Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.201600595

Toward High-Thermoelectric-Performance Large-Size Nanostructured BiSbTe Alloys via Optimization of Sintering-Temperature Distribution

Gang Zheng, Xianli Su, * Xinran Li, Tao Liang, Hongyao Xie, Xiaoyu She, Yonggao Yan, Ctirad Uher, Mercouri G. Kanatzidis, and Xinfeng Tang* Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

Toward high thermoelectric performance large-size nanostructured BiSbTe alloys via optimization of sintering temperature distribution

Gang Zheng, Xianli Su, * Xinran Li, Tao Liang, Hongyao Xie, Xiaoyu She, Yonggao Yan, Ctirad Uher, Mercouri G. Kanatzidis, Xinfeng Tang*

Figure S1. SEM image of the surface on which Seebeck coefficients were measured by the scanning Seebeck probe.

Figure S2. (a) Temperature dependence of the electrical conductivity for samples synthesized by MS-PAS at different sintering temperatures but with no holding time; (b) electrical conductivity measured at the sintering temperature for the samples synthesized by MS-PAS at different sintering temperatures but with no holding time.

Figure S3. (a) The temperature dependence of the Seebeck coefficient measured on samples synthesized by MS-PAS at different sintered temperatures but with no holding time; (b) Values of the Seebeck coefficient measured at the sintering temperature for the samples synthesized by MS-PAS at different sintering temperatures but with no holding time.

Figure S4. (a) Temperature dependence of the thermal conductivity measured on samples synthesized by MS-PAS at different sintering temperatures but with no holding time; (b) thermal conductivity measured at the sintering temperature for samples synthesized by MS-PAS at different sintering temperatures but with no holding time.

Figure S5. (a) Diffraction peak identification and the orientation factor calculation for a sample synthesized by MS-PAS and for the ZM sample. Black trace: powder after MS. Red trace: MS-PAS sample. Blue trace: ZM sample, reflections taken on the a–b plane; (b) relationship between the orientation factor and the sintering temperature for MS–PAS processed samples.

Figure S6. (a) Temperature dependence of the electrical conductivity for MS-PAS synthesized samples at different sintering temperatures between 623K and 763 K. The inset shows the sintering temperature dependence of the electrical conductivity at room temperature; (b) temperature dependence of the Seebeck coefficient for MS-PAS synthesized samples at different sintering temperatures between 623K and 763 K. The inset displays the sintering temperature dependence of the Seebeck coefficient at room temperature.

Figure S7. (a) Temperature dependence of the power factor for MS-PAS synthesized samples at different sintering temperatures between 623K and 763 K; (b) sintering temperature dependence of the power factor at room temperature.

Figure S8. (a) Temperature dependence of the thermal conductivity for MS-PAS synthesized samples at different sintering temperatures between 623K and 763 K; (b) the temperature dependence of the lattice thermal conductivity, $\kappa_L = \kappa - \kappa_e$ for MS-PAS synthesized samples at different sintering temperatures between 623K and 763 K. The inset shows the sintering temperature dependence of $\kappa_L = \kappa - \kappa_e$ at room temperature.

Figure S9. The temperature dependence of *ZT* for MS-PAS synthesized samples at different sintering temperatures between 623K and 763 K.

Figure S10. (a) BSI image of the ZM sample; (b) BSE image of the ZM sample; (c) BSI image of a sample cut from the ingot with the diameter of 30 mm and height of 12 mm and

sintered for 5 min; (d) BSE image of a sample cut from the ingot with the diameter of 30 mm and height of 12 mm and sintered for 5 min.

Figure S11. (a) SEM image of the contact surface of a ribbon prepared by MS; (b) SEM image of the free surface of a ribbon prepared by MS.

Figure S12. Images of an ingot with the diameter of 30 mm and height of 12 mm prepared by MS-PAS.