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ABSTRACT

COMPUTATIONAL ANALYSIS OF G-PROTEIN COUPLED RECEPTOR
SCREENING, DIMERIZATION, AND DESENSITIZATION

By

Peter J. Woolf

Chairperson: Jennifer J. Linderman

Mechanistic models of G-protein coupled receptor (GPCR) signaling are used to

gain insight into how changes in drug properties affect cellular response.  Broadly, this

work is divided in to three areas focusing on drug screening, desensitization, and receptor

dimerization.

First, ordinary differential equation models are used to examine biases in drug

screening assays such as those used in drug discovery.  It is shown that some screens

should be innately biased against detecting inverse agonists and as such may miss

pharmaceutically valuable drug leads.  However, the results also suggest ways in which

the screening assay can be modified to correct this bias.

Second, Monte Carlo simulations of protein diffusion and reaction are used to

determine the effects of drug properties on GPCR activation and desensitization.  For

most GPCRs, drugs cause an initial burst of activity (activation) followed by an

attenuation of the signal over long times (desensitization).  Simulations of this activation

and desensitization process show that the mean drug-receptor lifetime can affect



desensitization in a way that allows receptor activation and desensitization to be partially

decoupled.

Third, Monte Carlo simulations of receptor dimerization and diffusion are used to

show how dimerization can affect membrane organization.  Many membrane bound

proteins, including GPCRs, form transient dimers, but the physiological reason for

dimerization is not clear.  The simulations show that dimerization under diffusion limited

conditions can lead to the formation of extended clusters.  These clusters, in turn, can

alter the receptor internalization rate and the degree of cross-talk among receptors, in

agreement with experimental findings.

Overall, this work has a variety of implications.  Pharmacologically, this work

presents a new way of making drug discovery a more rational process by focusing assays

toward drugs with desirable efficacies and improved desensitization profiles. Similarly,

receptor dimerization could also provide a novel mechanism for affecting drug signaling.

For basic biology, the modeling work presented here suggests that dimerization could

provide a new way to control protein organization within the cell membrane.  Together

this work helps us to provide us with a more mechanistic understanding of how cells

communicate via GPCRs.
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CHAPTER I

INTRODUCTION

In this thesis I explore spatial and kinetic aspects of drug—receptor binding using

computer modeling.  This work has provided new insights into drug discovery and

provided a more complete understanding of drug action.  A common thread through this

work is the application of models to the G—protein coupled receptor (GPCR) signal

transduction pathway.  This receptor system was chosen because of its wide applicability

to pharmacology and because years of experimental research on this receptor family has

provided a wealth of literature data.

1.1 Signal Transduction

Ligand or drug binding to cell surface receptors initiates a series of events known

as signal transduction.  In this process, receptors alter the states of other proteins, which

in turn leads to an avalanche of changes inside the cell.  The cell uses this avalanche of

information to describe what is occurring in the cellular environment and then to alter its

behavior accordingly.  Without signal transduction, the cell would be blind to many

environmental changes, making the cellular cooperation we see in most organisms

impossible.  Therefore the long-term goal of this work is to understand how signal

transduction takes place and what factors influence this process.

In this thesis, I assume that the action of a drug on a receptor can be described by

three ligand specific parameters, kon, koff, and α as shown in Figure 1.1a.  The parameters

kon and koff describe the kinetic association and dissociation rate constants for ligand
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binding to receptor.  The ratio of these two parameters gives the equilibrium binding

affinity of the ligand for the receptor.  The third parameter, α, also known as the

conformational selectivity factor, describes the relative affinity of the ligand for active

and inactive receptor conformation as shown in Figure 1.1b. Roughly, α describes the

ability of a ligand to hold a receptor in an active conformation.  This conformation might

activate secondary messengers, or could induce dimerization for example.

Figure 1.1  a) A drug’s view of a receptor.  Using a simplified view of drug–receptor
interactions, the drug can only bind to (kon) and dissociate from (koff) the receptor,
selecting for a specific conformation (α).  b) Cell response as a function of ligand
conformational selectivity, α.  By changing α, one can obtain all three experimentally
observed drug behaviors.

These three parameters describe ligand–receptor interactions if the receptor has only two

states, active and inactive.  The reason is that the cell’s signal transduction machinery can

only detect the identity and presence of a ligand through the conformation of the receptor.
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Therefore if the receptor only exists in an active or inactive state, then the cell can only

base its response on the frequency of receptor activation.  The assumption of two states

can be somewhat relaxed to include a one dimensional continuum of states between

active and inactive states without changing this argument as shown in Figure 1.2.

Figure 1.2  Two views of receptor activation.  Receptor activity can be viewed either as
rapidly switching from an active to inactive conformation (solid line) or as existing as
continuum of receptor conformations ranging from an inactive to active conformations
(dotted).  Assuming the switching frequency from the active to inactive conformation is
sufficiently rapid, then both views produce practically identical results.

Other ligand specific parameters have been suggested in the literature, but these

parameters are generally not mechanistically realistic or are redundant if we assume the

receptor exists in only an active or inactive conformation.  For example, a number of

models of receptor action include an additional equilibrium term β, which describes the

ability of a ligand bound receptor to bind to G–proteins (Samama et al. 1993; Weiss et al.

1996).  If we assume that the receptor can only exist between two states, active and

inactive, then β must be set equal to one.  A non-unity value of β indicates that the

G–protein can distinguish between ligand bound and unbound receptor independent of
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the activity of the receptor, implying that the receptor has an additional conformation

beyond the active and inactive states.  If future experimental evidence supports the

existence of additional physiologically relevant receptor conformations, then additional

terms describing drug–receptor interactions must be included.

The work in this thesis describes how drugs can influence drug screening,

receptor organization and signaling via dimerization, and receptor desensitization.  By

describing the ligand with three established parameters, kon, koff, and α, I can probe how

changes in the drug should affect each of these processes.  These results demonstrate how

this simplified view of drug action can yield pharmacologically useful predictions that are

able to direct future research.

1.2 G—Protein Coupled Receptors (GPCRs)

In this work I focus on a pharmacologically important class of receptors known as

GPCRs.  As their name implies, GPCRs transmit their signal by coupling with guanine

nucleotide binding proteins (G—proteins).  Approximately 80% of all known hormones,

neurotransmitters, and neuromodulators are believed to transmit their signal through

these G—protein coupled receptors (GPCRs) (Lesch and Manji 1992), and

pharmacologists estimate that 60% of all medicines used today act through G—protein

signaling pathways (Roush 1996). Examples of such GPCR systems include the

β—adrenergic receptor (involved in regulating heart contractility), the opioid and

dopamine receptors (involved in brain function), and the N—formyl peptide receptor

(involved in the immune response).  Figure 1.3 illustrates a number of other important

physiological uses of GPCRs in the human body.   Abnormalities in GPCR signaling are

involved in numerous diseases and disorders and are therefore a major target for
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therapeutic intervention (Arvanitakis et al. 1998).  By working to understand GPCR

signaling, I hope to foster the development of better, more effective drugs to improve

human health.

Figure 1.3  Physiological roles of GPCRs throughout the human body.

Receptor mediated G—protein activation has been well characterized both

experimentally and theoretically (Neer 1995; Berman and Gilman 1998) and is shown

schematically in Figure 1.4.  With no ligand present, GPCRs generally favor the inactive

conformation with only a small fraction of the total receptors in the active conformation,

leading to a low level of constitutive signaling (Lefkowitz et al. 1993).  However, in the

presence of a strong agonist, receptors will change to the active conformation.  While in

the active conformation, the receptor can bind to inactive G—proteins, the heterotrimer

αβγ—GDP. In the presence of GTP, the G—protein can then exchange GTP for GDP on its
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α subunit, causing the dissociation of the G—protein into two subunits: α−GTP and βγ. 

Both α−GTP and βγ  are believed to propagate the signal inside the cell, thereby

initiating the changes that lead to a response within seconds to minutes of receptor

activation (Kenakin 1996).  The α subunit possesses intrinsic GTPase activity that

deactivates the α subunit, allowing the α−GDP and βγ subunits to reform the inactive

G—protein.  Thus G—protein activation serves as a timed molecular switch.

