A comparative study of Dipolarization Fronts at MMS and Cluster

D. Schmid, ${ }^{1,2}$ R. Nakamura ${ }^{1}$, M. Volwerk ${ }^{1}$, F. Plaschke ${ }^{1}$, Y. Narita ${ }^{1}$, W. Baumjohann ${ }^{1}$, W. Magnes ${ }^{1}$, D. Fischer ${ }^{1}$, H.U. Eichelberger ${ }^{1}$, R.B. Torbert ${ }^{3,7}$,
C.T. Russell ${ }^{4}$ R.J.Strangeway ${ }^{4}$, H.K. Leinweber ${ }^{4}$, G. Le ${ }^{5}$, K.R. Bromund ${ }^{5}$,
B.J. Anderson, J.A. Slavin ${ }^{8}$ and E.L. Kepko ${ }^{5}$

Key points:

- MMS is enerally located in a more dipolar magnetic field region and observes largeramplitude(1) than Cluster further down the tail
- A larger tiaction of DFs move faster closer to Earth, suggesting variable flux transport rates in the flowning region
- Larger DE velocities correspond to a higher B_{z} directly ahead of DFs, suggesting a higher flux pile-up anead of DFs with higher velocities

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which
 as doi: 10.1002/2016GL069520

We present a statistical study of dipolarization fronts (DFs), using magnetic field data from MMS and Cluster, at radial distances below $12 \mathrm{R}_{\mathrm{E}}$ and $20 \mathrm{R}_{\mathrm{E}}$, respectively. Assuming that the DFs have a semi-circular cross-section and are propelled by the magnetic tension force, we used multi-spacecraft observatdetermine the DF velocities. About three-quarters of the DFs propagate ward and about one-quarter tailward. Generally MMS is in a more dipolar magnetic field region and observes larger-amplitude DFs than Cluster. The ajor findings obtained in this study are: (1)At MMS $\sim 57 \%$ of the DFsmove faster than $150 \mathrm{~km} / \mathrm{s}$, while at Cluster only $\sim 35 \%$, indicating a variable flux-transport rate inside the flow-braking region. (2)Larger

${ }^{5}$ NASA Goddard Space Flight Center, Greenbelt, NIT, USA
${ }^{6}$ Johns 1 nns Applied Physics
Laborator Laurel, MD, USA
${ }^{7}$ Southwest Research Institute, San
Antonio, SA
${ }^{8}$ Univesit of Michigan, MI, USA

DF velocities correspond to higher B_{z}-values directly ahead of the DFs. We interpret this as a snow plow-like phenomenon, resulting from a higher magnetic flux pile-up ahead of DFs with higher velocities.

1. Introduction

The Earths magnetotail consists of two lobe regions of stretched, oppositely directed magnetic fields separated by a high- β plasma/current sheet with an embedded neutral sheet. When oppositely directed magnetic field lines reconnect in the magnetotail, the relaxation magnetic tension of the stretched field lines converts the stored magnetic energy int pla manetic energy and heat. The magnetoplasma is accelerated earthward in short duration Bursty Bulk Flows [BBFs, Angelopoulos et al., 1992; Baumjohann et al., 2002]. ThoBRFs are the most prominent means to carry mass and energy from the tail towards the near-Earth region. BBFs are often accompanied by magnetic field dipolarizations [e.g., Nakamura et al., 2002, 2009]. Observationally, they are seen by satellites as a sharp increase in the vertical-to-the-current sheet component $\left(B_{z}\right)$, usually preceded by a transiendecrease in B_{z} [e.g., Ohtani et al., 2004]. These asymmetric bipolar variations in the z-c ment of the magnetic field are referred to as dipolarization fronts [DFs, Nakamumet. al., 2002; Runov et al., 2011; Schmid et al., 2011; Fu et al., 2012a].

DFs arenterpreted as thin boundary layers of earthward moving flux tubes, which have a reduced entropy compared to the ambient plasma in the tail [e.g., Pontius and Wolf, 1990. long as the entropy of the flux tube is lower, it can continue to propagate earthward, and it stops when both are equal [e.g., Sergeev et al., 2012]. The pressure balance of these structures with the ambient plasma is maintained by the stronger magnetic field withive flux tube [see e.g., Li et al., 2011]. According to Liu et al. [2013] we call this stronger magnetic region, led by the DF, as dipolarizing flux bundle (DFB). DFs have a typrounhickness, which is on the order of the ion inertial length [e.g., Runov et al.,

2011; Schmid et al., 2011; Fu et al., 2012b; Huang et al., 2012], and they move as coherent structures over macroscopic distances (several hundred ion inertial lengths) [Runov et al., 2009]. However, a simplified picture of a gradually stopping flux tube does not always match observations. Panov et al. [2010] showed a change in the flow burst propagation directiongests a rebound (bouncing) of the DF at the magnetic dipole-dominated near-Eart pla ma sheet. It was predicted by Chen and Wolf [1999] that the earthward moving can overshoot their equilibrium position, after which they will perform a damped ocrillation. Indeed, simulations [e.g., Birn et al., 2011] and observations [e.g., Schmid et al 2011; Zhou et al., 2011; Nakamura et al., 2013; Huang et al., 2015] show that DFs propagate not only earthward, but also tailward.

In this parer, we use Magentospheric Multiscale Mission (MMS) magnetotail observations and comp and contrast the identified DFs with DF observations from the Cluster mission. Wit 1 S at radial distances within $12 R_{E}$ and Cluster at $\sim 19 R_{E}$, it is for the first time pose compare the inner and outer magnetotail region using multi-spacecraft observa DFs.

2. Data End Event Selection

For this study, we use MMS magnetic field observations from the Earth's magnetotail, between April and July 2015. During this period the mission was still in the commissioning phase and the Flux-Gate magnetometers [FGM, Russell et al., 2014; Torbert et al., 2014] weo erating continuously. For commission the Digital Flux-Gate magnetometers (DFG) 128 Hz data are available almost over the entire period.

For the DF event selection the high-resolution data are down-sampled to 1 Hz , because of the large amount of data. However, after the DF survey we use the high-resolution data for the analysis. To find the DFs, we apply the selection criteria introduced in Schmid et al. [2011] without the criteria on the plasma quantities, due to the limited amount of plasma ailable. Within 3 minute long sliding windows shifted by 30 seconds, the following ritela should be fulfilled:

- The spacecraft is located in the magnetotail between $\mathrm{X}_{\mathrm{GSM}} \leq-5 \mathrm{R}_{\mathrm{E}}$ and $\left|\mathrm{Y}_{\mathrm{GSM}}\right| \leq$ $15 \mathrm{R}_{\mathrm{E}}$.
- The diffence in elevation angle $\left(\theta=\arctan \left(\frac{B_{z}}{B_{x y}}\right)\right)$ between minimum and maximum B_{z} during the window exceeds 10° and ΔB_{z} also exceeds 4 nT .
- The arrival time of the maximum B_{z} is later than that of the minimum B_{z}.
- The erevation angle is at least in one data point (within the 3-min window) greater than

These selecion criteria are applied to each spacecraft and only events observed by all four MMS satellites are selected. An automatic routine identified 201 DF events between April and Julv 2015 at radial distances within $12 \mathrm{R}_{\mathrm{E}}$.

We compre the MMS DF events with DF observations from Cluster in the season from July and cuober 2003. During that time Cluster had similar inter-spacecraft distances ($\sim 200 \mathrm{~km})$. bu the spacecraft were located at larger radial distances ($\sim 19 \mathrm{R}_{\mathrm{E}}$). We start from the existyg Cluster DF event catalog introduced in Schmid et al. [2015], which is based on theame selection criteria on the magnetic field data. We up-sample the burst mode Flux-Grae Magnetometer [FGM, Balogh et al., 1997] data to 128 Hz . It should be
noted that the DFs in this list also satisfy criteria on the plasma data $\left(\left|V_{\mathrm{x}}\right| \geq 100 \mathrm{~km} / \mathrm{s}\right.$, S/C within the plasma sheet, see Appendix A in Schmid et al. [2015]). Here we select only events observed by all four Cluster spacecraft within $\left|Z_{G S M}\right| \leq 5 R_{E}$ during 2003. These add up to 110 DFs.

For each 201 MMS and 110 Cluster events, a 3 minute interval is selected, which is centered thominimum value of B_{z} (set to $t=0 s$). At this point the sharp increase in B_{z} (dipolarization) starts. On the magnetic field between the minimum and maximum values of B_{z} a minimum variance analysis [MVA Sonnerup and Scheible, 1998] is performed, which gives the normal direction to the DF. Also, the following requirements are added to the events:

- The ratro of the intermediate to minimum eigenvalues shall be $\lambda_{\text {int }} / \lambda_{\text {min }} \geq 4$ to ensure a minimurandence level while keeping the sample size large enough for our statistical study [see. Sergeev et al., 2006].
- Assuring the DF has a saddle-like shape (semi-circular geometry in $X Y$-plane) and is store the DF passage over all spacecraft, the estimated normal direction to the front om each spacecraft shall differ by at most 15°, to ensure that each spacecraft crosses th almost at the same location.
- To mize the projection errors in the DF velocity determination, we require the S / C to crass the DF around its center (the angle between assumed propagation direction (see section ${ }^{-}$) and the S / C crossing normal vector shall be smaller than 45°).

- To accurately determine the time delay between the S / C, and thus the DF velocity, we require all S / C to observe very similar magnetic signatures by visual inspection, to ensure reliable cross-correlation time lags.

Therewith, 23 DFs (out of 201) represent the MMS data set for our study, and 23 DFs (ous) the Cluster data set. The list of DFs is provided in the supplementary material.

