacecraft dynamics (6.31) with attitude actu-

ation by three RWs whose spin axes are linearly independent are linearly controllable

about a great circle equilibrium orbit r̄e if and only if the spacecraft’s inertia matrix

satisfies one of the following requirements:

• j11 6= j22 6= j33,

• j22 = j33 6= j11,

• j23 6= 0 and j22 = j11 6= j33 ,

• j23 6= 0 and j33 = j11 6= j22.

Proof: Recall that the PBH test for controllability [76] implies that a linear, time-

invariant system (Ā, B̄) is controllable if and only if

rank

([
λI6 − Ā B̄

])
= dim(Ā), (6.55)

for every eigenvalue λ of Ā, see [76]. By the converse, the system is uncontrollable if

and only if there exists a nonzero vector η̄ ∈ C6 such that

η̄CT

[
λI6 − Ā B̄

]
= 0, (6.56)
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for at least one eigenvalue, where η̄CT is the conjugate transpose of η̄. Thus if there

exists a left eigenvector of Ā such that η̄CTB̄ = 0, the system is uncontrollable.

For the case of the spacecraft translational dynamics, Ā is given by

Ā =

 0 1
m

T
I3

Ār Āρ

 . (6.57)

We will now treat Θ̄ as the control input to the system (for reasons stated later in

the proof), resulting in the control matrix

B̄ =

 0

ĀΘ

 . (6.58)

It can be determined that all left eigenvectors of Ā have the form η̄CT = [ ∗ ∗ ∗ ∗ 1 0 ]T

or η̄CT = [ ∗ ∗ ∗ ∗ 0 1 ]T, where ∗ is an entry not of concern. The four spacecraft

configurations in Theorem 6.2 are the only ones in which η̄CTB̄ 6= 0 for all left eigen-

vectors. Thus the translational spacecraft dynamics are linearly controllable for these

spacecraft configurations at equilibrium when attitude is treated as a control input.

Since the attitude is completely controllable by three RWs, by dynamic extension the

approximate dynamics (6.31) are linearly controllable if the spacecraft has one of the

four configurations. �.

With this, the following corollary can be made to Theorem 6.2:

Corollary 6.2 The approximate dynamics (6.31) with attitude actuation by three

RWs whose spin axes are linearly independent are STLC from a great circle equilib-

rium orbit r̄e if the spacecraft inertia matrix has one of the four configurations outlined

in Theorem 6.2

Proof: Since the linear dynamics about the equilibrium orbit are controllable, the

nonlinear approximate dynamics (6.31) are STLC, from Corollary 7.28 in [2]. �
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The implications of Theorem 6.2 are that if a spacecraft system satisfies one of

the conditions in Theorem 6.2, then a linear controller can be designed to stabilize

the translational and attitude dynamics of a spacecraft. While the maneuver may

take time since gravitational effects are small, for large spacecraft, it is hypothesized

that translational maneuvers can be performed in a matter of days. Since internal

actuation is assumed, this means that relative translational motion of a spacecraft

can be achieved with zero fuel consumption.

6.4 Simulations

To demonstrate the effect of rotational and translational coupling in a central gravity

field, we present two simulations. The first simulation is for a Kepler sized spacecraft

in a low-Earth, great circle orbit with an altitude of 416 km. The second simulation

is for an International Space Station (ISS) sized spacecraft in the same low-Earth,

great circle orbit. Both spacecraft are modeled as constant density cuboids, and

thus satisfy the requirement for great circle orbits. All simulations are run on the

approximate nonlinear dynamics in (6.31). The spacecraft parameters, equilibrium

orbits, and initial conditions are given in Tables 6.1-6.2.

In both simulations, the spacecraft parameters and equilibrium orbits are chosen

such that the spacecraft system is linearly controllable. We also make the following

assumption:

Assumption 6.5 The spacecraft’s attitude is instantaneously manipulatable.

Assumption 6.5 allows us to treat the attitude as the control input to the spacecraft

system. In order to make this assumption reasonable, we linearize the coupled rota-

tional and translational dynamics using (6.51) and discretize the dynamics using a

sampling period of 500 sec. With this large sampling period, there is clearly sufficient

time for the spacecraft to stabilize to the desired attitude necessary for translational
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control. Since both spacecraft systems in both simulations are linearly controllable,

an LQ controller is applied to each. The weighting matrices used to construct these

controllers are included in Tables 6.1-6.2.

The Kepler sized spacecraft simulation is shown in Figure 6.3 and the ISS sized

spacecraft simulation is shown in Figure 6.4. In Figure 6.3, the Kepler sized spacecraft

initially begins with an offset in the in-track direction (i.e., the y-direction in frame

C) by 10 m with zero relative linear momentum, see Table 6.1 for initial conditions.

In contrast, Figure 6.3 shows the ISS sized spacecraft’s trajectory when it is initially

offset in the in-track direction by 100 m with zero relative linear momentum, see

Table 6.2 for initial conditions. In both cases, a linear controller is able to stabilize

the translational spacecraft dynamics to the equilibrium orbit by just adjusting the

spacecraft’s attitude. It is worth noting that the attitude maneuvers in Figures 6.3

(b) and 6.4 (b) are approximately of the same magnitude, however, the ISS sized

spacecraft exploits its large mass and inertia matrix to move farther in less time than

the Kepler sized spacecraft.

Parameter Value

Mass m
T

1052 kg

Inertia J̄ diag(0.0039, 0.0026, 0.0026) kg km2

Equilibrium Orbit r̄e [ 6787 0 0]T km

Orbit Angular Rate ω̄e [ 0 0 0.0011 ]T rad sec−1

Initial Position r̄r(0) [ 0 0.01 0 ]T km

Initial Linear Momentum p̄r(0) [ 0 0 0 ]T km sec−1

LQ weight on Position and I6

Linear Momentum for Q̄

LQ weight on attitude R̄ (1× 10−4)I3

Table 6.1: Simulation parameters for Kepler sized spacecraft.