Figure 1.4  GPCR signal transduction cascade. First, ligand binds to the receptor and
alters is conformation.  The active conformation can then bind with the G-protein and
catalyze the exchange of GDP for GTP.  In the active GTP bound state, the G-protein
dissociates into two subunits, Gα and Gβγ, both of which can propagate a signal.  With
time the active Gα subunit reverts to the inactive GDP form and rebinds the Gβγ subunit to
recover an inactive G-protein.

When multiple species of G-protein and receptor are present, then there is the

possibility of receptor cross—talk.  Receptor cross—talk describes the process in which

activation of one receptor species co—activates the signal transduction pathway of a
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second, inactive receptor species (Tomura et al. 1997).  For example, ligand binding to

the D2 dopamine receptor has been shown to affect the signaling ability of the

somatostatin receptor  SSTR5 (Rocheville et al. 2000). In this thesis I will only focus on

cross—talk at the level of receptors and G—proteins.  In this case, we assume that each

receptor species primarily acts on a single species of G—protein, but weakly cross—reacts

with a second species of G—protein as shown in Figure 1.5.  In this case, the degree of

receptor cross—talk between any two receptor species could be influenced by the spatial

organization of receptors on the cell membrane as shown in Figure 1.6.  In Figure 1.6a,

each species of receptor is spatially isolated resulting in low levels of cross—talk, while in

Figure 1.6b, the receptors are well mixed resulting in increased cross—talk.

Figure 1.5 Cross—talk between receptors.  In this scheme each receptor activates its
primary G—protein (heavy line), but can also cross—react with a secondary G—protein
(dotted line).

Figure 1.6 Impact of location on cross—talk between two distinct receptors species (pink
and yellow).  a) Receptors that cluster into homogeneous islands are expected to exhibit
little cross—talk.  b) Well mixed pools of receptors may have increased cross—talk.
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1.3 Receptor Dimerization

Dimerization of membrane bound proteins is ubiquitous although its impact on

cell function has not been well characterized.  A simplified view of protein dimerization

is shown in Figure 1.7, whereby dimerization of two monomers is described by the rate

constant kdimer, and breakup of a dimer into two monomers is described by the rate

constant kmono.  Ligands might influence this process by changing the conformation of the

receptor.  Therefore, if we assume that only active or inactive receptors form dimers, then

the ligand specific parameters α should also describe the degree of receptor dimerization

at any given time.

Figure 1.7.  Receptor dimerization.  Dimerization and monomerization rates depend on
the activity of the receptor.

The role of dimerization is not clear for many receptor systems.  For receptor

tyrosine kinase proteins, dimerization is thought to bring reactive species together to

transduce a signal (Weiss and Schlessinger 1998), although dimerization alone may not

be sufficient to transduce a signal (Burke and Stern 1998).  In other systems the

physiological role of dimerization is less clear.  For example, it has been recently

revealed that a large number of G–protein coupled receptors (GPCRs) are able to form

homo- and heterodimers (Nimchinsky et al. 1997; Hebert and Bouvier 1998; Gines et al.

2000; Overton and Blumer 2000).  In most cases, dimerization of GPCRs does not

correlate with signaling, but instead is thought to affect signal cross talk among receptor

types or desensitization of the receptor via an unknown mechanism (George et al. 2000;

Jordan et al. 2001).  Similarly, the bacterial receptor Tar (Gardina and Manson 1996),

human nerve growth factor receptor (Schlessinger and Ullrich 1992), and the bacterial
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and plant Photosystem II proteins (Jahns and Trissl 1997) are all able to form transient

dimers in the membrane, but the reasons for these interactions are unknown.

Although the role of dimerization is not well characterized, dimerization appears

to be an evolutionarily conserved property of many signaling proteins and as such is

likely to play a critical role.  In chapter 5 we discuss how dimerization could provide a

means to localize GPCRs on the cell membrane.  In chapter 6 we show how this

organization could influence receptor physiology.

1.4 Receptor Desensitization

After sustained receptor activation, the number of receptors in the cell membrane

drops in a process termed long term desensitization (January et al. 1997; Krupnick and

Benovic 1998).  This process serves two related roles in that it maintains the sensitivity of

the cell s downstream signaling machinery while regulating receptor number.  The result

is that the cell s downstream signaling machinery, such as G-proteins and adenylyl

cyclase, cannot remain saturated by activating a single receptor species and therefore will

always be available for other receptors to use.  In addition, receptor desensitization

provides a convenient and distributed method for dynamically regulating receptor

expression levels on the cell surface.  For example, when no ligand is present then

constitutive receptor signaling will maintain a larger number of receptors on the cell

surface, thereby making the cell sensitive to ligands.  Upon ligand addition, the cell will

reduce the number of receptors on the cell surface (Ciruela et al. 1997; Aragay et al.

1998).  Because long term desensitization alters the number of receptors expressed on the

cell surface, it is thought to play a key role in processes such as drug addiction, drug

tolerance, and cellular development (Chuang et al. 1996; Nestler and Aghajanian 1997).
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One mechanism of GPCR desensitization is shown in Figure 1.8.  According to

this mechanism, the βγ subunit of the active G–protein is able to recruit a receptor kinase

to the cell membrane.  This receptor kinase in turn is able to phosphorylate the active

receptor, thereby initiating a cascade of events that eventually leads to receptor

internalization (Lefkowitz et al. 1992; Aragay et al. 1998; Elorza et al. 2000) on a time

scale of hours. This form of desensitization is elegantly distributed in that it relied on

G–protein activation as the signal for desensitization, thereby requiring no central

controller to automatically self–regulate.  The spatial implications of the desensitization

pathway will be modeled in chapter 7 of this thesis.

Figure 1.8  Mechanism of GPCR desensitization.  The active Gβγ is able to recruit
receptor kinase from the cytosol. This membrane bound receptor kinase can then
phosphorylate receptors in the active conformation.  With time these phosphorylated
receptors will be removed from the cell surface, resulting in long term desensitization.

Other forms of rapid signal desensitization also take place, but will not be

considered in this work because they are insufficiently characterized.  For example, it has

been shown that receptor desensitization is affected by protein kinase A (PKA) and
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protein kinase C (PKC) (Fonseca et al. 1995; Penn et al. 1998; Seibold et al. 2000).

However, the mechanism by which PKC and PKA act and become activated themselves

is currently poorly understood and likely more complicated than the receptor kinase

pathway.  Similarly, desensitization also takes place at the level of adenylyl cyclase or

further down the signal transduction pathway (Parent et al. 1998), but the mechanism of

this downstream form of desensitization is not clear at this time and as such can not be

included in a mechanistic model.

1.5  Drug Screening

New drugs are generally found using random screens of large chemical libraries.

At this time it is not uncommon to screen more than one million small molecules in a

high throughput screen to detect a handful of lead compounds.  Later in the drug

development process, this list will be further shortened due to drug toxicity, low

solubility, and side effects (Drews 2000).  Therefore it is important to have as large and

accurate of a high throughput screen as possible to generate viable lead compounds.

One common approach to high throughput screens is to use a binding assay such

as the scintillation proximity assay shown schematically in Figure 1.9 (Bosworth and

Towers 1989).  This assay uses a radio labeled tracer ligand that is known to bind to the

receptor.  Upon binding the labeled tracer ligand, the radioactive decay activates a flor

that causes an optical signal.  Drug binding is detected by measuring the signal drop

caused by an unlabeled test ligand competing with the labeled tracer.  If the signal drops

sufficiently, then the test drug is categorized as a hit  and is passed on for further

analysis.



12

Figure 1.9  A high throughput screening assay based on the scintillation proximity assay.
a) Assay with only radio labeled tracer to produce a base signal.  b) Assay after the
addition of a test molecule to compete with the tracer.  c) The affinity of the test ligand
for the receptor can be measured by following the drop in signal.

Most drug screens are designed on the premise that we first must find a drug that

binds to the receptor, and then optimize that drug to achieve the desired effect.

Admittedly, drug—receptor binding is the first step in drug action, but not only does this

binding depend on the drug but also the receptor conformation that binds the drug.  Using

a lock and key analogy, we need a key that not only fits but also opens doors.  Elmer s

glue and toothpicks both bind tightly to locks, but neither opens doors!  Therefore, in

chapter 3 of this work we show how drug screens are biased against certain classes of

drugs, but can be tailored to screen for drug that not only bind tightly but also produce the

desired response.
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1.6  Overview of Thesis

While a great deal of theoretical and experimental research has been directed

toward understanding GPCR signal transduction, much remains to be done.  Historically

GPCR research has focused on identifying the individual parts of the signal transduction

pathway at a single time in isolation.  Although this reductionist approach has proven

invaluable in describing the system, it provides little information as to how the parts work

together as a complete system.

