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ABSTRACT: The outer proton radiation belt (OPRB) and outer electron radiation belt (OERB) 

at geosynchronous orbit are investigated using a reanalysis of the LANL CPA (Charged Particle 

Analyzer) 8-satellite 2-solar-cycle energetic-particle data set from 1976-1995. Statistics of the 

OPRB and the OERB are calculated, including local-time and solar-cycle trends. The number 

density of the OPRB is about 10 times higher than the OERB, but the 1-MeV proton flux is 

about 1000 times less than the 1-MeV electron flux because the proton energy spectrum is softer 

than the electron spectrum. Using a collection of 94 high-speed-stream-driven storms in 1976-

1995, the stormtime evolutions of the OPRB and OERB are studied via superposed-epoch 

analysis. The evolution of the OERB shows the familiar sequence (1) prestorm decay of density 

and flux, (2) early-storm dropout of density and flux, (3) sudden recovery of density, and (4) 

steady stormtime heating to high fluxes. The evolution of the OPRB shows a sudden 

enhancement of density and flux early in the storm. The absence of a proton dropout when there 

is an electron dropout is noted. The sudden recovery of the density of the OERB and the sudden 

density enhancement of the OPRB are both associated with the occurrence of a substorm during 

the early stage of the storm when the superdense plasma sheet produces a “strong-stretching 

phase” of the storm. These stormtime substorms are seen to inject electrons to 1 MeV and 
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protons to beyond 1 MeV into geosynchronous orbit, directly producing a suddenly enhanced 

radiation-belt population. 
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1. Introduction 

 Although the outer proton radiation belt has been observed by spacecraft instrumentation 

for 5 decades [e.g. Davis and Williamson, 1963, 1965; Yershkovitch et al., 1965; Stevens et al., 

1970; Spjeldvik, 1977; Fritz and Spjeldvik, 1979; Sheldon, 1994; Green et al., 2004; Lazutin et 

al., 2007, 2012; Tverskaya et al., 2008; Forster et al., 2013], much less is known about its 

properties and dynamics than is known about the outer electron radiation belt. Modeling efforts 

for the outer proton radiation belt in those 5 decades [e.g. Nakada and Mead, 1965; Spjeldvik, 

1977; Beutier et al., 1995; Bourdarie et al., 1997; Boscher et al., 1998; Vacaresse et al., 1999; 

Panasyuk, 2004; Smolin, 2010, 2012] have been much less sophisticated than the modeling 

efforts for the outer electron radiation belt. Further, the systems-science coupling of the outer 

electron radiation belt to other plasma populations of the magnetosphere such as the plasma sheet 

and ring current [Ebihara et al., 2008; Jordanova, 2012], the outer plasmasphere [Borovsky and 

Steinberg, 2006; Borovsky and Denton, 2009a], the plasmaspheric drainage plume [Borovsky et 

al., 2014], substorm-injection electrons [Friedel et al., 2002] and to waves driven by those 

populations such as ULF waves [Ozeke et al., 2012], chorus [Meredith et al., 2002; Summers et 

al., 2004], and EMIC [Ukhorskiy et al., 2010; Lazutin et al., 2012] has been considered; how the 

outer proton radiation belt fits into the coupled system has been less-well considered. Of 

particular relevance for the present study, the evolution of the outer electron radiation belt 

through high-speed-stream-driven (CIR-driven) storms has been repeatedly investigated 

[Paulikas and Blake, 1976; Belian et al., 1996; Borovsky et al., 1998a; Lam, 2004; Miyoshi and 

Kataoka, 2005; Kataoka and Miyoshi, 2006; Borovsky and Denton, 2009a, 2009b, 2010a, 2011a, 

2011b; McPherron et al., 2009; Denton et al., 2010], but the evolution of the outer proton 

radiation belt has not been studied. 

 Mechanisms that are thought to act on the outer proton radiation belt include radial 

diffusion caused by magnetic and electric perturbations [e.g. Nakada et al., 1965; Cornwall, 

1972; Beutier et al., 1995; Boscher et al., 1998; Vacaresse et al., 1999; Panasyuk, 2004] 

including substorm perturbations [Spjeldvik, 1977; Smolin, 2010], pitch-angle scattering by 
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magnetic-field curvature effects in the stretched nightside magnetic field [Tsyganenko, 1982; 

Sergeev et al., 2015], pitch-angle scattering and energy diffusion by plasmaspheric whistler-

mode hiss [Kozyra et al., 1994; Villalon and Burke, 1994] and by ion-cyclotron waves [Søraas et 

al., 1999; Shoji and Omura, 2012], and charge exchange and Coulomb scattering [Liemohn, 

1961; Beutier et al., 1995; Walt et al., 2001]. Potential sources for the outer proton radiation belt 

include solar protons [Lazutin et al., 2007; Panasyuk, 2004; Tverskaya et al., 2008] and substorm 

particle injections [Vacaresse et al., 1999]. Finite gyroradius effects can be important for the 

proton radiation belt: whereas in the nominal dipole field strength of 106 nT at geosynchronous 

orbit (6.6 RE) a 1-MeV (γ = 1.001) proton has a gyroradius rg of 1370 km whereas a 1-MeV (γ = 

2.96) electron has a gyroradius of 45 km (using the formula rg = [(2Em)1/2c/eB][1+(E/2mc2)]1/2 

with kinetic energy E. 

 In this report the outer proton and electron radiation belts at geosynchronous orbit will be 

examined with a newly reanalyzed 8-satellite CPA data set from the years 1976-1995. The 

LANL CPA (Charged Particle Analyzer) instruments [Higbie et al, 1978; Baker et al., 1985; 

Cayton et al., 1989] in geosynchronous orbit were predecessors to the well-utilized LANL SOPA 

(Synchronous Orbit Particle Analyzer) instruments [Belian et al., 1992; Cayton and Belian, 

2007] in geosynchronous orbit (1989-present). In comparison with the SOPA instruments, the 

CPA instruments (1) were more sensitive, (2) had a wider energy range, and (3) did not suffer 

from electron contamination of the ion measurements. In this report the advantage of these 3 

points will be taken to use the CPA data set to examine the properties of the proton radiation belt 

at geosynchronous orbit over two solar cycles in comparison with the electron radiation belt at 

geosynchronous orbit. Particular attention is paid to the behavior of the radiation belts during 

high-speed-stream-driven geomagnetic storms. 

 The outer proton radiation belt at geosynchronous orbit will be surveyed and compared 

with the electron radiation belt. Local-time and solar-cycle dependencies will be examined. 

Using a collection of high-speed-stream-driven storms in the years 1976-1995 the behavior of 

the outer proton radiation belt will be examined. A general absence of stormtime dropouts of the 
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proton radiation belt (when there are dropouts of the electron radiation belt) will be seen; this 

may have implications for the mechanisms of electron and proton loss from the magnetosphere. 

Sudden enhancements of the density of the proton radiation belt will be seen during storms, and 

these will be temporally associated with the occurrence of a substorm during the strong-

stretching phase of the storm. (Early in a high-speed-stream-driven storm there is a “strong-

stretching phase” wherein the diamagnetism of the superdense plasma sheet produces a tail-like 

stretching of the nightside dipole that lasts for several hours [cf. Borovsky et al., 1998a; Borovsky 

and Denton, 2010b].) Density enhancements of the electron radiation belt are also found to be 

associated with this strong-stretching-phase substorm. Examination of the raw count rates of the 

CPA instruments on multiple spacecraft finds the injection of electrons to 1 MeV and protons to 

beyond 1 MeV into geosynchronous orbit associated with these strong-stretching-phase 

substorms. This substorm association with the density enhancements may have implications for 

the seed populations of the electron and proton radiation belts. 

 This manuscript is organized as follows. In Section 2 the geosynchronous-orbit CPA data 

set is reviewed and the cleaning of the proton data to remove solar proton events (SPEs) is 

discussed. In Section 3 statistical properties of the proton and electron radiation belts at 

geosynchronous orbit are shown, including local-time dependences and solar-cycle trends. In 

Section 4 the evolution of the proton and electron radiation belts at geosynchronous orbit during 

high-speed-stream-driven geomagnetic storms is studied with the use of superposed-epoch 

analysis and the examination of individual events; radiation-belt density dropouts and density 

enhancements are examined and the injection of radiation-belt protons and electrons to energies 

of 1-MeV and above by stormtime substorms is examined. In Section 5.1 the timing of electron-

radiation-belt dropout and recoveries and of proton-radiation-belt enhancements during the 

passage of corotating interaction regions is investigated. In Section 5.2 the production of 

particles for the outer proton radiation belt and the outer electron radiation belt by stormtime 

substorms are discussed. In Section 5.3 the absence of proton-radiation-belt dropouts is discussed. 
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In Section 5.4 the responses of the proton radiation belt and electron radiation belt to the solar 

wind are analyzed. The findings of this study are summarized in Section 6. 

This article is protected by copyright. All rights reserved.



 7 

2. The CPA Data Set 

 The CPA (Charged Particle Analyzer) instruments [Higbie et al, 1978; Baker et al., 1979, 

1985] were operated on 8 spacecraft in geosynchronous orbit (6.6 RE) during the years 1976-

1995. Telemetry of the satellites was intermittent, but of the 56 satellite years of measurements 

made, 33.4 satellite years of energetic particle measurements were collected into the CPA data 

set. CPA instruments contained separate ion and electron detectors, eliminating much of the 

electron contamination of proton measurements [Cayton, 2007]. Protons with energies of 50 keV 

- 250 MeV were analyzed in 26 energy channels; electrons with energies of 30 keV - 2 MeV 

were analyzed in 12 energy channels. 

 A recent reanalysis of the CPA proton and electron data sets was performed and the 

technical details of that process will be published separately. The reanalysis involved 

reinvestigation of laboratory fabrication, calibration, and assembly records and involved 

modernized Monte-Carlo simulations of the behavior of particles in revised models of the CPA 

instruments. Satellite-to-satellite systematic errors were corrected. The data reanalysis yielded 

improved fluxes and yielded improved 2-Maxwellian (2-exponential) energy distribution fits to 

the measured proton and electron count-rates [Cayton et al., 1989]. Each Maxwellian fit has two 

parameters, a number density n and a temperature T. The number density n is a measure of the 

number of particles in that distribution and the temperature T is a measure of the hardness of the 

energy spectra of that distribution. 

 The analysis in this report is based on 30-minute-resolution averages of the CPA proton 

and electron data products. 

 The CPA proton data set has been cleaned to remove catalogued solar proton events 

(SPEs) using the NOAA Space Environment Services Center Solar Proton Events list (at 

ftp://ftp.swpc.noaa.gov/pub/indices/SPE.txt) and the more-complete Kurt et al. [2004] SPE list. 

Those two catalogs provide event start times and times of peak fluxes, but do not contain event 

termination times. To get termination times the energetic proton measurements from the 

Goddard Medium Energy Experiment [McGuire et al., 1986] onboard the IMP-8 spacecraft in 
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the solar wind were utilized, paying specific attention to the 10-MeV and 1-MeV proton fluxes in 

the solar wind at Earth. Cleaning for SPEs removed about 7.2% of the proton measurements 

from the CPA data set, chiefly during the solar-maxima years 1981, 1982, 1989, and 1991 (cf. 

Fig. 2f of Kurt et al. [2004]). Note that the NOAA and Kurt et al. SPE lists are incomplete and 

that there are SPE events that have not been removed from the CPA proton data set. 

 In Figure 1 the n and T values are plotted for the entire 20-year, 8-spacecraft CPA proton 

and electron data set. The hotter and the cooler distributions for the electrons and the protons are 

plotted in four different colors. Examining the temporal behaviors of the hotter and the cooler 

distributions for both the electrons and the protons [cf. Cayton et al., 1989; Denton et al., 2010; 

Denton and Borovsky, 2012], the lower-temperature distributions are identified as substorm-

injected electrons and protons and the higher-temperature distributions are identified as the 

electron radiation belt and the proton radiation belt (see also Pierrard and Lemaire [1996]). Note 

in Figure 1 for both the radiation belts and the substorm-injected particles, the proton density is 

on average higher than the electron density. Of interest in the present study are the proton 

radiation belt (blue points) and the electron radiation belt (red points). 

 Note in the distribution of blue proton-radiation-belt points in Figure 1 that there is a halo 

of higher temperature (T greater than about 100 keV) points; these higher-temperature points are 

mostly owed to protons from solar proton events (SPE) events diffusing into the magnetosphere. 