180



Parameter Value

Mass m
T

419455 kg

Inertia J̄ diag(195.18, 425.47, 592.69) kg km2

Equilibrium Orbit r̄e [ 6787 0 0]T km

Orbit Angular Rate ω̄e [ 0 0 0.0011 ]T rad sec−1

Initial Position r̄r(0) [ 0 0.1 0 ]T km

Initial Linear Momentum p̄r(0) [ 0 0 0 ]T km sec−1

LQ weight on Position and diag(1, 1×107, 1, 1, 1, 1)

Linear Momentum for Q̄

LQ weight on attitude R̄ (5× 103)I3

Table 6.2: Simulation parameters for ISS sized spacecraft.
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Figure 6.3: Simulation 1, Kepler sized spacecraft. (a) Relative position, (b) attitude.
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Figure 6.4: Simulation 2, ISS sized spacecraft. (a) Relative position, (b) attitude.
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CHAPTER 7

Conclusions and Future Work

7.0.1 Conclusions

This dissertation presented various advances in control of underactuated spacecraft.

The following two problems were treated:

• The attitude (orientation) control of a spacecraft when equipped with either

two pairs of thrusters, or two reaction wheels (RWs), or two control moment

gyros (CMGs);

• The orbit and attitude control of a spacecraft when equipped with only RWs

or CMGs.

The overall results contribute to the goal of extending spacecraft operational life

during failure modes as well as enhancing the capability of spacecraft which are un-

deractuated by design. The specific contributions are summarized as follows:

Underactuated Attitude Control Using Geometric Switching Feedback

Control

We presented various switching feedback laws to locally control the attitude of an

underactuated spacecraft with two pairs of thrusters, or two RWs, or two CMGs to an

inertial pointing configuration. The feedback laws exploited the decomposition of the

system states into base variables that are directly controllable and fiber variables that
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are not directly controllable. By stabilizing the base variables to periodic motions, a

change in the fiber variables can be induced, which is regulated by changing param-

eters at discrete time instants. All the switching schemes were shown to stabilize an

underactuated spacecraft to the desired pointing configuration in simulation.

In the case of RW actuation, the switching scheme stabilized the attitude when

the component of the total, inertial angular momentum vector along the uncontrol-

lable axis is zero. If this was not the case, controlled oscillations in a neighborhood

around the desired pointing configuration were achieved with a modified switching

scheme. Additional analysis results of the spacecraft response properties have been

presented to characterize trajectory limits as the excitation frequency of the base

variables increases.

Attitude Underactuated Control Using Model Predictive Control

We presented the application of nonlinear Model Predictive Control (MPC) to

stabilize the attitude of an underactuated spacecraft with two RWs and zero angular

momentum. It was shown that MPC based on an approximate model was able to

generate a feedback law that was discontinuous in terms of state and locally stabi-

lized the system to the desired pointing equilibrium. Simulations on the full nonlinear

model demonstrated successful inertial pointing maneuvers with fast exponential con-

vergence rates and with constraints being satisfied.

Recovering Controllability By Exploiting Solar Radiation Pressure

We uncovered an unconventional pathway to recover linear controllability through

incorporating Solar Radiation Pressure (SRP) torques into the spacecraft attitude

model. For certain fixed inertial pointing directions and realistic spacecraft configu-

rations, linear controllability is recovered and spacecraft control becomes feasible with

conventional Linear Quadratic (LQ) and pole placement techniques. While the ma-
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neuvers take time, the approach presented is not restricted to the assumption of zero

angular momentum; in fact, due to the presence of solar radiation pressure torques,

the total angular momentum may not be zero and is not conserved. The results open

up the possibility of applying a variety of conventional control techniques to the un-

deractuated spacecraft control problem.

Rotational and Translational Underactuated Control in a Gravity Field

We developed two sets of novel, coupled translational and rotational equations that

described the motion of a spacecraft, equipped with only internal moment actuators,

about an equilibrium orbit in a central gravity field. One set of equations exactly

described the motion of the spacecraft. Using these equations, sufficient conditions for

small-time local controllability (STLC) about the equilibrium orbit were given which

depend on the inertia of the spacecraft and the equilibrium orbit. The second set of

equations are an approximation which extend the traditional Hill-Clohessy-Wiltshire

(HCW) relative equations of motion. For these equations, linear controllability of

certain spacecraft configurations was proven. The fact that linear controllability is

restored opens the door to constructing conventional controllers that can move the

spacecraft translationally by only changing its orientation.

7.0.2 Future Work

While this dissertation has made strides toward advancing underactuated spacecraft

control capabilities, there are still many directions to be explored. Below are several

research topics that are of interest in the future.

Attitude Control of an Underactuated Spacecraft with CMGs

The work in Chapter 3 only presented preliminary results of a switching controller

for the case of two skewed CMGs with zero total angular momentum. The next step
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would be performing a more comprehensive study of the case of two skewed CMGs

and developing a similar controller for the case of two CMGs whose gimbal axes

are aligned with zero total angular momentum. Extensions to the nonzero angular

momentum case would follow, as well as a similar limiting analysis when the frequency

of the gimbal angle motions becomes large.

The application of MPC to control a spacecraft with two CMGs also appears

promising. A nonlinear MPC may be utilized to exploit the nonlinear dynamics for

controllability, and its development would be similar to the case of RWs. However,

the difficultly lies in the singular configurations of the CMGs. While it is desired to

avoid these configurations, trajectories that contain singular configurations may yield

benefits in terms of cost.

From a pure controllability analysis standpoint, there remains the open question

of whether a spacecraft system, equipped with two CMGs that have parallel gim-

bal axes, under the zero total angular momentum assumption, is STLC from at-rest

equilibria. This problem is challenging in that sufficient conditions given by Lie brack-

ets [2, 93] cannot be used (this is because to show controllability with CMGs, bad

brackets must be constructed). Approaching the question of local controllability from

another standpoint, in particular optimal control, may lead to some insights.

Underactuated Spacecraft Attitude Control with Magnetorquers

The only class of broadly used attitude actuators not investigated in this dis-

sertation were magnetorquers. While weak in comparison to thruster pairs, RWs,

and CMGs, there are several advantages to magnetic actuation. Magnetorquers have

similar advantages to RWs and CMGs in that they do not require fuel. In addition,

torques are generated due to the interaction of magnetic fields, and thus these actua-

tors are not restricted by the law of angular momentum conservation. The difficulty

with magnetorquers is that the uncontrollable axis varies with time. The work in this
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dissertation concerning CMGs addressed the varying uncontrollable axis by utilizing

SO(3)-based attitude representation. This approach also appears promising for the

case of magnetorquers.

