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Abstract
Engineering the physical properties of particles, especially their size, is an important parameter in

the fabrication of successful carrier systems for the delivery of therapeutics. Here, various routes

were explored for the fabrication of particles in the nanosize regime. It was demonstrated that the

use of a charged species and/or solvent with high dielectric constant can influence the size and dis-

tribution of particles, with the charged species having a greater effect on the size of the particles

and the solvent a greater effect on the distribution of the particles. In addition to the fabrication of

nanoparticles, their fractionation into specific size ranges using centrifugation was also investi-

gated. The in vitro particle uptake and intracellular transport of these nanoparticles was studied as

a function of size and incubation period. The highest level of intralysosomal localization was

observed for the smallest nanoparticle group (average of 174 nm), followed by the groups with

increasing sizes (averages of 378 and 575 nm), most likely due to the faster endosomal uptake of

smaller particles. In addition, the internalization of nanoparticle clusters and number of nanopar-

ticles per cell increased with longer incubation periods. This work establishes a technological

approach to compartmentalized nanoparticles with defined sizes. This is especially important as rel-

atively subtle differences in size can modulate cell uptake and determine intercellular fate. Future

work will need to address the role of specific targeting ligands on cellular uptake and intracellular

transport of compartmentalized nanoparticles.
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1 | INTRODUCTION

During the last decades, the use of carrier systems for the delivery of

therapeutics to specific locations in the body has gained significant

momentum. Nanoparticle-based delivery systems have evolved from

simple, nontargeted drug carriers to highly multifunctional systems with

various targeting, stealth, and delivery capabilities.1–3 There is evidence

that the physical properties of a carrier system, such as size and shape,

are as effective in determining the fate of the particles in the body as

the chemical properties of the particles, such as targeting and stealth

ligands incorporated on their surfaces.4,5 Specifically, the size of a car-

rier system can influence the therapeutic loading percentages, the

mode of delivery, induced toxicity levels, the circulation time in the

body, the carrier’s biodistribution in distinct organs, cellular uptake

routes, and clearance mechanisms from the body.4–8 For example,

while nanoparticles smaller than 100 nm can be taken up via clathrin-

mediated or caveolae-mediated endocytosis, nanoparticles between

500 nm and 5 lm are taken up via phagocytosis,5,9 although often sev-

eral routes of uptake are possible.10 Furthermore, nanoparticles smaller

than 8 nm are typically cleared via excretion through the kidneys, nano-

particles between 20 and 150 nm in size are cleared by the liver, and

larger than 200 nm nanoparticles are cleared by the spleen.5,11 Still,

these number should be taken as indicators of orders of magnitude,

rather that strict values as other factors also influence clearance. As
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such, the fabrication of nanoparticles in the nanosize regime and the

engineering of their specific sizes and distributions is a significant factor

is determining the effectiveness of a carrier system in the body.

A multitude of fabrication methods for the creation of polymeric

microparticles and microparticle exists, including various emulsion

methods,12 particle fabrication in nonwetting templates (PRINT) tech-

nology,13 self-assembly of block copolymers,14 electrospray techni-

ques,15,16 microfluidics,17 and layer-by-layer assemblies.18 Alternatively,

electrohydrodynamic (EHD) co-jetting has been developed as a high

throughput system for the fabrication of multifunctional particles and

fibers, where the internal architecture can be designed to incorporate

unique capabilities.19–21 During the EHD co-jetting process, two or

more polymeric solutions are flown in a side-by-side configuration

under a laminar regime, meaning that convective mixing is minimized,

and a stable interface between the fluids is achieved in the formed

droplet where the two solutions meet. Upon the addition of an electric

field, the droplet forms into a Taylor cone, and an electrified polymeric

jet is ejected from the very tip that forms into individual droplets. Due

to the rapid acceleration of the jet, the immediate reduction in diame-

ter, and the resulting increase in the surface area to volume ratio, the

solvents present in the droplets evaporate rapidly, leaving behind solidi-

fied particles. As a result of the rapid evaporation of the solvents and

the laminar flow regime, the initial flow determined configuration is

maintained in the particles in the form of distinct compartments.21

In the past decade, the fabrication of multicompartmental fibers and

particles with two to seven different compartments and with various

shapes via EHD co-jetting has been well-established.22–26 Additionally,

within these systems, the incorporation of water-based and organic-

based polymers,25,27–29 functional polymers for the creation of specific

targeting and stealth patches on the surface of the particles,30,31 stimuli-

responsive polymers for on-demand therapeutic release kinetics,32–34

small molecule-based therapeutics,33–35 DNA-based therapeutics,36

protein-based therapeutics,35 and imaging agents22 have been explored.

Furthermore, the interaction of such systems with various cell

types,34,36–41 their biodistribution in vivo,42 and their functionality as car-

riers for dual therapeutic delivery to the cochlea35,43 have demonstrated

that multifunctional systems fabricated based on EHD co-jetting can be

ideal carriers for targeted delivery in various applications. To date, the

majority of these studies have been accomplished using microparticles,

and while some have contained nanoparticles,36,37,42 a systematic study

into the fabrication of uniform, multifunctional nanoparticles using the

EHD co-jetting system has not been reported. In this manuscript, the

engineering of nanoparticles with specific size distributions via two dif-

ferent approaches, using charged species or specific solvents, is explored.

Upon confirmation of a systematic method for the fabrication of uni-

formly distributed nanoparticles at specific size ranges, their in vitro

uptake as a function of size and incubation period is examined.

2 | MATERIALS AND METHODS

2.1 | Materials for particle fabrication

Chloroform, dimethylformamide (DMF), phosphate buffered saline

(PBS), cetyl trimethylammonium bromide (CTAB), poly[tris(2,5-bis

(hexyloxy)21,4-henylenevinylene)-alt-(1,3- phenylenevinylene)] (PTDPV),

and tween 20 were used as purchased from Sigma-Aldrich, USA. Polylac-

tide-co-glycolide (Purasorb PDLG 5002A) with a ratio of 50:50 lactide to

glycolide and a molecular weight of 17 kDa was purchased from Cor-

bion, Inc., USA, and Polylactide-co-glycolide with a ratio of 50:50 lactide

to glycolide and a molecular weight of 17 kDa was purchased from Lake-

shore Biomaterials, USA.