The distribution of the 23 MMS and 23 Cluster DFs on the $X Y$ - plane in the GSM coordinatesy is shown in Figure 1. Crosses and circles in black mark the barycenter positions MMS and Cluster, respectively. The colored arrows indicate the earthward/tailward DF propagation directions and velocities. MMS observes more events in
the premiargit sector as the commissioning orbits do not cover postmidnight equally well.

3. Observations and Methodology
 A new continate system, the T89-coordinate system $\left\{X_{\mathrm{T} 89}, Y_{\mathrm{T} 89}, Z_{\mathrm{T} 89}\right\}$ introduced by

 [Schmid et al., 2015], is used, which is based on the magnetic field model by Tsyganenko [1989]. In l89-system, $X_{\text {T89 }}$ is in the direction of the magnetic tension force and is determine the average direction in the northern and southern lobe $\pm 3 R_{\mathrm{E}}$ away in the Z_{GSM} irection from the spacecraft location projected on the $X Y$-GSM plane, and is positive towards the Earth. $Z_{\mathrm{T} 89}$ points along Z_{GSM} and $Y_{\mathrm{T} 89}=Z_{\mathrm{T} 89} \times X_{\mathrm{T} 89}$ completes the right-hand coordinate system.We assure tie DFs to propagate along $X_{\text {T89 }}$ as they should be propelled by the magnetic tension force. Hence, the DF propagation directions point radially in- or outward to/from
the Earth, as can be seen in Figure 1.
Figure 2 illustrates (a) S / C in-situ observations of B_{z} and (b) the assumed circular shape of the DFs in the $X Y$-plane. n denotes the normal direction where the S / C crossed the front. $V_{\text {timing }}$ is the velocity along the crossing normal direction determined from the timing To determine the time lag between the S / C observations (and thus the normal ve ocity accurately, the magnetic field B_{z} data between $B_{\mathrm{z}, \min }$ and $B_{\mathrm{z}, \max }$ of those two S/C which are furthest apart along \mathbf{n} are cross-correlated. On the assumption that the DFs popgate along $X_{\mathrm{T} 89}$ it is possible to estimate the DF velocity (V_{DF} in Figure $2(\mathrm{~b}))$. We then estimate the thickness of the DFs using their velocities and crossing durations $\left(\mathrm{DF}_{\text {size }}\right.$ in Figure $2(\mathrm{~b})$).

4. Statistinal Analysis

Figure 3 shows the superposed epoch analysis for the 23 Cluster (left) and 23 MMS (right)
 data). Panel (a) shows the z-component of the magnetic field $\pm 3 \mathrm{~min}$ around the DF onset. Paneis b), (c) and (d) show the superposed epoch for B_{z}, the motional electric field $E_{\mathrm{y}, \mathrm{T} 8}$ d the magnetic elevation angle, 90 sec around the DF onset, respectively. The motional electric field is obtained from $E_{\mathrm{y}, \mathrm{T} 89}=V_{\mathrm{DF}} B_{\mathrm{z}}$. Since $E_{\mathrm{y}, \mathrm{T} 89}$ is obtained from the velocity, only the values determined between $B_{z, \min }$ and $B_{z, \max }$ are reliable (thick line」higher B_{z} at higher velocities leads to a higher $E_{\mathrm{y}, \mathrm{T} 89}$, which indicates a higher $\mathrm{f} \rightarrow$ ansport rate towards the Earth. The magnetic elevation angle is given by $\arctan \left(B_{\mathrm{z}} / B_{\mathrm{x}, \mathrm{T} 89}\right)$. To examine how B_{z} changes in association with the DF velocity, each
dataset is divided into 4 subsets: $V_{\mathrm{DF}}<-150 \mathrm{~km} / \mathrm{s}$ (black), $-150 \mathrm{~km} / \mathrm{s}<V_{\mathrm{DF}}<0 \mathrm{~km} / \mathrm{s}$ (blue), $0 \mathrm{~km} / \mathrm{s}<V_{\mathrm{DF}}<150 \mathrm{~km} / \mathrm{s}$ (magenta) and $V_{\mathrm{DF}}>150 \mathrm{~km} / \mathrm{s}$ (red). The number of events in each velocity bin is given in Table 1 and in the legend of Figure 3.

The fiojor result is that at MMS about $\sim 57 \%$ of the DFs move faster than $150 \mathrm{~km} / \mathrm{s}$ whi at Cluster only $\sim 35 \%$ fall into this group, although the background $B_{z},-3$ min to -2 min before the DF passage, is generally about $\sim 3 \mathrm{nT} \pm 1 \mathrm{nT}$ higher at MMS (ee igure 3(a)). Furthermore, Cluster observes no fast tailward moving DFs $\left(V_{\mathrm{DF}}<-150 \mathrm{~km} / \mathrm{s}\right)$. Note that the negative DF velocities correspond to tailward moving DFs (blue and black lines). The superposed epoch analysis of B_{z} also reveals that for Cluster the tme between $B_{z, \min }$ and $B_{z, \max }$ of the earthward propagating DFs (magenta and red limedecreases with enhanced DF velocity. For MMS, however, the fast and moderately ea thrd propagating DFs show a similar temporal behavior. Moreover, MMS shows aeper decrease before the DF and a larger overshoot after the DF compared to Cluster

As the seond major result, we find that the B_{z} of the fast and moderately earthward moving DFsart to differ significantly ~ 60 sec before the DF passage (see Figure 3(b)). At both, Cluster and MMS, the mean B_{z} before the fast DFs is higher than before the slowly propagating DFs.

Furtherm find that for the events of moderate velocity, $E_{y, T 89}$ is smaller, which suggest only armall flux transport rate in $X_{\text {T89 }}$ direction. We also find a strong negative $E_{y, T 89}$ for fast tailward propagating MMS events, which is, however, only about half
as large as $E_{\mathrm{y}, \mathrm{T} 89}$ for the earthward propagating events. This indicates that less flux is transported tailward.

In addition, MMS observes slightly higher elevation angles before crossings of earthward moving DFs than Cluster, indicating a slightly more dipolarized field configuration before the DF The elevation angles of the fast moving DFs, particularly before the DF crossings re hor ther those of the slower moving DFs. Moreover, Cluster sees a larger change in magnetic elevation angles across the DFs, corresponding with a larger change from a mquillike to a more dipolar-like field configuration. At MMS, however, this behavior is less pronounced. Interestingly, tailward moving DFs at MMS show significantly higher elevation angle before the DF than Cluster.

We also exarrme the relationship between the DF velocity and thickness. The slope of linear fits $\operatorname{V}_{\mathrm{F}}$ vs. $D F_{\text {size }}$ yields the temporal scale of the DFs. They are summarized in Table 1ardreveal: (1) fast propagating DFs have smaller temporal scales but larger DF thichesses than slower propagating DFs; and (2) DF thicknesses and temporal scales are gen at Cluster than at MMS.
5. Discuscion

At MM, and Cluster about three quarters of the observed DFs propagate earthward and about one quarter tailward. This is in good agreement with earlier results from Schmid et 011], who used Cluster observations between 2001-2007 and found that more th 4 o thirds of the studied events propagate earthward.

Typically, flow braking occurs in regions of higher background B_{z}. To evaluate the back-
ground conditions reliably, the average B_{z} and elevation angles during the interval 3-2 min before the DFs are estimated. Indeed, MMS observes slightly larger background B_{z} and elevation angles (by $\sim 3 \mathrm{nT} \pm 1 \mathrm{nT}$ and $\sim 8^{\circ} \pm 4^{\circ}$) than Cluster, indicating that MMS was in a more dipolar background magnetic field. We might expect that the fast moving DFs at evolve into moderate moving DFs at MMS due to the flow-braking. Interestingl hovever, at MMS $\sim 57 \%$ of the studied DFs propagate faster than $150 \mathrm{~km} / \mathrm{s}$, while at "Custer only $\sim 35 \%$ of the DFs fall in this group. This contradicts the idea that a DF motian comes slower when propagating earthward if these numbers should reflect a single flow evolution. A possible explanation for this unexpected behavior might be, that MMS and Cluster observed DFs at different conditions: (1) The tail-season for MMS is betweer wrarch and July, while for Cluster it is between July and October. Thus the plasma shat_tilt is different, which may affect the location of the flow-braking region. (2) Due to th sill sample size, there might be a solar wind and/or solar cycle dependence in the diset. Nagai et al. [2005] showed that the solar wind $V_{\mathrm{x}} B_{\text {south }}$ controls the radial distanc reconnection site in the magnetotail: magnetic reconnection takes place closer to the Earth when $V_{\mathrm{x}} B_{\text {south }}$ is higher. Indeed, using the mean of the 1-min OMNI data over before the DF events, we find on average a higher $V_{\mathrm{x}} B_{\text {south }}$ value at MMS $(1.1 \mathrm{mV} / \mathrm{m})$ than at Cluster $(0.6 \mathrm{mV} / \mathrm{m})$. (3) Since MMS might be located closer to the flow-braking region, only DFBs with an entropy much lower than the surrounding plasma can be obmerng According to the "plasma bubble" theory [see Wolf et al., 2009] those DFB penetrate deeper into the near-Earth plasma sheet with higher velocities. Indeed, Shiokawa end [1997] showed that although the occurrence rate of the high-speed flows
substantially decreases when the satellite comes closer to the Earth until $10 \mathrm{R}_{\mathrm{E}}$, but then slightly increase inside of $10 \mathrm{R}_{\mathrm{E}}$ (see their Figure 1(a)). (4) MMS may observe only a selection of DFs, those with an enhanced magnetic tension force or a reduced pressure-gradient force. As shown by Shiokawa et al. [1997], the earthward flow can be easily braked within a few $\mathrm{R}^{\text {thent }}$ the typical tailward pressure-gradient force of $1.2 \times 10^{-} 17 \mathrm{~Pa} / \mathrm{m}$. Thus, either red ced ailward pressure-gradient force or higher acceleration by enhanced earthward magnetic tension force is necessary to transport DFs from the reconnection region outside $20 \mathrm{R}_{\mathrm{E}}$ inside $12 \mathrm{R}_{\mathrm{E}}$. The DF velocity at the flow braking region seems therefore more variable than stopping at one distance.