The work in this thesis uses computer models to bring the pieces of GPCR signal

transduction pathway together to gain a better understanding of signaling in general, with

a specific focus on how this new knowledge can be used to aid drug development.  In

particular I have examined how the drug s dissociation rate, conformational selectivity,

and ability to induce dimerization affect how the cell responds to the drug.  Computer

models are used because they allow us to integrate a wide variety of findings from the

literature into our model while still maintaining tight control on the physics of the system.

This approach allows us to make general predictions that should be true for many

receptor types and therefore provide useful insight into drug discovery and development.

This thesis employs two distinct modeling approaches that are reviewed in

Chapter 2.  The first approach, used in Chapters 3 and 4, examines how a system varies

with time and species concentrations.  This approach has the advantage that it is fairly

easy to include many species and is fast to simulate.  The second approach, used in

Chapters 5, 6, and 7, includes spatial effects to show how diffusion can influence receptor

signaling.  Both approaches are valid, but provide different information under specific

conditions.
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Chapter 3 uses a steady state solution of a thermodynamically complete model of

GPCR signaling to show a phenomenon I have termed agonist inversion .  Normally a

drug can be classified as an agonist, antagonist, or inverse agonist independent of the

stoichiometry of signaling components in the cell.  However, under certain conditions, a

drug can change from an agonist to an inverse agonist (hence agonist inversion ) by

changing the number of G—proteins in the system.  This finding could have implications

for the development of novel drugs that are selective for subpopulations of cells.

Chapter 4 demonstrates how some high throughput screening techniques could

bias against the detection of inverse agonists.  This finding is made using ordinary

differential equation models of whole cells and a membrane bound screening assay.

These models are then used to show that inverse agonists bind more weakly and more

slowly than positive agonists in the screening assay, and as such could be missed.

However, these findings also indicate that manipulating the total number of G—proteins in

the system should focus the assay toward detecting drugs with any efficacy, thereby

better utilizing the screening assay as a tool for drug discovery.

In chapter 5 receptor dimerization is shown to cause self—organization of the cell

membrane.  The effects of dimerization are shown using Monte Carlo simulations of

receptors diffusing and interacting on a two-dimensional model of the cell membrane.

Depending on the rates of receptor monomerization, dimerization, and diffusion, an

ensemble of receptors can exist in either a monomer state, dimer state, or intermediate gel

type state where extended clusters form.  Our simulations of dimerization demonstrate a

new mechanism for understanding how receptors are trafficked on the cell membrane.
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Chapter 6 discusses the physiological implications of dimerization induced

receptor localization with implications for drug design.  Ligands to GPCRs influence

dimerization, but it is not clear why.  Using Monte Carlo simulations we show that

dimerization induced localization of multiple receptor species should influence receptor

cross—talk, internalization, and signal amplification.  We further demonstrate that this

organization is in principle measurable and can be manipulated by ligands.  Therefore

ligand-induced dimerization could provide a new tool with which pharmacologists can

manipulate cell response.

Chapter 7 includes a desensitization mechanism into the Monte Carlo model and

shows that ligand induced signaling and desensitization can be decoupled.  The model

shows that by varying the ligand dissociation rate receptor desensitization can be

controlled via a receptor switching mechanism.   This result explains why in some cases

receptor signaling and desensitization are not correlated, and provides a novel route for

controlling drug desensitization.
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CHAPTER II

MATHEMATICAL MODELS OF SIGNAL TRANSDUCTION

 Within the next half—century, with all genes identified and all possible
cellular interactions and reactions charted, pharmacologists developing a
drug or toxicologists trying to predict whether a substance is poisonous
may well turn to computer models of cells to answer their questions.

(Collins and Jegalian 1999)

2.1  Introduction

Models of signal transduction have enhanced our understanding of cellular

communication, and in doing so may someday help us to produce better pharmaceutical

agents.  For example, the two state receptor model has helped us to understand how the

receptor is able to transmit a signal from the outside of the cell to the inside.  This

knowledge in turn has helped pharmacologists to understand why certain drugs are more

effective, or efficacious, than others, leading to advances in drug discovery and

development.  Therefore, models of signal transduction play a key role in modern

biotechnology and will most likely play in increasingly large role in the future

Models of signal transduction can be most easily distinguished by how they

handle time and space.  The real signal transduction system changes with time and exists

in a finite space, however modeling this complete system is not practical due to lack of

computing time and realistic parameters.  For example, a receptor diffusing on a cell

membrane is able to explore a large amount of space as time progresses, however to

understand ligand binding to this receptor, the absolute position of the receptor in the

membrane is not important and could, in some cases, be difficult to calculate.  To avoid
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modeling all of the dynamics of the system, modelers have developed techniques to

simplify time and space, thereby making the problem tractable and intuitive.

In the next section I first examine three approaches to handle time varying

systems and then discuss how spatial effects can be included.  All of these approaches are

used throughout the research in this thesis, therefore this overview is meant to give a

general understanding of how each approach can be used in a simpler, more approachable

context.

2.2  Models that Change with Time

To illustrate how time is modeled in this thesis, I will discuss three simple

mechanistic models of GPCR activation and show how each model can yield useful

insights.  With regard to time, mechanistic models can be categorized as equilibrium,

steady state, or unsteady state models.  Equilibrium models deal with systems that do not

change with time and require no energy inputs to sustain a particular state.  Steady state

systems also do not change with time, but do require an energy input to maintain a state.

Unsteady state models describe systems that do change with time.

As an analogy to these three types of models, consider the physical example of a

pendulum shown in Figure 2.1.  The equilibrium solution of a pendulum places the

pendulum hanging straight down.  This is the state that the pendulum is “trying” to get to,

but keeps swinging past.  If the pendulum were instead driven in one direction by a motor

or a constant breeze, then we would use a steady state model, which would place the

pendulum at an angle.  This new state is similar to the equilibrium state except that it

includes the effects of some external energy input (drag from the wind or electricity for

the motor).  Finally, to look at the time varying swinging of the pendulum we can use an

unsteady state model.  The unsteady state model will show us how high the pendulum
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swings, how fast the pendulum moves, and how long it will take the pendulum to stop

moving.  Thus our choice of which model to use depends on the type of behavior we

want to describe.

Equilibrium models are the most commonly used type of model in pharmacology.

One of the main reasons for this model's popularity is that this class of models tends to

have parameters that are easily measured and the mathematics is generally simple.  By

definition, these models assume that the system is at thermodynamic equilibrium – a state

that requires no energy to maintain and does not change with time.

In biology, the equilibrium state corresponds to death; however, equilibrium

models can still be useful for modeling certain pharmacological systems.  For example,

some experimental systems such as membrane preparations can be used to obtain

equilibrium data.  Although these in vitro measurements may not correspond exactly to

the in vivo situation, in many cases the agreement is sufficiently good to warrant using

this simpler system.  In other cases, equilibrium models can be used to describe an

Figure 2.1  A pendulum analogy to describe the three types of models discussed in this
thesis.  At equilibrium the pendulum hangs straight down.  When the pendulum is driven by
an energy source (i.e. wind) then the pendulum hangs at an angle in a steady state.  The
unsteady state model describes how the pendulum moves with time.
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"apparent" equilibrium between species in the cell, even though the system might in truth

be an energy–requiring steady state system.  For example, consider the “equilibrium”

number of receptors on the cell surface.  In truth, receptors are constantly being shuttled

to and from the cell surface.   However, at any given time there appears to be fixed

number of receptors on the surface.  In this way, equilibrium models are often used as a

first approximation to fit the mechanics of the system.

Steady state models describe a system that is not in equilibrium, but the apparent

concentrations of each species do not change.  For example, consider a metabolic cycle

like the Kreb's cycle, which converts acetyl CoA to energy and CO2. The concentrations

of intermediates in the cycle do not change with time; however, there is a constant flux of

acetyl CoA into the system.  To maintain such a state of stable dis–equilibrium, the

system requires a constant input of energy in some form, in this case the bond energy of

acetyl CoA.