2.2 | Particle fabrication

Particles were fabricated using the EHD jetting procedure. Briefly, the

17 kDa PLGA was dissolved at a 10% wt/vol concentration in various

ratios of chloroform and DMF, before being flown in a laminar regime

through parallel metallic needles at 0.1 ml per hour. For samples con-

taining CTAB, the charged surfactant was added directly to the polymer

solution. Upon the formation of a stable droplet at the interface of the

two polymeric solutions, a voltage was applied to the droplet creating a

polymeric jet from the tip of the needles. The polymeric jet then split

into individual droplets, causing the solvents to evaporate rapidly, leav-

ing behind solidified particles on the grounded electrode. To label the

nanoparticles with a fluorescent dye, an organic soluble fluorescent

polymer (PTDPV) was dissolved in the particle jetting solution at a

0.1 mg/ml concentration. The particles were then fabricated using the

EHD jetting system as described above, as the dye did not require any

additional changes to the jetting setup and postprocessing steps. This

dye was used due to its strong fluorescent activity (peaking at 518 nm

in its emission spectra, similar to fluorescein-based dye molecules), its

hydrophobic nature (chloroform solubility and water insolubility), and

its high molecular weight (Mw532 kDa), which together prohibited the

release of the dye from the nanoparticles during postprocessing steps

and further experiments. Once fabricated, the particles were imaged

via Scanning Electron Microscopy (SEM) to determine their shape and

size distribution. To quantify the size of the nanoparticles, the ImageJ

program was used to measure the size and distribution of over 500

nanoparticles per sample.

2.3 | Isolation of nanoparticles via centrifugation

Nanoparticles with a solvent ratio of 97:03 chloroform: DMF and 5%

wt/vol CTAB were fabricated and collected in PBS and 0.01% tween

20 (vol/vol). The particles were filtered using 40-lm Falcon cell

strainers, sonicated on ice, and centrifuged at 4,000 RPM for 5 min to

remove larger impurities. The resulting supernatants were spun at

10,000 RPM for 1, 5, 10, 20, and 30 min time intervals to isolate indi-

vidual size ranges of nanoparticles. The nanoparticles were character-

ized by Dynamic Light Scattering (DLS) to determine their size

distribution and Nanosight Nanoparticles Tracking Analysis (NTA) to

determine their concentration (particles per milliliter).

2.4 | Materials for cellular uptake studies

Sodium chloride and bovine serum albumin were purchased from Roth

and Jackson ImmunoResearch, UK, respectively. Resazurin solution (ala-

mar blue), DyLight 649 donkey anti-mouse IgG (H1L, secondary
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antibody), Phalloidin–tetramethylrhodamine B (phalloidin-TMR), and

saponin from quillaja bark (�10%) were purchased from Sigma-Aldrich,

Germany. The 96-well assay plates from Corning, Germany, were used

for studying the cellular viability. Human cervical carcinoma (immortal-

ized from patient Henrietta Lacks, hence labeled “HeLa”) cells were pur-

chased from American Type Culture Collection, USA, and were seeded

in cell culture flasks (25, 75, 150 cm2) from Techno Plastic Products,

Germany. For cell counting, a Neubauer improved counting chamber

(hemocytometer) provided by MARIENFELD Laboratory, Germany,

glassware was used. PBS, paraformaldehyde (8%), Hoechst, trihydro-

chloride, trihydrate, and fluoromount-G were purchased from Biochrom

(Germany), Electron Microscopy Sciences, Life Technologies, and

Southern Biotech (Germany), respectively. Lysosomal-associated mem-

brane protein 1 (LAMP 1; mouse anti-human IgG1; developmental

studies hybridoma bank, Supernatant) was purchased from the Univer-

sity of Iowa, Department of Biology. Glycine (�99%), sterilized 10-mm

round cover slips with thickness of 0.1760.005 mm, glass slides (76 3

26 mm), and parafilm were purchased from Carl Roth, Germany. The 4-

well tissue culture plates were obtained from Thermo Scientific,

Germany.

2.5 | Nanoparticle stability studies

The colloidal stability of nanoparticles of different average diameters

(d15174 nm, d25378 nm, and d35575 nm, as determined by DLS)

was studied44 in the presence of different concentrations of sodium

chloride and bovine serum albumin. The variation in the hydrodynamic

diameters (dh) of nanoparticles was used as an indicator of their stability

in saline and protein rich environments, respectively.45 Nanoparticles

were exposed to varying concentrations of sodium chloride in water

(0–5 M) and bovine serum albumin in PBS (0–800 mM). Final concen-

trations of nanoparticles after mixing with different concentrations of

NaCl and BSA were 2 3 109
; and 4 3 109 nanoparticles/ml, respec-

tively. The hydrodynamic diameters of the nanoparticles were meas-

ured three times via DLS analysis and are presented with

corresponding standard deviations in Supporting Information Figure 1.

2.6 | Cellular toxicity studies

For determining the acute impact of the exposure of nanoparticles on

cellular viability, a resazurin-based cytotoxicity assay was performed,

which is based on the mitochondrial activity of the living cells.46,47

Active mitochondria of the living cells perform the bioreduction of the

dye, that is, they convert the nonfluorescent blue dye (resazurin) into

its reduced form (resorufin) which fluoresces pink. These studies were

performed by seeding HeLa cells in 96-well transparent bottom plates

(7,500 cells/well, area of each well was 0.32 cm2) in 100 ml of complete

growth media (Dulbecco's Modified Eagle Medium (DMEM) supple-

mental with 10% FBS, 1% P/S, and 1% glutaMAXTM) and incubated for

24 hr at 378C with a constant supply of 5% CO2. After 24 hr, when

HeLa cells had adhered to the bottom of 96-well assay plates, the old

growth media was replaced by fresh growth media containing nanopar-

ticles at different concentrations c(NP). Serial dilutions of nanoparticles

were performed to examine the toxic effect for a range of nanoparticle

concentrations (1 3 101021 3 107 nanoparticles/ml) and each dose was

added in triplicate. In a few wells of the assay plates, fresh growth media

(without nanoparticles) was added to the cells, which served as positive

control. After 24 hr of incubation of the cells with the nanoparticles, the

growth media was aspirated and the cells were washed with PBS fol-

lowed by the addition of 100 ml of 10% resazurin solution in complete

cell growth media into each well of the assay plates. Resazurin solution

(10%) was added in three wells of the assay plates (without cells), which

served as negative control and the assay plates were incubated for 3.5

hr under the aforementioned conditions. After 3.5 hr of incubation, the

fluorescence spectra of each well of the assay plates were recorded via

spectrofluorometer coupled with a microwell-plate reader using an exci-

tation wavelength of 560 nm and acquiring the emission spectra from

572 to 650 nm. The mean of the maximum fluorescence intensity values

for each concentration was determined and the viability for each nano-

particle concentration-treated cell was defined as the mean of the maxi-

mum fluorescence intensity of resorufin (originating from each well of

the assay plate). For background correction, the mean of background

values was subtracted from the mean of maximum fluorescence

intensity values for each concentration. Finally, all values obtained

were normalized with respect to their positive controls (cells without

nanoparticles).