In Figure 2 the effect of an SPE on the CPA proton measurements is examined. The SPE of 

Figure 2, with an onset on April 24, 1981, was examined by Reames et al. [1990] using ISEE-3 

solar-wind energetic-proton measurements; this particular SPE is not on the NOAA SPE list but 

is on the Kurt et al. [2004] SPE list. In the top panel of Figure 2 the differential fluxes of 

energetic protons as measured by the Goddard Medium Energy Experiment [McGuire et al., 

1986] onboard the IMP-8 spacecraft in the solar wind are plotted as functions of time for 13 days 

in 1981; various energies from 1 - 20 MeV are plotted in the various colors. The GSE X position 

of IMP-8 is plotted as the black points in the top panel when X>0; IMP-8 was in a 12.4-day 

quasi-circular orbit with a radius of 30 - 40 RE. When X>0 IMP-8 was out in front of the Earth in 
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the solar wind and magnetosheath, and IMP-8 is in the solar wind or the magnetosheath in all 

portions of its orbit except the -X extrema when in is passing through the magnetotail. In Figure 

2 the -X extrema occurred on day 121; the Magnetic Field Experiment on IMP-8 [cf. Paularena 

and King, 1999] indicates magnetotail-like magnetic-field orientations from day 121.33 to day 

122.95. The onset time of the SPE as measured by the IMP-8 spacecraft in the solar wind is 

denoted as the first vertical red dashed line in Figure 2. At the marked SPE onset time (16:20 UT 

on April 24, 1981) the location of IMP-8 was GSE (X,Y,Z) = (22.6,-25.4,-12.2) RE. The 

termination of the SPE as determined by the proton fluxes on IMP-8 (probably in the magnetotail 

at that time) is denoted by the second vertical red dashed line. In the second panel of Figure 2 the 

raw count-rates in the 1 - 1.3 MeV CPA proton channel onboard four geosynchronous spacecraft 

(1976-059, 1977-007, 1979-053, and 1981-025) are plotted for the 13 days. The high proton 

count rates at geosynchronous orbit in the second panel temporally correspond to the high fluxes 

of energetic protons in the solar wind in the first panel, with a time lag of about 5-6 hr from the 

solar wind to geosynchronous orbit. In the third panel of Figure 2 the temperature Tp of the 

proton radiation belt is plotted for the CPA measurements on the four geosynchronous spacecraft. 

In the third panel note the temperatures prior to the onset of the SPE and after the termination of 

the SPE: these are the typical temperatures for the proton radiation belt at geosynchronous orbit. 

During the SPE (between the two vertical dashed lines) the hot-Maxwellian proton temperature 

at geosynchronous orbit is greatly elevated (e.g. the blue halo points in Figure 1). In the fourth 

panel of Figure 2 the number density np of the hot-Maxwellian fit to the protons is plotted for the 

four geosynchronous spacecraft; during the SPE the fit is dominated by the very-hard-spectrum 

SPE protons and the density is depressed. One way to eliminate all SPEs from the CPA data set 

would be to eliminate all data where Tp is greater than or equal to about 150 keV -- for fear of 

overcleaning, that is not done in the present study. 

 Examination of the CPA electron count rates and density and temperature fits indicates 

that contamination of the electron-radiation-belt measurements at geosynchronous orbit by CPA 

are not strongly affected by solar proton events. 
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3. Statistics of the Proton and Electron Radiation Belts at Geosynchronous Orbit 

 In Figure 3 the occurrence distributions of five radiation-belt parameters for protons and 

electrons at geosynchronous orbit are plotted for the 1976-1995 CPA data set: protons in blue 

and electrons in red. The mean and median values of the five parameters for the proton radiation 

belt and electron radiation belt are collected into Table 1. In the top panel of Figure 3 the 

occurrence distributions of the base-10 logarithms of the number densities are plotted; note in 

this panel that the number of radiation-belt protons at geosynchronous orbit is an order of 

magnitude greater than the number of radiation-belt electrons (see also Table 1 and Figure 1). In 

the second panel of Figure 3 the distributions of the temperatures of the proton and electron 

radiation belts are plotted: the electron radiation belt is hotter (has a harder spectrum) than the 

proton radiation belt. In the third panel of Figure 3 the occurrence distributions of the base-10 

logarithm of the 1-MeV differential fluxes of protons and of electrons are plotted. The flux of 1-

MeV electrons at geosynchronous orbit is about 1000 times greater than the flux of 1-MeV 

protons at geosynchronous orbit despite the number density of protons being 10 times larger. 

This larger electron flux is because (1) the electron spectrum is harder and (2) the low-mass 

electrons are more mobile (a 1-MeV electron has a speed of 2.82×1010 cm/s while a 1-MeV 

proton has a speed of 1.39×109 cm/s -- more than an order of magnitude higher). In the fourth 

panel of Figure 3 the occurrence distributions of the base-10 logarithm of the specific entropy S 

of the radiation-belt protons and of the radiation-belt electrons are plotted. The specific entropy S 

is the number density of adiabatic invariants per unit magnetic flux [Borovsky and Cayton, 

2011]: for the protons the standard expression Sp = Tp/np
2/3 is used and for the electrons the 

relativistic expression (eq. (7) of Borovsky and Cayton [2011]) Se ≈ Te(1+(Te/137.9)1.275)1/1.275ne
-

2/3 is used. At geosynchronous orbit the specific entropy of the electron radiation belt is typically 

an order of magnitude greater than the specific entropy of the proton radiation belt. In the fifth 

panel of Figure 3 the occurrence distributions of the base-10 logarithms of the energy density nT 

(in eV/cm3) of the proton and electron radiation belt at geosynchronous orbit are plotted. The 

proton-radiation-belt energy density is on average higher than the electron-radiation-belt energy 
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density at geosynchronous orbit. Mean and median values appear in Table 1. These radiation-belt 

energy densities can be compared with the energy density of the ion plasma sheet, which has the 

greatest energy density and particle pressure at geosynchronous orbit; for typical ion-plasma-

sheet parameters of n ~ 1 cm-3 and T ~ 10 keV (cf. Fig. 1 of Borovsky et al. [1998b]) the energy 

density of the ion plasma sheet is nT ~ 104 eV/cm3, about two orders of magnitude greater than 

the energy density of the proton radiation belt. For protons, the kinetic pressure (in units of nPa) 

of the proton radiation belt can be obtained by multiplying the energy density by 1.07×10-4; 

owing to relativistic effects multiplying the energy density of the electron radiation belt by 

1.07×10-4 yields a slight overestimate of the electron-radiation-belt pressure. Mean and median 

pressure values appear in Table 1. 

 The local-time dependence of radiation-belt parameters at geosynchronous orbit is 

investigated in Figure 4, with proton-radiation-belt parameters plotted in blue and electron-

radiation-belt parameters plotted in red. Each point in Figure 4 represents a logarithmic average 

of all of the data in the 8-satellite CPA data set in that hour of local time. (The logarithmic 

average of a quantity Q is 10x, where x = <log10(Q)>.) In the top panel the 1-MeV particle flux is 

plotted, with the proton flux multiplied by a factor of 1000. Black horizontal dashed lines are 

drawn to guide the eye. The vertical axis is logarithmic; the dayside to nightside proton flux 

varies by almost one order of magnitude in the top panel. The peak of the electron flux is located 

slightly dawnward of local noon; this pre-noon local-time maximum of the 1-MeV flux is 

familiar for the electron radiation belt as seen by the multisatellite SOPA data set (cf. Fig 3 of 

Denton et al. [2010]) and may be related to a maximum in the geosynchronous magnetic-field 

strength just dawnward of local noon (cf. Fig. 6 of Borovsky and Denton [2010b]). In the top 

panel of Figure 4 the 1-MeV proton flux does not show this dawnward shift; the proton flux 

maximum is near local noon. It is well known that this dayside peak in the flux (and the density 

and the temperature) is caused by the conservation of the first adiabatic invariant causing 

orbiting energetic particles to move further out on the dayside than on the nightside in the 

distorted magnetosphere, leading to a dayside geosynchronous spacecraft sampling deeper into 
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the radiation belt than does a nightside geosynchronous spacecraft [e.g. Roederer, 1967; Denton 

et al., 2010]. In the second panel of Figure 4 the local-time dependence of the radiation belt 

temperatures are plotted. As can be seen the temperature of the electron radiation belt (red) is 

maximum dawnward of local noon (see also Fig 3 of Denton et al. [2010]). For the electron 

radiation belt the dayside increase in temperature over the nightside temperature is about a 10% 

effect. The temperature of the proton radiation belt (blue) shows a very slight maximum in the 

vicinity of local noon, a less-than-10% effect. In the third panel of Figure 4 the number density 

of the proton radiation belt and the electron radiation belt are plotted as a function of local time. 

Both the protons and the electrons show a density maximum just dawnward of local noon and 

show minima at local midnight; this pattern for the electron radiation belt at geosynchronous 

orbit is familiar (e.g. Fig 3 of Denton et al. [2010]). 

 The Pearson linear correlation coefficients between the number density, the temperature, 

and the 1-MeV particle flux are displayed in Figure 5 for the proton radiation belt (left) and for 

the electron radiation belt (right). For the proton radiation belt the correlation between the 

logarithm of the 1-MeV proton flux and the logarithm of the temperature is 0.74 whereas the 

correlation between the logarithm of the 1-MeV proton flux and the logarithm of the number 

density is only -0.01; this indicates that variations in the the 1-MeV proton flux are strongly 

related to variations in the the temperature of the proton radiation belt. On the contrary in the 

right-hand side of Figure 5 the 1-MeV electron flux is more strongly correlated (0.87) with the 

number density of the electron radiation belt than it is with the temperature of the electron 

radiation belt (0.53); this indicates that variations in the 1-MeV electron flux are more controlled 

by variations in the number density of the radiation belt than they are by its temperature. 

 The strong temperature dependence of the 1-MeV flux for the proton radiation belt 

(Figure 5) may be because 1 MeV is further out on the tail of the energy distribution of the 

protons than it is on the energy distribution of the electrons, and the flux out on the tail of a 

distribution is very sensitive to the temperature of the distribution. This is demonstrated in Figure 

6, where the differential flux at 1-MeV is plotted as a function of the temperature of a 
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Maxwellian (exponential) distribution. At low temperature the flux at 1 MeV is low; as the 

temperature increases the flux rises rapidly with increasing temperature until a maximum of the 1 

MeV flux is reached. Heating beyond this point actually lowers the flux at 1 MeV. As noted in 

Table 1, the median temperature of the proton radiation belt at geosynchronous orbit is 79 keV 

and the median temperature of the electron radiation belt at geosynchronous orbit is 172 keV. 

The blue region of the curve in Figure 6 is the 1-MeV flux as the temperature goes from 74 keV 

to 84 keV; the red region of the curve is the 1-MeV flux as the temperature goes from 167 keV to 

177 keV. For the 10-keV change in the temperature around 79 keV the proton flux increases by a 

multiplicative factor of 3.90 whereas for a 10-keV change in the temperature around 172 keV the 

electron flux increase is only by a multiplicative factor of 1.24. Another way to look at this is 

that for the black curve in Figure 6, the derivative dlog10(F)/dT = 6.0×10-2 keV-1 at T = 79 keV 

and dlog10(F)/dT = 9.7×10-3 keV-1 at T = 172 keV, a factor of 6.2 higher at the proton 

temperature than it is at the electron temperature.  Power-law fits to the blue and red regions of 

the curve yield F ∝ T10.9 at 79 keV and F ∝ T3.8 at 172 keV. 

 In Figure 7 the properties of the proton radiation belt (blue) and the electron radiation belt 

(red) are examined through two solar cycles. In the top three panels each point plotted represents 

a logarithmic average of all of the data in the 8-satellite CPA data set for that calendar year. In 

the bottom panel of Figure 7 the monthly sunspot number is plotted as a function of time for the 

years 1976-1995; three solar minima and two solar maxima are contained in this time period. In 

the top panel of Figure 7 the 1-MeV differential flux of electrons (red) and protons (blue) are 

plotted on a logarithmic vertical axis. The electron flux in the top panel shows the familiar 

maxima during the declining phases of the solar cycle (cf. Fig. 4 of Denton et al. [2010]), with 

the declining phase being well known for the presence of high-speed-stream-driven storms 

[Richardson et al., 2001]. The proton flux (multiplied by a factor of 1000) plotted in the top 

panel exhibits minima at solar maxima and exhibits maxima at solar minima. Note that the 

proton fluxes are susceptible to SPEs that were not cleaned out of the CPA data set, with higher-

than-average fluxes occurring during SPEs (cf. Figure 2); SPEs tend to occur more frequently 
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during solar maximum so the true minima of the proton-radiation-belt fluxes during solar 

maxima may be even lower than the values plotted in Figure 7. In the second panel of Figure 7 

the temperatures of the proton radiation belt and the electron radiation belt are plotted. The 

electron radiation belt shows slight temperature maxima during the declining phases of the solar 

cycles (cf. Fig. 4 of Denton et al. [2010]); no clear solar-cycle dependence is seen for the 

temperature of the proton radiation belt. In the third panel of Figure 7 the number densities of the 

proton radiation belt and the electron radiation belt are plotted. The electron-radiation-belt 

density and the proton-radiation-belt density both show minima at solar maxima and maxima at 

solar minima. 