Control of Underactuated Spacecraft by Exploiting External Forces

It was demonstrated that the addition of SRP allowed the attitude dynamics of

an underactuated spacecraft to be linearly controllable in some cases. It stands to

reason that the addition of other perturbation forces could lead to the restoration of

linear controllability as well. Perturbation forces such as air drag, gravity gradient

torques, and residual magnetic moment could be exploited for control purposes when

a spacecraft is in low Earth orbit, where SRP is not a major factor. Constructing

control laws of this kind may also change the practice that disturbances should be

rejected, and instead shift the line of thinking to exploiting these disturbances for

control.

The inclusion of external forces would not be limited to just attitude underacted

control. The perturbations listed above are also known to have an effect on a space-

craft’s translational motion. Including air drag and magnetic moment in the math-

ematical model of coupled rotational and translational equations could lead to addi-

tional results when considering the controllability of a spacecraft in orbit equipped

with only attitude actuators.

Control of Underactuated Spacecraft in a Gravity Field

In Chapter 6, STLC conditions about an equilibrium orbit were given for space-

craft equipped with RWs. However the equations of motion were derived for CMGs as

well. CMG singularity is always an issue when trying to prove any local controllability

result, so the next extension would be to construct brackets where this would not be

an issue. Other avenues of research would involve looking at global controllability as
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well as including a higher fidelity gravity model in the analysis, e.g. J2 perturbations.

In addition to the control analysis, control schemes could be developed to utilize

this coupling effect to stabilize both the translational and rotational equations of

motion. While it was shown that in some instances linear controllability is regained,

a nonlinear controller could potentially exploit the gravity terms and possibly yield

faster stabilization of the dynamics. Potential control schemes along these lines could

be based on nonlinear MPC and on the geometric switching laws discussed in this

dissertation.
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APPENDIX A

Lie Brackets and Controllability

Let a general system for x̄ ∈ Rn that is affine in the control be given by

˙̄x = f0(x̄) +
m∑
i=1

fi(x̄)ui, (A.1)

where m is the number of control inputs, ui, i = 1, ...,m are the specific control inputs

that are piecewise continuous (note ū = [ u1 u2 ... um ]T), f0 is the drift vector field,

which is continuous (C∞) in the state, and fi, i = 1, ...,m, are the control vector

fields which are continuous in the state. By studying the vector fields of (A.1) as

well as the vector fields generated by Lie brackets, certain controllability properties

of (A.1) can be obtained.

To begin, a Lie bracket of system (A.1) is a bilinear, skew-symmetric map that

takes any two vector fields, fj(x̄) and fk(x̄), j, k ∈ {0, 1, ...m} and generates a third

vector field on Rn in the following way [2,7],

[ fj, fk ] =
∂fk(x̄)

∂x̄
fj(x̄)− ∂fj(x̄)

∂x̄
fk(x̄). (A.2)

LetB denote any arbitrary Lie bracket of system (A.1). Define the operator |B|a as

the number of times the vector field fa appears in the bracket, for any a ∈ {0, 1, ...,m}.

A bracket B is bad if |B|0 is odd and |B|a is even ∀a ∈ 1, 2, ...,m. Otherwise the
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bracket B is good. Lastly, define the χ-degree operator of bracket B as follows [2]

deg1(B) =
1

χ
|B|0 +

m∑
i=1

|B|i, (A.3)

where χ ∈ [1,∞]. In particular, the 1−degree operator of bracket B is

deg1(B) =
m∑
i=0

|B|i. (A.4)

The 1-degree operator is hence the total number of vector fields of (A.1) used to

generate Lie bracket B.

The following theorems summarize accessibility and controllability results found

in [2,93] and specialize them to the case of the system (A.1). Refer to [2,93] for more

general definitions.

Theorem A1: Let (x̄∗, ū∗) be an equilibrium of (A.1). Define D∞ as the set of all

vector fields in (A.1) and all vector fields constructed from Lie brackets. The system

(A.1) is accessible from (x̄∗, ū∗) if and only if the D∞ spans Rn when the vector fields

are evaluated at (x̄∗, ū∗). This is known as the Lie Algebra Rank Condition. �

Theorem A2: Let (x̄∗, ū∗) be an equilibrium of (A.1). Define D∞ as the set of all

vector fields in (A.1) and all vector fields constructed from Lie brackets. In addition,

let D̂ ⊂ D∞ and p be the largest 1-degree of all vector fields in D̂ generated by Lie

brackets. The system (A.1) is STLC from (x̄∗, ū∗) if there exists a D̂ such that:

i. D̂ satisfies the Lie Algebra Rank Condition when evaluated at (x̄∗, ū∗).

ii. All bad brackets in D∞ of χ-degree less than p when evaluated at (x̄∗, ū∗)

are linear combinations of good brackets in D̂ of lower order, when evaluated

at (x̄∗, ū∗).

�

Note that Theorem A1 is sufficient and necessary while Theorem A2 is only sufficient.
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The dynamics of (4.4) are now analyzed with the help of these two theorems.

Theorem A3: The dynamics in (4.4) are STLC from any equilibria.

Proof: The drift vector field and the control vector fields of (4.7) are

f0 =



(α1ν1 + α2ν2) + (β1ν1 + β2ν2) sin(φ) tan(θ),

(β1ν1 + β2ν2) cos(φ)

(β1ν1 + β2ν2) sin(φ) sec(θ)

0

0


,

f1 = [ 0 0 0 1 0 ]T,

f2 = [ 0 0 0 0 1 ]T.

(A.5)

Using (A.2), three Lie brackets are generated

B1 = [ f1, f0 ] =



α1 + β1 sin(φ) tan(θ)

β1 cos(φ)

β1 sin(φ) sec(θ)

0

0


, (A.6)

B2 = [ f2, f0 ] =



α2 + β2 sin(φ) tan(θ)

β2 cos(φ)

β2 sin(φ) sec(θ)

0

0


, (A.7)
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B3 = [ B1, B2 ] =



cos(φ) sin(θ) sec(θ)(α1β2 − α2β1)

− sin(φ)(α1β2 − α2β1)

cos(φ) sec(θ)(α1β2 − α2β1)

0

0


. (A.8)

Let D̂ = {f1, f2, B1, B2, B3}. Note that D̂ spans R5 when evaluated at any

equilibrium, which implies D∞ spans R5 when evaluated at any equilibrium. By

Theorem A1, the system is accessible from all equilibria.