0

An impor mplication of the high velocity DFs at MMS is that these events transport a high amoramagnetic flux, as evidenced by the high $E_{y, \text { T89 }}$ (see Figure 3(c)), although located in arre dipolar field region. This fact indicates that a strong magnetic flux transporean take place even in the inner magnetosphere. Nakamura et al. [2009] showed that thensport rate, obtained from the timing velocity, ion flow velocity and electric field peasurements are quite consistent. Here $E_{y, T 89}$ is determined from $V_{D F}$ and not from the p and flow velocity or direct electric field measurements. Hence, it only reflects the flux transport rate properly, if the plasma flow velocity corresponds to the DF velocity. $\xrightarrow[+]{\square}$
Furthermarger DF velocities actually correspond to higher B_{z} values just before the DFs (see Figure 3(b)). The interesting point is that both spacecraft missions observes this behaviolalthough they are located in different regions (more/less dipolar magnetic
field). This suggests that the increased ambient B_{z}, from -60 s to -10 s ahead of the DF , exhibit rather local than global characteristics: the ambient B_{z} represents a local property of the magnetic field before the DF. This behavior has also been reported by Nakamura et al. [2009] who studied the flux transport in the tail and investigated pulses of DFs. We inte hat the higher ambient B_{z} originates from a magnetic flux pile-up in the plasma, cased by the already increased plasma velocity in front of the DF. The increased plasma flow ahead of the DF is a result of the remote sensing of the approaching DF by the plasm similar to a snowplow accumulating and pushing the snow ahead of it. In a superposed epoch analysis Runov et al. [2009] showed that the plasma velocity increases gradually, starting ~ 40 s before the DF. This is in good agreement with our results, since

There is significant number of tailward moving DFs observed from both, Cluster and Since it is unreasonable to assume reconnection so close to Earth, the tailwar ating events are the result of a DF rebound (bouncing) at the magnetic dipole-dominated near-Earth plasma sheet: The fast moving DFs get first compressed at the dipominated region, and are then reflected tailward [e.g. Panov et al., 2010; Birn et al. 2011]. Indeed we observe compressed DFs with smaller temporal scales and spatial ticknesses at MMS than at Cluster. As the DFs move tailward, the magnetic tension fows them down. In agreement with this picture, there are no fast tailward moving DFs at, Cluster. Only MMS observes fast tailward propagating DFs, with high elevation andes before the DFs. We interpret the high elevation angles as the remnants
of previously earthward propagating DFs. Thus we suggest that the fast tailward moving DFs are recorded directly after the rebound of the fast earthward moving DFs.

The results obtained in this study are subject to a number of assumptions: (1) The DFs hadi-circular geometry, which is stable during the DF passage over all spacecraft; (2) hes sales of the DFs are much larger than the probes separations; and (3) the DFs are propelled by the magnetic tension force and thus propagate along the magnetic field line diection in the lobes (above and below each observation location), projected onto the $X Y$ GSM plane. In general the DF propagation direction is different from the DF crossing normal direction. Hence, the estimated timing velocity is only a projection (underestimman) of the actual DF velocity. Thus, we deproject this velocity onto the assumed nropagation direction. To keep deprojection errors low, we require that the $\mathrm{S} / \mathrm{C} \operatorname{cross} \mathrm{hD}$ Fs at a maximal cone-angle of 45° around this propagation direction. The time lagmen the spacecraft are clearly larger than the data resolution and are thus a rathencertainty factor in the DF velocity determination. However, our findings can only be interpreted in the context of the aforementioned assumptions. In reality, the DF propaquar and structure might be much more complicated, as their geometry might not stable and they might expand as they propagate.

Assung the DF to be a stable, semi-circular structure, propagating along the magnetic tension force, the major results obtained in this study are:
(1) A larger fraction of the DFs move faster closer toward Earth than further down the tail. This is contrary to the expectation that the DFs and associated DFBs should be braking in a more dipolar field where the flux tube entropy of the DFBs equals the entropy of the surrounding plasma. Here we discuss different alternatives for this behavior. First, a tempotion of the DFs due to different solar wind conditions and/or plasma sheet tilting anges duld have taken place. It is also possible that we only observe a selection of DFs closer to Earth, those with higher velocities in the first place. Clearly, a much larger datas of DFs is necessary to determine which mechanism is responsible for the unexpected behavior of the DFs close to Earth.
(2) Larger DF velocities actually correspond to higher B_{z} values directly ahead of the DFs. Thistrenavior is observed by both, Cluster and MMS, although they are located in different resions in the tail (more/less dipolar magnetic field). We interpret the higher B_{z} to a lo Stow plow-like phenomenon resulting from a higher DF velocity and thus a higher nacnetic flux pile-up ahead of the DF.

Acknoledgments. All Cluster magnetic field data are available at the Cluster Science Arch ve htp://www.cosmos.esa.int/web/csa/access. The OMNI data are available at Space phyics Data Facility http://omniweb.gsfc.nasa.gov/. We also acknowledge the use of L2pre survey Flux-Gate Magnetometer (FGM) data from the Digital FluxGate (DFG) agnetometers. All data are stored at the MMS Science Data Center https://lasp $o r a d o . e d u / m m s / s d c / ~ a n d ~ a r e ~ a v a i l a b l e ~ u p o n ~ r e q u e s t . ~ T h e ~ w o r k ~ a t ~ U C L A, ~$ UNH, JHU/ANL and SwRI is supported by NASA contract number NNG04EB99C. The

Austrian part of the development, operation, and calibration of the DFG was financially supported by Austrian Space Applications Programme with the contract number FFG/ASAP-844377. The work by DS was funded by the Austrian Science Fund FWF under grant P25257-N27. We also acknowledge valuable discussions within the international ISSI teamen "Jets behind collisionless shocks").

References

Angelopoyos, V., W. Baumjohann, C. F. Kennel, F. V. Coroniti, M. G. Kivelson, R. Pellat, R. J Walker, H. Lühr, and G. Paschmann (1992), Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., $9^{77}(\mathrm{~A} 4)$, 4027-4039, doi:10.1029/91JA02701.

Balogh, A., Mr. Dunlop, S. Cowley, D. Southwood, J. Thomlinson, K. Glassmeier, G. Musmann, I Aur, S. Buchert, M. Acuna, D. Fairfield, J. Slavin, W. Riedler, K. Schwingenschuh, (1). Kivelson (1997), The Cluster magnetic field investigation, Space Science Revieural-2), 65-91, doi:10.1023/A1004970907748.

Baumjo
R. Schödel, and R. Nakamura (2002), Bursts of fast magnetotail flux transport, Adv. Space Res., 30, 2241-2246, doi:10.1016/S0273-1177(02)80234-4.

Birn, J., P.Akamura, E. V. Panov, and M. Hesse (2011), Bursty bulk flows and dipolarization_in_MHD simulations of magnetotail reconnection, Journal of Geophysical Research: Space Physics, 116(A1), doi:10.1029/2010JA016083.
Chen, C. R. A. Wolf (1999), Theory of thin-filament motion in Earth's magnetotail and its application to bursty bulk flows, Journal of Geophysical Research: Space Physics, $104(\mathrm{~A} 7), 1613-14,626$, doi:10.1029/1999JA900005.

Fu, H. S., Y. V. Khotyaintsev, A. Vaivads, M. Andr, and S. Y. Huang (2012a), Occurrence rate of earthward-propagating dipolarization fronts, Geophysical Research Letters, $39(10)$, doi:10.1029/2012GL051784, l10101.

Fu, H. S., Y. V. Khotyaintsev, A. Vaivads, M. Andr, V. A. Sergeev, S. Y. Huang, E. A. Kronbld P. W. Daly (2012b), Pitch angle distribution of suprathermal electrons behind Sipo rization fronts: A statistical overview, Journal of Geophysical Research: Space" Physics, 117(A12), doi:10.1029/2012JA018141, a12221.

Huang, S.Y. M. Zhou, X. H. Deng, Z. G. Yuan, Y. Pang, Q. Wei, W. Su, H. M. Li, and Q. Wang (2012), Kinetic structure and wave properties associated with sharp dipolarization front observed by cluster, Annales Geophysicae, 30(1), 97-107, doi:10.5Ty4/angeo-30-97-2012.

Huang, SY_Z. G. Yuan, B. Ni, M. Zhou, H. S. Fu, S. Fu, X. H. Deng, Y. Pang, H. M. L.D. Wang, H. M. Li, and X. D. Yu (2015), Observations of large-amplitude electragnetic waves and associated wave-particle interactions at the dipolarization front Earth's magnetotail: A case study, Journal of Atmospheric and SolarTerrestrial Physics, 129, 119-127, doi:10.1016/j.jastp.2015.05.007.