2.7 | Cellular uptake of nanoparticles

HeLa cells were initially grown in 75 cm3
flasks and were seeded for

nanoparticle uptake on sterilized round glass cover slips

(diameter510 mm) placed into 4-well cell culture plates at a density of

20,000 cells per well. Each well had a surface area of 1.9 cm2 and was

filled with 0.5 ml of complete cell growth medium (DMEM supple-

mented with 10% FBS, 1% Glutamax, and 1% P/S). Cells were grown at

378C in an incubator with a constant supply of 5% CO2. After 24 hr,

the growth media was replaced by fresh growth media containing

nanoparticles at a final concentration of 1.5 3 108 nanoparticles/ml.

Nanoparticles were shortly sonicated for 30 s just before mixing with

cell growth medium and cells were exposed to nanoparticles for differ-

ent time intervals (6, 12, and 24 hr) under the aforementioned condi-

tions. In parallel, control experiments were also performed in which

cells were grown in the presence of complete cell growth media with-

out addition of nanoparticles.

After incubation with nanoparticles for defined time intervals, the

cells were washed with PBS and fixed with 4% paraformaldehyde solu-

tion in PBS (20 min incubation at room temperature), followed by three

washes with PBS. The fixed cells were transferred on Parafilm previ-

ously spread on an unmodified surface and were exposed to permeabil-

ization solution (glycin 5 mg/ml and saponin 0.5 mg/ml, in PBS) for 5

min at room temperature, followed by treatment with blocking solution

(20 mg/ml BSA in the permeabilization solution) for 30 min at 378C.

Cells with nanoparticles were immunostained by means of LAMP 1

(2 mg/ml, primary antibody in blocking solution), incubated for 1 hr at

378C, washed three times with blocking solution and exposed to a solu-

tion of Dylight 649 conjugated donkey anti-mouse (1.25 mg/ml,
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secondary antibody), Hoechst 33342 (0.5 mg/ml), and phalloidin-TMR

(40 nM) in PBS for another 1 hr at 378C. Hoechst 33342 and

phalloidin-TMR were used to stain cellular nuclei and cytoskeletons,

respectively.10,48 Afterward, the cells were washed three times with

PBS, one time with water and after mounting with Fluoromont-G

on glass slides (76 3 26 mm) were placed in a dark and dry place

for 24 hr.

A Confocal Laser ScanningMicroscope (CLSM 510Meta) from Zeiss

was used for visualizing the fixed and immunostained cellular samples

containing internalized nanoparticles. For sample visualization and image

acquisition, the CLSMwas equipped with diode, argon, and helium neon

lasers and excitations of 405, 488, 543, and 633 nm were used for all

imaging. Fluorescence micrographs of immunostained samples with

internalized nanoparticles and their corresponding controls (cells without

nanoparticles) were captured. The nuclei stained with Hoechst reagent

were excited at 405 nm and the dye emission was detected between

420 and 480 nm. Nanoparticles containing the PTDVP dye were visual-

ized by exciting at 488 nm and detecting the emission between 505 and

550 nm. The fluorescence of the phalloidin-TMR labeled cytoskeleton

was excited at 543 nm, and emission was captured using a 560-nm long

pass filter. Antibody-labeled lysosomeswere excited at 633 nm, and their

emissionwas recorded via a 650-nm long pass filter.

In detail, z-stacks/three-dimensional (3D) image stacks (with 0.1

mm resolution in the xy-plane and 0.48 mm resolution along the z axis)

were acquired using a pinhole aperture of 1 Airy unit. Thirty to fifty

images were recorded per sample covering an average of 60–100 cells

per condition. Images of control samples were acquired to set threshold

values for image processing and data evaluation of nanoparticle-treated

samples. To assess the number and intracellular location of internalized

nanoparticles from fluorescence image stacks a similar procedure was

applied as proposed by Torrano et al.49,50

The uptake of nanoparticles by cells, in particular their intralyso-

somal fraction, was quantified by Digital Image Cytometry51,52 using

the fluorescence micrographs captured by CLSM.48 Each cell (includ-

ing the nucleus, lysosomes, and associated nanoparticles) was recon-

structed and modeled in 3D using MATLAB (Mathworks) and

CellProfiler53 by applying the following approach: based on the two-

dimensional (2D) plane (around z50 mm) where cells showed the

largest cross-sectional area, the outlines of the individual cells were

identified as described by Pelaz et al.54 These outlines were

expanded along the z-dimension to separate touching cells reliably

by die-cutting the reconstructed volumetric data at a later stage.

Prior to modeling, the images in different fluorescence channels of

the stack underwent noise reduction by 3D-median filtering with a

FIGURE 1 Using the same polymer and concentration, particles ranging in diameter (d) from micrometers (A) to nanometers (D) were pre-
pared. By increasing the amount of DMF, polydisperse microparticles (A) could be downsized to bimodal particles where one set was at
approximately 1 lm and one at 100 nm (B). Alternatively, by adding a charged surfactant, polydispersed microparticles (A) could be down-
sized to polydispersed nanoparticles ranging in size from 50 to 800 nm (C). Combining these effects resulted in monodispersed nanoparticles
in the 50–150 nm range (D). The insets in each image represent a higher magnification image of the particles (top) and the size distribution
of the particles based on ImageJ analysis of SEM images (bottom)
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kernel size of 3 3 3 3 3 voxels. In case of nuclei and cytoskeletal

signals, the images were slightly smoothed after noise reduction

with a 3D Gaussian filter of size 5 3 5 3 3 pixels. Then, all slices

were binarized by manual thresholding. Following this, morphologi-

cal operations were applied to improve the quality of the 3D recon-

struction (cleaning the image stack from very small clusters

consisting of less than 4 3 4 3 4 connected voxels and filling holes in

the remaining structures). In case of the cytoskeletal stain, the images

were morphologically closed with a three-voxel-sized diamond-shaped

structuring element after binarization to avoid ruptures in the recon-

structed cell surface. The images of the channel containing the nano-

particle signals were treated exactly as described earlier. Finally, all

connected voxels were identified yielding a volumetric representation

of nuclei, cells, lysosomes, and aggregates of nanoparticles.