It now is necessary to determine if the system is STLC from all equilibria. Note

that in D̂, B3 is constructed by using the drift vector f0 twice and the control vectors

f1 and f2 each once. Thus the bracket is good and has a 1-degree of 4, the largest

of any other brackets in D̂. The only bad brackets that can be constructed with a

1-degree less than 4 in D∞ are [ f1 , B1 ] and [ f2, B2 ] (in the construction of each of

these brackets, f0 is used once and either f1 or f2 is used twice, and hence the brackets

are bad). These brackets are zero and thus are linear combinations of those brackets

of 1-degree of 2 or less. By Theorem A2, the system is STLC from any equilibrium. �
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APPENDIX B

Open-Loop Control Law for Approximate

Attitude Dynamics

Let x̄0 = [ φ0 θ0 ψ0 0 0 ]T be any equilibrium of (4.13) and x̄∗ = [ φ∗ θ∗ ψ∗ ν∗1 ν∗2 ]T

be the desired state. Furthermore define ȳ0 = [ φ0 θ0 0 0 ]T as the initial base

variable vector, ȳ∗ = [ φ∗ θ∗ ν∗1 ν∗2 ]T as the desired base variable vector, and

ȳc = [ φ̃ θ̃ ν̃1 ν̃2 ]T as an arbitrary base variable vector. Then the control sequence

[ u1,0 u2,0 u1,1 u2,1 ]T =
(
[ ĀB̄ B̄ ]

)−1
(ȳ∗ − Ā2ȳ0), (B.1)

[ u1,2 u2,2 u1,3 u2,3 ]T =
(
[ ĀB̄ B̄ ]

)−1
(ȳc − Ā2ȳ∗), (B.2)

[ u1,4 u2,4 u1,5 u2,5 ]T =
(
[ ĀB̄ B̄ ]

)−1
(ȳ∗ − Ā2ȳc), (B.3)
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where

Ā =



1 0 α1T α2T

0 1 β1T β2T

0 0 1 0

0 0 0 1


, B̄ =



α1
T 2

2
α2

T 2

2

β1
T 2

2
β2

T 2

2

T 0

0 T


, (B.4)

will guide any x̄0 to x̄∗ as long as

ψ2 +
5T

12
∆c = ψ∗, (B.5)

where

∆c = (φ̃−φ∗)(β1(ν̃1− ν∗1) +β2(ν̃2− ν∗2))− (θ̃− θ∗)(α1(ν̃1− ν∗1) +α2(ν̃2− ν∗2)), (B.6)

and

ψ2 = ψ0 +
5T

24
((φ∗−φ0)(β1ν

∗
1 + β2ν

∗
2)− (θ∗− θ0)(α1ν

∗
1 +α2ν

∗
2)) +

1

2
(θ∗− θ0)(φ∗+φ0).

(B.7)

Note that (B.7) is the drift in the uncontrollable angle ψ due to the control input

(B.1). If (B.5) is satisfied, x̄ = x̄∗ in six steps. Now, let

φ̃ = φ∗ +
√
|ψ∗ − ψ2|,

θ̃ = θ∗ −
√
|ψ∗ − ψ2|,

ν̃1 = 6
5T (α1+β1)

sign(ψ∗ − ψ2)
√
|ψ∗ − ψ2|+ ν∗1 ,

ν̃2 = 6
5T (α2+β2)

sign(ψ∗ − ψ2)
√
|ψ∗ − ψ2|+ ν∗2 .

(B.8)
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It can be seen that (4.29) is satisfied, assuming that α1 +β2 6= 0 and α2 +β2 6= 0 (this

will not occur if the two RWs are not parallel). If either α1 + β2 6= 0 or α2 + β2 6= 0,

then other choices for ȳc do exist. Also note that this maneuver is possible for all

sample times T > 0, and only relies on the maneuvering being performed in six steps.
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APPENDIX C

Approximations in Rotational and

Translational Coupling in a Central

Gravity Field

Traditionally, rotational and translational equations are derived by approximating the

gravity potential function via a Taylor-series expansion, integrating over the space-

craft body, and using that approximation to derive the total gravitational force. Less

often is the gravitational force approximated by a Taylor-series and then integrated

over the body to yield the total force. In this appendix, we will use both methods

to derive the translational equations for a rigid body in a central gravity field up to

similar order in the Taylor-series. Then both techniques will be compared. While the

derivations here are for a central gravity field, the work can be extended to include

J2 and higher-order gravitational perturbations [44,64].
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C.1 Approximation at the Gravitational Potential

Level

The gravitational potential of an infinitesimal mass element dm in a rigid spacecraft

T is

dV = − µ

|~r
O/A

+ ~r
ρ/O
|
dm, (C.1)

where ~r
O/A

is the physical vector from the center of the gravity field at A to the COM

of the spacecraft at O and ~r
ρ/O

is the physical vector from the COM of the spacecraft

to an infinitesimal mass element. We observe that the denominator of the potential

in (C.1) can be written as

|~r
O/A

+ ~r
ρ/O
|−1 =

((
~r
O/A

+ ~r
ρ/O

)
·
(
~r
O/A

+ ~r
ρ/O

))− 1
2
,

=
(
~r
O/A
· ~r

O/A
+ 2~r

O/A
· ~r

ρ/O
+ ~r

ρ/O
· ~r

ρ/O

)− 1
2
,

= R−1 (1 + 2ε cos(κ) + ε2)
− 1

2 ,

= EdV (ε),

(C.2)

where R = |~r
O/A
|, ε =

|~r
ρ/O
|

R
and κ is the angle between ~r

O/A
and ~r

ρ/O
. Expanding

(C.2) by a Taylor-series about ε = 0 gives

|~r
O/A

+ ~r
ρ/O
|−1 = EdV0 + EdV1 + EdV2 +O(ε3), (C.3)

197



where

EdV0 = EdV (0) = R−1,

EdV1 = ∂EdV
∂ε

∣∣∣∣
ε=0

ε = − 1
2R

(1 + 2ε cos(κ) + ε2)
− 3

2 (2 cos(κ) + 2ε)

∣∣∣∣
ε=0

ε

= −R−1 cos(κ),

= −
~r
O/A
·~r
ρ/O

R3 ,

EdV2 = 1
2
∂2EdV
∂ε2

∣∣∣∣
ε=0

ε2 = 3
8R

(1 + 2ε cos(κ) + ε2)
− 5

2 (2 cos(κ) + 2ε)2

∣∣∣∣
ε=0

ε2

− 1
2R

(1 + 2ε cos(κ) + ε2)
− 3

2

∣∣∣∣
ε=0

ε2,

=
(

3
2R

cos(κ)2 − 1
R

)
ε2,

=
3
(
~r
O/A
·~r
ρ/O

)2

2R5 −
~r
ρ/O
·~r
ρ/O

2R3 .