Steady state models are generally more realistic models of biological systems than

equilibrium models.  Nearly every biological system requires energy to maintain its state,

and as such nearly every biological reaction is in a constant state of flux.  For models of

drug action, ongoing and energy–requiring processes such as G–protein activation and

receptor phosphorylation can have profound effects on the behavior of a drug and are

important to include.

Unsteady state models provide an even more general description of a system

because they include the effects of time.  Steady state and equilibrium models assume

that the system has had an infinite amount of time to stabilize, and as such remove all

dependence on time and initial conditions.  In contrast, unsteady state models describe
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how the system evolves with time and can be used to describe systems that have no

steady state, such as periodic or chaotic systems.

Unfortunately, unsteady state models are also some of the most complicated to

solve.  Often, these models are formulated as coupled sets of differential equations and in

many cases there is no analytical solution.  Even a numerical solution may be difficult to

obtain.  In spite of these problems, unsteady state models are probably the best choice if

sufficient data are available to motivate their development.

One disadvantage to using the more detailed models, e.g. unsteady state models,

is the need for more parameters to describe the system.  For example, for the equilibrium

solution to the pendulum problem we don’t need any information because the pendulum

is always down no matter how much it weighs or how long it is.  In contrast, for the

unsteady state solution, we must know all about the pendulum plus we must know where

the pendulum was started and how fast it was moving when it started.  In complicated

biological systems such as a signal transduction pathway or metabolic cycle, a large

number of parameters are also needed to describe the unsteady state behavior.  However,

by using many parameters to describe a complex biological system we are not “fitting an

elephant.”  This is because the parameters in the unsteady state model describe specific

physical phenomena related to the mechanics of the process, not empirical correction

factors used to simply fit the data.  The parameters used in describing these biological

systems are (at least in principle) measurable physical quantities just like mass and length

used to describe the pendulum.  Fortunately, in many cases the exact parameter values are

not needed because we are only interested in the qualitative behavior of the system.  For

example, we may be interested in determining whether a ligand is a positive or inverse
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agonist, and whether it is possible for a ligand to be both but under different

circumstances.  Thus even crude experimental measurements can be helpful in predicting

the behavior of the response, even though they may not give the exact magnitude or

duration of the response.

2.2.1  Species Conservation

Along with the type of model we choose, we must also determine which

simplifying assumptions are reasonable to make.  One major simplifying assumption that

is often made in pharmacological models is that the concentration of some species is

constant.  For example, during a binding experiment, the free ligand concentration may

not change significantly.  In this case, we can approximate the system by modeling the

free ligand concentration as a constant, thereby ignoring any dynamics that might come

about due to ligand depletion.  The concentration of a species can be approximated as a

constant if (1) the species is in great stoichiometric excess or (2) the system has access to

a near infinite reservoir of the species at a fixed concentration.

When these conditions are not met, however, depletion effects must be included

through the use of species conservation equations.  For example, receptors are known to

saturate (depletion of free receptors) when enough ligand is added, implying that we need

to include a receptor conservation equation in our model.  This conservation equation can

be stated as:

Rbound+Rfree=Rtotal (2.1)

This species conservation equation enforces that the model has access to only Rtot

receptors, making the maximum number of receptors that can bind ligand equal to the

total number of receptors.
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Why isn't species conservation always included?  We know that no species really

comes from an infinite source, so we are always safe to include species conservation

equations even if they have little effect on the predictions of the model.  However,

including species conservation also makes the model equations more difficult to solve, as

the model often changes from linear to nonlinear. Linear models are generally easy to

solve both analytically and numerically, and the results they generate are easy to

interpret.  In a linear model, doubling the value of an input will always double the output.

In contrast, nonlinear models often have no analytical solution and can be more difficult

to solve numerically.  Interpretation of nonlinear models can also be more challenging

because, for example, doubling the value of an input may or may not double the output.

Thus many researchers choose not to include species conservation even if it is known to

play an important role so as to simplify their models enough to tease out some, but

perhaps not all, relevant behaviors.

Without explicit spatial considerations, unsteady state models that include species

conservation will ultimately provide the best insight into GPCR signal transduction.

Signal transduction via GPCRs is an inherently unsteady state process because it is

designed to detect changes in the environment—time varying information.  Thus GPCR

pharmacology is essentially the study of how to manipulate this information given to

cells to change their states, making unsteady state models an invaluable tool in this field.

For an unsteady state model to function properly we must also allow the concentration of

each species (e.g. free receptors, inactive G proteins) to vary and if need be deplete, and

thus species conservation must be included. However, this is not to say that equilibrium

models or models without species conservation are useless.  On the contrary, equilibrium
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models describe where the system “wants” to go given enough time, and as such can be

used as a landmark when analyzing the more complicated unsteady state systems.

Models without species conservation describe a system under a limited set of conditions,

but in a much more simple way.  Therefore it is instructive to begin by looking at simple

equilibrium models and then see how these models can help us understand more

complicated unsteady state models. Through the use of simpler models to understand

more complex and realistic models, we can begin to explain and predict the complex

events of GPCR signaling, giving us insight into the mechanisms of drug action on this

receptor.

2.2.2  Equilibrium Models

In this model section and in the two that follow, I begin first with a simple

didactic model before moving on to the case of GPCRs.   A simple example of an

equilibrium process is receptor–ligand binding (Figure 2.2a).  In this model, ligands bind

to receptors at a rate proportional to k1 (M–1 sec–1) and dissociate with rate constant k–1

Figure 2.2  Three representative models of receptor–ligand binding: (a) equilibrium; (b)
steady state; and (c) unsteady state.  These are simple models used to illustrate the
principles behind each technique.
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(sec–1).  At equilibrium, the forward reaction is exactly balanced by the reverse reaction,

resulting in the equilibrium relationship:

K k
k

R L
RL

eq = =−1

1

[ ][ ]
[ ]

(2.2)

Here [R] represents the concentration of free receptors on the cell surface, [RL] is the

number of ligand–bound receptors, [L] is the free ligand concentration, and Keq is the

equilibrium dissociation constant.  In the equilibrium state there is no net binding or

dissociation of the ligand from the receptor, so the system is at thermodynamic

equilibrium – the state that receptors and ligands "want" to go if left to themselves.  To

include receptor conservation, the term [R] can be replaced with Rtot–[RL] to give the

familiar expression for receptor–ligand binding:

K k
k

R RL L
RL

eq tot= = −−1

1

( [ ])[ ]
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(2.3)

By knowing the free ligand concentration (generally assumed equal to the ligand

concentration added, a reasonable assumption if the number of ligand molecules is

significantly greater than the number of receptor molecules (Lauffenburger and

Linderman 1993)), the number of ligand–bound receptors, and total number of receptors,

we can calculate the equilibrium constant between the bound and free receptors.

Although signal transduction via GPCRs begins with receptor–ligand binding,

binding alone is insufficient to describe the ligand's effects on the cell.  For example,

receptor–ligand binding alone can not predict inverse agonism because this would require

the receptors to be bound with a negative number of ligands.  Clearly other signaling

phenomena must be included.  In the case of GPCRs the natural next step is to include



25

more of the signal transduction pathway, such as the G–proteins which receive the signal

inside the cell.

What happens to the predicted cellular response when G–proteins are added?

G–protein reactions, such as receptor–G–protein binding, allow us to simulate the first

signaling events inside the cell, thereby generating a more accurate picture of the signal

transduction events caused by a particular ligand.  Experimental evidence suggests that

GPCR exist in at least two signaling–capable states on the cell surface, an “active” or R*

conformation and an “inactive” or R conformation (Lefkowitz et al. 1993; Samama et al.

1993).  The R* state is able to interact with G–proteins to produce G–protein activation;

the R state is not.  These active and inactive states presumably represent sets of

conformations of the receptor (Kenakin 1996), and the receptors are likely to move

between these states fairly rapidly.

GPCRs are typically modeled using what are termed ternary (for

ligand/receptor/G–protein) complex models, or TCMs (reviewed in (Kenakin 1996)).

Recent models which include the R* and R states are the extended ternary complex

model (Samama et al. 1993) and the more thermodynamically complete cubic ternary

complex (CTC) model (Weiss et al. 1996; Weiss et al. 1996).  The CTC model is shown

in Figure 2.3a.  These models (and other related TCMs) are equilibrium models and have

found some use in describing unique drug properties.