Li, S.-S., ngelopoulos, A. Runov, X.-Z. Zhou, J. McFadden, D. Larson, J. Bonnell, and U._Auster (2011), On the force balance around dipolarization fronts within bursty Dulk flows, Journal of Geophysical Research: Space Physics, 116(A5), doi:

Liu, J., V. Angelopoulos, A. Runov, and X.-Z. Zhou (2013), On the current sheets surrounding inolarizing flux bundles in the magnetotail: The case for wedgelets, Journal
of Geophysical Research: Space Physics, 118(5), 2000-2020, doi:10.1002/jgra.50092.
Nagai, T., M. Fujimoto, R. Nakamura, W. Baumjohann, A. Ieda, I. Shinohara, S. Machida, Y. Saito, and T. Mukai (2005), Solar wind control of the radial distance of the magnetic reconnection site in the magnetotail, Journal of Geophysical Research: Space Physics, $110(\mathrm{~A}$ 毋/ $10.1029 / 2005 \mathrm{JA} 011207, \mathrm{a} 09208$.

Nakamura R. W. Baumjohann, B. Klecker, Y. Bogdanova, A. Balogh, H. Re'me, J. M. Bosque , I. Dandouras, J.-A. Sauvaud, K.-H. Glassmeier, L. Kistler, C. Mouikis, T. L. Zhang, Eichelberger, and A. Runov (2002), Motion of the dipolarization front during a flow burst event observed by cluster, Geophys. Res. Lett., 29(20), 1942, doi: 10.1029/2002GL015763.

Nakamura, Re, A. Retinó, W. Baumjohann, M. Volwerk, B. K. N. Erkaev, E. A. Lucek, I. Dand urasn, M. André, and Y. Khotyaintsev (2009), Evolution of dipolarization in the neargh current sheet induced by earthward rapid flux transport, Ann. Geophys., $27(4)$ 754, doi:10.5194/angeo-27-1743-2009.

Nakam~W. Baumjohann, E. Panov, M. Volwerk, J. Birn, A. Artemyev, A. A. Petrukovich, O. Amm, L. Juusola, M. V. Kubyshkina, S. Apatenkov, E. A. Kronberg, P. W. D M. Fillingim, J. M. Weygand, A. Fazakerley, and Y. Khotyaintsev (2013), Flow bouncing and electron injection observed by Cluster, Journal of Geophysical Research: Space Physics, 118(5), 2055-2072, doi:10.1002/jgra.50134.

Ohtani, S A. Shay, and T. Mukai (2004), Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two-fluid simulations, J. Geopry_Res., 109 (A3), doi:10.1029/2003JA010002.

Panov, E. V., R. Nakamura, W. Baumjohann, V. Angelopoulos, A. A. Petrukovich, A. Retino, M. Volwerk, T. Takada, K.-H. Glassmeier, J. P. McFadden, and D. Larson (2010), Multiple overshoot and rebound of a bursty bulk flow, Geophysical Research Letters, 37 (8), doi:10.1029/2009GL041971.

Pontius, and R. A. Wolf (1990), Transient flux tubes in the terrestrial magnetosphere, Geophys. Res. Lett., 17(1), 49-52, doi:10.1029/GL017i001p00049.

Runov, "A. Angelopoulos, M. I. Sitnov, V. A. Sergeev, J. Bonnell, J. P. McFadden, Darson, K.-H. Glassmeier, and U. Auster (2009), THEMIS observations of an earthward-propagating dipolarization front, Geophys. Res. Lett., 36(14), doi: 10.1029/2009GL038980.

Runov, A., Angelopoulos, X. Z. Zhou, X. J. Zhang, S. Li, F. Plaschke, and J. Bonnell (2011), THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet, Ceghys. Res., 116(A5), doi:10.1029/2010JA016316.
Russell, B. J. Anderson, W. Baumjohann, K. R. Bromund, D. Dearborn, D. Fischer, G. Le Leinweber, D. Leneman, W. Magnes, J. D. Means, M. B. Moldwin, R. Nakamura, D Pierce, F. Plaschke, K. M. Rowe, J. A. Slavin, R. J. Strangeway, R. Torbert, C. Hage Jernej, A. Valavanoglou, and I. Richter (2014), The Magnetospheric Multiscale Magnetometers, Space Science Reviews, pp. 1-68, doi:10.1007/s11214-014-0057-3. Schmid, Volwerk, R. Nakamura, W. Baumjohann, and M. Heyn (2011), A statistical vent study of magnetotail dipolarization fronts, Ann. Geophys., 29(9), 1537-1547, doi:10.5194/angeo-29-1537-2011.

Schmid, D., R. Nakamura, F. Plaschke, M. Volwerk, and W. Baumjohann (2015), Two states of magnetotail dipolarization fronts: A statistical study, J. Geophys. Res., 120(2), 1096-1108, doi:10.1002/2014JA020380.

Sergeev, V. A., D. A. Sormakov, S. V. Apatenkov, W. Baumjohann, R. Nakamura, A. V. Runowainain and T. Nagai (2006), Survey of large-amplitude flapping motions in the mid ail durrent sheet, Annales Geophysicae, 24(7), 2015-2024, doi:10.5194/angeo-24-2015-2006.

Sergeev, A I. A. Chernyaev, S. V. Dubyagin, Y. Miyashita, V. Angelopoulos, P. D. Boakes, Rakamura, and M. G. Henderson (2012), Energetic particle injections to geostationary orbit: Relationship to flow bursts and magnetospheric state, J. Geophys. Res., 117(10), doi:10.1029/2012JA017773.

Shiokawa W. Baumjohann, and G. Haerendel (1997), Braking of high-speed flows in (thear-earth tail, Geophysical Research Letters, 24 (10), 1179-1182, doi: 10.10\% 大GL01062.

Sonneru. Ö., and M. Scheible (1998), Minimum and maximum variance analysis, in Analusis Methods for Multi-Spacecraft Data, edited by G. Paschmann and P. Daly, pp. 185 ESA, Noordwijk.

Torbert, R.B. C. T. Russell, W. Magnes, R. E. Ergun, P.-A. Lindqvist, O. LeContel, H. Vaith, J. Macri, S. Myers, D. Rau, J. Needell, B. King, M. Granoff, M. Chutter, I. G. Olsson, Y. V. Khotyaintsev, A. Eriksson, C. A. Kletzing, S. Bounds, B. Anderson W. Baumjohann, M. Steller, K. Bromund, G. Le, R. Nakamura, R. J. Strangewa H. K. Leinweber, S. Tucker, J. Westfall, D. Fischer, F. Plaschke, J. Porter,
and K. Lappalainen (2014), The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products, Space Science Reviews, pp. 1-31, doi: 10.1007/s11214-014-0109-8.

Tsyganenko, N. A. (1989), A magnetospheric magnetic field model with a warped tail currenthe Planet. Space Sci., 37, 5-20, doi:10.1016/0032-0633(89)90066-4.

Wolf, R. A.. . Wan, X. Xing, J.-C. Zhang, and S. Sazykin (2009), Entropy and plasma sheet transport, Journal of Geophysical Research: Space Physics, 114(A9), doi: 10.1029/20GJJA014044, a00D05.

Zhou, M., S.- Huang, X.-H. Deng, and Y. Pang (2011), Observation of a sharp negative dipolarization front in the reconnection outflow region, Chinese Physics Letters, 28(10), 109,402.

$\grave{0}$ \vdots \vdots \vdots

of the DF events. The colored arrows indicate the earthward/tailward DF propagation directions and velocities as of the 4 velocity bins.
D R A F T
June 7, 2016, 11:02am
D R A F T

Figure 2. Illustration of (a) S/C in-situ observations of the magnetic field Z-component $\left(B_{\mathrm{z}}\right)$, (b) circular shape of the DF in the $X Y$-plane. \mathbf{n} denotes the normal direction wher the S / C crossed the front. $V_{\text {timing }}$ is the velocity of the magnetic structure, obtained the timing method. V_{DF} is the DF velocity along the assumed propagation direction $X_{\text {T89. }} . \Delta s$ is the observed front thickness (between $B_{\mathrm{z}, \min }$ and $B_{z, \max }$) and $\mathrm{DF}_{\text {size }}$ the actual DF thickness.

Figure 3. Superposed Epoch analysis of (a and b) B_{z}, (c) motional electric field and (d) thetic elevation angle of the DFs observed by Cluster (left panels) and MMS (right panels). The 23 Cluster and 23 MMS events are divided into 4 subsets according to the velocity. The number of events in each bin is given in the legend.

Table 1. Number of events in each velocity bin, the temporal scale of the DFs with 95% confidence bounds obtained from the linear regression and the mean DF thickness with standard deviation.