 

4. The Proton and Electron Radiation Belts during High-Speed-Stream-Driven 

Geomagnetic Storms 

 To study high-speed-stream-driven storms in the CPA era (1975-1995), a collection of 94 

high-speed-stream-driven storms in the years 1976-1995 is utilized (cf. Table 2). In the modern 

era with the availability of quality solar-wind measurements, the authors have identified high-

speed-stream-driven storms by [e.g. Denton and Borovsky, 2008; Borovsky and Denton 2010b, 

2013] (1) identifying corotating interaction regions (CIRs) in the solar-wind data, (2) looking for 

long-lived high-speed streams in the solar-wind data that follow the CIRs, and (3) looking at the 

Kp index to ensure that a storm occurred. Then (4) the magnetic-field, proton-temperature, and 

electron-strahl structure of the solar-wind data is examined to ensure that the CIR is not 

dominated by a magnetic cloud. Magnetic clouds are usually ejected from the magnetic sector 

reversals of helmet streamers [Foullon et al., 2011] or from the double sector reversals of 

pseudostreamers [Liu, 2007], both of which appear at 1 AU on the leading edges of CIRs; if a 

magnetic cloud is prevalent in the CIR, the event is rejected as a storm of “mixed origin”. 

Unfortunately, prior to 1995 solar-wind measurements are sparse. In the OMNI2 multisatellite 

data base [King and Papitashvili, 2005] for 1976-1994, solar-wind velocity measurements are 

only available 55% of the time. In the CPA era from 1976 through 1995, years with good solar-
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wind data coverage are 1976 through mid 1978 with the IMP-7 and IMP-8 spacecraft, mid 1978 

through mid 1982 with the ISEE-3 spacecraft, and 1995 onward with the Wind spacecraft. 

Particularly poor coverage occurs in the years late 1982 though 1994 where the IMP-8 spacecraft 

provided solar-wind data about 40% of the time with a few-days-on/few-days-off pattern of 

coverage. 

 To identify high-speed-stream-driven storms in the eras of poor solar-wind data coverage, 

27-day-repeating patterns of high Kp are sought, particularly temporal patterns wherein Kp starts 

low, then rises rapidly, and then stays high for a few days [cf. Forster et al., 2013]. After 

identifying such a repeating Kp pattern, the available solar-wind data is checked to ensure that 

there is slow wind in the low-Kp interval and that there is high-speed wind in the high-Kp 

interval; the Xu and Borovsky [2015] plasma-identification scheme is applied to the available 

solar-wind measurements to ensure that the solar wind during the Kp storm is of coronal-hole 

origin. If not, the event is rejected. The available solar-wind data is examined to look for 

anomalously low solar-wind proton temperatures and/or out-of-ecliptic IMF orientations, both of 

which are indicators of magnetic clouds [Gosling et al., 1973; Burlaga et al., 1981; Borovsky, 

2010a]. If a cloud is prevalent, the event is rejected. Following this method, 62 high-speed-

stream-driven storms were identified in 1976-1992. The onset time of each storm is taken to be 

the middle of the first 3-hr period when the 3-hr-resolutiion Kp index reaches a level of 4 or 

higher. The Kp index is a very good measure of the strength of magnetospheric convection 

[Thomsen, 2004]; it can be said that the onset time is taken to be the time at which 

magnetospheric convection reaches storm levels. These onset times are listed in Table 2. 

 To this list of 62 newly-identified storms, 32 storms in 1993-1995 that were identified for 

prior high-speed-stream-driven storm studies [e.g. Borovsky and Denton, 2010b] are added for a 

total of 94 storms in 1976-1995. (These are from a collection of 70 high-speed-stream-driven 

storms in 1993-2005.) The onset times of the 32 added storms is the time at which MBI 

(Midnight Boundary Index [Gussenhoven et al., 1983]) crosses through the value 60.7o as 

geomagnetic activity increases; this is equivalent to Kp reaching 3.7. These onset times are listed 
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in Table 2. The accuracy of the Kp-based storm-onset trigger time is about 3 hours in the 1976-

1992 storms; the accuracy of the MBI-based storm-onset trigger time is about 30 minutes for the 

1993-1995 storms. 

 

4.1. Superposed Averages Triggering on Storm Onset 

 In Figure 8 the trigger times of the 94 storms (see Table 2) are examined in a solar-

rotation-versus-time plot. Here time is broken into 27.27-day-long intervals, one interval for each 

rotation of the sun. The data is then plotted as the day during the 27.27-day-long interval 

(horizontal) versus the fractional year of the interval (vertical). Times when Kp ≥ 4 are plotted as 

small black points; 27-day repeating storms appear as the vertical clusters of black points on the 

plot. Several of these storm groups can be seen in 1973-1974, in 1983-1985, in 1993-1996, and 

in 2003-2004, which are during four declining phases of the solar cycle. The collection of 94 

storm onsets in the CPA era are plotted as the large red dots. Storms in the 70-storm collection 

after 1995 are plotted as the large blue dots. Storm triggers that are repeating every ~27 days can 

be seen in 1977, 1984, 1994, and 2003-2005. 

 In Figure 9 superposed epoch averaging is used to compare the solar-wind speed, the 

solar-wind density, the AE index, and the Kp index for the new collection of 62 storms in 1976-

1992 with the collection of 70 storms in 1993-2005 that have been used in previous studies of 

high-speed-stream-driven storms [e.g. Borovsky and Denton, 2010b]. In the bottom panel of 

Figure 9 the superposed average of the Kp index is plotted for the two sets of storms. The 

vertical dashed line indicates the onset times of the storms in each collection. The horizontal 

dashed line marks the average value of Kp, which is 2.3. Note prior to the storm onset that the 

Kp index is below average: this is because most high-speed-stream-driven storms are preceded 

by a “calm before the storm” [Borovsky and Steinberg, 2006; Borovsky and Denton, 2013] 

wherein geomagnetic activity is unusually low. In the third panel of Figure 9 the superposed 

average of the AE index is plotted for the two sets of storms, triggered on storm onset. The 

temporal profile of the superposed average of AE mirrors the temporal profile of Kp. In the top 
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panel of Figure 9 the superposed average of the solar-wind speed is plotted for the two sets of 

storms. Note that the rise times of the speed are systematically different in the two sets, probably 

owing to the inaccuracy of the trigger times in the 1976-1992 storms. Note also that the 

superposed average of vsw is noisier for the 1976-1992 storms owing to the scarcity of solar-wind 

data during that era. In the top panel the characteristic slow wind followed by fast wind pattern is 

seen. In the second panel of Figure 9 superposed averages of the solar-wind number density are 

plotted for the two sets of storms. Prior to the storm the superposed average of the density of the 

streamer-belt plasma is slightly higher than the density of the coronal-hole plasma during the 

storm; this is caused by the presence of non-compressive density enhancements in the solar wind 

[Gosling et al., 1981; Borrini et al., 1981] likely to be sector-reversal-region plasma [Xu and 

Borovsky, 2015]. Near the time of storm onset the number density is particularly high owing to 

the compression of the solar wind in the corotating interaction region [Gosling et al., 1978; 

Richter and Luttrell, 1986; Borovsky and Denton, 2010c]. 

 In Figure 10 the evolution of the proton radiation belt and the electron radiation belt are 

examined during high-speed-stream-driven storms using CPA measurements and the 94 storms 

of 1976-1995. In the bottom panel of Figure 10 the superposed average of the Kp index is plotted, 

with the vertical dashed line representing storm onset as determined by Kp. In the top panel of 

Figure 10 the superposed logarithmic averages of the 1-MeV flux of electrons (red) and protons 

(blue) are plotted for the storms. (The superposed logarithmic average of a quantity Q is 10x, 

where x = <log10(Q)> is the superposed average of log10(Q).) The electron flux shows the 

familiar prestorm decay [Borovsky and Denton, 2009a], stormtime dropout [Borovsky and 

Denton, 2009b], and then recovery and growth during the storm [Borovsky and Denton, 2010a]. 

The superposed average of the 1-MeV proton flux shows a shift to higher fluxes from before the 

storm onset to after the storm onset. Note that this increase in the average proton flux 

commences nearly 1 day prior to the storm onsets. It is possible that this early increase in the 

superposed average of the 1-MeV proton flux at geosynchronous orbit is caused by increases in 

the fluxes of solar-wind energetic protons associated with corotating interaction regions [cf. 
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McDonald et al., 1976; Reames et al., 1991; Richardson, 2004], producing a mild SPE-like 

effect; this possibility will be investigated further at the end of this subsection. 

 In the second panel of Figure 10 the superposed logarithmic averages of the number 

densities of the radiation-belt protons (blue) and electrons (red) are plotted for the storms. The 

electron density shows (1) a decay before the storm, (2) a dropout near the onset of the storm, (3) 

a recovery of density early in the storm, and then (4) reaching a constant density, four 

evolutionary stages that are familiar from the studies of the electron radiation belt at 

geosynchronous orbit with SOPA [Borovsky and Denton, 2010b, 2011a]. In the second panel the 

superposed average of the density of radiation-belt protons (blue) shows a constant density prior 

to storm onset and a shift to higher density during the storms. In the second panel (triggered on 

storm onset as seen by Kp) this proton-radiation-belt density increase looks like a gradual shift to 

higher density but in individual events it is usually a sudden jump to higher density. This sudden 

proton-radiation-belt density increase will be investigated in Section 4.2. 

 In the third panel of Figure 10 the superposed logarithmic averages of the radiation-belt 

temperatures (spectral hardnesses) for protons and electrons are plotted. The electrons (red) show 

a constant temperature during the density decay before the storm, a drop in temperature when the 

radiation-belt density recovers, and a slow heating during the duration of the storm, all signatures 

that are familiar from the studies of the electron radiation belt at geosynchronous orbit with 

SOPA [Borovsky and Denton, 2010b, 2011a]. The superposed average of the proton temperature 

shows an increase commencing before storm onset and a return to average values shortly after 

storm onset. This slight day-or-two enhancement of the proton-radiation-belt temperature might 

be caused by enhanced solar-wind energetic-proton fluxes associated with the corotating 

interaction regions (see analysis below). 

 In Figure 11 the superposed averages of Figure 10 are replotted from 40 days prior to 

storm onset to 40 days after storm onset where the 27-day-repeating nature of the behavior can 

be seen. The center vertical dashed line marks the storm onsets and the other two vertical dashed 

lines are located 27 days before and after the storm onsets. In the bottom panel the 27-day 
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repeating activation of the Kp index is seen and in the red curves of the top three panels clear 27-

day repeating enhancements of the 1-MeV electron flux, the electron-radiation-belt number 

density, and the electron-radiation-belt temperature are seen. The electron dropout signatures that 

are seen at the storm onsets in the second panel are too narrow in time to be seen in the 27-day 

repetition since the repeat periods vary somewhat from storm to storm as coronal-hole features 

on the solar surface evolve with time. In the blue curve of the top panel of Figure 11 the step 

increase in the 1-MeV proton flux shows a 27-day repeating pattern and in the second panel the 

enhancement of the proton-radiation-belt number density after storm onset shows a 27-day 

repeating pattern. In the third panel, the slight temperature increase of the proton radiation belt 

near storm onset is too small to show a 27-day repeat. 

 The contamination of the geosynchronous proton measurements by enhanced proton 

fluxes in the solar wind associated with corotating interaction regions is investigated in Figure 12. 