In the CTC model shown in Figure 2.3a, ligands influence the distribution of R*

and R states (and thus potentially efficacy) via the conformational selectivity parameter

α.  At high α values (α>1) the ligand induces or selects the active receptor state (positive

agonism), whereas when α is low (α<1) the ligand induces or selects the inactive receptor
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state (inverse agonism).  When α is exactly equal to 1, the ligand has no effect on the

receptor conformation and does nothing but block the effects of other drugs (neutral

antagonism).  In the CTC model, α is just one of many ligand–specific parameters that

determines how the cell will respond to a drug (Weiss et al. 1996).

Equilibrium models are used in Chapters 3–6 of this thesis.  In chapter 3,

equilibrium models are used to show how a ligand can change from a positive agonist to

an inverse agonist by changing the stoichiometry of the system alone.  In chapters 4-6 it

is shown how diffusion and dimerization at equilibrium can induce receptors to

self–organize and thereby affect receptor signaling.  Although these later models also

have a spatial component, the system is at equilibrium and as such is similar to the

models presented in this section.

Figure 2.3  Three models of signal transduction via GPCRs. (a) The Cubic Ternary
Complex (CTC) model (Weiss et al. 1996) that describes the equilibrium between
receptor, G–protein, and ligand. (b) A steady state variant of the CTC model that
includes an explicit G–protein activation step (Linderman 2000; Shea et al. 2000). (c) An
unsteady state version of the CTC model that includes a desensitization step for
ligand–bound active receptors.
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2.2.3  Steady State Models

To illustrate how a steady state model could evolve before examining such a

model for GPCRs, consider the receptor–ligand binding as described in Figure 2.2b.  In

this scenario, imagine that the ligand is actively transported toward the receptor, thereby

introducing an energy–requiring step that would disrupt the equilibrium.  In our model,

this active transport could be included by adding an additional binding step governed by

the rate constant ktrans (M–1 sec–1).  The overall rates of formation of R and LR can be

written as:

r
r
R 1 1 trans

LR 1 trans 1

k [LR] k [L][R] k [L][R]
k [L][R] k [L][R] k [LR]

= − −
= + −

−

−
(2.4)

By setting the rates of formation equal to zero, we can obtain an expression for the steady

state values of [R], [L], and [LR]:

K k
k k

[R][L]
[RL]

*
eq 1

1 trans

=
+

=− (2.5)

Note the similarity to the equilibrium model solution (Eqn. 2.2).  Here the apparent

equilibrium constant, K*
eq, can be related to the true equilibrium constant by adding ktrans

to the denominator.  Another way to interpret this steady state result is that the form of

the steady state solution is identical to the equilibrium solution except that the value of

the equilibrium constant is different.  This relationship between equilibrium and

steady–state models is true as long as all steps are reversible. When irreversible steps are

included, the structure of the solutions may also change.  The implication of this finding

is that experimental data taken from true equilibrium systems (such as membrane

extracts) can not easily be applied to living steady state systems.  In the example given

here, the equilibrium dissociation constant Keq could be much greater than the
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equilibrium dissociation constant K*
eq in the steady state system, causing a significant

error in the interpretation of in vivo data based on data from membrane systems.  Adams

et al. (Adams et al. 1998) describe a similar example in which the amount of

receptor/G–protein precoupling (association prior to ligand binding) measured in

membrane assays may overestimate that present in vivo.

A steady state analysis can be done on more complicated systems such as GPCR

activation of G–proteins.  As discussed earlier, G–proteins cycle from an active

GTP–bound state to an inactive GDP–bound state.  In modeling terms, this cycling from

an active to an inactive state indicates that this process cannot be modeled as an

equilibrium process because it requires energy to maintain.  By adding an explicit

G–protein activation step to the CTC model, we create a steady state model that follows

the signal transduction pathway farther into the cell.  This model and is shown in Figure

2.3b (Linderman 2000; Shea et al. 2000).

This new model of GPCR activation has many of the same properties of the

equilibrium CTC model.  However, as described above, the values of many of the

parameters can be expected to different.  For example, consider the reversible reaction

between R* and R*G shown in Figure 2.4.  The analysis of this step is identical to that

done earlier for receptor–ligand binding shown in Figure 2.2b, resulting in the following

apparent equilibrium constant:

  K k
k k

[R * G]
[R * G][G]

*
G 2

2 r1

=
+

=
−

(2.6)

Thus if kr1 is set to zero then we recover the original equilibrium model.

Note that in this steady state model, we must explicitly keep track of the number

of inactive and active G–proteins by using a species conservation relationship for the
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model to be realistic.  Before receptor activation, very few of the G–proteins should be in

the active state (in a system with low constitutive activity) and therefore a majority of the

G–proteins will be in the free, inactive state (αβγ–GTP, denoted as simply G in the model

schematic and equations).  However, upon agonist binding the receptor should activate

many of the accessible G–proteins in order to propagate the signal inside the cell.

Therefore the free G–protein concentration [G] must change as a key step in the

dynamics of signal transduction.

A striking example of the difference between the equilibrium and steady state

models is shown in Figure 2.5 for one set of reasonable parameter values.  Here the

equilibrium model predicts the ligand will behave as a positive agonist, while the steady

state model predicts inverse agonism.  Why are the predictions so different?  There are

two contributing factors.  First, as noted before, many steady state models are similar to

equilibrium models but with different parameter values.  In fact, any steady state model

should give the equilibrium solution when no energy is put into the system (no GTP

present in the case of GPCR activation).  In other words, steady state models are more

Figure 2.4  A steady state G–protein activation reaction.  This reaction is just one step in the
steady state CTC model of Figure 2.3b.
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general forms of equilibrium models.  A related and similar phenomenon will be

discussed in Chapter 3 when describing the topic of agonist inversion.

One possible explanation for the different predictions in Figure 2.5 is that the

response in the equilibrium model is assumed to be proportional to [R*G]+[LR*G], while

in the steady state model the response is assumed to be proportional to [α–GTP].  The

reason for this difference is that the steady state model follows the signal transduction

pathway farther into the cell, thus one would expect the [α–GTP] concentration to better

represent the cell’s response than [R*G]+[LR*G].  Although [α–GTP] is clearly related

to [R*G]+[LR*G], the two measures of response are coupled nonlinearly because

[α–GTP] can also be irreversibly depleted to [α–GDP].  The result of this nonlinear

Figure 2.5  Responses predicted with the equilibrium and steady state version of the Cubic
Ternary Complex model.   For a particular set of realistic parameter values, the equilibrium
model predicts that the drug will behave as a positive agonist, while the steady state model
predicts that the drug will be an inverse agonist.
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coupling is that [α–GTP] should not identically track [R*G]+[LR*G]; or said more

generally, downstream responses generally will not be proportional to the concentration

of upstream signaling molecules.

Thus the development of a simple steady state model for G–protein activation

(Fig. 2.3b) allows us to demonstrate the limitations of the equilibrium model as well as

improve our ability to model the process.   The simplified equilibrium criterion of Eqn.

2.2 was used to qualitatively explain some of the behavior in the steady state model.  The

ability to use a simpler model as a guide in the analysis of more complex behavior is a

common theme in modeling and represents a very powerful tool for both the theorist and

experimentalist.

In Chapter 4 of this work, a more complete steady state model of GPCR

activation is used to uncover a systematic bias in drug screening assays.  Although the

model presented later in this work includes more species, the steady state modeling

approach is the same as that presented in this section.

2.2.4  Unsteady State Models

In reality, most biological systems are constantly changing with time, and as such

never reach a true steady state.  The cells in our body are constantly being bombarded

with new information, which causes the cell to change its behavior dynamically.  The

process of signal transduction is an excellent example of this, as it includes both

activation and desensitization dynamics (Figure 2.6) as will be discussed in Chapter 7 of

this thesis.  Assuming complete desensitization can occur, the steady state solution would

be simply that of no cellular response.  Thus analyzing a system with desensitization

requires that an unsteady state model be used.
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Returning first to our simple model of receptor–ligand binding, we can now add

in the simple desensitization step shown in Figure 2.2c.  The dynamics of this process are

described by the two coupled ordinary differential equations:

d
dt

d
dt

[ ]

[ ]

R k [LR] k [L][R]

LR k [L][R] k [LR]- k [LR]

1 1

1 1 ds

= −

= −

−

−

(2.7)

with initial (time = 0) conditions [R]=Rtot and [LR]=0.  Because receptor desensitization

is essentially the depletion of free receptors, [R] must be allowed to change with

time—therefore species conservation on the receptor must be included.  Fortunately, the

form of the differential equations in Eqn. 2.7 automatically accounts for this, so no

further terms must be added.  Assuming no significant ligand depletion ([L] is constant),

Figure 2.6  Desensitization in GPCRs.  Persistent agonist stimulation initially causes the
response (proportional to the concentration of ligand–bound active receptor [LR] in this
case) to increase, however with time proteins inside the cell deactivate the signaling
receptors causing the signal to drop, thereby desensitizing the receptor.
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these differential equations are linear and as such are amenable to an analytical solution

for [R](t) and [LR](t). The latter is plotted in Figure 2.6.