	DF velocity	number of events	temporal scale [s]	DF size [km]
Cluster	\int DF $>150 \mathrm{~km} / \mathrm{s}$	8 (35\%)	33 ± 30	9600 ± 8000
	km) $\mathrm{s}<V_{\mathrm{DF}}<150 \mathrm{~km} / \mathrm{s}$	9 (39\%)	45 ± 27	3700 ± 2200
	$\sim 0.0 \mathrm{~km} / \mathrm{s}<V_{\mathrm{DF}}<0 \mathrm{~km} / \mathrm{s}$	6 (26\%)	42 ± 32	1900 ± 1000
	$\mathrm{DF}<-150 \mathrm{~km} / \mathrm{s}$	-	-	-
MMS	$>150 \mathrm{~km} / \mathrm{s}$	13 (57\%)	11 ± 7	4400 ± 3200
	/ $\mathrm{s}<V_{\mathrm{DF}}<150 \mathrm{~km} / \mathrm{s}$	5 (21\%)	15 ± 8	1200 ± 700
	$50 \mathrm{~m} / \mathrm{s}<V_{\mathrm{DF}}<0 \mathrm{~km} / \mathrm{s}$	3 (13\%)	17 ± 10	1100 ± 900
	$\bar{V}_{\mathrm{DF}}<-150 \mathrm{~km} / \mathrm{s}$	2 (9\%)	10	2700 ± 400

σ

2016GL069520-f02-z-.png

\star
 Cluster - superposed epoch

MMS - superposed epoch

2016GL069520-f03-z-.png

A comparative study of Dipolarization Fronts at MMS and Cluster

D. Schmid, ${ }^{1,2}$ R. Nakamura ${ }^{1}$, M. Volwerk ${ }^{1}$, F. Plaschke ${ }^{1}$, Y. Narita ${ }^{1}$, W. Baumjohann ${ }^{1}$, W. Magnes ${ }^{1}$, D. Fischer ${ }^{1}$, H.U. Eichelberger ${ }^{1}$, R.B. Torbert ${ }^{3,7}$,
C.T. Russell ${ }^{4}$ R.J.Strangeway ${ }^{4}$, H.K. Leinweber ${ }^{4}$, G. Le ${ }^{5}$, K.R. Bromund ${ }^{5}$,
B.J. Anderson, J.A. Slavin ${ }^{8}$ and E.L. Kepko ${ }^{5}$

Key points:

- MMS is Denerally located in a more dipolar magnetic field region and observes larger${ }_{5}$ amplitude (1) than Cluster further down the tail
- A larger tiaction of DFs move faster closer to Earth, suggesting variable flux transport rates in the flow region
- Larger DE velocities correspond to a higher B_{z} directly ahead of DFs, suggesting a higher flux pile-up anead of DFs with higher velocities

We present a statistical study of dipolarization fronts (DFs), using mag-
${ }_{11}$ netic field data from MMS and Cluster, at radial distances below $12 \mathrm{R}_{\mathrm{E}}$ and
${ }_{12} 20 \mathrm{R}_{\mathrm{E}}$, respectively. Assuming that the DFs have a semi-circular cross-section and are propelled by the magnetic tension force, we used multi-spacecraft observatdetermine the DF velocities. About three-quarters of the DFs propagate ward and about one-quarter tailward. Generally MMS is in a more dipolar magnetic field region and observes larger-amplitude DFs than Cluster. The ajor findings obtained in this study are: (1)At MMS $\sim 57 \%$
$\overline{\text { Academy }}$ (f) Scnces, Graz, Austria
${ }^{2}$ NAWI Graz University of Graz, Austria
${ }^{3}$ Univer New Hampshire, Durham,

NH, USA

CA, USA ${ }^{4}$ University of California, Los Angeles,
${ }^{5}$ NASA Goddard Space Flight Center, Greenbelt, NIT, USA
${ }^{6}$ Johns N_{n} Applied Physics
Laborator Laurel, MD, USA
${ }^{7}$ Southwest Research Institute, San
Antonio, Ty, SA
${ }^{8}$ Univesit of Michigan, MI, USA
${ }_{18}$ of the DFs move faster than $150 \mathrm{~km} / \mathrm{s}$, while at Cluster only $\sim 35 \%$, indi-

19 cating a variable flux-transport rate inside the flow-braking region. (2)Larger

20 DF velocities correspond to higher B_{z}-values directly ahead of the DFs. We
${ }_{21}$ interpret this as a snow plow-like phenomenon, resulting from a higher mag-
22 netic flump ahead of DFs with higher velocities.

1. Introduction

The Earths magnetotail consists of two lobe regions of stretched, oppositely directed magnetic fields separated by a high- β plasma/current sheet with an embedded neutral sheet. When oppositely directed magnetic field lines reconnect in the magnetotail, the relaxation magnetic tension of the stretched field lines converts the stored magnetic energy int pla kinetic energy and heat. The magnetoplasma is accelerated earthward in shortduration Bursty Bulk Flows [BBFs, Angelopoulos et al., 1992; Baumjohann et al., 2002]. ThoBRFs are the most prominent means to carry mass and energy from the tail towards the near-Earth region. BBFs are often accompanied by magnetic field dipolarizations [e.g., Nakamura et al., 2002, 2009]. Observationally, they are seen by satellites as a sharp increase in the vertical-to-the-current sheet component $\left(B_{z}\right)$, usually preceded by a transien decrease in B_{z} [e.g., Ohtani et al., 2004]. These asymmetric bipolar variations in the z-c ndent of the magnetic field are referred to as dipolarization fronts [DFs, Nakamumet. 2002; Runov et al., 2011; Schmid et al., 2011; Fu et al., 2012a].

DFs ar asterpreted as thin boundary layers of earthward moving flux tubes, which have a reduced entropy compared to the ambient plasma in the tail [e.g., Pontius and Wolf, 1990s long as the entropy of the flux tube is lower, it can continue to propate earthward, and it stops when both are equal [e.g., Sergeev et al., 2012]. The pressure balance of these structures with the ambient plasma is maintained by the stronger magnetic field within flux tube [see e.g., Li et al., 2011]. According to Liu et al. [2013] we call this stronger magnetic region, led by the DF, as dipolarizing flux bundle (DFB). DFs have a typrowhickness, which is on the order of the ion inertial length [e.g., Runov et al.,
${ }_{44}$ 2011; Schmid et al., 2011; Fu et al., 2012b; Huang et al., 2012], and they move as coherent
${ }_{45}$ structures over macroscopic distances (several hundred ion inertial lengths) [Runov et al.,
${ }_{46}$ 2009]. However, a simplified picture of a gradually stopping flux tube does not always
${ }_{47}$ match observations. Panov et al. [2010] showed a change in the flow burst propagation
${ }_{48}$ directionggests a rebound (bouncing) of the DF at the magnetic dipole-dominated near-Eart pla ma sheet. It was predicted by Chen and Wolf [1999] that the earthward moving Ds can overshoot their equilibrium position, after which they will perform a damped ocrillation. Indeed, simulations [e.g., Birn et al., 2011] and observations [e.g., Schmid et al 2011; Zhou et al., 2011; Nakamura et al., 2013; Huang et al., 2015] show that DFs propagate not only earthward, but also tailward.

In this parer, we use Magentospheric Multiscale Mission (MMS) magnetotail observations and comp and contrast the identified DFs with DF observations from the Cluster mission. Wit 1 S at radial distances within $12 R_{E}$ and Cluster at $\sim 19 R_{E}$, it is for the first time pore compare the inner and outer magnetotail region using multi-spacecraft observa DFs.

1
 2. Data nd Event Selection

For this study, we use MMS magnetic field observations from the Earth's magnetotail, between April and July 2015. During this period the mission was still in the commissioning phase and the Flux-Gate magnetometers [FGM, Russell et al., 2014; Torbert et al., 2014] weo erating continuously. For commission the Digital Flux-Gate magnetometers (DFG) 128 Hz data are available almost over the entire period.

For the DF event selection the high-resolution data are down-sampled to 1 Hz , because of the large amount of data. However, after the DF survey we use the high-resolution data for the analysis. To find the DFs, we apply the selection criteria introduced in Schmid et al. [2011] without the criteria on the plasma quantities, due to the limited amount of plasma ailable. Within 3 minute long sliding windows shifted by 30 seconds, the following ritela should be fulfilled:

- The spacecraft is located in the magnetotail between $\mathrm{X}_{\mathrm{GSM}} \leq-5 \mathrm{R}_{\mathrm{E}}$ and $\left|\mathrm{Y}_{\mathrm{GSM}}\right| \leq$ $15 \mathrm{R}_{\mathrm{E}}$.
- The diffence in elevation angle $\left(\theta=\arctan \left(\frac{B_{z}}{B_{x y}}\right)\right)$ between minimum and maximum B_{z} during the window exceeds 10° and ΔB_{z} also exceeds 4 nT .
- The arrival time of the maximum B_{z} is later than that of the minimum B_{z}.
- The erevation angle is at least in one data point (within the 3-min window) greater than θ_{0} (T)
These sereaion criteria are applied to each spacecraft and only events observed by all four MMS satellites are selected. An automatic routine identified 201 DF events between April and Julv 2015 at radial distances within $12 \mathrm{R}_{\mathrm{E}}$.

We compre the MMS DF events with DF observations from Cluster in the season from July and cooser 2003. During that time Cluster had similar inter-spacecraft distances $(\sim 200 \mathrm{~km})$. but the spacecraft were located at larger radial distances ($\sim 19 \mathrm{R}_{\mathrm{E}}$). We start from the existyg Cluster DF event catalog introduced in Schmid et al. [2015], which is based on tho me selection criteria on the magnetic field data. We up-sample the burst mode Flux-Gave Magnetometer [FGM, Balogh et al., 1997] data to 128 Hz . It should be
noted that the DFs in this list also satisfy criteria on the plasma data $\left(\left|V_{\mathrm{x}}\right| \geq 100 \mathrm{~km} / \mathrm{s}\right.$, S/C within the plasma sheet, see Appendix A in Schmid et al. [2015]). Here we select only events observed by all four Cluster spacecraft within $\left|Z_{\mathrm{GSM}}\right| \leq 5 \mathrm{R}_{\mathrm{E}}$ during 2003. These add up to 110 DFs.