(C.4)

Integrating (C.3) over the entire body gives the approximate potential of the space-

craft in a central gravity field

V = µ
(
V0 + V1 + V2 +O(ε3)

)
, (C.5)
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where

V0 =
∫
T

EdV0dm = −
∫
T

µ
R
dm,

= −m
T
µ

R
,

V1 =
∫
T

EdV1dm =
∫
T

µ~r
O/A
·~r
ρ/O

R3 dm

= 0,

V2 =
∫
T

EdV2dm =
∫
T

µ

(
~r
ρ/O
·~r
ρ/O

2R3 −
3
(
~r
O/A
·~r
ρ/O

)2

2R5

)
dm,

=
∫
T

µ

(
~r
ρ/O
·~r
ρ/O

2R3 −
3
(
~r ′
O/A

(
~r
ρ/O

~r ′
ρ/O

)
~r
O/A

)
2R5

)
dm,

=
µtr
[
~J
T/O

]
4R3 −

∫
T

3µ
2R5~r

′
O/A

(
I3~rρ/O · ~rρ/O +

[
~r
ρ/O

]2×
)
~r
O/A

dm,

= −
µtr
[
~J
T/O

]
2R3 + 3µ

2R3 r̂
′ ~J

T/O
r̂ ,

(C.6)

where r̂ =
~r
O/A

R
and r̂′ is the dual of r̂ [63]. The approximate gravitational force on

the spacecraft’s COM is then given by taking the negative gradient of the potential

function (C.5),

FV = FV0 + FV1 + FV2 +O(ε3), (C.7)
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where

FV 0 = −∇V0 = −m
Tµ

R3 ,

FV 1 = −∇V1 = 0,

FV 2 = −∇V2 = −
3µtr

[
J̄
T/O

]
2R4 r̂ + 15µ

2R4

(
r̂′ ~J

T/O
r̂
)
r̂ − 3µ

R4
~J
T/O

r̂ .

(C.8)

C.2 Approximation at the Force Level

Consider now the gravitational force acting on an infinitesimal mass element of the

spacecraft,

d~f = − µ∣∣∣~rO/A + ~r
ρ/A

∣∣∣3
(
~r
O/A

+ ~r
ρ/O

)
. (C.9)

Similarly, as before, the denominator of (C.9) can be written as

|~r
O/A

+ ~r
ρ/O
|−3 =

((
~r
O/A

+ ~r
ρ/O

)
·
(
~r
O/A

+ ~r
ρ/O

))− 3
2
,

=
(
~r
O/A
· ~r

O/A
+ 2~r

O/A
· ~r

ρ/O
+ ~r

ρ/O
· ~r

ρ/O

)− 3
2
,

= R−3 (1 + 2ε cos(κ) + ε2)
− 3

2 ,

= Edf (ε).

(C.10)

Performing a Taylor-series expansion of (C.10) about ε = 0 gives

|~r
O/A

+ ~r
ρ/O
|−3 = Edf0 + Edf1 + Edf2 , (C.11)

200



where

Edf0 = Ef (0) = R−3,

Edf1 =
∂Ef
∂ε

∣∣∣∣
ε=0

ε = − 3
2R3 (1 + 2ε cos(κ) + ε2)

− 5
2 (2 cos(κ) + 2ε)

∣∣∣∣
ε=0

ε,

= −3R−3 cos(κ),

= −
3~r
O/A
·~r
ρ/O

R5 ,

(C.12)

Edf2 = 1
2
∂2EdV
∂ε2

∣∣∣∣
ε=0

ε2 = 15
8R3 (1 + 2ε cos(κ) + ε2)

− 7
2 (2 cos(κ) + 2ε)2

∣∣∣∣
ε=0

ε2

− 3
2R3 (1 + 2ε cos(κ) + ε2)

− 5
2

∣∣∣∣
ε=0

ε2,

=
(

15
2R3 cos(κ)2 − 3

R3

)
ε2,

=
15
(
~r
O/A
·~r
ρ/O

)2

2R7 −
3~r
ρ/O
·~r
ρ/O

2R5 .

(C.13)

The total force due to gravity on the spacecraft’s COM is determined by integrating

(C.11) over the body,

Ff = Ff0 + Ff1 + Ff2 , (C.14)

where

Ff0 = −
∫
T

µ(df0)(~r
O/A

+ ~r
ρ/O

)dm = −
∫
T

µ
R3dm,

= −m
T
µ

R3 ,

(C.15)
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Ff1 = −
∫
T

µ(df0)(~r
O/A

+ ~r
ρ/O

) =
∫
T

3µ~r
O/A
·~r
ρ/O

R5 (~r
O/A

+ ~r
ρ/O

)dm,

=
∫
T

3µ
R5

(
~r
ρ/O
~r ′

ρ/O

)
~r
O/A

dm,

=
∫
T

3µ
R5

(
I3~rρ/O · ~rρ/O +

[
~r
ρ/O

]2×
)
~r
O/A

dm,

=
3µtr

[
~J
T/O

]
2R4 r̂ − 3µ

R4
~J
T/O

r̂ ,

(C.16)
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Ff2 = −
∫
T

µ(df2)(~r
O/A

+ ~r
ρ/O

)dm = −µ
∫
T

(
15
(
~r
O/A
·~r
ρ/O

)2

2R7 −
3~r
ρ/O
·~r
ρ/O

2R5

)
~r
O/A

dm

−µ
∫
T

(
15
(
~r
O/A
·~r
ρ/O

)2

2R7 −
3~r
ρ/O
·~r
ρ/O

2R5

)
~r
ρ/O
dm,

= −µ
∫
T

(
15
(
~r ′
O/A

(
~r
ρ/O

~r ′
ρ/O

)
~r
O/A

)
2R7

)
~r
O/A

dm

+µ
∫
T

3~r
ρ/O
·~r
ρ/O

2R5 ~r
O/A

dm+O(ε3),

= −
∫
T

15µ
2R7~r

′
O/A

(
I3~rρ/O · ~rρ/O

)
~r
O/A

dm

−
∫
T

15µ
2R7

([
~r
ρ/O

]2×
)
~r
O/A

dm

+
3µtr

[
~J
T/O

]
4R4 r̂ +O(ε3),

= −
3µtr

[
~J
T/O

]
R4 r̂ + 15µ

2R4

(
r̂′ ~J

T/O
r̂
)
r̂ +O(ε3).