Here, for a subset of the 94 high-speed-stream-driven storms the superposed logarithmic 

averages of the proton-radiation-belt temperature and of the fluxes of energetic protons in the 

solar wind as measured by the IMP-8 spacecraft are plotted. Only IMP-8 energetic-proton 

measurements that have been screened to eliminate magnetospheric contamination (since IMP-8 

spends part of its orbit in the magnetosphere) are used: those screened IMP-8 measurements are 

available in the OMNI2 data set [King and Papitashvili, 2005] prior to 1988. Hence, the subset is 

45 of the 94 storms in the years 1976-1987. In the bottom panel of Figure 12 the superposed 

averages of the solar-wind integral proton fluxes for three energies are plotted. A slight 2-day-

long enhancement in the solar-wind fluxes is seen commencing slightly before t=0; similarly a 2-

day-long enhancement of the measured proton temperature at geosynchronous orbit is seen in the 

top panel of Figure 12. The signatures in the two panels of Figure 12 are not identical, but the 

data coverage of CPA and of IMP-8 going into the superposed averages are not identical. Figure 

12 is strongly suggestive that enhanced solar-wind fluxes of energetic protons associated with 

CIRs could be the origin of the tendency to have enhanced proton-radiation-belt temperature 
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seen during the CIR portion of high-speed-stream-driven storms. This is discussed further in 

Section 5.4.2. 

 

4.2. Radiation-Belt Density Dropouts and Density Enhancements 

 Several of the points discussed in Section 4.1 about the proton and electron radiation 

belts will become clearer in this section when the superposed averaging is triggered on the times 

of dropouts and recoveries of the radiation-belt densities. 

 As seen in Figures 10 and 11, the radiation-belt electrons during high-speed-stream-

driven storms show distinct density dropouts [cf. Freeman, 1964; Nagai, 1988; Onsager et al., 

2002; Green et al., 2004; Borovsky and Denton, 2009a; Morley et al., 2010] followed by density 

recoveries [Borovsky and Denton, 2010a, 2010b, 2011a; Denton and Borovsky, 2010]. Figures 

13 and 14 will show that those electron-density dropout and recovery features are much more 

abrupt than they appear in Figure 10. 

 In Figure 13 the superposed epoch averaging is triggered on the identified onset times of 

electron-density dropouts in the storm collection. Not all storms produce electron dropouts and 

the depths and widths of the dropouts can vary [e.g. Selesnick, 2006; Borovsky and Steinberg, 

2006; Borovsky and Denton, 2009b; Morley et al., 2010]; additionally, data gaps preclude the 

identification of dropout onset times for some storms. 48 of the 94 storms that showed strong 

dropouts identified on the multiple spacecraft available are used for superposed averaging in 

Figure 13. As can be seen by the red electron-radiation-belt curve in the bottom panel, the 

dropouts are abrupt. The 1-MeV electron flux (second panel) drops abruptly with the density 

dropout and the electron temperature (third panel of Figure 13) becomes slightly elevated as the 

density drops. The top panel of Figure 13 plots the superposed average of the AE index: as seen 

the electron density dropout in the bottom panel tends to occur in the rising levels of 

geomagnetic activity near the onset of the geomagnetic storm. 

 Of the two proposed mechanisms for stormtime electron dropout ((1) magnetopause 

shadowing [e.g. Desorgher et al., 2000; Ukhorskiy et al., 2006; Shprits et al., 2006; Kim et al., 

This article is protected by copyright. All rights reserved.



 21 

2008] and (2) pitch-angle scattering into the atmosphere [e.g. Cornwall et al., 1970; Fraser and 

Nguyen, 2001; Meredith et al., 2003; Jordanova et al., 2006; Thorne et al., 2006]), the research 

community favors magnetopause shadowing caused by the combination of (a) an inward 

movement of the magnetopause by enhanced solar-wind ram pressure and (b) enhanced radial 

diffusion has been gaining favor [e.g. Turner et al., 2012; Yu et al., 2013; Ozeke et al., 2014]. 

Note in the third panel of Figure 13 that the robust dropout of the number density of the electron 

radiation belt (red curve) is not accompanied by a strong dropout of the number density of the 

proton radiation belt (see also Green et al. [2004]). Similarly in the second panel of Figure 13, 

there is a clear dropout of the 1-MeV electron flux but not of the 1-MeV proton flux. (On the 

contrary, an examination of a CME-driven storm by Turner et al. [2014] does find a proton 

dropout accompanying an electron dropout.) For the high-speed-stream-driven storms examined 

here, the lack of proton dropouts poses a dilemma if the electron dropout is caused by 

magnetopause shadowing: the azimuthal drift speeds for protons and electrons at 1 MeV are 

about the same (cf. Fig. 6 of Schultz and Lanzerotti [1974]), and so the geosynchronous-orbit 1-

MeV electrons and the geosynchronous-orbit 1-MeV protons should have very similar radial 

diffusion coefficients and should simultaneously both be showing losses to the magnetopause. 

When the 94 individual storms are examined for rapid decreases in the proton-radiation-belt 

density, such signatures are rare. The storms do however show prominent signatures of abrupt 

enhancements of the number density of the proton radiation belt; these enhancements will be 

investigated later in this section, after the electron enhancements are investigated. 

 In Figure 14 the superposed epoch averaging is triggered on the time of electron-

radiation-belt density recovery, using 47 of the 94 storms that had prominent identifiable 

recovery times. The abruptness of the density recovery can be seen in the red curve in the bottom 

panel of Figure 14, where the electron-radiation-belt density rapidly increases and then levels out 

to a constant value during the storm. Note two things about the electrons at the time of the 

density recovery. First, the superposed average of the temperature of the electron radiation belt 

drops (third panel of Figure 14) as the density increases: this indicates that the electrons moving 
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into geosynchronous orbit to form the density recovery are cooler than the electrons that were 

there before the dropout. Second, the majority of the increase of the 1-MeV electron flux (second 

panel of Figure 14) occurs much later than the electron-density recovery. This large increase of 

the electron flux is associated with a slow but steady increase in the temperature of the electron 

radiation belt (third panel of Figure 14) during the several-day-long high-speed-stream-driven 

geomagnetic storm [Borovsky and Denton, 2010a], about 24 keV per day of temperature change 

in Figure 14. In the top panel of Figure 14 the superposed average of the AE index is plotted 

triggered on the number density recovery of the electron radiation belt. Note the localized peak 

in the superposed average of AE at the time of the electron density recovery; this peak is 

suggestive of the occurrence of a substorm at the time of electron-radiation-belt density recovery. 

(Note that a peak in the superposed AE index is not seen in Figures 9 or 13 where the triggering 

is on storm onset and on electron dropout.) Examining the available 1-min-resolution auroral-

electrojet-index data for the 47 electron density recoveries it is found that 37/45 = 82% of the 

enhancements are temporally associated with sudden increases in the magnitudes of AL and AE 

that are consistent with substorm expansion phases. The sudden increases in the AL and AE 

magnitudes that are temporally correlated with the sudden density recoveries of the outer 

electron radiation belt are typically a few-hundred nT in size: these strong-stretching-phase 

substorms are not extremely large substorms by auroral-electrojet standards. Substorms that 

occur later in the high-speed-stream-driven storms have noticeably larger auroral-electrojet 

amplitudes. 

 As seen in the bottom panel of Figure 14, there is an enhancement of the superposed 

average of the number density of the proton radiation belt associated with the abrupt recovery of 

the electron-radiation-belt density. By focusing the superposed-epoch averaging on the times of 

sudden proton density recovery, this proton density enhancement is investigated in Figure 15. 

 In Figure 15 the superposed epoch averaging is triggered on the time of abrupt density 

increase of the proton radiation belt during the storms. 28 of the 94 storms that showed 

prominent rapid increases in the proton-radiation-belt density near storm onset were used in 
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Figure 15. In the bottom panel the superposed average of the number density of the proton 

radiation belt is plotted in blue; note the sudden increase by about a factor of 3 of the superposed 

average. In the bottom panel a similar increase in the superposed average of the number density 

of the electron radiation belt is seen at the time of the proton-density increase. Comparing the 

bottom panels of Figures 14 and 15, the electron-density increase follows a prominent dropout 

(decrease) (cf. Figure 14), whereas a much weaker proton-density decrease precedes the density 

enhancement of the protons (cf. Figure 15). In the second panel of Figure 15 the superposed 

averages of the 1-MeV differential fluxes of protons (blue) and electrons (red) at 

geosynchronous orbit are plotted. Note the sudden increase of the 1-MeV proton flux at the time 

of the density increases. A similar increase in the 1-MeV flux of electrons is seen, but that 

increase is dwarfed by the electron-flux increase during the first two days of the high-speed-

stream-driven storm (see also Figure 10). In the top panel of Figure 15 the superposed average of 

the AE index is plotted, triggered on the time of the density increase of the proton radiation belt. 

Note the very distinct localized peak in the average of AE at the trigger time: this is suggestive of 

enhanced probability of the occurrence of a substorm at the time of increase of the proton 

radiation belt. Indeed, examination of the available 1-min-resolution auroral-electrojet-index data 

for the 28 proton density enhancements finds that 24/25 = 96% of the enhancements are 

temporally associated with sudden increases in the magnitudes of AL and AE that are consistent 

with substorm expansion phases. As was the case for the electron density recoveries discussed 

above, the sudden increases in the AL and AE magnitudes that are temporally correlated with the 

density enhancements of the outer proton radiation belt are typically a few-hundred nT in size, so 

these strong-stretching-phase substorms are not extremely large substorms by auroral-electrojet 

standards. Substorms that occur later in the high-speed-stream-driven storms have noticeably 

larger auroral-electrojet amplitudes. 

 In Figures 16-21 four examples of proton-density increases and electron-density increases 

will be examined in detail. In these examples the raw proton and electron count rates in the CPA 

instruments will be scrutinized to see the reactions during the density recoveries. Three 
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conclusions will be yielded by Figures 16-21: (1) the radiation-belt density increases are 

associated with the occurrence of a substorm during the strong-stretching phase of the storm, (2) 

there are clear increases of the electron and proton count rates occuring over a broad range of 

particle energies, and (3) protons and electrons of up to 1 MeV are injected into geosynchronous 

orbit at the onset time of this strong-stretching-phase substorm. 

 This substorm association investigated with two examples of proton-radiation-belt 

increases in Figures 16 and 17. A proton-radiation-belt density enhancement near the onset of a 

high-speed-stream-driven storm on Day 157 (June 6) of 1985 is investigated in Figure 16. In the 

30-minute resolution CPA data set, the proton-radiation-belt density increase occurs between 

15:15 UT and 15:45 UT on Day 157. In panels (a), (b), and (c) of Figure 16 log-log plots of the 

proton count-rates in the CPA detectors onboard three geosynchronous spacecraft versus the 

mean energies of the proton channels; the lower 9 channels measure integral fluxes (that channel 

and the higher-energy channels) and the higher 6 channels measure differential fluxes. The step 

in the count rates at ~500 keV is due to the difference in geometric factors between the CPA 

low-energy detectors and the CPA high-energy detectors: it is not a jump in the differential 

fluxes in the magnetosphere. The measured count-rates are plotted at five different times in five 

different colors. For spacecraft 1984-037 located at about 20 LT (panel c) an enhancement of the 

count-rates at all energies up to 1-MeV is clear, with that enhancement occurring between 15.25 

and 15.75 UT on Day 157: the red and orange curves have lower count-rates and the green, blue, 

and purple curves have higher count-rates. The enhancement of the count-rates is also seen at 

dawn (panel a) (on spacecraft 1984-129) and on the dayside (panel b) (on spacecraft 1982-019). 

In panel (d) of Figure 16 the AL index (-AL) is plotted as a function of time for 6 hours on Day 

157. A rapid rise in the magnitude of AL commencing at about 15:30 to 15:34 UT is indicative 

of the onset of a substorm [cf. Tanskanen et al., 2001; Weygand et al., 2008]. The times at which 

the CPA count-rate curves are made are marked as the 5 colored points in panel (d). The red and 

orange curves with the lower count-rates were created from measurements taken before the 

substorm onset and the green, blue, and purple curves with higher count-rates were created from 
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measurements taken after the substorm onset. The green-curve in panel (a) at dawn appears to be 

making the transition from low count-rates to high count-rate whereas it has fully made the 

transition in (panel c) near the nightside. Energetic ions drift counter to the rotation of Earth, 

going from the nightside to dusk to noon and then to dawn with the highest energies traveling the 

fastest. The shape of the green curve in panel (c) reflects this, with the higher-energies having 

made more of the low-to-high transition than the lower energies. Unfortunately there was no data 

on spacecraft 1982-019 to make the 15.75-UT curve at local noon. 