Note that the unsteady state model becomes the equilibrium model if kds is

assumed to be zero and time is taken to be infinity.  Similarly, if kds is set to 0 and k1 to

k1'+ktrans, we can recover the steady state model in the limit of infinite time.  Thus the

unsteady state model is a more general view of the system, and the steady state and

equilibrium models are simply subsets of the unsteady state model (see Figure 2.7).

Figure 2.7  The relationship between equilibrium, steady state, and unsteady state
models.

To find the parameters for an unsteady state model, we need to gather time

varying (kinetic) data.  For example, experimental groups have gathered high quality

kinetic data for the binding of ligands to the N–formyl peptide receptor on human

neutrophils (Fay et al. 1991; Neubig and Sklar 1993; Hoffman et al. 1996; Hoffman et al.

1996).  An advantage to this system is the ability to use fluorescently labeled ligands and

to monitor binding with flow cytometry.

Earlier work in our group modeled desensitization and activation in GPCRs using

a simplified version of the model shown in Figure 2.3c (Riccobene et al. 1999).  This
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model is unique in that it includes a desensitization step= and as such represents an

inherently unsteady state process.  From a pharmacological point of view, we are likely

most interested in the transient response that occurs prior to significant desensitization,

and this can only be simulated using an unsteady state model.

This model was constructed in an attempt to understand the mechanistic basis for

ligand efficacy.  It has been hypothesized that ligands may differ in efficacy because they

have different values of the conformational selectivity α and/or different values of the

desensitization rate constant kds (Linderman 2000).  The ligand–specific parameter α

was discussed earlier. The desensitization rate constant may also be influenced by the

identity of the ligand bound to the receptor.  For example, the receptor may be held in

slightly different conformations by different ligands, or the differing dissociation rate

constants of ligands may allow for different spatial organization of membrane species

relevant to desensitization (Shea and Linderman 1997; Shea et al. 1997; Shea and

Linderman 1998).  Ligands with high values of α or small values of kds are predicted to

have greater efficacy than ligands with small values of α or large values of kds.  However,

because only active (R*) receptors are believed to desensitize, the effects of kds can not

be analyzed independently of α.  A model can be used to understand the synergy between

these two parameters in determining the activation/desensitization profile of a given drug.

The predictions of the GPCR unsteady state model are shown in Figure 2.8.  As

expected, both  α and kds effect receptor activation and desensitization.  In all cases,

                                                  

= Only desensitization of the LR* form of the receptor is shown.  For constitutively active
systems, desensitization via R* should also be included, but was omitted here for
simplicity.
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increasing α causes both more activation and more desensitization, whereas increasing

kds causes less activation and more desensitization.

Figure 2.8  The simultaneous effects of changing the conformational selectivity factor α
and the desensitization rate constant, kds, on receptor activation and desensitization (taken
from (Riccobene et al. 1999)).

In order to use these predictions to understand ligand efficacy, the results of

Figure 2.8 were compared with data from GPCR systems in which both activation and

desensitization have been measured.  Literature data on the β2–adrenergic receptor

(Benovic et al. 1988), µ–opioid receptor (Yu et al. 1997), and the dopamine D1 receptor

(Balmforth et al. 1990; Barton and Sibley 1990) all show the trend of activation and

desensitization increasing in parallel, suggesting that the primary differences between

ligands in these particular systems is the value of the conformational selectivity α of the

ligand.  Previous data from our lab using the N–formyl peptide receptor system also

support this conclusion (Riccobene et al. 1999).  Thus the interpretation of data with this

unsteady state model has suggested a mechanism behind ligand efficacy in these systems.



36

2.3  Modeling Spatial Effects

It is often assumed that membrane—associated proteins (e.g. receptors and

G—proteins) are evenly distributed over the membrane.  However, this is unlikely to be

true.  Most proteins throughout the cell are trafficked to specific locations on the

membrane, where they often cluster into groups.  By clustering proteins, the cell gains the

ability to accelerate reactions well beyond what could be achieved in under well mixed

conditions and to control which reactions take place (Allison et al. 1986; Bray 1998).

For GPCRs, spatial organization is thought to play a key roles in both receptor

number regulation and receptor cross talk. GPCRs are removed from the cell surface after

clustering into clathrin coated pits, followed by internalization via endocytosis.  In this

case, the spatial organization of the receptors on the cell determines whether the receptor

stays on the surface or is internalized.  There is also evidence that clustered receptors may

be able to co—localize with and activate some tyrosine kinase receptors (Hall et al. 1999;

Lin et al. 1999; Luttrell et al. 1999) in a form of receptor cross talk.  This cross talk

between different receptor types may be essential to transducing some signals, and as

such is pharmacologically important.

A subtle spatial effect is a phenomenon that has been termed switching  (Stickle

and Barber 1989; Mahama and Linderman 1994; Mahama and Linderman 1995; Shea

and Linderman 1997; Shea et al. 1997; Shea and Linderman 1998).  When a GPCR is

activated by a ligand, then the receptor acts to activate all nearby G—proteins.  If the

ligand remains bound to the receptor, then eventually all of the local G—proteins will be

activated, leaving the ligand—bound receptor with nothing more to activate.  In contrast, if

the ligand quickly dissociates from first receptor and that ligand or another one binds to a

second receptor, then the activate-able  G—proteins around any particular receptor are
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less likely to be depleted and the signal can continue to be propagated efficiently.  Thus a

highly active ligand that dissociates slowly may have less of an effect than a less active

ligand that dissociates quickly.  Only by including spatial effects — actually monitoring

the distance between bound receptors and G-proteins -  in our models can we simulate

these phenomena.

Spatial effects are commonly modeled using two different methods: Monte Carlo

(MC) simulations or partial differential equations (PDEs).  MC methods employ a

stochastic algorithm to mimic molecular motion.  In contrast, PDE methods use a

deterministic algorithm that tracks the density of particles to model molecular motion.

Both methods can be used to track equilibrium and kinetic phenomena, but they differ in

that MC methods function at the level of individual particles while PDE methods follow

particle densities.

As an example consider diffusion of an inert particle on a membrane.  Using an

MC approach, the particle would be placed on a grid as shown in Figure 2.9.  At each

time step, the particle would move one grid spacing in a random direction with a

probability proportional to the diffusion coefficient.  After repeating this cycle many

times, one could gather statistics describing the position of the particle as a function of

time and thereby describe the diffusion motion of the particle.  The advantage to using

MC methods is that the individual histories of each particle can be tracked, often making

the simulations more intuitive and easier to construct.  However, these simulations

generally require large amounts of computer time in order to make accurate predictions,

and as such are not feasible for all systems.
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Using a PDE approach, diffusion can be described using Fick s law for unsteady

state diffusion in two dimensions:
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Figure 2.9  Monte Carlo simulation environment on a two dimensional triangular lattice.
Proteins (colored) occupy 7 sites on the lattice.  If proteins can react, then they are
allowed to react if they are within a specified interaction radius.
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where C is the concentration of the particle, t is time, D is the diffusion coefficient, and x

and y are spatial dimensions.  Using appropriate boundary conditions, this equation can

be solved numerically or in some cases analytically to yield information about the

particle concentration as a function of time and space. Because PDE models only track

the density of particles, they are generally more computationally efficient than MC

approaches.  However, PDE models are continuum models, and as such implicitly

assume that the volume or area of a particle is very small such that discrete events can be

smeared together.

In Chapters 5 and 6 of this thesis, I use an MC modeling approach to determine

how spatial effects influence drug signaling.  Chapter 7 uses an MC approach to explore

how drug properties influence desensitization.  Finally, Appendix B describes some

preliminary work using MC and PDE approaches to model diffusion on a non—flat

surface.