(C.17)

C.3 Comparisons of Approximations

Comparing FV from (C.7), (C.8) and Ff from (C.14)-(C.17), we see that

FV = Ff = −mT
µ

R2
r̂ − 3µ

R4
~J
T/O

r̂ −
3µtr

[
~J
T/O

]
2R4

r̂ +
15µ

2R4
(r̂′ ~J

T/O
r̂)r̂ +O(ε3). (C.18)

Though both approximations yield the same result, each method has its advantages.

If the approximation is performed at the potential level, all terms of order n in ε
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will be collected together when the Taylor-series is performed up to order n. This is

useful when it is necessary to obtain all gravitational perturbations of a certain order

in ε.

If the approximation is performed at the force level, then a Taylor-series of order

n will yield all terms up to order n in ε as well as some terms, but not all, of order

n+1 in ε. Thus, the force level approximation provides more information on the total

gravitational force than the potential function when using the same order Taylor-series

expansion.
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APPENDIX D

Computation of Lie Brackets for the

Control of an Underactuated Spacecraft

in a Central Gravity Field Problem

D.1 Lie Bracket Computation

In this appendix, we compute the Lie brackets for the coupled rotational and trans-

lational dynamics using the following method from [8]; Let X and Y be two vector

fields on a smooth manifold N, which itself is an embedded submanifold of M. Denote

X̃ and Ỹ as C∞ extensions to M of the vector fields of X and Y . Then [X, Y ] is the

restriction of [X̃, Ỹ ] to N. For the particular case that M = Rn, for every x ∈ N ⊆ M,

the Lie bracket can be computed as follows:

[X, Y ] (x) =
d

dt

∣∣∣∣
t=0

{
Ỹ (x+ tX(x))− X̃(x+ tY (x))

}
. (D.1)

For the coupled rotational and translational system, we can see that the drift
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vector f and the control vectors gi for the exact system are

f =



p̄
m

T

−
∫
T

µ(r̄+DTρ̄
O)

|r̄+DTρ̄
O |

3 dm− 2[ω̄e ]
×p̄−m

T
[ω̄e ]

2×r̄[
J̄−1

(
h̄a + J̄Dω̄e + D ([r̄]×p̄−m

T
[r̄]2×ω̄e)−DCH̄

T

)]×
D

0


, gi =



0

0

0

ei


,

(D.2)

where ei is the zero vector with a 1 in the ith entry (i.e., ei = [ . . . 0 1 0 . . . ]T) and

h̄a =

NRW∑
i=1

J
wsi
ν
i
w̌
i
+

NCMG∑
j=1

+J
rsi
η
j
ȟ
j
. (D.3)

The complete coupled spacecraft system evolves on an embedded manifold of

R15+NRW+NCMG (6 states for the position and velocity variables, 9 for the orientation

matrix on SO(3), and NRW + NCMG for the control inputs), and thus by letting

x ∈ R3 × R3 × SO(3)× Rm, we can use the above method to compute Lie brackets.

In order to facilitate either RW or CMG control inputs, we define variables Υi such

that

Υi = ν
i
, i = 1, . . . , NRW ,

Υi+NRW = δ
i
, i = 1, . . . , NCMG,

Ῡ = [ Υ1 Υ2 ... ΥNRW+NCMG
]T.

(D.4)

We also make the following assumption on CMG inertias from Chapter 3,

Assumption 3.4.2 The inertia of the spacecraft bus is much larger than that

of the CMGs,

which allows us to not consider the variation in J̄ due to Ῡ.

The following pages outline a step-by-step calculation of all the necessary Lie
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brackets using the procedure below:

Step 1 Compute x+ tX(x) and x = x+ tY (x).

Step 2 Compute Ỹ (x+ tX(x)) and X̃(x+ tY (x)).

Step 3 Take the time derivative of both X̃ and Ỹ , evaluated at t = 0.

Step 4 Use the two quantities to compute the bracket.

Occasionally, we will use the following shorthand for Lie brackets such that notation

is not overwhelming:

LX,Y = [X, Y ] . (D.5)

In the case that the Lie bracket is constructed using n drift vector fields and one

control vector field, the following notation will be used:

Lfn,gi = [f, [f, [. . ., [f, gi]]]] . (D.6)
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D.2 Computation of Brackets of 1-degree of 2

There are only two 1-degree of 2 brackets that can be constructed; [f, gi] and [gi, gj].

The bracket [f, gi] is of particular importance as it will affect the tangent space of

SO(3).

D.2.1 Computation of Brackets of 1-degree of [f, gi]

D.2.1.1 Step 1

x+ tf(x) =



r̄ + t p̄
m

T

p̄+ t

(
−
∫
T

µ(r̄+DTρ̄
O)

|r̄+DTρ̄
O |

3 dm− 2[ω̄e ]
×p̄−m

T
[ω̄e ]

2×r̄

)
D + t

[
J̄−1

(
h̄a + J̄Dω̄e + D ([r̄]×p̄−m

T
[r̄]2×ω̄e)−DCH̄

T

)]×
D

Ῡ


,

(D.7)

x+ tgi(x) =



r̄

p̄

D

Ῡ + tei


. (D.8)

D.2.1.2 Step 2

f̃(x+tgi(x)) =



p̄
m

T

−
∫
T

µ(r̄+DTρ̄
O)

|r̄+DTρ̄
O |

3 dm− 2[ω̄e ]
×p̄−m

T
[ω̄e ]