 A second proton density enhancement near the onset of a high-speed-stream-driven storm 

on Day 36 (February 5) of 1985 is investigated in Figure 17. The density increase commences at 

about 13:45 UT on February 5. In panels (a), (b), and (c) of Figure 17 proton count-rate curves 

are created at 5 different times and plotted in 5 different colors. All three geosynchronous 

spacecraft (at dusk (panel b), dawn (panel c), and dayside (panel a)) see an enhancement of the 

proton count-rates at all energies up to and beyond 1-MeV somewhere between 13.75 UT and 

14.75 UT on Day 36. In panel (d) of Figure 17 -AL is plotted as a function of time for 4 hours on 

Day 36, with the times at which the 5 count-rate curves were produced marked as the 5 colored 

points. A large rise in the magnitude of AL that commences at about 14:13 UT is indicative of 

the onset of a substorm. As can be seen in panel (d), the low-count-rate curves (13.25 UT and 

13.75 UT) were produced prior to the substorm onset and the high-count-rate curves (14.75 UT 

and 15.25 UT) were produced after the substorm onset. The 14.25 UT curve (which is produced 

from data taken in the time interval 14.0 - 14.5 UT) shows a transition in panels (a), (b), and (c) 

that varies with local time; in panel (d) it is seen that the substorm onset is within that half hour 

from 14.0 UT to 14.5 UT. The green-curve appears least evolved (from low count-rates to high 

count-rates) at dawn (panel c) (spacecraft 1984-037) compared with dusk (panel b) and local 

noon (panel a): the shapes of the green transition-time curves indicate the higher energies being 

more fully transitioned than the lower energies, commensurate with the nightside to dusk to noon 

to dawn sense of travel for ions and with higher-energy ions traveling faster. 
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 In Figures 18 and 19 the count-rates of the energetic electrons as measured by CPA 

instruments in geosynchronous orbit are examined for the Day-157 and Day-36 proton-radiation-

belt density enhancements of Figures 16 and 17. In panels (a), (b), and (c) of Figure 18 for the 

Day-157 proton enhancement a temporal transition to higher electron count-rates is seen at all 

three spacecraft (dawn, dayside, and dusk), and the enhancement of the electron count-rates 

extends up to 1 MeV. (The step in the count rates at ~200 keV is due to the difference in 

geometric factors between the CPA low-energy detectors and the CPA high-energy detectors.) 

Detailed comparisons between the proton-count-rate curves of Figure 16 and the electron-count-

rate curves of Figure 18 for each of the spacecraft shows that the enhancement in the electron 

count-rates comes slightly later in time than the enhancement of the ion count-rates. The electron 

count-rates for the Day-36 proton-radiation-belt density enhancement in Figure 19 also show the 

distinct enhancement at all energies up to 1 MeV. Comparison between the proton count-rates 

(Figure 17) and the electron count-rates (Figure 18) again shows the result that the proton 

enhancement occurs prior to the electron enhancement (note the green curve in all panels). 

 Two sudden recoveries of the number density of the electron radiation belt (cf. Figure 14) 

are examined in Figures 20 and 21. For an electron-density-recovery event on Day 185 (July 4) 

of 1985, electron count-rates are plotted at six different times in panels (a), (b), and (c) of Figure 

20. A transition in electron count-rates at energies up to and beyond 1 MeV is seen on the 

nightside (panel a) (1984-129), pre-noon (panel b) (1982-019), and at dusk (panel c) (1984-037). 

The AL-index plot in panel (d) of Figure 20 indicates a substorm onset at about 12:03 - 12:06 on 

Day 185. The 12.25 UT count-rate curves (green) are made from the half hour of data that spans 

the onset (12.0 - 12.5 UT). Note in panels (a), (b), and (c) that the green curve has not made the 

transition from low count-rates to high count-rates, except at the highest energies on 1984-129 

near local midnight (panel a). The electron-count-rate transition for the electron-density recovery 

on Day 185 seems to occur somewhat after substorm onset begins. The case is different for an 

electron-density recovery on Day 224 (August 12) of 1985; in panels (a), (b), and (c) of Figure 
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21 the clear transition from lower count-rates to higher count-rates occurs within the half hour 

that contains the onset (at about 23:04) of the substorm as seen in the AL index in panel (d). 

 Note in Figures 20 and 21 that the energy spectra of the high-energy electrons is 

noticeably softer after the count-rate enhancements than before the count-rate enhancements. 

This is in agreement with the decrease in the temperature (decrease in hardness) of the electron 

radiation belt as the density recovers (cf. the second panel of Figure 14). 

 The sudden delivery of a new electron-radiation-belt population and a new proton-

radiation-belt population to geosynchronous orbit during stormtime substorms will be discussed 

further in Section 5.2 
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5. Discussion 

 In this section a number of relevant topics are discussed. 

  

5.1. Where in the Timing of the CIRs and High-Speed Streams Do Radiation-Belt Density 

Dropouts and Density Enhancements Occur 

 To discern this timing, the properties of pertinent solar-wind parameters will be examined 

with respect to the dropouts and recoveries. The pertinent solar-wind measurements that are 

available in the CPA era are the solar-wind speed vsw (for determining the timing of the slow-to-

fast wind transition across the CIR), the solar-wind flow longitude φsw (for determining the 

timing of the east-west flow deflection in the CIR), the solar-wind magnetic-field strength Bmag 

(for determining the extent of the CIR compression and the location of the peak compression 

[Borovsky and Denton, 2010c, 2013]), the solar-wind density nsw (for determining the 

importance of ram pressure), and the proton specific entropy Sp = Tsw/nsw
2/3 (for determining the 

transition from low-entropy streamer-belt plasma to high entropy coronal-hole-origin plasma [cf. 

Intrilligator and Siscoe, 1994; Borovsky and Denton, 2010c]). Note that Tsw is the proton 

temperature of the solar wind. Solar-wind measurements from the OMNI2 database [King and 

Papitashvili, 2005] will be used. 

 In Figure 22 the superposed averages of those solar-wind measurements are plotted with 

the zero epoch being the onset time of the electron-radiation-belt density dropout (same zero 

epoch as in Figure 13). In the top panel of Figure 22 the superposed average of the solar -wind 

speed vsw is plotted; it is seen that the electron dropouts (t=0) are occurring on average during the 

early portion of the rising solar-wind velocity, in the early portion of the CIR. This is 

corroborated by the second panel of Figure 22 where it is seen that the electron dropouts are 

occurring prior to the reversal in the east-west (dawnward-duskward) flow of the solar wind. 

That reversal of the flow through zero is approximately the location of the CIR stream interface 

separating streamer-belt plasma from coronal-hole plasma [Siscoe et al., 1969; Gosling et al., 

1978; Borovsky and Denton, 2010c]. Hence the electron-radiation-belt dropouts are occurring 
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while compressed streamer-belt plasma or compressed sector-reversal-region plasma is passing 

the Earth prior to the passage of the stream interface. This is also confirmed by the red and green 

curves in the bottom panel of Figure 22; the red Sp curve shows the dropouts occurring in low-

entropy (streamer-belt or sector-reversal-region) solar wind [cf. Xu and Borovsky, 2015] and the 

green Bmag curve shows that the dropouts occur before the peak of the compression of the CIR. 

The blue nsw curve in the bottom panel indicates that the temporal occurrence of the electron-

radiation-belt density dropout is associated with a peak of the solar-wind number density, which 

also corresponds to a peak in the solar-wind ram pressure. Earlier studies [e.g. Onsager et al., 

2007; Borovsky and Denton, 2010b] also found that dropouts of the electron radiation belt were 

associated with ram-pressure temporal peaks in the solar wind. The third panel of Figure 22 plots 

the superposed average of the Newell et al. [2007] universal driver function for the 

magnetosphere v4/3Bt
2/3sin8/3(θ/2), where Bt = (By

2+Bz
2)1/2 in the upstream solar wind and where 

θ is the IMF clock angle. The driver function makes a transition from low values prior to the CIR 

to higher values during and after the CIR compression; this transition is because of the Russell-

McPherron effect and the probable occurrence of a magnetic sector reversal within or just prior 

to the CIR [Borovsky and Steinberg, 2006; McPherron et al., 2009]. As seen in the third panel, 

values of the superposed average of the driver function are ~2000 before the CIR transitioning to 

~8000 after the CIR. Dropout of the relativistic-electron flux is synonymous with dropout of the 

density of the electron radiation belt; prior studies have reported that the electron flux dropouts 

occur in the compressed slow wind prior to the passage of the stream interface (cf. Fig. 2 of 

Borovsky and Denton [2009b], Conclusion 1 of Morley et al. [2010], and Fig. 3 of Kilpua et al. 

[2015]. 

 In Figure 23 the superposed averages of the solar-wind measurements are plotted with the 

zero epoch being the onset of the electron-radiation-belt density recovery (same zero epoch as 

Figure 14). The top panel of Figure 23 shows that the electron density recoveries occur on 

average later in the rise of solar-wind speed from slow to fast. The second panel shows that the 

electron-radiation-belt density recoveries tend to occur after the dawnward-duskward reversal 
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through zero of the solar-wind flow direction; i.e. after the CIR stream interface passes, in what 

is compressed coronal-hole-origin solar-wind plasma. This is corroborated by the red Sp curve in 

the bottom panel showing that the electron number-density recoveries occur in high-entropy 

coronal-hole plasma [Xu and Borovsky, 2015]. The green curve in the bottom panel of Figure 23 

shows that the electron recoveries tend to occur after the peak compression (maximum of Bmag) 

of the CIR, which occurs near the stream interface. The blue nsw curve in the bottom panel 

indicates that the electron-radiation-belt density recovery is occurring when the solar-wind 

density has subsided to lower levels. Hence, the electron number-density recoveries are 

occurring within the CIR, in compressed coronal-hole plasma, just after the passage of the stream 

interface. Note there have been earlier studies of the location of the recovery of the relativistic 

electron flux in high-speed-stream driven storms, however the electron flux recovery is not the 

same as the electron density recovery [cf. Borovsky and Denton, 2010b]: the flux recovery comes 

after the density recovery. Those earlier studies [Borovsky and Denton, 2009b; Kilpua et al., 

2010] found that the relativistic-electron flux begins to recover in the CIR sometime after the 

passage of the stream interface. The third panel of Figure 23 plots the superposed average of the 

universal driver function v4/3Bt
2/3sin8/3(θ/2): note the sharp peak in the superposed average about 

1.5 hr prior to the onset of the radiation-belt electron density recovery (with a 1-hr time binning 

in the superposed averaging). Owing to the rapid variations in the direction of the solar-wind 

magnetic field, the driver function varies rapidly with time in the individual time series going 

into the superposed average. This peak in the superposed average is because times of stronger 

driving are being lined up together in the averaging process. One suspects that picking zero 

epochs that are the electron-density-recovery times is related to picking zero epochs that are 

substorm-occurrence times and that the peak in the superposed average in the third panel is the 

relation of strong intervals of driving to the subsequent occurrence of substorms.  

 In Figure 24 the superposed averages of the solar-wind measurements are plotted with the 

zero epoch being the onset time of the proton-radiation-belt density enhancement (same zero 

epoch as Figure 15). The timing results for the proton-density enhancement (Figure 24) are 
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similar to the timing results for the electron-density recovery (Figure 23): the top panel of Figure 

24 indicates that the proton density enhancement occurs within the interval of rising solar-wind 

speed, the second panel indicates the proton density enhancement tends to occur after the stream 

interface, and the bottom panel indicates that the proton density enhancement tends to occur after 

the solar-wind density begins to subside (blue curve) and in compressed high-entropy (coronal-

hole-origin) plasma (red curve). The third panel of Figure 24 plots the superposed average of the 

universal driver function v4/3Bt
2/3sin8/3(θ/2). Similar to the case in Figure 23, the third panel of 

Figure 24 shows a sharp peak in the superposed average about 0.5 hr prior to the onset of the 

radiation-belt electron density recovery (with a 1-hr time binning in the superposed averaging). 

The interpretation of this peak is the same interpretation as that of Figure 23, only stronger. The 

peak is caused by the zero epoch being temporally associated with to the occurrence of a 

substorm and the peak is the short-term strong solar-wind driving that produces the substorm [e.g. 

Morley et al., 2007; Boakes et al., 2011]; choosing the zero epoch to be proton density recoveries 

is related to choosing the zero epoch to be a substorm occurrence (but not just any substorm). 

 To summarize, the density dropout of the electron radiation belt tends to occur when the 

solar-wind number density (and solar-wind ram pressure) is maximum in the early portion of the 

CIR prior to the passage of the stream interface, when compressed streamer-belt-origin or sector-

reversal-region plasma is passing the Earth. The density recoveries of the electron radiation belt 

and the density enhancements of the proton radiation belt both tend to occur later in the CIR after 

the passage of the stream interface when compressed coronal-hole-origin plasma is passing the 

Earth. The electron-radiation-belt density dropouts tend to occur while the solar-wind velocity 

vector is perturbed dawnward and the electron-radiation-belt density recovery and proton-

radiation-belt density enhancements tend to occur while the solar-wind velocity vector is 

perturbed duskwards. 