For each 201 MMS and 110 Cluster events, a 3 minute interval is selected, which is centered the minimum value of B_{z} (set to $t=0 \mathrm{~s}$). At this point the sharp increase in B_{z} (dipolarization) starts. On the magnetic field between the minimum and maximum values of B_{z} a minimum variance analysis [MVA Sonnerup and Scheible, 1998] is performed, which gives the normal direction to the DF. Also, the following requirements are added to the events:

- The ratro of the intermediate to minimum eigenvalues shall be $\lambda_{\text {int }} / \lambda_{\text {min }} \geq 4$ to ensure a minimu confidence level while keeping the sample size large enough for our statistical study [see. Sergeev et al., 2006].
- Assuming the DF has a saddle-like shape (semi-circular geometry in $X Y$-plane) and is stavertring the DF passage over all spacecraft, the estimated normal direction to the front from each spacecraft shall differ by at most 15°, to ensure that each spacecraft crosses th almost at the same location.
- To mize the projection errors in the DF velocity determination, we require the S / C to cross the DF around its center (the angle between assumed propagation direction (see section5 and the S/C crossing normal vector shall be smaller than 45°).
- To accurately determine the time delay between the S / C, and thus the DF velocity, we require all S / C to observe very similar magnetic signatures by visual inspection, to ensure reliable cross-correlation time lags.

Therewith, 23 DFs (out of 201) represent the MMS data set for our study, and 23 DFs (ous) the Cluster data set. The list of DFs is provided in the supplementary material.

The distribution of the 23 MMS and 23 Cluster DFs on the $X Y$ - plane in the GSM coordinatesy is shown in Figure 1. Crosses and circles in black mark the barycenter positions of MMS and Cluster, respectively. The colored arrows indicate the earthward/tailward DF propagation directions and velocities. MMS observes more events in the premiargit sector as the commissioning orbits do not cover postmidnight equally well.

3. Observations and Methodology

A new contrinate system, the T89-coordinate system $\left\{X_{\mathrm{T} 89}, Y_{\mathrm{T} 89}, Z_{\mathrm{T} 89}\right\}$ introduced by [Schmid et al., 2015], is used, which is based on the magnetic field model by Tsyganenko [1989]. In 189-system, $X_{\text {T89 }}$ is in the direction of the magnetic tension force and is determine the average direction in the northern and southern lobe $\pm 3 R_{\mathrm{E}}$ away in the Z_{GSM} Firection from the spacecraft location projected on the $X Y$-GSM plane, and is positivetowards the Earth. $Z_{\mathrm{T} 89}$ points along Z_{GSM} and $Y_{\mathrm{T} 89}=Z_{\mathrm{T} 89} \times X_{\mathrm{T} 89}$ completes the right-hand d coordinate system.

We assure the DFs to propagate along $X_{\text {T89 }}$ as they should be propelled by the magnetic tension force. Hence, the DF propagation directions point radially in- or outward to/from
the Earth, as can be seen in Figure 1.
Figure 2 illustrates (a) S/C in-situ observations of B_{z} and (b) the assumed circular shape of the DFs in the $X Y$-plane. \mathbf{n} denotes the normal direction where the S / C crossed the front. $V_{\text {timing }}$ is the velocity along the crossing normal direction determined from the timing notw To determine the time lag between the S/C observations (and thus the normal vecity accurately, the magnetic field B_{z} data between $B_{z, \min }$ and $B_{z, \max }$ of those two $S / C^{\boldsymbol{\#}}$ which are furthest apart along \mathbf{n} are cross-correlated. On the assumption that the DFs popate along $X_{\text {T89 }}$ it is possible to estimate the DF velocity (V_{DF} in Figure 2(b)). We then estimate the thickness of the DFs using their velocities and crossing durations ($\mathrm{DF}_{\text {size }}$ in Figure 2(b)).

\square
 4. Statistinal Analysis

Figure 3 shows the superposed epoch analysis for the 23 Cluster (left) and 23 MMS (right) The data are smoothed by averaging over 128 datapoints (one second of data). Panel (a) shows the z-component of the magnetic field $\pm 3 \mathrm{~min}$ around the DF onset. Paners b), (c) and (d) show the superposed epoch for B_{z}, the motional electric field $E_{y, T 8}$ d the magnetic elevation angle, 90 sec around the DF onset, respectively. The moti nal electric field is obtained from $E_{\mathrm{y}, \mathrm{T} 89}=V_{\mathrm{DF}} B_{\mathrm{z}}$. Since $E_{\mathrm{y}, \mathrm{T} 89}$ is obtained from the velocity, only the values determined between $B_{z, \min }$ and $B_{z, \max }$ are reliable (thick line」higher B_{z} at higher velocities leads to a higher $E_{\mathrm{y}, \mathrm{T} 89}$, which indicates a higher $\mathrm{f}<$ ansport rate towards the Earth. The magnetic elevation angle is given by $\arctan \left(B_{\mathrm{z}} / B_{\mathrm{x}, \mathrm{T} 89}\right)$. To examine how B_{z} changes in association with the DF velocity, each dataset is divided into 4 subsets: $V_{\mathrm{DF}}<-150 \mathrm{~km} / \mathrm{s}$ (black), $-150 \mathrm{~km} / \mathrm{s}<V_{\mathrm{DF}}<0 \mathrm{~km} / \mathrm{s}$ (blue), $0 \mathrm{~km} / \mathrm{s}<V_{\mathrm{DF}}<150 \mathrm{~km} / \mathrm{s}$ (magenta) and $V_{\mathrm{DF}}>150 \mathrm{~km} / \mathrm{s}$ (red). The number of events in each velocity bin is given in Table 1 and in the legend of Figure 3.

The fiolor result is that at MMS about $\sim 57 \%$ of the DFs move faster than $150 \mathrm{~km} / \mathrm{s}$ whi at Cluster only $\sim 35 \%$ fall into this group, although the background $B_{\mathrm{z}},-3$ min to -2 min before the DF passage, is generally about $\sim 3 \mathrm{nT} \pm 1 \mathrm{nT}$ higher at MMS (ee igure 3(a)). Furthermore, Cluster observes no fast tailward moving DFs $\left(V_{\mathrm{DF}}<-150 \mathrm{~km} / \mathrm{s}\right)$. Note that the negative DF velocities correspond to tailward moving DFs (blue and black lines). The superposed epoch analysis of B_{z} also reveals that for Cluster the tme between $B_{z, \min }$ and $B_{z, \max }$ of the earthward propagating DFs (magenta and red liradecreases with enhanced DF velocity. For MMS, however, the fast and moderately ea thrrd propagating DFs show a similar temporal behavior. Moreover, MMS shows a decrease before the DF and a larger overshoot after the DF compared to Cluster

As the second major result, we find that the B_{z} of the fast and moderately earthward moving DFsurt to differ significantly ~ 60 sec before the DF passage (see Figure 3(b)). At both, Cluster and MMS, the mean B_{z} before the fast DFs is higher than before the slowly propagating DFs.
Furtherm find that for the events of moderate velocity, $E_{y, T 89}$ is smaller, which suggest only a small flux transport rate in $X_{\mathrm{T} 89}$ direction. We also find a strong negative $E_{y, T 89}$ for fast tailward propagating MMS events, which is, however, only about half as large as $E_{\mathrm{y}, \mathrm{T} 89}$ for the earthward propagating events. This indicates that less flux is transported tailward.

In addition, MMS observes slightly higher elevation angles before crossings of earthward moving DFs than Cluster, indicating a slightly more dipolarized field configuration before the DF . The elevation angles of the fast moving DFs, particularly before the DF crossings re hyer than those of the slower moving DFs. Moreover, Cluster sees a larger change in magnetic elevation angles across the DFs, corresponding with a larger change from a mquillike to a more dipolar-like field configuration. At MMS, however, this behavior is less pronounced. Interestingly, tailward moving DFs at MMS show significantly higher elevation angle before the DF than Cluster.

We also exarrme the relationship between the DF velocity and thickness. The slope of linear fits $\|_{\mathrm{F}}$ vs. $D F_{\text {size }}$ yields the temporal scale of the DFs. They are summarized in Table 1@reveal: (1) fast propagating DFs have smaller temporal scales but larger DF thicmesses than slower propagating DFs; and (2) DF thicknesses and temporal scales are gen at Cluster than at MMS.

1
 5. Discuscio

At MM, and Cluster about three quarters of the observed DFs propagate earthward and about one quarter tailward. This is in good agreement with earlier results from Schmid et 011], who used Cluster observations between 2001 - 2007 and found that more th $1 t$ o thirds of the studied events propagate earthward.