For each aggregate of nanoparticles (in terms of connected voxels),

the total integrated fluorescence intensity was determined (to calculate

the amount of nanoparticles per aggregate) and the relative position

with respect to the cell and lysosomal structures was calculated. Nano-

particle aggregates located in the extracellular areas were not consid-

ered (ie, center of mass of aggregate was outside the cell body volume).

Nanoparticles overlapping with lysosomal structures (ie, the center of

mass of the aggregate of nanoparticles was inside the lysosomal vol-

ume) were classified as being located inside the lysosomes. Based on

these assumptions the number of nanoparticles per cell, Ncell, and the

fraction localized inside the lysosomes, Nlyso, was calculated. The inter-

nalization results are expressed as median values6upper/lower quar-

tile. However, larger particles (clusters/clumps of nanoparticles) with

high fluorescence intensity were also detected while quantifying the

internalization of nanoparticles, the presence of which might hamper

the precision of the evaluated data.

3 | RESULTS AND DISCUSSIONS

Size is an important physical parameter for particles used in drug deliv-

ery applications due to its influence over circulation times, rates of

opsonization, cellular uptake, passive targeting to tumors via the EPR

effect, tumor penetration, and excretion from the body.55,56 In the

EHD co-jetting system, several parameters such as polymer molecular

weight and concentration, solvent viscosity and dielectric constant, and

the applied voltage mainly control the size and uniformity of particles

ranging from micrometer to nanometer in diameter. One of the most

common routes of fabricating nanoparticles and nanofibers via electro-

spraying, is the use of polymeric solutions with dilute

concentrations.57–60 Based on this, our initial studies on the fabrication

of nanoparticles focused on the use of polymers with low molecular

weight values (4.1 kDa) and at dilute concentrations (0.01–1% wt/vol).

While these experiments did result in nanoparticles as small as 100–

200 nm (Supporting Information Figure 1), the yield was extremely low

FIGURE 2 Effect of CTAB concentration on the diameter (d) and distribution of nanoparticles when the polymer concentration and solvent
ratios are kept constant. (A) Box plot of nanoparticle size distributions, and (B–L) are representative SEM images of particles with 0–10%
wt/vol of CTAB, respectively
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for this process due to the dilute concentrations used (as a reference,

the images shown in Supporting Information Figure 1 were taken after

4–10 hr of jetting on the same substrate (S. F. 1 A-C, respectively),

where for all images shown in Figures 1–3, the jetting was only done

for 30 min). As a result, other routes of fabricating nanoparticles were

explored to establish a fabrication procedure that could result in higher

yields.

The other common parameters investigated for the fabrication of

nanoparticles include the use of solvents with higher dielectric constants/

surface tensions and the incorporation of charged species, which affect

the overall charge of the jetting solutions. It has been well established that

the use of solvents with high dielectric constants, such as N, N-dimethyl

formamide (DMF), can result in the fabrication of nanofibers rather than

microfibers due to the induced higher net charge density on the jetting

solution.61–63 Similarly, the use of a charged surfactant results in an overall

increase in the charge density and conductivity of the jetting solution,

which ultimately results in nanofibers and particles with smaller diame-

ters.15,62,64,65 Building on these studies, the effect of each parameter,

using the same poly (lactide-co-glycolide) polymer (PLGA 50:50, 17 kDa)

and at the same concentration of 10% wt/vol, on particle size and their

combined effects were subsequently studied. It was observed that a sol-

vent ratio of 97:03, chloroform:DMF yielded polydispersed microparticles

(Figure 1A), while the same solution with a solvent ratio of 1:1, chloro-

form:DMF yielded bimodal, yet uniform particles with one set of nanopar-

ticles at approximately 50–150 nm and a second set at approximately

1 lm (Figure 1B). Alternatively, keeping the same ratio of solvents (97:03),

but adding a charged surfactant, CTAB, at 5% wt/vol resulted in a polydis-

persed population of nanoparticles ranging from 50 to 800 nm (Figure

1C). Combining these two parameters (5% wt/vol CTAB addition and a

ratio of 1:1 chloroform: DMF) resulted in monodispersed nanoparticles

ranging from 50 to 150 nm in diameter (Figure 1D). Higher magnification

images and the size distribution of the nanoparticles based on ImageJ anal-

ysis of the SEM images are included as insets for each set of particles.

To fully understand the effect of each of these parameters

(charged species and solvent with higher dielectric constant), a more

systematic study was conducted, where each parameter was tested at

an increasing concentration or ratio, while keeping all other parameters

constant. To study the effect of the charged species, the concentration

of the CTAB was increased from 0 to 10% wt/vol at 1% intervals, while

the polymer concentration, molecular weight, and solvent ratio (97:03

Chloroform:DMF) were kept constant in order to isolate the effect of

the charged species.

The resulting particles were imaged with SEM and their size

distribution was determined based on analysis with the program

ImageJ. As demonstrated in Figure 2, the median values and the

size distributions for the nanoparticles decrease as the CTAB con-

centration is increased (the median value and size distribution of

the zero percent particles are not included in the graph due to the

much larger values of 3,255 nm and 450–16,710 nm, respectively).

However, there is a limit to the amount of CTAB that can be used

in a given solution: at higher values than 5% wt/vol, the jetting

solution results in the fabrication of a mixture of nanoparticles and

FIGURE 3 Effect of solvent ratio on the size (in terms of particle diameter d) and distribution of nanoparticles when the concentration of
the polymer and charged species are kept constant. (A) Box plot of nanoparticle size distributions and (B–G) are SEM images of nanopar-
ticles with a decreasing amount of chloroform to DMF ratio of 100:00 to 50:50, respectively

RAHMANI ET AL. | 87



fibers, instead of the desired smaller sized nanoparticles. Addition-

ally, the stability of the jetting solution and the yield of the nano-

particles also decreases with increasing CTAB concentrations. As a

result, the optimum formulation for fabricating nanoparticles by

solely relying on the effect of a charged species is approximately 4–

5% wt/vol. In addition, CTAB can be cytotoxic and thus its use at

high concentrations is not desirable.