2×r̄[
J̄−1

(
h̄a(Ῡ + tei) + J̄Dω̄e + D ([r̄]×p̄−m

T
[r̄]2×ω̄e)−DCH̄

T

)]×
D

0


,

(D.9)

g̃i(x+ tf(x)) =



0

0

0

ei


. (D.10)
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D.2.1.3 Step 3

d

dt

∣∣∣∣
t=0

f̃(x+ tgi(x)) =



0

0[
J̄−1 ∂h̄a

∂Υi

]×
D

0


, (D.11)

d

dt

∣∣∣∣
t=0

g̃i(x+ tf(x)) = 0. (D.12)

D.2.1.4 Step 4

Lf,gi = [f, gi] =



0

0[
−J̄−1 ∂h̄a

∂Υi

]×
D

0


. (D.13)

D.2.2 Computation of Lgi,gj

D.2.2.1 Step 1

x+ tgi(x) =



r̄

p̄

D

Ῡ + tei


. (D.14)

D.2.2.2 Step 2

g̃j(x+ tgi) =



0

0

0

ej


. (D.15)
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D.2.2.3 Step 3

d

dt

∣∣∣∣
t=0

g̃i(x+ tgj(x)) = 0. (D.16)

D.2.2.4 Step 4

Lgj ,gi = 0. (D.17)
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D.3 Brackets of 1-degree of 3

The following are the only 1-degree of 3 brackets that can be constructed:

[f, Lf,gi ], [gi, Lf,gi ], [gj, Lf,gi ]. (D.18)

Note that the only bad bracket in this set is [gi, Lf,gi ]. Of particular concern is the

bracket Lf2,gi = [f, Lf,gi ] = [f, [f, gi]] since this will affect the linear momentum

tangent space.

D.3.1 Computation of Lgj ,Lf,gi

D.3.1.1 Step 1

x+ tgi(x) =



r̄

p̄

D

Ῡ + tei


, (D.19)

x+ tLf,gj =



r̄

p̄(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)
D

Ῡ


. (D.20)

D.3.1.2 Step 2

L̃f,gi(x+ tgj(x)) =



0

0

−
[
J̄−1 ∂h̄a

∂Υi
(Ῡ + ejt)

]×
D

0


, (D.21)
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g̃j(x+ Lf,git) =



0

0

0

ej


. (D.22)

D.3.1.3 Step 3

d

dt

∣∣∣∣
t=0

L̃f,gi =



0

0

−
[
J̄−1 ∂2h

∂Υi∂Υj

]×
D

0


, (D.23)

d

dt

∣∣∣∣
t=0

g̃j(x+ Lf,gi) = 0. (D.24)

D.3.1.4 Step 4

Lgj ,Lf,gi =



0

0

−
[
J̄−1 ∂2h

∂Υi∂Υj

]×
D

0


. (D.25)

D.3.2 Computation of Lf2,gi

D.3.2.1 Step 1

x+ tLf,gi =



r̄

p̄

(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)
D

Ῡ


, (D.26)
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x+ tf(x) =



r̄ + t p̄
m

T

p̄+ t

(
−
∫
T

µ(r̄+DTρ̄
O)

|r̄+DTρ̄
O |

3 dm− 2[ω̄e ]
×p̄−m

T
[ω̄e ]

2×r̄

)
(
I3 + t

[
J̄−1

(
h̄a + J̄Dω̄e + D ([r̄]×p̄−m

T
[r̄]2×ω̄e)−DCH̄

T

)]×)
D

Ῡ


.

(D.27)

D.3.2.2 Step 2

L̃f,gi(x+ tf(x)) =



0

0

−
[
J̄−1 ∂h̄a

∂Υi

]× (
I3 + t

[
J̄−1

(
h̄a + J̄Dω̄e

)]×)
D

0



+



0

0

−
[
J̄−1 ∂h̄a

∂Υi

]× (
t
[
J̄−1 (D ([r̄]×p̄−m

T
[r̄]2×ω̄e))

]×)
D

0



+



0

0

−
[
J̄−1 ∂h̄a

∂Υi

]× (
−t
[
J̄−1

(
DCH̄

T

)]×)
D

0


,

(D.28)

f̃(x+ tLf,gi) =



p̄
m

T∫
T

A1A2dm− 2[ω̄e ]
×p̄−m

T
[ω̄e ]

2×r̄

A3

0


, (D.29)
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where

A1 = −µ

(
r̄ + DT

(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)T

ρ̄
O

)
,

A2 =

(
r̄Tr̄ + ρ̄T

O
ρ̄
O

+ 2r̄TDT

(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)T

ρ̄
O

)− 3
2

,

A3 =

[
J̄−1

(
h̄a + J̄

(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)
Dω̄e

)]×(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)
D

+

[
J̄−1

(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)
D ([r̄]×p̄−m

T
[r̄]2×ω̄e)

]×(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)
D

+

[
J̄−1

(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)(
−DCH̄

T

)]×(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)
D.

(D.30)

D.3.2.3 Step 3

Note that

d

dt

∣∣∣∣
t=0

A1 = −µ

(
DT

[
J̄−1 ∂h̄a

∂Υi

]×
ρ̄
O

)
, (D.31)

d

dt

∣∣∣∣
t=0

A2 = −3|r̄ + DTρ̄
O
|−5r̄TDT

[
J̄−1 ∂h̄a

∂Υi

]×
ρ̄
O
, (D.32)
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A4 = d
dt

∣∣∣∣
t=0

A3 = −
[
J̄−1h̄a

]× [
J̄−1 ∂h̄a

∂Υi

]×
D− [Dω̄e ]

×
[
J̄−1 ∂h̄a

∂Υi

]×
D

−
[
J̄−1D

(
[r̄]×p̄−m

T
[r̄]2×ω̄e −CH̄

T

)]× [
J̄−1 ∂h̄a

∂Υi

]×
D

−
[
J̄−1

[
J̄−1 ∂h̄a

∂Υi

]×
D
(
[r̄]×p̄−m

T
[r̄]2×ω̄e −CH̄

T

)]×
D

−
[[
J̄−1 ∂h̄a

∂Υi

]×
Dω̄e

]×
D,

= −
[
J̄−1h̄a

]× [
J̄−1 ∂h̄a

∂Υi

]×
D−

[
J̄−1 ∂h̄a

∂Υi

]×
[Dω̄e ]

×D

−
[
J̄−1D

(
[r̄]×p̄−m

T
[r̄]2×ω̄e −CH̄

T

)]× [
J̄−1 ∂h̄a

∂Υi

]×
D

−
[
J̄−1

[
J̄−1 ∂h̄a

∂Υi

]×
D
(
[r̄]×p̄−m

T
[r̄]2×ω̄e −CH̄

T

)]×
D.