2.4  Conclusion

The mathematical models presented in this chapter allow us to describe

receptor/ligand binding and the early stages of signaling at a number of levels of

resolution and complexity.  At the simplest level are the equilibrium and steady state

models that can be used to rapidly assess where the system tends to move.  The effects of

time can next be included in an unsteady state model to predict the kinetics of the system.

Finally, spatial effects can also be included to explore how the location of receptors in the

cell membrane affects the signaling properties.

Our choice of which model to use depends both on the suitability of the model to

the system and the practicality of the model.  For example, when modeling kinetic
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phenomena, it is key to use an unsteady state model so that we can simulate the system

dynamics. If the process in question involves a spatial component, then a Monte Carlo

approach may provide the best alternative.  For example, the models of receptor

dimerization in Chapters 5 and 6 of this thesis are fundamentally modeling a spatial effect

and as such must account for motion in space.  Monte Carlo simulations are ideally suited

for such applications.

Therefore the modeling approaches presented in this chapter provide us with the

framework required to model most pharmacological systems, assuming the system is

sufficiently well characterized.  Our choice of model depends on the assumptions we

make about the importance of time and space, and the availability of resources to carry

out the model.
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CHAPTER III

AGONIST INVERSION

3.1  Introduction

Does a drug that is categorized as an agonist in one system always remain an

agonist in all systems?  Following the simplified picture in Figure 1.1, it would seem that

any ligand with an α value greater than 1 would always be a positive agonist.  However,

in more complicated models this assumption breaks down as other ligand specific

parameters are included.  For example, in the cubic ternary complex model (Figure 2.3a)

the ligand specific parameters β and δ also affect the signal.

Using ordinary differential equation-based pharmacological models I have found

that sometimes a ligand can change from a positive agonist to a negative agonist (or vice

versa) – something that might be termed agonist inversion.  In agonist inversion, the

efficacy of the ligand can be modulated simply by changing a parameter in the model,

such as the conformational selectivity α (a ligand–specific parameter) or the G–protein

concentration (reflecting a state inside the cell).  This phenomena of agonist inversion is

similar to "protean agonism" introduced by Kenakin (Kenakin 1995; Kenakin 1997);

however, protean agonism only focuses on changing Kact, while agonist inversion

describes a more general phenomenon that could be caused by changes in other

parameters.
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3.2  Methods

Using a steady state or equilibrium model, one can determine the apparent

efficacy of a drug by comparing the signal activity caused by the drug to the activity

when no drug is present.  If the model is sufficiently simple, then this comparison can be

made analytically to produce a general expression of the equilibrium signal ratio:

Limit [Signal Response]
Limit [Signal Response]

1 positive agonist
1 neutral antagonist
1 inverseagonist
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⎪
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 (3.1)

Depending on the value of this ratio, the drug can be categorized as a positive agonist,

neutral antagonist, or inverse agonist.  Note that the denominator of Eqn. 3.5 can

theoretically go to zero, yielding an infinite signal ratio corresponding to a perfect

positive agonist.  However, in practice nearly all receptors have some level of

constitutive activity, resulting in a finite equilibrium signal ratio.

The signal response varies for each model, but is generally the species farthest

down the signal transduction pathway that is described for the model.  For example, in

the ternary complex models for GPCR activation, the signal response is generally

assumed to be the sum of all of the active receptor species bound to G—proteins.  Thus for

the cubic ternary complex model, the signal response is proportional to [R*G+LR*G].

First the equilibrium signal [R*G+LR*G] for the simpler extended ternary

complex (ETC) model (Samama et al. 1993) shown in Figure 3.1a was derived using the

following system of mass balance equations:

 

[R *G] K [R*][G]
[R*] K [R]
[LR] K [L][R]
[LR*] K [LR]
[LR *G] K [G][LR*]
R [R] [R*] [R *G] [LR] [LR*] [LR *G]

G

act

a

act

G

total

=
=
=
=

=
= + + + + +

α
β

(3.3)
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These values were used to derive the signal response with and without drug to calculate

the equilibrium signal ratio in Eqn. 3.1.  Note that in a strict two state model, the

parameter β would have a value of 1 and could be dropped from the calculation.

Figure 3.1  Two models used to calculate the equilibrium signal response ratio. (a) The
extended ternary complex model (Samama et al. 1993) (b) The cubic ternary complex
model (Weiss et al. 1996).

Next the equilibrium signal for the cubic ternary complex model (CTC) (Weiss et

al. 1996) shown in Figure 3.1b was derived from the following system of mass balance

equations:

[RG] K [G][R]
[R *G]  K K [G][R]
[R*] K [R]
[LR] K [L][R]
[LR*] K K [R][L]
[LR *G] K K K [G][R][L]
[LRG] K K [G][R][L]
R [R] [R*] [R *G] [RG] [LR] [LR*] [LRG] [LR *G]

G

G act

act

a

act a

G a act

G a

total

=
=

=
=

=
=

=
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β

α
αβδγ

γ

(3.2)

Although other models for GPCR signaling exist (see examples in Figure 2.3), the

ETC and CTC models are two of the most used and best accepted models currently in
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use.  However, the techniques developed here are general can could be applied to any

equilibrium or steady state model.

 Analytical calculations were made using the Solve and Simplify functions in the

program Mathematica.

3.3  Results

In both model models, I found that agonist inversion could take place and

depended on a different set of model parameters.  Using the ETC model, the following

expression was found:

α β β+ −( )( )
>
=
<

⎧
⎨
⎪

⎩
⎪

K
1 positive agonist
1 neutral antagonist
1 inverse agonist

act 1 (3.4)

If using a strict two state model, then β=1 for the ETC model.  The result of this change

is that drug efficacy can be modeled using only the parameter α.

Using the CTC model, the following equilibrium signal ratio was found:

αδγ γ αδ α δγ+ − + −
>
=
<

⎧
⎨
⎪

⎩
⎪

G K K
1 positive agonist
1 neutral agonist
1 inverse agonist

G act( ) ( )   1 1 (3.5)

where α,δ,γ, KG, Kact are equilibrium parameters and G is the number of free G–proteins

(in the form αβγ–GDP, i.e. “activate–able” G–proteins).

The key difference between Eqns. 3.4 and 3.5 is that 3.5 depends on the absolute

concentration of G-protein, while 3.4 does not.  However the ETC model is less

thermodynamically complete than the CTC model, and as such is expected to display a

smaller palate of behaviors.
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3.4  Discussion

The key finding in this work is that the equilibrium signal ratios in Eqns. 3.4 and

3.5 have both positive and negative terms.  By varying the values of the parameters, one

can obtain values that range from well below 1 to well above 1 — thereby spanning the

range from inverse agonist to positive agonist.  For example, by varying Kact, we obtain

the protean agonism behavior described in the literature (Kenakin 1995; Kenakin 1997).

Interestingly, according Eqn. 3.5 varying the G–protein number can also cause

agonist inversion, implying a novel mechanism for the cell to regulate the information it

receives.   Cells are thought to regulate the number of G–proteins they express (Lesch

and Manji 1992), therefore cells could alter the signals they receive.  For example,

exposing human neutrophils to N–formyl peptide ligands has been shown to upregulate

the number of G–proteins (Yatsui et al. 1992; Durstin et al. 1993), although the

magnitude and timing of this increase have not been carefully studied.

According to Eqn. 3.5, this change in G–protein number could have a profound

effect on how the cell responds to a ligand.  For example, imagine a cell is stimulated by

a positive agonist.  By definition, a positive agonist means that the ligand–stimulated

signal is greater than the unstimulated signal and Eqn. 3.5 has a value greater than 1.

However, if the cell reduces the number of G–proteins able to interact with the receptor

(by degradation or sequestration for example), then the value of the second term in Eqn.

3.5 would drop.  Thus the cell could selectively tune out that particular ligand, changing

it from a strong positive agonist to a neutral antagonist or inverse agonist, effectively

ignoring that ligand.  Note that while the cell may tune out one ligand, it may still be able

to detect other ligands that have different parameters (e.g. α).
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Agonist inversion caused by changes in G–protein number is demonstrated in the

simulation results shown in Figure 3.2.  At a low free G–protein concentration the signal

without ligand is greater than the signal with ligand, and the ligand behaves as an inverse

agonist.  However, once the free G–protein concentration reaches a critical value, the

ligand begins to behave as a positive agonist.  Therefore, under conditions for agonist

inversion, a positive agonist does not have to always be a positive agonist, but instead

could vary from cell to cell depending on the state of the signal transduction pathway.