  

5.2. Proton-Radiation-Belt Sources and Electron-Radiation-Belt Sources during Stormtime 

Substorms 
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 Early-storm injections of radiation-belt electrons were seen in the SOPA geosynchronous 

data set when a cooler population of radiation-belt electrons arrives at geosynchronous orbit to 

produce a sudden global enhancement of the electron-radiation-belt number density [Borovsky 

and Denton, 2010b, 2011a]; following that injection the electron radiation belt at 

geosynchronous orbit is slowly heated at constant number density during the days of the high-

speed-stream-driven storm to produce a gradual increase in the flux of energetic electrons in the 

days following storm onset [Borovsky and Denton, 2010a, 2011a]. 

  Using the CPA proton and electron measurements, in Section 4.2 this injection 

phenomena was seen for both the electron radiation belt and the proton radiation belt at 

geosynchronous orbit. In Section 4.2 the injections were specifically seen to occur in conjunction 

with the occurrence of substorms in the early phases of high-speed-stream-driven storms (cf. 

Figures 16-22). These stormtime substorms produced enhancements in the protons at 

geosynchronous orbit to energies beyond 1 MeV and produced enhancements of the electrons at 

geosynchronous orbit at energies to 1 MeV (cf. Figures 16-22). 

 The early phases of high-speed-stream-driven storms are characterized by a “strong-

stretching phase” associated with the presence of the superdense plasma sheet early in the storm 

[Borovsky and Denton, 2010b]. The strong-stretching phase, which lasts about 1 day, gets its 

name from a nightside magnetic-field morphology at geosynchronous orbit that is tail like rather 

than dipolar; this strong-stretching phase of the storm is associated with the presence of a 

diamagnetic superdense plasma sheet early in the storm [Borovsky et al., 1997], with the origin 

of the superdense plasma sheet being the magnetospheric capture of enhanced solar-wind 

densities of the plasma compression in the corotating interaction region leading the high-speed 

stream [Denton and Borovsky, 2009]. In the SOPA studies of the electron radiation belt, it was 

established that the sudden number-density enhancement of the electron radiation belt definitely 

occurs during the strong-stretching phase of the storm (cf. Fig. 21 of Borovsky and Denton 

[2010b]). The origin of the sudden density enhancement of the electron radiation belt is the direct 

production of the recovery electron-radiation-belt population by a substorm; the origin of the 
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sudden density enhancement of the proton radiation belt is also the direct production of the 

enhanced proton-radiation-belt population by a substorm. 

 Increases of proton fluxes with energies up to 1-MeV at geosynchronous orbit in 

association with the occurrence of a substorm have been reported by Belian et al. [1978] using 

CPA measurements and increases of electron fluxes with energies up to 1-MeV at 

geosynchronous orbit in association with the occurrence of a substorm have been reported by 

Ingraham et al. [2001] using CPA measurements. Birn et al. [2012] points out the difficulty in 

understanding how substorm reconnection in the magnetotail could produce such 1-MeV 

particles: this difficulty exists to the present day [Joachim Birn, private communication 2016]. It 

has been suggested [Elizaveta Antonova, private communication, 2011] that a substorm injection 

into a localized minimum in the nightside magnetic-field strength can produce an injected 

electron population of extra-high energies [see also Antonova et al., 2011; Antonova and 

Stepanova, 2015]. Hence a substorm that occurs during the strong-stretching phase of a high-

speed-stream-driven storm may directly produce the recovery population for the outer electron 

radiation belt. In the present report, the production of radiation-belt electrons and protons up to 

and beyond 1 MeV have been seen in association with substorms that occur during the strong 

stretching phase of storms. 

 As noted in Section 4.2, although these strong-stretching-phase substorms deliver protons 

and electrons of energies to 1 MeV and above to geosynchronous orbit, the substorms are not 

extremely large as measured by their sudden increase in the magnitude of the AL index or the 

AE index (cf. Figures 14-22). Perhaps substorms that occur during the strong-stretching phase of 

a storm are not efficient at producing auroral currents near the auroral-electrojet-index 

magnetometer stations; this could be caused by an equatorward expansion of the auroral oval 

during the strong-stretching phase, placing the auroral-electrojet activations southward from the 

Northern-Hemisphere AE stations [Joachim Birn, private communication 2016]. 

 

5.3. The Absence of Proton-Radiation-Belt Dropouts 
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 Global (at all local time) density dropouts of the electron radiation belt at 

geosynchronous orbit are common during high-speed-stream-driven storms (cf. Figures 10 and 

13), with the electron dropouts lasting ~0.5 day. In the superposed averages plotted in Figure 13, 

which are triggered on the times of density dropouts of the electron radiation belt, significant 

global dropout of the number density or the 1-MeV flux of the proton radiation belt are not seen. 

As stated in Section 4.2, inspection of the individual storms does not in general show global (at 

all local times) dropouts of the protons. (Brief single-spacecraft dropouts are seen near local 

midnight during the pre-substorm stretching of the nightside magnetic field, but no indications of 

global loss of radiation-belt protons.) Note again that Turner et al. [2014] reported a proton 

dropout (lasting  least several hours) accompanying an electron dropout during a CME-driven 

storm. 

 For the high-speed-stream-driven storms, the absence of proton-radiation-belt dropouts at 

geosynchronous orbit when there are electron-radiation-belt dropouts at geosynchronous orbit 

has implications for the picture of electron-radiation-belt loss to the magnetopause caused by an 

Earthward displacement of the dayside magnetopause accompanied by enhanced radial diffusion 

[e.g. Shprits et al., 2006; Yu et al., 2013; Ozeke et al., 2014]. Since the azimuthal drift speeds and 

drift periods of 1-MeV protons and 1-MeV electrons at geosynchronous orbit are very similar (cf. 

Fig. 6 of Schultz and Lanzerotti [1974]), it is anticipated that the radial-diffusion coefficients DLL 

for the electron and proton radiation belts should have similar values for energetic protons and 

energetic electrons (cf. sect. 9.8 of Falthammar [1973] and Fig 5. of Lanzerotti et al. [1978]). 

Hence radial diffusion loss to the magnetopause should have similar timescales for protons and 

electrons; if you see loss of electrons, it is expected to be accompanied by loss of protons. 

 It has been suggested by a reviewer that proton-radiation-belt dropouts might be 

occurring, but that substorm injections of protons are filling in the radiation-belt dropouts in the 

30-min-resolution measurements used in the present study. That is a possibility that the authors 

cannot disprove using the 30-min measurements. 
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 The behavior of the radiation-belt protons during electron-radiation-belt dropouts will be 

the subject of a future study. CPA proton and electron data is available at 1-min resolution. It is 

also advantageous to study such dropout events in a modern era where additional 

magnetospheric measurements at geosynchronous orbit are available (including the magnetic-

field morphology and the presence of the diamagnetic superdense plasma sheet) and where better 

solar-wind measurements are available (including the electron strahl, ion composition, the 

Alfvenicity, and energetic protons). 

 

5.4. The Role of the Solar Wind in the Evolution of the Electron and Proton Radiation 

Belts. 

 Since the solar wind controls the magnetosphere-ionosphere system, it is imperative to 

highlight the connection between solar interplanetary structures and the response of the Earth’s 

radiation belts. In this subsection the solar-wind causes for the evolutions of the outer electron 

radiation belt and the outer proton radiation belt during high-speed-stream-driven storms will be 

identified. 

5.4.1. The Electron Radiation Belt and the Solar Wind 

  The evolution of the electron radiation belt during high-speed-stream-driven storms is 

characterized by a sequence of four phases, each of which can be associated with a reaction of 

the magnetosphere to changes in the solar wind. These four phases are discussed in the following 

four paragraphs. 

 First, there is a pre-storm decay of the density (and fluxes) of the outer electron radiation 

belt. (This can be seen slightly in Figure 10). The decay may start a day or a few days before the 

onset of the storm. This pre-storm density decay is associated with the refilling of the outer 

plasmasphere during a geomagnetic “calm before the storm” [Borovsky and Denton, 2009a] (cf. 

the bottom panels of Figures 9 and 10). The calm before the storm is caused by geomagnetically 

unfavorable IMF clock angles prior to the passage of a heliospheric sector reversal ahead of the 

CIR stream interface [Borovsky and Steinberg, 2006]. A sector reversal only occurs for helmet-
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streamer CIRs [Crooker et al., 2012], hence the calm before the storm tends to occur for helmet-

streamer-CIR driven storms. Pseudo-streamer CIRs drive geomagnetic storms that tend not to 

have a calm before the storm, and hence tend not to have a pre-storm decay of the outer electron 

radiation belt [Borovsky and Denton, 2013]. 

 Second, there is a dropout in the density and flux of the outer electron radiation belt early 

in the storm. The electron-radiation-belt dropout is temporally associated with high-density 

(high-ram-pressure) solar wind passing the Earth [Onsager et al., 2007], as was seen in the 

bottom panel of Figure 22. The high ram pressure pushes the dayside magnetopause inward, 

enabling magnetopause shadowing (with radial diffusion) to strongly deplete the outer electron 

radiation belt. The high-density solar wind is due to lumps of high-density plasma prior to the 

passage of the CIR stream interface, plus CIR compression of the solar-wind plasma. The high-

density lumps are associated with sector reversal region plasma [Xu and Borovsky, 2015], which 

is present for helmet streamer CIRs but not for pseudostreamer CIRs. The lumps at 1 AU may be 

the “blobs” of plasma imaged near the Sun lifting off the tops of streamer stalks [Wang et al., 

2000; Suess et al., 2009]. Since helmet-streamer CIRs have dense sector-reversal-region plasma 

and pseudostreamers do not have sector-reversal-region plasma, helmet-streamer CIR storms 

tend to have electron-radiation-belt density dropouts that are stronger than those of 

pseudostreamer CIR storms [Borovsky and Denton, 2013]. Note that the absence of a strong 

proton-radiation-belt dropout when there is a strong electron-radiation-belt dropout (e.g. Figures 

10 and 13) may require closer consideration of this dropout explanation utilizing magnetopause 

shadowing with radial diffusion (cf. Section 5.3). One alternative was proposed by Borovsky and 

Denton [2009b] wherein the anomalously high-density solar wind produces a superdense plasma 

sheet in the magnetosphere that drives EMIC waves (or magnetosonic waves [Thomsen et al., 

2011]) in the plasmaspheric drainage plume to produce anomalous electron-radiation-belt 

scattering into the atmosphere to produce the dropout. 

 Third, there is a sudden density recovery of the outer electron radiation belt early in the 

storm (cf. Figures 10 and 14). This density recovery is temporally associated with the occurrence 
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of a substorm during the strong-stretching phase of the storm (cf. Sections 4.2 and 5.1) and with 

a temporally localized interval of strong solar-wind driving (cf. Section 5.1). The 

magnetosphere’s strong-stretching phase is caused by the diamagnetism of the superdense 

plasma sheet, and the superdense plasma sheet is caused by the high-density solar wind (sector-

reversal-region plasma plus compression) leaking into the magnetosphere to create higher than 

normal plasma sheet densities. There is a time lag of a few hours from solar-wind density to 

geosynchronous orbit plasma-sheet density [Denton and Borovsky, 2009], hence there is a time 

lag of a several hours between the solar-wind density and the strong-stretching phase (cf. Fig. 28 

of Borovsky and Denton [2010b]). The substorm and the electron-density recovery occur after 

the passage of the CIR stream interface while the Earth is bathed in coronal-hole-origin plasma. 

The substorm during the strong-stretching phase of the storm is undoubtedly associated with the 

time interval of strong solar-wind driving, which is associated with an interval of very effective 

IMF clock angle (see Section 5.4.3). 

 Fourth, there is a steady heating (hardening of the energy spectra) of the outer electron 

radiation belt during the several-day-long high-speed stream that follows the CIR (cf. Figure 10), 

provided that the IMF clock angles during the high-speed stream are Russell-McPherron 

favorable for geomagnetic activity [cf. McPherron et al., 2009]. During the heating phase the 

relativistic-electron fluxes increase, maximize, and then decrease, with the time-to-maximum 

being longer for higher energies. The electron-radiation-belt heating rate is correlated with 

several parameters [Borovsky and Denton, 2010a; Balikhin et al., 2011; Fig. 7 of Borovsky and 

Denton, 2014] such as the solar-wind speed, the solar-wind specific entropy, the levels of 

fluctuation in the solar wind, the inverse of the solar-wind density, the level of magnetospheric 

convection, and the amplitudes of ULF fluctuations in the magnetosphere. In analyzing the solar-

wind control of this electron-radiation-belt heating, discerning cause from correlation has been 

difficult. 