(D.33)

Therefore

((
d
dt
A1

)
A2 + A1

(
d
dt
A2

)) ∣∣∣∣
t=0

= −
µ

(
DT
[
J̄−1 ∂h̄a

∂Υi

]×
ρ̄
O

)
|r̄+DTρ̄

O |
3

+
3µ(r̄+DTρ̄

O)r̄TDT
[
J̄−1 ∂h̄a

∂Υi

]×
ρ̄
O

|r̄+DTρ̄
O |

5 ,

= µ

(
I3

|r̄+DTρ̄
O |

3 −
3(r̄+DTρ̄

O
)r̄T

|r̄−DTρ̄
O |

5

)
DT [ρ̄

O
]× J̄−1 ∂h̄a

∂Υi
,

(D.34)
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which gives

d

dt

∣∣∣∣
t=0

f̃(x+ tLf,gi) =



0

µ
∫
T

(
I3

|r̄+DTρ̄
O |

3 −
3(r̄+DTρ̄

O
)r̄T

|r̄−DTρ̄
O |

5

)
DT [ρ̄

O
]× J̄−1 ∂h̄a

∂Υi
dm

A4

0


,

(D.35)

d
dt

∣∣∣∣
t=0

L̃f,gi(x+ tf(x)) =



0

0

−
[
J̄−1 ∂h̄a

∂Υi

]× [
J̄−1

(
h̄a + J̄Dω̄e

)]×
D

0



+



0

0

−
[
J̄−1 ∂h̄a

∂Υi

]× [
J̄−1 (D ([r̄]×p̄−m

T
[r̄]2×ω̄e))

]×
D

0



+



0

0

−
[
J̄−1 ∂h̄a

∂Υi

]× [
J̄−1

(
−DCH̄

T

)]×
D

0


.

(D.36)

216



D.3.2.4 Step 4

Lf2,gi =



0

−µ
∫
T

(
I3

|r̄+DTρ̄
O |

3 −
3(r̄+DTρ̄

O
)r̄T

|r̄−DTρ̄
O |

5

)
DT [ρ̄

O
]× J̄−1 ∂h̄a

∂Υi
dm[(

J̄−1h̄a
)
×
(
J̄−1 ∂h̄a

∂Υi

)
+ E1DE2

]×
D

0


, (D.37)

where

E1 =

(
J̄−1

[
J̄−1 ∂h̄a

∂Υi

]×
−
[
J̄−1 ∂h̄a

∂Υi

]×
J̄−1

)
,

E2 =
(
[r̄]×p̄−m

T
[r̄]2×ω̄e −CH̄

T

)
.

(D.38)
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D.4 Brackets of 1-degree of 4

None of the brackets of 1-degree of 4 will be bad. However, there are two brack-

ets that are of concern. The first is Lf3,gi = [f, [f, [f, gi]]], which will affect the

position tangent space. The second is [[f, gi], [f, gj]], which in the absence of full

controllability in the attitude dynamics, will result in a third control direction for

RWs.

D.4.1 Computation of Lf3,gi

To be brief, let ∗ denote an entry that is not of concern

D.4.1.1 Step 1

x+ tLf2,gi =



r̄

p̄+ t

(
−µ
∫
T

(
I3

|r̄+DTρ̄
O |

3 −
3(r̄+DTρ̄

O
)r̄T

|r̄+DTρ̄
O |

5

)
DT [ρ̄

O
]× J̄−1 ∂h̄a

∂Υi

)
dm(

I3 + t
[(
J̄−1h̄a

)
×
(
J̄−1 ∂h̄a

∂Υi

)
+ E1DE2

]×)
D

Ῡ


,

(D.39)

x+ tf(x) =



r̄ + t p̄
m

T

p̄+ t

(
−
∫
T

µ(r̄+DTρ̄
O)

|r̄+DTρ̄
O |

3 dm− 2[ω̄e ]
×p̄−m

T
[ω̄e ]

2×r̄

)
(
I3 + t

[
J̄−1

(
h̄a + J̄Dω̄e + D ([r̄]×p̄−m

T
[r̄]2×ω̄e)−DCH̄

T

)]×)
D

Ῡ


.

(D.40)
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D.4.1.2 Step 2 & 3

d

dt

∣∣∣∣
t=0

L̃f2,gi(x+ f(x)t) =



0

∗

∗

0


, (D.41)

d

dt

∣∣∣∣
t=0

f̃(x+ Lf2,gi) =



− µ
m

T

∫
T

(
I3

|r̄+DTρ̄
O |

3 −
3(r̄+DTρ̄

O
)r̄T

|r̄−DTρ̄
O |

5

)
DT [ρ̄

O
]× J̄−1 ∂h̄a

∂Υi
dm

∗

∗

0


.

(D.42)

D.4.1.3 Step 4

Lf3,gi =



µ
m

T

∫
T

(
I3

|r̄+DTρ̄
O |

3 −
3(r̄+DTρ̄

O
)r̄T

|r̄−DTρ̄
O |

5

)
DT [ρ̄

O
]× J̄−1 ∂h̄a

∂Υi
dm

∗

∗

0


. (D.43)
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D.4.2 Computation of [[f, gi], [f, gj]]

D.4.2.1 Step 1

x+ tLf,gi =



r̄

p̄

(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)
D

Ῡ


. (D.44)

D.4.2.2 Step 2

L̃f,gj(x+ tLf,gi) =



0

0

−
[
J̄−1 ∂h̄a

∂Υj

]×(
I3 − t

[
J̄−1 ∂h̄a

∂Υi

]×)
D

0


. (D.45)

D.4.2.3 Step 3

d

dt

∣∣∣∣
t=0

L̃f,gj(x+ tLf,gi) =



0

0[
J̄−1 ∂h̄a

∂Υj

]× [
J̄−1 ∂h̄a

∂Υi

]×
D

0


. (D.46)

D.4.2.4 Step 4

[[f, gi], [f, gj]] =



0

0[
det
[
J̄−1
]
J̄
(
∂h̄a
∂Υj
× ∂h̄a

∂Υi

)]×
D

0


. (D.47)
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