A similar study was conducted to determine the optimum ratio of

chloroform to DMF for the engineering of uniform nanoparticles at spe-

cific size ranges. Here, the polymer concentration, molecular weight, and

CTAB concentration (5% wt/vol) were kept constant, while the ratio of

chloroform and DMF was decreased from 100:00 to 50:50, respectively

(Figure 3). Similar to nanoparticle formulations with higher than 5% wt/

vol of CTAB, the formulation with chloroform as the sole solvent

resulted in a sample with fibers and particles. For formulations with

DMF, nanoparticles without any fibers could be fabricated, which nar-

rowed in size as the ratio of chloroform to DMF was decreased. As dem-

onstrated in Figure 3, a distinct difference in size distribution can be

seen after the 80:20 chloroform to DMF ratio, where both the median

size and the distribution drops significantly. As a note, while not much

difference is observed in the median and distribution of the samples

with 30, 40, and 50% DMF ratios, the yield of the nanoparticles did

decrease with increasing DMF concentration. This is most likely due to

the insolubility of CTAB in DMF and the instability in the Taylor cone

associated with this. Thus, the samples with the higher yields and lowest

nanoparticle size and distribution were achieved with the 70:30 and

60:40 chloroform to DMF ratios. By employing DMF, a much more uni-

form population of nanoparticles as compared to the CTAB samples

could be engineered. As such, it would appear that while CTAB can be

used to reduce the size of the particles from micron-sized to nanosized,

the incorporation of higher DMF ratios can be used to engineer nano-

particles with more uniform size distributions.

In addition to fabricating monodispersed nanoparticles, the isolation

of nanoparticles with specific size ranges from a polydispersed sample

can be of interest, especially as it allows for the side-by-side testing of

nanoparticles with the same properties (same batch, material, and physi-

cal characteristics), but with different size ranges. This fractionation can

be achieved by using serial centrifugation (Figure 4A), where a polydis-

persed sample of particles (here the sample in Figure 1C) is centrifuged

at a set force of 9,400 relative centrifugal force for longer durations to

pellet increasingly smaller nanoparticles. The size distribution of several

fractions (1, 10, 20, and 30 min) with median sizes of 44, 122, 220, and

615 nm are shown in Figure 4B, as analyzed by DLS. In addition, a SEM

image of the 30 min sample showing nanoparticles with a size distribu-

tion of 30–110 nm is demonstrated as an inset in Figure 4C. Here, the

hydrodynamic diameter (dh) as measured by DLS is displayed as oppose

FIGURE 4 Separation of a polydispersed group of nanoparticles into monodispersed fractions using serial centrifugation. (A) Schematic dis-
playing serial centrifugation. (B) Size distribution (in terms of hydrdodynamic particle diameter (dh) of different fractions (1, 10, 20, and 30
min) based on DLS measurements. (C) Representative image of uniform 50-nm nanoparticles from the 30-min sample
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to the diameters shown in previous figures that were measured by

ImageJ analysis of SEM images (denoted as “d” in this manuscript).

As mentioned previously, the isolation of particles with specific size

ranges from the same batch of particles, rather than their individual fabri-

cation by changing the jetting parameters, allows for the side-by-side

study of their behavior solely as a function of size. Note that such fractio-

nation techniques can be very precise, allowing for the isolation of dis-

crete particle species.66 We were specifically interested in employing this

technique to study the effect of size on the cellular uptake of nanopar-

ticles. To begin, nanoparticles with average hydrodynamic diameters of

174, 378, and 575 nm were isolated via serial centrifugation and their

colloidal stability in buffered solutions containing various salt (sodium

chloride at 0–5 M) and protein (bovine serum albumin at 0–800 mM) con-

centrations were studied (Supporting Information Figure 2).44 The varia-

tion in the hydrodynamic diameter (dh) of the nanoparticles was analyzed

by DLS measurements and used as an indicator of their stability. While

the nanoparticles were stable in sodium chloride concentrations of less

than 0.34 M, at higher concentrations the size of the nanoparticles

increased as they started to aggregate in the solution. Such behavior is

well known for most colloids.67 However, as typical physiological concen-

trations of sodium chloride in the body are at 0.15 M, all three nanopar-

ticle samples are expected to be colloidally stable for drug delivery

applications as with regard to the salt concentrations.

Incubation studies with albumin were conducted to study the

effect of the creation of a protein corona on the stability of these nano-

particles in solution.45 The nanoparticles, especially the two larger sets

of nanoparticles, were shown to be relatively stable in increasing con-

centrations of the albumin and increased in size as the concentration of

albumin, and the size of the protein corona, increased. The effect of the

protein corona was more pronounced on the smaller nanoparticles as

the protein corona would be more obvious on the smaller sized par-

ticles (ie, a protein corona of 50 nm is more pronounced on 100 nm

particles [50% size increase] than on 500 nm particles [10% size

increase]). While the nanoparticles are prone to building a protein

corona, this can potentially be mitigated by incorporating stealth moi-

eties as surface modifications in future studies.

Before conducting in vitro studies to determine the effect of size on

nanoparticle uptake, the cytotoxicity of the nanoparticles was deter-

mined. A resazurin-based assay was used to demonstrate the cytotoxicity

by incubating known concentrations of nanoparticles (particles per millili-

ter as determined by Nanosight’s NTA technique) with HeLa cells. The

resazurin assay is based on the mitochondrial activity of living cells, where

the active mitochondria perform the reduction of the dye that can be

detected via a plate reader.46,47 In other words, the fluorescence intensity

of resorufin can be directly related to the viability of the cells. Note that

this test has to be regarded as a basic screening for the acute toxic

effects of nanoparticles on cells, whereas for more profound analysis

more sophisticated tests are necessary. In particular, due to the short

incubation times only severe acute reduction in cellular viability can be

probed. The viability studies were performed by seeding HeLa cells for

24 hr, followed by incubation with nanoparticles at various concentra-

tions (107 to 1010 nanoparticles per ml). After a 24-hr incubation, the res-

azurin assay determined the number of live cells as compared to controls

that were not incubated with nanoparticles. From these studies (Figure

5A), it was determined that none of the nanoparticle fractions imposed

acute cytotoxicity to HeLa cells at concentrations below 4�3 108 nano-

particles per ml. As such, nanoparticle uptake studies with the HeLa cells

were done at a concentration of 1.5 3 108 nanoparticles per ml, in order

to ensure that toxicity would not be a factor in the studies.