5.4.2. The Proton Radiation Belt and the Solar Wind 

This article is protected by copyright. All rights reserved.



 38 

 Solar proton events (SPEs) are clearly seen at all local times by the CPA ion detectors in 

geosynchronous orbit; SPEs drive the geosynchronous-orbit proton temperature to anomalously 

high levels. This represents a solar-wind energetic-ion population getting into the outer 

magnetosphere at geosynchronous orbit. The higher-energy protons of this population decay out 

of geosynchronous orbit on the timescale of a fraction of a day after the solar-wind proton 

intensities subside. 

 During the CIR portion of high-speed-stream-driven storms, the temperature of the 

proton radiation belt at geosynchronous orbit is increased slightly. This temperature increase at 

geosynchronous orbit appears to be related to enhanced populations of MeV protons in the solar 

wind associated with corotating interaction regions [cf. Mewaldt et al., 1979; Reames et al., 

1991; Richardson, 2004]. Presumably these energetic solar-wind protons leak into the 

magnetosphere to geosynchronous orbit. These CIR-associated MeV protons in the solar wind 

are accelerated by CIR shock waves in the outer heliosphere [Palmer and Gosling, 1978; Fisk 

and Lee, 1980], with the energized protons coming back towards the Sun along the Parker-spiral 

magnetic-field lines within the CIR and bathing the Earth while the Earth is in the CIR. (A 1-

MeV proton has a velocity that is about 25 times the solar-wind flow speed, so it can easily 

travel sunwards and reach the Earth while the Earth is still in the CIR.) 

 The evolution of the outer proton radiation belt during a high-speed-stream-driven storm 

is characterized by a sudden density enhancement early in the storm; this density enhancement 

represents a long-lasting shift in the radiation-belt density and a long-lasting increase of the 

energetic-proton fluxes at geosynchronous orbit. This sudden proton-radiation-belt density 

enhancement is temporally associated with a temporally localized interval of strong solar-wind 

driving along with the occurrence of a substorm during the strong-stretching phase of the storm, 

with the strong stretching phase caused by prior enhanced solar wind density (sector-reversal-

region plasma plus compression) producing a superdense plasma sheet in the magnetosphere. 

The substorm and the proton-radiation-belt density enhancement occur after the passage of the 

CIR stream interface while the Earth is bathed in coronal-hole-origin plasma. 

This article is protected by copyright. All rights reserved.



 39 

5.4.3. The Critical Stormtime Substorms 

 The present study has associated the occurrence of a substorm during the strong-

stretching phase of high-speed stream driven storms with the density-recovery events that are 

critical for the evolution of the electron and proton radiation belts. These particular substorms 

were shown in Section 4.2 to be associated with rapid delivery of MeV electrons and MeV 

protons to geosynchronous orbit. 

 The radiation-belt-producing substorm occurs after the passage of the CIR stream 

interface while the Earth is bathed in coronal-hole-origin plasma (cf. Section 5.1). Coronal-hole-

origin plasma is characterized by large-amplitude Alfvenic fluctuations of the solar-wind 

magnetic-field direction and of the solar-wind flow vector [Tsurutani et al., 1994; Crooker and 

Gosling, 1999] that take the form of thin current sheets (discontinuities) [Borovsky, 2010b]. 

When a current sheet passes the Earth, the magnetic-field orientation of the solar wind at Earth 

jumps to a new direction (cf. Fig. 5 of Bruno et al. [2001]); that direction may be favorable for 

geomagnetic activity or it may be unfavorable for geomagnetic activity. In the advecting coronal-

hole plasma, the current sheets are temporally separated by 10 minutes or so (cf. Borovsky 

[2008] and Table 1 of Borovsky [2012]), so a typical time interval of IMF orientation has a 

duration of 10 minutes or so. It remains to be investigated how the occurrence of these critical 

early-storm substorms are related to the mesoscale magnetic-field structure of the solar-wind 

plasma passing the Earth. 
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6. Summary of Findings 

 Below are the findings of this study. In this summary the abbreviations OPRB (outer 

proton radiation belt) and OERB (outer electron radiation belt) will be used. 

 

6.1. Basic Properties of the Outer Proton Radiation Belt at Geosynchronous Orbit 

 (1) A new reanalysis of the 8-satellite 2-solar-cycle (1976-1995) CPA data set of 

energetic particle measurements at geosynchronous orbit was utilized for a statistical survey and 

for event analysis. Relativistic Maxwellian fits to the measured count-rates yielded number 

densities n and temperatures (spectral hardness) T for the OPRB and OERB. 

 (2) Solar proton events (SPEs) have a strong effect on the CPA measurements of the 

OPRB at geosynchronous orbit. The CPA proton measurements during an SPE are characterized 

by anomalously high temperatures (T > 150 keV). The CPA proton data set was cleaned of SPEs 

using two SPE catalogs and using IMP-8 measurements of energetic protons in the solar wind. 

 (3) The number density of the OPRB at geosynchronous orbit (~ 1.7×10-3 cm-3) is on 

average about 10 times greater than the number density of the OERB at geosynchronous orbit 

(1.7×10-3 cm-3). 

 (4) The energy spectrum of the OPRB at geosynchronous orbit (~ 85 keV) is softer than 

the energy spectrum of the OERB at geosynchronous orbit (~ 176 keV). 

 (5) The 1-MeV proton flux at geosynchronous orbit (~ 0.058 cm-2s-1sr-1MeV-1) is about 

1000 times less than the 1-MeV electron flux at geosynchronous orbit (~ 78 cm-2s-1sr-1MeV-1). 

 (6) The energy density of the OPRB at geosynchronous orbit (~ 116 eV cm-3) is typically 

greater than the energy density of the OERB at geosynchronous orbit (~ 33 eV cm-3). 

 

6.2. Local-Time and Solar-Cycle Properties 

 (7) The number densities of both the OPRB and OERB are higher on the dayside of 

geosynchronous orbit than on the nightside. The number densities of both populations peak in 

the post noon of local time. 
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 (8) The temperatures (spectral hardness) of both the OPRB and OERB are higher on the 

dayside of geosynchronous orbit than on the nightside. For the OERB the dayside temperature is 

10% higher, for the OPRB the dayside increase is a smaller fraction. 

 (9) The 1-MeV fluxes of protons and of electrons are higher on the dayside of 

geosynchronous orbit than on the nightside. For the protons the dayside fluxes are about a factor 

of 5 higher and for the electrons the dayside fluxes are about a factor of 2 higher. 

 (10) The number densities of both the OPRB and OERB at geosynchronous orbit are 

lowest during solar maxima and highest during solar minima. 

 (11) The temperature (spectral hardness) of the OERB at geosynchronous orbit is highest 

during the declining phases of the solar cycle and lowest at solar maxima. The solar-cycle 

temperature dependence of the OPRB at geosynchronous orbit is slight. 

 (12) The 1-MeV fluxes of protons and electrons at geosynchronous orbit are highest 

during the declining phase and solar minima. 

 

6.3. Behavior During High-Speed-Stream-Driven Storms 

 (13) A collection of 62 high-speed-stream-driven (CIR-driven) geomagnetic storms in the 

years 1976-1992 has been created and utilized for the study of the evolution of the OPRB and 

OERB. To this new collection, 32 previous collected storms from 1993-1995 were added. 

 (14) The familiar 4 stages of evolution of the OERB at geosynchronous orbit seen with 

modern data sets are seen during the 1976-1995 high-speed-stream-driven storms: (1) a prestorm 

decay of the number density, (2) a density dropout early in the storm, (3) a rapid density 

recovery at cooler temperature, and (4) a slow steady heating at constant density. The 1-MeV 

electron flux decays with the density decay, drops with the density dropout, increases slightly 

with the density recovery, and increases greatly during the slow heating phase. 

 (15) The evolution of the OPRB at geosynchronous orbit during high-speed-stream-

driven storms is characterized by a sudden step-like rise (enhancement) in the number density 

and a step-like increase in the 1-MeV proton flux during the early portions of the storm. 
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  (16) The OPRB at geosynchronous orbit does not drop out when the OERB drops out; 

similarly the 1-MeV proton flux does not drop out when the 1-MeV electron flux drops out. 

Since the radial-diffusion coefficients for 1-MeV protons and electrons should be approximately 

equal, this lack of proton dropout may have implications for the picture of electron dropout 

caused by magnetopause shadowing with enhanced radial diffusion.  

 (17) The temperature of the OPRB increases mildly during the passage of the CIR, with 

the onset of the temperature increase beginning about a day before the onset of the geomagnetic 

storm. This geosynchronous-orbit temperature increase is temporally associated with enhanced 

MeV protons in the solar wind produced within CIRs. Presumably these energetic protons 

bathing the Earth diffuse into the magnetosphere and are measured by the CPA instruments. 

 (18) Examination of the solar wind finds that the stormtime OERB density dropout 

occurs in the compressed slow wind (streamer-belt-origin or sector-reversal-region plasma) prior 

to the passage of the CIR stream interface when the solar-wind velocity vector is dawnward from 

radial. 

 (19) Examination of the solar wind finds that the stormtime sudden OERB density 

recovery (enhancement) occurs in the compressed fast wind (coronal-hole plasma) after the 

passage of the CIR stream interface when the solar-wind velocity vector is duskward from radial. 

The sudden OERB density recovery is temporally associated with a brief interval of strong 

driving of the magnetosphere by the solar wind. 

 (20) Examination of the solar wind finds that the stormtime sudden OPRB density 

enhancement occurs in the compressed fast wind (coronal-hole plasma) after the passage of the 

CIR stream interface when the solar-wind velocity vector is duskward from radial. The sudden 

OPRB density recovery is temporally associated with a brief interval of strong driving of the 

magnetosphere by the solar wind. 

 

6.4. Importance of the Substorm during the Strong-Stretching Phase of the Storm 
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 (21) The sudden enhancement in the OPRB number density and 1-MeV proton flux 

during a storm is associated with the occurrence of a substorm during the strong-stretching early 

phase of the storm. Examination of individual proton-density enhancements finds that the count-

rates of protons at all energies to 1-MeV and slightly higher are enhanced at all local times by the 

substorm. 

 (22) The sudden enhancement in the OERB number density (density recovery) and 1-

MeV electron flux during a storm is also associated with the occurrence of a substorm during the 

strong-stretching early phase of the storm. This is implied in superposed-epoch studies and 

confirmed by examining examples. Examination of individual electron-density enhancements 

finds that the count-rates of electrons at all energies to about 1-MeV are enhanced at all local 

times by the substorm. The spectral hardness (temperature) of the OERB is softer (cooler) after 

the substorm injection of the electrons to 1-MeV. 
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Table 1. Properties of the proton and electron radiation belts at geosynchronous orbit. 
 Electron Belt 

mean value 
Electron Belt 
median value 

Proton Belt 
mean value 

Proton Belt 
median value 

 

n 1.7×10-4 cm-3 1.3×10-4 cm-3 1.7×10-3 cm-3 6.3×10-4 cm-3 number density 
T 176 keV 172 keV 85 keV 79 keV temperature 
F 78 cm-2s-1sr-1MeV-1 38 cm-2s-1sr-1MeV-1 0.058 cm-2s-1sr-1MeV-1 0.012 cm-2s-1sr-1MeV-1 1-MeV flux 
S 3.0×108 cm2 eV 1.3×108 cm2 eV 4.2×107 cm2 eV 1.1×107 cm2 eV specific entropy 
nT 33 eV cm-3 32 eV cm-3 116 eV cm-3 49 eV cm-3 energy density 
P < 3.5×10-3 nPa < 3.4×10-3 nPa 1.2×10-2 nPa 5.2×10-3 nPa kinetic pressure 
  
 
Table 2. Onset times for the 95 high-speed-stream-driven geomagnetic storms in 1976-1995. 
Storm 
Number 

Year Day of 
Year 

Onset 
Time (UT) 