Typically, flow braking occurs in regions of higher background B_{z}. To evaluate the back-
ground conditions reliably, the average B_{z} and elevation angles during the interval 3-2 min before the DFs are estimated. Indeed, MMS observes slightly larger background B_{z} and elevation angles (by $\sim 3 \mathrm{nT} \pm 1 \mathrm{nT}$ and $\sim 8^{\circ} \pm 4^{\circ}$) than Cluster, indicating that MMS was in a more dipolar background magnetic field. We might expect that the fast moving DFs at evolve into moderate moving DFs at MMS due to the flow-braking. Interestingl hovever, at MMS $\sim 57 \%$ of the studied DFs propagate faster than $150 \mathrm{~km} / \mathrm{s}$, while at "Custer only $\sim 35 \%$ of the DFs fall in this group. This contradicts the idea that a DF motirn ecomes slower when propagating earthward if these numbers should reflect a single flow evolution. A possible explanation for this unexpected behavior might be, that MMS and Cluster observed DFs at different conditions: (1) The tail-season for MMS is betweer wrarch and July, while for Cluster it is between July and October. Thus the plasma shat_tilt is different, which may affect the location of the flow-braking region. (2) Due to th sill sample size, there might be a solar wind and/or solar cycle dependence in the d Nagai et al. [2005] showed that the solar wind $V_{\mathrm{x}} B_{\text {south }}$ controls the radial distanc reconnection site in the magnetotail: magnetic reconnection takes place closer to the Earth when $V_{\mathrm{x}} B_{\text {south }}$ is higher. Indeed, using the mean of the 1-min OMNI data over in before the DF events, we find on average a higher $V_{\mathrm{x}} B_{\text {south }}$ value at MMS $(1.1 \mathrm{mV} / \mathrm{m})$ than at Cluster $(0.6 \mathrm{mV} / \mathrm{m})$. (3) Since MMS might be located closer to the flow-braking region, only DFBs with an entropy much lower than the surrounding plasma can be obmerng According to the "plasma bubble" theory [see Wolf et al., 2009] those DFB penetrate deeper into the near-Earth plasma sheet with higher velocities. Indeed, Shiokawa enaly [1997] showed that although the occurrence rate of the high-speed flows
substantially decreases when the satellite comes closer to the Earth until $10 \mathrm{R}_{\mathrm{E}}$, but then slightly increase inside of $10 \mathrm{R}_{\mathrm{E}}$ (see their Figure 1(a)). (4) MMS may observe only a selection of DFs, those with an enhanced magnetic tension force or a reduced pressure-gradient force. As shown by Shiokawa et al. [1997], the earthward flow can be easily braked within a few $\mathrm{R}^{\text {and }}$ the typical tailward pressure-gradient force of $1.2 \times 10^{-} 17 \mathrm{~Pa} / \mathrm{m}$. Thus, either red ced ailward pressure-gradient force or higher acceleration by enhanced earthward magnetic tension force is necessary to transport DFs from the reconnection region outside $20 \mathrm{R}_{\mathrm{E}}$ inside $12 \mathrm{R}_{\mathrm{E}}$. The DF velocity at the flow braking region seems therefore more variable than stopping at one distance.

An impor mplication of the high velocity DFs at MMS is that these events transport a high amonaf magnetic flux, as evidenced by the high $E_{y, T 89}$ (see Figure 3(c)), although located in are dipolar field region. This fact indicates that a strong magnetic flux transporantake place even in the inner magnetosphere. Nakamura et al. [2009] showed that thansport rate, obtained from the timing velocity, ion flow velocity and electric field measurements are quite consistent. Here $E_{\mathrm{y}, \mathrm{T} 89}$ is determined from V_{DF} and not from the p a flow velocity or direct electric field measurements. Hence, it only reflects the flux transport rate properly, if the plasma flow velocity corresponds to the DF velocity.

Furthermarger DF velocities actually correspond to higher B_{z} values just before the DFs (see Figure 3(b)). The interesting point is that both spacecraft missions observes this behario although they are located in different regions (more/less dipolar magnetic
field). This suggests that the increased ambient B_{z}, from -60 s to -10 s ahead of the DF , exhibit rather local than global characteristics: the ambient B_{z} represents a local property of the magnetic field before the DF. This behavior has also been reported by Nakamura et al. [2009] who studied the flux transport in the tail and investigated pulses of DFs. We inte at the higher ambient B_{z} originates from a magnetic flux pile-up in the plasma, cused by the already increased plasma velocity in front of the DF. The increased plasma flow ahead of the DF is a result of the remote sensing of the approaching DF by the plasmar silar to a snowplow accumulating and pushing the snow ahead of it. In a superposed enoch analysis Runov et al. [2009] showed that the plasma velocity increases gradually, starting ~ 40 s before the DF. This is in good agreement with our results, since the mean $\boldsymbol{D}_{\mathrm{z}}$ starts to significantly differ $\sim 60 \mathrm{~s}$ ahead of the front.

There is significant number of tailward moving DFs observed from both, Cluster and Since it is unreasonable to assume reconnection so close to Earth, the tailwardating events are the result of a DF rebound (bouncing) at the magnetic dipole-dominated near-Earth plasma sheet: The fast moving DFs get first compressed at the dipominated region, and are then reflected tailward [e.g. Panov et al., 2010; Birn et al. 2011]. Indeed we observe compressed DFs with smaller temporal scales and spatial tnicknesses at MMS than at Cluster. As the DFs move tailward, the magnetic tension fows them down. In agreement with this picture, there are no fast tailward moving DFs at, Cluster. Only MMS observes fast tailward propagating DFs, with high elevation andes before the DFs. We interpret the high elevation angles as the remnants of previously earthward propagating DFs. Thus we suggest that the fast tailward moving DFs are recorded directly after the rebound of the fast earthward moving DFs.

The results obtained in this study are subject to a number of assumptions: (1) The DFs havi-circular geometry, which is stable during the DF passage over all spacecraft; (2) he s ales of the DFs are much larger than the probes separations; and (3) the DFs are propelled by the magnetic tension force and thus propagate along the magnetic field line diretion in the lobes (above and below each observation location), projected onto the $X \bar{Y}=\mathrm{GSM}$ plane. In general the DF propagation direction is different from the DF crossing normal direction. Hence, the estimated timing velocity is only a projection (underestifratron) of the actual DF velocity. Thus, we deproject this velocity onto the assumed nopagation direction. To keep deprojection errors low, we require that the $\mathrm{S} / \mathrm{C} \operatorname{cross} \mathrm{h}$ Fs at a maximal cone-angle of 45° around this propagation direction. The time lagsenween the spacecraft are clearly larger than the data resolution and are thus a rathencertainty factor in the DF velocity determination. However, our findings can only be interpreted in the context of the aforementioned assumptions. In reality, the DF propagun and structure might be much more complicated, as their geometry might not stable and they might expand as they propagate.

Assung the DF to be a stable, semi-circular structure, propagating along the magnetic tension force, the major results obtained in this study are:
(1) A larger fraction of the DFs move faster closer toward Earth than further down the tail. This is contrary to the expectation that the DFs and associated DFBs should be braking in a more dipolar field where the flux tube entropy of the DFBs equals the entropy of the surrounding plasma. Here we discuss different alternatives for this behavior. First, a tempotion of the DFs due to different solar wind conditions and/or plasma sheet tilting anges huld have taken place. It is also possible that we only observe a selection of DFs closer to Earth, those with higher velocities in the first place. Clearly, a much larger dat of DFs is necessary to determine which mechanism is responsible for the unexpected behavior of the DFs close to Earth.
(2) Larger DF velocities actually correspond to higher B_{z} values directly ahead of the DFs. Thisurnavior is observed by both, Cluster and MMS, although they are located in different r dions in the tail (more/less dipolar magnetic field). We interpret the higher B_{z} to a lo S ow plow-like phenomenon resulting from a higher DF velocity and thus a higher ruenetric flux pile-up ahead of the DF.

Gate (DFG) agnetometers. All data are stored at the MMS Science Data Center https://lasp orado.edu/mms/sdc/ and are available upon request. The work at UCLA, UNH, JHU/ANL and SwRI is supported by NASA contract number NNG04EB99C. The

Austrian part of the development, operation, and calibration of the DFG was financially supported by Austrian Space Applications Programme with the contract number FFG/ASAP-844377. The work by DS was funded by the Austrian Science Fund FWF under grant P25257-N27. We also acknowledge valuable discussions within the international ISSI teamen "Jets behind collisionless shocks").

0

References

Angelopoyos, Y., W. Baumjohann, C. F. Kennel, F. V. Coroniti, M. G. Kivelson, R. Pellat, R. JJ Walker, H. Lühr, and G. Paschmann (1992), Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 97(A4), 4027-4039, doi:10.1029/91JA02701.

Balogh, A., Mr. Dunlop, S. Cowley, D. Southwood, J. Thomlinson, K. Glassmeier, G. Musmann, I Subr, S. Buchert, M. Acuna, D. Fairfield, J. Slavin, W. Riedler, K. Schwingenschuh, Mid. Kivelson (1997), The Cluster magnetic field investigation, Space Science Revieural(1-2), 65-91, doi:10.1023/A1004970907748.

Baumjow., R. Schödel, and R. Nakamura (2002), Bursts of fast magnetotail flux transport, Adv. Space Res., 30, 2241-2246, doi:10.1016/S0273-1177(02)80234-4.

Birn, J., P Akamura, E. V. Panov, and M. Hesse (2011), Bursty bulk flows and dipolarization_in_MHD simulations of magnetotail reconnection, Journal of Geophysical Research: Space Physics, 116(A1), doi:10.1029/2010JA016083.
Chen, C. R. A. Wolf (1999), Theory of thin-filament motion in Earth's magnetotail and its application to bursty bulk flows, Journal of Geophysical Research: Space Physics, $104(A 7), 1$ 13-14,626, doi:10.1029/1999JA900005.

Fu, H. S., Y. V. Khotyaintsev, A. Vaivads, M. Andr, and S. Y. Huang (2012a), Occurrence rate of earthward-propagating dipolarization fronts, Geophysical Research Letters, $39(10)$, doi:10.1029/2012GL051784, l10101.

Fu, H. S., Y. V. Khotyaintsev, A. Vaivads, M. Andr, V. A. Sergeev, S. Y. Huang, E. A. Kronblan P. W. Daly (2012b), Pitch angle distribution of suprathermal electrons behind Sipo rization fronts: A statistical overview, Journal of Geophysical Research: Space Physics, 117(A12), doi:10.1029/2012JA018141, a12221.

Huang, S.Y.M. Zhou, X. H. Deng, Z. G. Yuan, Y. Pang, Q. Wei, W. Su, H. M. Li, and Q. Wang (2012), Kinetic structure and wave properties associated with sharp dipolarization front observed by cluster, Annales Geophysicae, 30(1), 97-107, doi:10.5794/angeo-30-97-2012.