To study the cellular uptake of nanoparticles as a function of size,

the three separate nanoparticle populations (average hydrodynamic diam-

eters of 174, 378, and 575 nm) were incubated with HeLa cells for 6, 12,

and 24 hr. After the incubations, the cells were fixed, and their cytoskele-

ton, nuclei, and lysosomes were immunostained.10 The samples were

FIGURE 5 Cellular uptake of nanoparticles. (A) Cell viability (V) of HeLa cells upon 24 hr of exposure to nanoparticles as a function of
nanoparticle concentration c(NP). Data present the mean values of three experiments with corresponding standard deviations. (B) A repre-
sentative CLSM image of nanoparticles internalized by HeLa cells after 12 hr of incubation. Stained cellular compartments are shown as
phalloidin-TMR conjugated cytoskeleton (B.1, red), fluorescently labeled nanoparticles (B.2, green), Hoechst stained cellular nuclei (B.3, blue),
immunostained lysosome (B.4, yellow), and an overlay of all channels showing aforementioned cellular compartments and nanoparticles
(B.5). The scale bars correspond to 20 mm
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analyzed with confocal microscopy to view the uptake of the nanopar-

ticles as a function of size over time. An example of the 2D images

obtained from these studies is demonstrated in Figure 5B.1–5, where the

cytoskeleton (red), nanoparticles (green), nuclei (blue), lysosomes (yellow),

and their overlay image can be seen, respectively. Here, the 378 nm

nanoparticles were incubated for 12 hr with HeLa cells. Corresponding

control studies, where nanoparticles were not incubated with the cells,

were also done for later correlation studies to set the threshold values

for the image processing and data evaluation of the nanoparticle treated

cells (an example of these studies at the 12-hr incubation without nano-

particles is displayed in Supporting Information Figure 3).48

Additionally, images at different focal planes were also obtained

for each of the samples, which were then reconstructed into 3D images

as demonstrated in Figure 6. Here, the DLS data in Figures 6A.1, 6B.1,

and 6C.1 display the size distribution of each set of nanoparticles, fol-

lowed by the 3D reconstructed images of the cellular uptake of the

nanoparticles as a function of time (6, 12, and 24 hr). Similar to the 2D

images in Figure 5, here the nucleus (blue), cytoskeleton (red), lyso-

somes (yellow), and nanoparticles (green) are demonstrated. As can be

observed for all three size fractions, the number of nanoparticles asso-

ciated with cells increase as the duration of nanoparticle incubation

increases. Longer incubation time allows for a larger portion of the cells

to come into contact with the nanoparticles and permits multiple routes

of nanoparticle uptake to take place. This is especially important for the

larger sized nanoparticles, as their mode of uptake may be different

due to their larger size.5,9

To quantify this data and determine the absolute number of inter-

nalized fluorescent nanoparticles per cell, an average integrated

FIGURE 6 Cellular uptake of nanoparticles with different hydrodynamic diameter (dh) as a function of time. (A.1–C.1) Size distribution of
the nanoparticles and (A.2–C.4) nanoparticle uptake by cells after 6, 12, and 24 hr as demonstrated by 3D reconstructions of confocal
images, respectively. Here, the cytoskeleton (red), nuclei (blue), lysosomes (yellow), and nanoparticles (green) are demonstrated
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florescence signal per nanoparticle was determined for each nanopar-

ticle type.48 For this purpose, a z-stack of a drop of diluted nanoparticle

suspension was acquired and embedded in fluoromount-G to mimic

the conditions used for cell imaging, and to inhibit Brownian motion.

For determining the distribution of integrated fluorescence intensity

per nanoparticle, individual nanoparticles were segmented applying the

following procedure: (a) the photon shot noise was removed by 3D-

median filtering with a kernel size of 3 pixels, (b) the image was con-

verted by manually defining the threshold, and (c) the morphological

operations were applied to improve the quality of the 3D reconstruc-

tion. Finally, the connected components in the resulting matrix were

identified and the underlying fluorescence signal of each voxel cluster

(referring to one or more nanoparticles) was summed to determine the

distribution of the integrated intensity values per nanoparticle.48 The

maxima of the resulting distribution functions were picked as average

integrated intensity per nanoparticle (Supporting Information Figure 4).

Based on this information, and the obtained volumetric cell data

from confocal imaging, the total number of internalized nanoparticles

per cell could be calculated (Figure 7). Here, the volumetric cell data are

the number of nanoparticle clusters, which is proportional to the vol-

ume of incorporated nanoparticles, and the total number of internalized

nanoparticles is the volume of internalized nanoparticles divided by the

volume of one nanoparticle. As explained in the methods section, it

was automatically distinguished whether a nanoparticle was adhering

to the cellular plasma membrane or already fully internalized. Addition-

ally, the nanoparticles were correlated spatially with lysosomes for fur-

ther analysis. In general, greater enrichment of nanoparticles inside the

cells and lysosomes was observed with the passage of time as the

nanoparticles have more opportunity to come into contact with the

cells and be taken up (Figure 7A). Additionally, greater intralysosomal

localization of the nanoparticles with the smallest sized nanoparticle set

(average of 174 nm) was observed, followed by sets in increasing sizes

(averages of 378 and 575 nm), most likely due to the faster endosomal

uptake of smaller nanoparticles (Figure 7C). In addition, the internaliza-

tion of nanoparticle clusters and number of nanoparticles per cell were

the highest for the largest nanoparticle size. We note that for such

studies the metrics of uptake is paramount, which in this case was cho-

sen as the number of internalized nanoparticles per cell.68

FIGURE 7 Quantification of nanoparticle uptake by cells. The data are displayed for the number of nanoparticle clusters per cells (A), num-
ber of nanoparticles per cells (B), and 3D lysosomal overlap percentage (C)
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Nevertheless, the outcome is somewhat unexpected and future studies

will need to focus on addressing the underlying mechanism.

4 | CONCLUSIONS

The fabrication of nanoparticles and the engineering of their size and

distribution is an important factor in the design and success of carriers

for drug delivery applications. Here, the fabrication of nanoparticles via

the EHD co-jetting technique using three different strategies (low con-

centrations, solvent choice, and charged species) and their resulting

nanoparticles is explored. It is demonstrated that while using low con-

centrations of polymeric solutions can result in nanoparticles, the yields

are low. Alternatively, uniform nanoparticles with high yields can be

fabricated by the incorporation of a charged species, CTAB, and a sol-

vent with a high dielectric constant, DMF, which result in size reduction

and uniformity, respectively. Furthermore, a polydispersed population

of nanoparticles was fractionated into specific size ranges via serial cen-

trifugation to study their cellular uptake as a function of their size,

while keeping all other parameters constant. The uptake of the nano-

particles over time (6, 12, and 24 hr) and their association with lyso-

somes were investigated. Based on these studies, it is demonstrated

that uniform nanoparticles in high yields can be prepared based on the

EHD co-jetting technique and that such nanoparticles can be of value

for in vitro and in vivo studies for specific applications.

LITERATURE CITED

[1] Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedi-

cine in cancer therapy: challenges, opportunities, and clinical applica-

tions. J Control Release. 2015;200:138–157.

[2] Shi DL, Bedford NM, Cho HS. Engineered multifunctional nanocarriers

for cancer diagnosis and therapeutics. Small. 2011;7(18):2549–2567.