1 1976 38 10.5 
2 1976 58 13.5 
3 1976 65 22.5 
4 1976 236 7.5 
5 1976 289 7.5 
6 1977 67 22.5 
7 1977 262 10.5 
8 1978 29 4.5 
9 1978 56 19.5 
10 1978 85 1.5 
11 1980 132 10.5 
12 1981 84 4.5 
13 1982 21 16.5 
14 1982 48 7.5 
15 1982 146 13.5 
16 1983 87 4.5 
17 1983 113 22.5 
18 1983 141 13.5 
19 1983 168 16.5 
20 1984 155 13.5 
21 1984 195 4.5 
22 1984 213 22.5 
23 1984 240 13.5 
24 1984 266 19.5 
25 1984 280 22.5 
26 1984 292 4.5 
27 1985 8 19.5 
28 1985 36 7.5 
29 1985 64 4.5 
30 1985 157 13.5 
31 1985 185 13.5 
32 1985 212 7.5 
33 1985 224 19.5 
34 1985 262 10.5 
35 1985 278 4.5 
36 1985 306 13.5 
37 1986 51 16.5 
38 1986 80 13.5 
39 1986 232 19.5 
40 1986 254 19.5 
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41 1986 266 4.5 
42 1986 286 16.5 
43 1987 51 4.5 
44 1987 196 13.5 
45 1987 224 22.5 
46 1987 253 13.5 
47 1987 286 13.5 
48 1987 300 1.5 
49 1987 327 7.5 
50 1987 349 16.5 
51 1989 20 13.5 
52 1989 115 13.5 
53 1989 143 13.5 
54 1990 331 1.5 
55 1991 226 19.5 
56 1991 242 13.5 
57 1991 350 13.5 
58 1992 246 10.5 
59 1992 261 1.5 
60 1992 272 19.5 
61 1992 300 19.5 
62 1992 342 13.5 
63 1993 227 15.5 
64 1993 282 3.5 
65 1993 307 19.5 
66 1994 11 12.5 
67 1994 26 5.5 
68 1994 35 14.5 
69 1994 65 19.5 
70 1994 92 1.5 
71 1994 121 6.5 
72 1994 148 11.5 
73 1994 195 10.5 
74 1994 275 16.5 
75 1994 295 11.5 
76 1994 302 4.5 
77 1994 340 6.5 
78 1995 29 4.5 
79 1995 42 6.5 
80 1995 57 5.5 
81 1995 68 8.5 
82 1995 85 8.5 
83 1995 96 22.5 
84 1995 122 3.5 
85 1995 143 19.5 
86 1995 150 3.5 
87 1995 170 7.5 
88 1995 176 14.5 
89 1995 197 13.5 
90 1995 220 0.5 
91 1995 225 23.5 
92 1995 248 10.5 
93 1995 308 13.5 
94 1995 358 8.5 
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Figure 1. For the proton radiation belt (blue), the electron radiation belt (red), the population of 
substorm-injected ions (green), and the population of substorm-injected electrons (gray), the 
number density and temperature of the Maxwellian fits at geosynchronous orbit are plotted. Each 
point represents 30 minutes of measurements. All 8 spacecraft for years 1976-1995 are used and 
all local times are included. 
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Figure 2. For a solar proton event (SPE) commencing on April 24 (Day 114) 1981, the IMP-8 
energetic proton fluxes in the solar wind are plotted in the top panel, and the 1-MeV proton flux, 
proton-radiation-belt temperature, and proton-radiation-belt number density as measured by four 
geosynchronous spacecraft (1976-059, 1977-007, 1979-053, and 1981-025) are plotted in the 
second, third, and bottom panels. All local times are included. 
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Figure 3. For the 1976-1995 CPA proton and electron data set, the occurrence distributions of the 
radiation-belt number densities, temperatures, 1-MeV flux, specific entropy, and energy density 
are plotted in blue for protons and in red for electrons. All local times are included. 
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Figure 4. For the 1976-1995 CPA data set at geosynchronous orbit, the local-time dependences 
of the 1-MeV proton and electron flux (top panel), proton-radiation-belt and electron-radiation-
belt temperatures (middle panel), and proton-radiation-belt and electron-radiation-belt number 
densities (bottom panel) are plotted. Each point represents a logarithmic average of all of the data 
in the 8-satellite CPA data set in that hour of local time. Note that the vertical axes for F and for 
n are logarithmic. 
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Figure 5. Pearson linear correlation coefficients between 1-MeV fluxes and the parameters of the 
high-Maxwellian fits for the CPA protons (left) and the CPA electrons (right). 
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Figure 6. For a Maxwellian distribution, the 1-MeV differential flux is plotted as a function of 
the distribution temperature. The red part of the curve represents the flux-temperature behavior 
for typical electron-radiation-belt values and the blue part of the curve represents the flux-
temperature behavior for typical proton-radiation-belt values. 
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Figure 7. For the 1976-1995 CPA data set, yearly averages of the 1-MeV proton and electron 
flux (top panel), of the temperatures of the proton and electron radiation belts (second panel), 
and of the number densities of the proton and electron radiation belts (third panel): each point 
plotted represents a logarithmic average of all of the data in the 8-satellite CPA data set for that 
calendar year. In the bottom panel the monthly sunspot number is plotted. 
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Figure 8. A day of solar rotation (horizontal) versus time (vertical) plot is made. The black points 
are times when the Kp index is 4 or greater. The red points are the onset times of the 94 high-
speed-stream-driven storms of Table 1 (1976-1995). The blue points (plus the red points in 1993-
1995) are the onset times of 70 high-speed-stream-driven storms utilized for previous radiation-
belt studies. 
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Figure 9. Using superposed-epoch averaging, the set of newly collected high-speed-stream-
driven storms in 1976-1992 are compared with the set of 1993-2005 “modern” high-speed-
stream-driven storms utilized in previous studies. In the top panel the superposed average of the 
solar-wind speed vsw is plotted, in the second panel the superposed average of the solar-wind 
number density nsw is plotted, in the third panel the superposed average of the AE index is 
plotted, and in the bottom panel the superposed average of the Kp index is plotted. 
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Figure 10. Using the onset times of the 94 high-speed-stream-driven storms of 1976-1995 (see 
Table 2) for the zero epoch, superposed averages of the CPA 1-MeV flux of protons and 
electrons (top panel), superposed averages of the proton and electron radiation-belt number 
densities (second panel), superposed averages of the proton and electron radiation-belt 
temperatures (third panel), and superposed average of Kp (bottom panel) are plotted for the 94 
storms. For the CPA geosynchronous-orbit measurements, all local times are included. In the 
first, second, and third panels the superposed averages are superposed logarithmic averages. 
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Figure 11. Same plot as Figure 10, but with the time axis expanded to ±40 days from storm onset. 
The vertical dashed lines are 27 days apart. In the first, second, and third panels the superposed 
averages are superposed logarithmic averages. 
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Figure 12. For 45 storms in the years 1976-1987 (see Table 2) that had screened IMP-8 data, the 
superposed average of the proton-radiation-belt temperature at geosynchronous orbit (top panel) 
and the fluxes of energetic protons in the solar wind (bottom panel) are plotted. All local times 
are utilized for the geosynchronous measurements. In both panels the superposed averages are 
superposed logarithmic averages. 
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Figure 13. For 48 clear electron-radiation-belt density dropouts in the 94 storms of Table 2, 
superposed averages are plotted with the zero epoch being the onset time of the electron-density 
dropout. The top panel is the AE index, the second panel is the 1-MeV proton and electron flux, 
the third panel is the radiation-belt temperature, and the bottom panel is the radiation-belt 
number density. In the second, third, and fourth panels the superposed averages are superposed 
logarithmic averages. 
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Figure 14. For 47 clear electron-radiation-belt density recoveries in the 94 storms of Table 2, 
superposed averages are plotted with the zero epoch being the onset time of the electron-density 
recovery. The top panel is the AE index, the second panel is the 1-MeV proton and electron flux, 
the third panel is the radiation-belt temperature, and the bottom panel is the radiation-belt 
number density. In the second, third, and fourth panels the superposed averages are superposed 
logarithmic averages. 
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Figure 15. For 28 clear proton-radiation-belt density enhancements in the 94 storms of Table 2, 
superposed averages are plotted with the zero epoch being the onset time of the proton-density 
enhancement. The top panel is the AE index, the second panel is the 1-MeV proton and electron 
flux, the third panel is the radiation-belt temperature, and the bottom panel is the radiation-belt 
number density. In the second, third, and fourth panels the superposed averages are superposed 
logarithmic averages. 
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Figure 16. For a proton-radiation-belt density enhancement on Day 157 (June 6) 1985, the proton 
count-rates in 20 energy channels are plotted from three geosynchronous spacecraft (panels (a), 
(b), and (c)) before and after the enhancement. Note that the low-energy channels (integral) and 
the high-energy channels (differential) have different geometric factors, hence the step in the 
count rate versus energy. In panel (d) -AL is plotted as a function of time with the times of the 
count-rate plots denoted as the colored dots. 
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Figure 17. For a proton-radiation-belt density enhancement on Day 36 (February 5) 1985, the 
0proton count-rates in 20 energy channels are plotted from three geosynchronous spacecraft 
(panels (a), (b), and (c)) before and after the enhancement. Note that the low-energy channels 
(integral) and the high-energy channels (differential) have different geometric factors. In panel 
(d) -AL is plotted as a function of time with the times of the count-rate plots denoted as the 
colored dots.  
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Figure 18. For the proton-radiation-belt density enhancement on Day 157 (June 6) 1985 (see 
Figure 16), the electron count-rates in 12 energy channels are plotted from three geosynchronous 
spacecraft (panels (a), (b), and (c)) before and after the enhancement. Note that the low-energy 
channels and the high-energy channels have different geometric factors. In panel (d) -AL is 
plotted as a function of time with the times of the count-rate plots denoted as the colored dots. 
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Figure 19. For the proton-radiation-belt density enhancement on Day 36 (February 5) 1985 (see 
Figure 17), the electron count-rates in 12 energy channels are plotted from three geosynchronous 
spacecraft (panels (a), (b), and (c)) before and after the enhancement. Note that the low-energy 
channels and the high-energy channels have different geometric factors. In panel (d) -AL is 
plotted as a function of time with the times of the count-rate plots denoted as the colored dots. 
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Figure 20. For an electron-radiation-belt density recovery on Day 185 (July 4) 1985, the electron 
count-rates in 12 energy channels are plotted from three geosynchronous spacecraft (panels (a), 
(b), and (c)) before and after the enhancement. Note that the low-energy channels and the high-
energy channels have different geometric factors. In panel (d) -AL is plotted as a function of 
time with the times of the count-rate plots denoted as the colored dots. 
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Figure 21. For an electron-radiation-belt density recovery on Day 224 (August 12) 1985, the 
electron count-rates in 12 energy channels are plotted from three geosynchronous spacecraft 
(panels (a), (b), and (c)) before and after the enhancement. Note that the low-energy channels 
and the high-energy channels have different geometric factors. In panel (d) -AL is plotted as a 
function of time with the times of the count-rate plots denoted as the colored dots. 
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Figure 22. For 48 clear geosynchronous-orbit electron-radiation-belt density dropouts in the 94 
storms of Table 2, superposed averages are plotted with the zero epoch being the onset time of 
the electron-density dropout. The top panel is the solar-wind speed at Earth, the second panel is 
solar-wind east-west flow-vector longitude at Earth, the third panel is the Newell universal driver 
function, and the bottom panel are the number density, proton specific entropy, and magnetic-
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field strength of the solar wind at Earth. In the third panel the superposed average of Sp is a 
superposed logarithmic average. 
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Figure 23. For 47 clear geosynchronous-orbit electron-radiation-belt density recoveries in the 94 
storms of Table 2, superposed averages are plotted with the zero epoch being the onset time of 
the electron-density recovery. The top panel is the solar-wind speed at Earth, the second panel is 
solar-wind east-west flow-vector longitude at Earth, the third panel is the Newell universal driver 
function, and the bottom panel are the number density, proton specific entropy, and magnetic-

This article is protected by copyright. All rights reserved.



 81 

field strength of the solar wind at Earth. In the third panel the superposed average of Sp is a 
superposed logarithmic average. 
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Figure 24. For 28 clear geosynchronous-orbit proton-radiation-belt density enhancements in the 
94 storms of Table 2, superposed averages are plotted with the zero epoch being the onset time 
of the proton-density enhancement. The top panel is the solar-wind speed at Earth, the second 
panel is solar-wind east-west flow-vector longitude at Earth, the third panel is the Newell 
universal driver function, and the bottom panel are the number density, proton specific entropy, 
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and magnetic-field strength of the solar wind at Earth. n the third panel the superposed average 
of Sp is a superposed logarithmic average. 
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