Huang, SY_Z. G. Yuan, B. Ni, M. Zhou, H. S. Fu, S. Fu, X. H. Deng, Y. Pang, H. M. L.D. Wang, H. M. Li, and X. D. Yu (2015), Observations of large-amplitude electrongetic waves and associated wave-particle interactions at the dipolarization front Earth's magnetotail: A case study, Journal of Atmospheric and SolarTerrestrial Physics, 129, 119-127, doi:10.1016/j.jastp.2015.05.007.

Li, S.-S., ngelopoulos, A. Runov, X.-Z. Zhou, J. McFadden, D. Larson, J. Bonnell, and U._Auster (2011), On the force balance around dipolarization fronts within bursty Dulk flows, Journal of Geophysical Research: Space Physics, 116(A5), doi: $10.1029 \xrightarrow{\text { L0010 JA015884. }}$

Liu, J., V. Angelopoulos, A. Runov, and X.-Z. Zhou (2013), On the current sheets surrounding inolarizing flux bundles in the magnetotail: The case for wedgelets, Journal of Geophysical Research: Space Physics, 118(5), 2000-2020, doi:10.1002/jgra.50092.

Nagai, T., M. Fujimoto, R. Nakamura, W. Baumjohann, A. Ieda, I. Shinohara, S. Machida, Y. Saito, and T. Mukai (2005), Solar wind control of the radial distance of the magnetic reconnection site in the magnetotail, Journal of Geophysical Research: Space Physics, $110(\mathrm{~A}$ 毋1 $10.1029 / 2005 \mathrm{JA} 011207, \mathrm{a} 09208$.

Nakamura R.)W. Baumjohann, B. Klecker, Y. Bogdanova, A. Balogh, H. Re'me, J. M. Bosque 1. Dandouras, J.-A. Sauvaud, K.-H. Glassmeier, L. Kistler, C. Mouikis, T. L. Zhang, Eichelberger, and A. Runov (2002), Motion of the dipolarization front during a flow hurst event observed by cluster, Geophys. Res. Lett., 29(20), 1942, doi: 10.1029/2002GL015763.

Nakamura, R., A. Retinó, W. Baumjohann, M. Volwerk, B. K. N. Erkaev, E. A. Lucek, I. Dand Krasn, M. André, and Y. Khotyaintsev (2009), Evolution of dipolarization in the neareh current sheet induced by earthward rapid flux transport, Ann. Geophys., $27(4) \rightarrow 454$, doi:10.5194/angeo-27-1743-2009.

Nakamu W. Baumjohann, E. Panov, M. Volwerk, J. Birn, A. Artemyev, A. A. Petrukorich, O. Amm, L. Juusola, M. V. Kubyshkina, S. Apatenkov, E. A. Kronberg, P. W. D M. Fillingim, J. M. Weygand, A. Fazakerley, and Y. Khotyaintsev (2013), Flow bouncing and electron injection observed by Cluster, Journal of Geophysical Research: Space Physics, 118(5), 2055-2072, doi:10.1002/jgra.50134.

Ohtani, S~A. Shay, and T. Mukai (2004), Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two-fluid simulations, J. Geoproges., 109 (A3), doi:10.1029/2003JA010002.

Panov, E. V., R. Nakamura, W. Baumjohann, V. Angelopoulos, A. A. Petrukovich, A. Retino, M. Volwerk, T. Takada, K.-H. Glassmeier, J. P. McFadden, and D. Larson (2010), Multiple overshoot and rebound of a bursty bulk flow, Geophysical Research Letters, 37(8), doi:10.1029/2009GL041971.

Pontius, and R. A. Wolf (1990), Transient flux tubes in the terrestrial magnetosphere, Geophys. Res. Lett., 17(1), 49-52, doi:10.1029/GL017i001p00049.

Runov, A. V. Angelopoulos, M. I. Sitnov, V. A. Sergeev, J. Bonnell, J. P. McFadden, Darson, K.-H. Glassmeier, and U. Auster (2009), THEMIS observations of an earthward-propagating dipolarization front, Geophys. Res. Lett., 36(14), doi: 10.1029/2009GL038980.

Runov, A., Angelopoulos, X. Z. Zhou, X. J. Zhang, S. Li, F. Plaschke, and J. Bonnell (2011), THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet, Cephys. Res., 116(A5), doi:10.1029/2010JA016316.

Russell, B. J. Anderson, W. Baumjohann, K. R. Bromund, D. Dearborn, D. Fischer, G. Le Neinweber, D. Leneman, W. Magnes, J. D. Means, M. B. Moldwin, R. Nakamura, D Pierce, F. Plaschke, K. M. Rowe, J. A. Slavin, R. J. Strangeway, R. Torbert, C. Hage Jernej, A. Valavanoglou, and I. Richter (2014), The Magnetospheric Multiscale Magnetometers, Space Science Reviews, pp. 1-68, doi:10.1007/s11214-014-0057-3. Schmid, VI. Volwerk, R. Nakamura, W. Baumjohann, and M. Heyn (2011), A statistical vent study of magnetotail dipolarization fronts, Ann. Geophys., 29(9), 1537-1547, dpi:10.5194/angeo-29-1537-2011.

Schmid, D., R. Nakamura, F. Plaschke, M. Volwerk, and W. Baumjohann (2015), Two states of magnetotail dipolarization fronts: A statistical study, J. Geophys. Res., 120(2), 1096-1108, doi:10.1002/2014JA020380.

Sergeev, V. A., D. A. Sormakov, S. V. Apatenkov, W. Baumjohann, R. Nakamura, A. V. Runownai, and T. Nagai (2006), Survey of large-amplitude flapping motions in the mid ail durrent sheet, Annales Geophysicae, 24(7), 2015-2024, doi:10.5194/angeo-24-2015-2006.

Sergeev, A I. A. Chernyaev, S. V. Dubyagin, Y. Miyashita, V. Angelopoulos, P. D. Boakes, RNakamura, and M. G. Henderson (2012), Energetic particle injections to geostationary orbit: Relationship to flow bursts and magnetospheric state, J. Geophys. Res., 117(110), doi:10.1029/2012JA017773.

Shiokawa, W. Baumjohann, and G. Haerendel (1997), Braking of high-speed flows in (thear-earth tail, Geophysical Research Letters, 24 (10), 1179-1182, doi: 10.10\%GGL01062.

Sonneru. Ö., and M. Scheible (1998), Minimum and maximum variance analysis, in Analusis Methods for Multi-Spacecraft Data, edited by G. Paschmann and P. Daly, pp. 185 ESA, Noordwijk.

Torbert, R.B. C. T. Russell, W. Magnes, R. E. Ergun, P.-A. Lindqvist, O. LeContel, H. Vatth, J. Macri, S. Myers, D. Rau, J. Needell, B. King, M. Granoff, M. Chutter, I. Olsson, Y. V. Khotyaintsev, A. Eriksson, C. A. Kletzing, S. Bounds, B. Anderson W. Baumjohann, M. Steller, K. Bromund, G. Le, R. Nakamura, R. J. Strangewa H. K. Leinweber, S. Tucker, J. Westfall, D. Fischer, F. Plaschke, J. Porter,
and K. Lappalainen (2014), The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products, Space Science Reviews, pp. 1-31, doi: 10.1007/s11214-014-0109-8.

Tsyganenko, N. A. (1989), A magnetospheric magnetic field model with a warped tail currenthe Planet. Space Sci., 37, 5-20, doi:10.1016/0032-0633(89)90066-4.

Wolf, R. A., . Wan, X. Xing, J.-C. Zhang, and S. Sazykin (2009), Entropy and plasma sheet transport, Journal of Geophysical Research: Space Physics, 114(A9), doi: 10.1029/20gJJA014044, a00D05.

Zhou, M., S.- Huang, X.-H. Deng, and Y. Pang (2011), Observation of a sharp negative dipolarization front in the reconnection outflow region, Chinese Physics Letters, 28(10), 109,402.

$\grave{0}$ \vdots \vdots \vdots

Figure \leftrightarrows
$X Y$-position of MMS (stars) and Cluster (dots) during the observations of the DF enents. The colored arrows indicate the earthward/tailward DF propagation directions velocities as of the 4 velocity bins.

0
Figure 2 Illustration of (a) S/C in-situ observations of the magnetic field Z-component $\left(B_{z}\right)$, (b) assumed circular shape of the DF in the $X Y$-plane. \mathbf{n} denotes the normal direction the S / C crossed the front. $V_{\text {timing }}$ is the velocity of the magnetic structure, obtaine the timing method. V_{DF} is the DF velocity along the assumed propagation direction $X_{\text {T89. }} . \Delta s$ is the observed front thickness (between $B_{z, \min }$ and $B_{z, \max }$) and $\mathrm{DF}_{\text {size }}$ the actual DF thickness.

Cluster - superposed epoch

Figure 3 Superposed Epoch analysis of (a and b) B_{z}, (c) motional electric field and
(d) the nagnetic elevation angle of the DFs observed by Cluster (left panels) and MMS (right). The 23 Cluster and 23 MMS events are divided into 4 subsets according to the DF vocity. The number of events in each bin is given in the legend.

Table 1. Number of events in each velocity bin, the temporal scale of the DFs with 95% confidence bounds obtained from the linear regression and the mean DF thickness with standard deviation.

| DF velocity | number of events | temporal scale $[\mathrm{s}]$ | DF size $[\mathrm{km}]$ |
| :---: | :---: | :---: | :---: | :---: |
| | $8(35 \%)$ | 33 ± 30 | 9800 ± 6000 |

毫