[3] Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific

nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.

[4] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene

delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–347.

[5] Sun TM, Zhang YS, Pang B, Hyun DC, Yang MX, Xia YN. Engineered

nanoparticles for drug delivery in cancer therapy. Angew Chem Int

Ed. 2014;53(46):12320–12364.

[6] Morachis JM, Mahmoud EA, Almutairi A. Physical and chemical

strategies for therapeutic delivery by using polymeric nanoparticles.

Pharmacol Rev. 2012;64(3):505–519.

[7] Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V.

PLGA-based nanoparticles: an overview of biomedical applications.

J Control Release. 2012;161(2):505–522.

[8] Kreyling WG, Hirn S, Moller W, et al. Air-blood barrier translocation

of tracheally instilled gold nanoparticles inversely depends on parti-

cle size. ACS Nano. 2014;8(1):222–233.

[9] Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A,

Fadeel B. Toxicology of engineered nanomaterials: focus on biocom-

patibility, biodistribution and biodegradation. Biochem Biophys Acta.

2011;1810(3):361–373.

[10] Kastl L, Sasse D, Wulf V, et al. Multiple internalization pathways of

polyelectrolyte multilayer capsules into mammalian cells. ACS Nano.

2013;7(8):6605–6618.

[11] Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors.

Nat Rev Clin Oncol. 2010;7(11):653–664.

[12] Zhang J, Jin J, Zhao HY. Surface-initiated free radical polymerization at

the liquid-liquid interface: a one-step approach for the synthesis of

amphiphilic Janus silica particles. Langmuir. 2009;25(11):6431–6437.

[13] Perry JL, Herlihy KP, Napier ME, Desimone JM. PRINT: a novel plat-

form toward shape and size specific nanoparticle theranostics. Acc

Chem Res. 2011;44(10):990–998.

[14] Higuchi T, Tajima A, Motoyoshi K, Yabu H, Shimomura M. Frus-

trated phases of block copolymers in nanoparticles. Angew Chem Int

Ed. 2008;47(42):8044–8046.

[15] Xie JW, Lim LK, Phua YY, Hua JS, Wang CH. Electrohydrodynamic

atomization for biodegradable polymeric particle production.

J Colloid Interface Sci. 2006;302(1):103–112.

[16] Sridhar R, Lakshminarayanan R, Madhaiyan K, Barathi VA, Limh KHC,

Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofib-

ers based on natural materials: applications in tissue regeneration, drug

delivery and pharmaceuticals. Chem Soc Rev. 2015;44(3):790–814.

[17] Wang JT, Wang J, Han JJ. Fabrication of advanced particles and

particle-based materials assisted by droplet-based microfluidics.

Small. 2011;7(13):1728–1754.

[18] del Mercato LL, Rivera-Gil P, Abbasi AZ, et al. LbL multilayer capsu-

les: recent progress and future outlook for their use in life sciences.

Nanoscale. 2010;2(4):458–467.

[19] Roh KH, Martin DC, Lahann J. Biphasic Janus particles with nano-

scale anisotropy. Nat Mater. 2005;4(10):759–763.

[20] Lahann J. Recent progress in nano-biotechnology: compartmental-

ized micro- and nanoparticles via electrohydrodynamic co-jetting.

Small. 2011;7(9):1149–1156.

[21] Rahmani S, Lahann J. Recent progress with multicompartmental

nanoparticles. MRS Bull. 2014;39(3):251–257.

[22] Bhaskar S, Hitt J, Chang SWL, Lahann J. Multicompartmental micro-

cylinders. Angew Chem Int Ed. 2009;48(25):4589–4593.

[23] Bhaskar S, Lahann J. Microstructured materials based on multicom-

partmental fibers. J Am Chem Soc. 2009;131(19):6650–6651.

[24] Bhaskar S, Gibson CT, Yoshida M, et al. Engineering, characteriza-

tion and directional self-assembly of anisotropically modified nano-

colloids. Small. 2011;7(6):812–819.

[25] Bhaskar S, Pollock KM, Yoshida M, Lahann J. Towards designer

microparticles: simultaneous control of anisotropy, shape, and size.

Small. 2010;6(3):404–411.

[26] Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S. Red blood cell-

mimicking synthetic biomaterial particles. Proc Natl Acad Sci U S A.

2009;106(51):21495–21499.

[27] Lee KJ, Yoon J, Rahmani S, et al. Spontaneous shape reconfigura-

tions in multicompartmental microcylinders. Proc Natl Acad Sci U S

A. 2012;109(40):16057–16062.

[28] Roh KH, Yoshida M, Lahann J. Water-stable biphasic nanocolloids

with potential use as anisotropic imaging probes. Langmuir. 2007;23

(10):5683–5688.

[29] Roh KH, Martin DC, Lahann J. Triphasic nanocolloids. J Am Chem

Soc. 2006;128(21):6796–6797.

[30] Bhaskar S, Roh KH, Jiang XW, Baker GL, Lahann J. Spatioselective

modification of bicompartmental polymer particles and fibers via

huisgen 1, 3-dipolar cycloaddition (vol 29, pg 1655, 2008). Macromol

Rapid Commun. 2008;29(24):1973–1973.

[31] Rahmani S, Saha S, Durmaz H, et al. Chemically orthogonal three-

patch microparticles. Angew Chem Int Ed. 2014;53(9):2332–2338.

[32] Sokolovskaya E, Rahmani S, Misra AC, Brase S, Lahann J. Dual-stim-

uli-responsive microparticles. ACS Appl Mater Interfaces. 2015;7(18):

9744–9751.

92 | RAHMANI ET AL.



[33] Rahmani S, Park TH, Dishman AF, Lahann J. Multimodal delivery of

irinotecan from microparticles with two distinct compartments.

J Control Release. 2013;172(1):239–245.

[34] Park TH, Eyster TW, Lumley JM, et al. Photoswitchable particles for

on-demand degradation and triggered release. Small. 2013;9(18):

3051–3057.

[35] Rahmani S, Ross AM, Park TH, et al. Dual release carriers for coch-

lear delivery. Adv Healthc Mater. 2016;5(1):94–100.

[36] Misra AC, Bhaskar S, Clay N, Lahann J. Multicompartmental par-

ticles for combined imaging and siRNA delivery. Adv Mater. 2012;24

(28):3850–3856.

[37] Misra AC, Luker KE, Durmaz H, Luker GD, Lahann J. CXCR4-tar-

geted nanocarriers for triple negative breast cancers. Biomacromole-

cules. 2015;16(8):2412–2417.

[38] Yoon J, Eyster TW, Misra AC, Lahann J. Cardiomyocyte-driven actua-

tion in biohybrid microcylinders. Adv Mater. 2015;27(30):4509–4515.

[39] Yoshida M, Roh KH, Mandal S, et al. Structurally controlled bio-hybrid

materials based on unidirectional association of anisotropic microparticles

with human endothelial cells. AdvMater. 2009;21(48):4920–4925.

[40] Yoshida M, Roh KH, Lahann J. Short-term biocompatibility of bipha-

sic nanocolloids with potential use as anisotropic imaging probes.

Biomaterials. 2007;28(15):2446–2456.

[41] Mandal S, Bhaskar S, Lahann J. Micropatterned fiber scaffolds for

spatially controlled cell adhesion. Macromol Rapid Commun. 2009;30

(19):1638–1644.

[42] Rahmani S, Villa CH, Dishman AF, et al. Long-circulating Janus

nanoparticles made by electrohydrodynamic co-jetting for systemic

drug delivery applications. J Drug Target. 2015;23(7-8):750–758.

[43] Ross AM, Rahmani S, Prieskorn DM, et al. Persistence, distribution,

and impact of distinctly segmented microparticles on cochlear

health following in vivo infusion. J Biomed Mater Res A. 2016;104

(6):1510–1522.

[44] Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain

SM. Characterization of nanomaterial dispersion in solution prior to

in vitro exposure using dynamic light scattering technique. Toxicol

Sci. 2008;101(2):239–253.

[45] Huhn D, Kantner K, Geidel C, et al. Polymer-coated nanoparticles

interacting with proteins and cells: focusing on the sign of the net

charge. ACS Nano. 2013;7(4):3253–3263.

[46] O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the alamar

blue (resazurin) fluorescent dye for the assessment of mammalian

cell cytotoxicity. Eur J Biochem. 2000;267(17):5421–5426.

[47] Kreyling WG, Abdelmonem AM, Ali Z, et al. In vivo integrity of polymer-

coated gold nanoparticles. Nat Nanotechnol. 2015;10(7):619–623.

[48] Torrano AA, Br€auchle C. Precise quantification of silica and ceria

nanoparticle uptake revealed by 3D fluorescence microscopy. Beil-

stein J Nanotechnol. 2014;5(1):1616–1624.

[49] Torrano AA, Blechinger J, Osseforth C, et al. A fast analysis method

to quantify nanoparticle uptake on a single cell level. Nanomedicine.

2013;8(11):1815–1828.

[50] T�arnok A. Innovations in image cytometry. Cytometry A. 2012;81(3):

183–184.

[51] Sears RJ, Duckworth CW, Decaestecker C, et al. Image cytometry

as a discriminatory tool for cytologic specimens obtained by endo-

scopic retrograde cholangiopancreatography. Cancer Cytopathol.

1998;84(2):119–126.

[52] Carpenter AE, Jones TR, Lamprecht MR, et al. CellProfiler: image

analysis software for identifying and quantifying cell phenotypes.

Genome Biol. 2006;7(10):R100.

[53] Pelaz B, del Pino P, Maffre P, et al. Surface functionalization of

nanoparticles with polyethylene glycol: effects on protein adsorption

and cellular uptake. ACS Nano. 2015;9(7):6996–7008.

[54] Moghimi SM, Hunter AC, Andresen TL. Factors controlling nanopar-

ticle pharmacokinetics: an integrated analysis and perspective. Annu

Rev Pharmacol. 2012;52:481–503.

[55] Rivera-Gil P, De Aberasturi DJ, Wulf V, et al. The challenge to relate

the physicochemical properties of colloidal nanoparticles to their

cytotoxicity. Acc Chem Res. 2013;46(3):743–749.

[56] Sill TJ, von Recum HA. Electro spinning: applications in drug deliv-

ery and tissue engineering. Biomaterials. 2008;29(13):1989–2006.

[57] Shenoy SL, Bates WD, Frisch HL, Wnek GE. Role of chain entangle-

ments on fiber formation during electrospinning of polymer solu-

tions: good solvent, non-specific polymer-polymer interaction limit.

Polymer. 2005;46(10):3372–3384.

[58] Gupta P, Elkins C, Long TE, Wilkes GL. Electrospinning of linear

homopolymers of poly(methyl methacrylate): exploring relationships

between fiber formation, viscosity, molecular weight and concentra-

tion in a good solvent. Polymer. 2005;46(13):4799–4810.

[59] Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F. Regeneration

of Bombyx mori silk by electrospinning - part 1: processing parame-

ters and geometric properties. Polymer. 2003;44(19):5721–5727.

[60] Son WK, Youk JH, Lee TS, Park WH. The effects of solution proper-

ties and polyelectrolyte on electrospinning of ultrafine poly(ethylene

oxide) fibers. Polymer. 2004;45(9):2959–2966.

[61] Chen YZ, Zhang ZP, Yu J, Guo ZX. Poly(methyl methacrylate)/silica

nanocomposite fibers by electrospinning. J Polym Sci Part B Polym

Phys. 2009;47(12):1211–1218.

[62] Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electro-

spun polymeric fibers: preliminary study on polystyrene. Polym Int.

2004;53(11):1851–1859.

[63] Yang DY, Wang Y, Zhang DZ, Liu YY, Jiang XY. Control of the mor-

phology of micro/nanostructures of polycarbonate via electrospin-

ning. Chinese Sci Bull. 2009;54(17):2911–2917.

[64] Chen YZ, Peng P, Guo ZX, Yu J, Zhan MS. Effect of hyperbranched

poly(ester amine) additive on electrospinning of low concentration

poly(methyl methacrylate) solutions. J Appl Polym Sci. 2010;115(6):

3687–3696.

[65] Sperling RA, Liedl T, Duhr S, et al. Size determination of (bio)conju-

gated water-soluble colloidal nanoparticles: a comparison of differ-

ent techniques. J Phys Chem C. 2007;111(31):11552–11559.

[66] Caballero-Diaz E, Pfeiffer C, Kastl L, et al. The toxicity of silver

nanoparticles depends on their uptake by cells and thus on their

surface chemistry. Part Part Syst Charact. 2013;30(12):1079–
1085.

[67] Parakhonskiy B, Zyuzin MV, Yashchenok A, et al. The influence of

the size and aspect ratio of anisotropic, porous CaCO3 particles on

their uptake by cells. J Nanobiotechnol. 2015;13:53.

SUPPORTING INFORMATION

Additional Supporting Information can be found the online version

of this article at the publisher’s website.

RAHMANI ET AL. | 93