Thus we must consider both the drug’s impact on the cell as well as the cell’s impact on

the drug when describing a drug’s physiological effect.

Qualitatively, agonist inversion can be thought of as a transition between two

qualitatively different states.  Take as an analogy the two possible states of a pendulum:

Figure 3.2  An example of agonist inversion in the CTC model as the G-protein number
is changed.  Dark lines show the response generated by a drug when a constant number of
G-proteins are included.  Note that at high ligand concentrations, a reduction in G-protein
number can cause a drug to shift from a positive agonist to an inverse agonist.  Parameter
values used in the model include: Ka=107; Rtotal=105; α=0.1; β=0.01; δ=92.38; γ=0.01;
KG=0.0245; Kact=10.824.
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swinging back and forth or spinning around in circles, like the propeller of an airplane.

Depending on how the pendulum was pushed, how heavy the weight, and how long the

arm, the pendulum will either swing back and forth or will spin.  Similarly, depending on

the equilibrium constants of the CTC model, most drugs will either be a positive agonist

or negative agonist.  By changing the values the equilibrium constants, we can then get a

qualitatively different behavior, just as in the case of a pendulum we can change a

spinning pendulum into a swinging pendulum just by increasing the weight.  However, a

living cell strongly differs from a pendulum in that the cell can dynamically change its

parameters in response to its environment.

It is not known whether agonist inversion occurs in nature.  Chidiac et al. (Chidiac

et al. 1996) found that dichloroisoproterenol acting on β2–adrenergic receptors could

show either positive or inverse agonist behavior depending upon the cell preparation used

in the experiment, as is shown in Figure 3.3.  One possible explanation is that the

G–protein number in each cell preparation was different, causing an agonist inversion in

some cells as described by Eqn. 3.5. Perhaps the reason that there is relatively little

experimental support for agonist inversion is because the right experiment has not been

done, or we do not have the sensitivity to detect the small changes involved.  Similarly,

although agonist inversion is predicted by an equilibrium version of the CTC model,

maybe other non–equilibrium effects such as receptor desensitization or G–protein

activation also affect inversion.

Based on the analytical results in Eqn. 3.5, agonist inversion due to changes in

G–protein number could take place a number of ways depending on the cell system and

the drug.  For example, if the parameters αδ>1, then any increase in G–protein
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concentration will result in an increased equilibrium response ratio.  If at low G–protein

concentration the equilibrium response ratio is less than one, then increasing the number

of G–proteins under these conditions will change a drug from an inverse agonist (ratio

<1) to a positive agonist (ratio >1).  Alternatively, if αδ<1 in Eqn. 3.5, then increases in

G-protein number will tend to reduce the equilibrium signal ratio.  Therefore if at low

G–protein number the signal ratio predicts a positive agonist, increasing the G–protein

number will depress the signal ratio and cause the drug to be have as an inverse agonist.

Unfortunately, these predictions rely on precise knowledge of the α and δ values of a

drug and cell respectively, neither of which are known at this time.

Figure 3.3  A possible example of an experimental system that exhibits agonist
inversion.  The drug DCI interacting with the same receptor type yields either positive or
inverse agonist activity depending on the individual cell.  Data taken from (Chidiac et al.
1996).
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3.5  Conclusion

The modeling results developed in this chapter bring into question a common

pharmacological assumption that a drug that is classified as a positive agonist in one

system will be a positive agonist in all systems.  Even if the receptor and drug are

identical in two systems, the total number of G–proteins could be different, or the

receptor could be interacting with a different class of G–protein with a different KG value.

This finding could help to explain the variation generally seen in pharmacological data,

and could provide a new research avenue.
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CHAPTER IV

UNCOVERING BIASES IN HIGH THROUGPUT SCREENS OF G-PROTEIN

COUPLED RECEPTORS

4.1  Introduction

High throughput screening involves testing a large number of compounds

(currently over 1 million) against a biological target to identify potential drug leads.

However, if a drug is missed in the initial screening, then that potentially valuable drug

will not be developed and the chemical palate available to pharmacologists will be

artificially limited.  Therefore an understanding of the factors that allow drug detection in

a screening assay is vital to the success of modern drug discovery.

High throughput screens are normally run either using a functional assay or a

binding assay.  Functional assays measure the signal generated by a biological reporter,

e.g. (Lerner 1994; Brauner-Osborne and Brann 1996; Jayawickreme et al. 1998),

allowing this type of assay to detect drugs that produce a biological response.  However,

if the biology of the system is poorly characterized or the screen is seeking both

antagonists and agonists, functional assays can not be used.  In contrast, binding assays

measure the competitive binding between a labeled tracer ligand and an unlabeled test

ligand.  Because this assay only measures binding, it can be used to detect ligands of any

type, even if the biology of the system is not understood.



51

In this work we examine membrane binding assays because of their ease of

implementation and ability to detect a wide variety of drugs.  Membrane binding assays

measure ligand binding to receptors in membrane fragments, not whole cells.  Not only

are membrane assays more stable over time, but they are also not influenced by cellular

processes such as receptor down-regulation, modification, or desensitization.  Because

membrane assays differ from conditions present when using whole cells, the results of the

membrane based screening assay may be biased toward the detection of drugs with

certain properties. This bias could be an advantage if it amplifies the signals of a

desirable class of drugs or a disadvantage if it reduces those signals.  If the reasons for the

bias can be understood, then high throughput screens could be designed to search for

specific classes of drugs such as inverse agonists,

As a model system, we focus on drug binding to G-protein coupled receptors

(GPCRs).  Approximately 80% of all known hormones, neurotransmitters, and

neuromodulators are believed to transmit their signal through GPCRs (Lesch and Manji

1992), and it is estimated that 45% of all medicines used today act through G-protein

signaling pathways (Drews 2000). Examples of such GPCR systems include the β-

adrenergic receptor (involved in regulating heart contractility), the opioid and dopamine

receptors (involved in brain function), and the N-formyl peptide receptor (involved in the

immune response).  Because GPCRs are such fruitful targets for drug action, most new

ligands for this receptor are detected using high throughput screening.

The most popular membrane binding assays used for detecting drugs to GPCRs

are homogeneous—meaning that they do not require a step to separate bound from free

ligand before a measurement is taken.  Some examples of commonly used homogenous
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binding assays include the scintillation proximity assay (SPA), homogeneous time-

resolved fluorescence (HTRF) and fluorescence polarization (FP).  SPA uses

fluomicrospheres that emit light when in close proximity to a radiolabeled compound.

By coating the fluomicrosphere with membrane-bound receptors and radiolabeling a

tracer ligand, SPA can measure the ability of an unknown ligand to compete with the

tracer ligand by the decrease in fluorescence (Bosworth and Towers 1989).  The HTRF

and FP format give similar results using different techniques (Hemmila et al. 1984;

Beisker and Eisert 1985; Mathis 1995; Nasir and Jolley 1999).  In each case, these assays

measure the change in the binding of a labeled tracer when an unlabeled test ligand is

added to the mixture and can compete for receptor sites  (see Figure 4.1).  If the test

compound displaces a significant amount of the labeled tracer, then the signal drops and

the test compound is registered as a “hit” worthy of future study.  Otherwise the tracer

signal
no

signal
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Figure 4.1  General schematic for GPCR ligand screening assays.  a) When the receptor
is unoccupied or bound to the test ligand B (filled circle) then no signal is detected.
However, when the receptor binds the labeled tracer ligand A (open circle) a signal is
emitted.  By measuring the drop in signal after the test ligand is added, the test ligand’s
affinity for the receptor can be calculated. b) The typical screening assay begins with the
addition of a tracer ligand to the receptor mixture, causing the signal to rise to a base line
signal.  After the system has equilibrated, the test ligand is added.  By observing the
magnitude of the signal drop, the ligand can be scored as either a “hit” or a “miss.”



53

will remain bound and the signal will remain high, registering the test compound as a

“miss.”

How can bias in a drug screen be detected?  Experimentally, bias can be difficult

to assess because of the relatively small number of available ligands for each receptor.

Results gleaned from one system may or may not indicate a systematic bias.  Similarly,

finding drugs that have been overlooked by a screen requires screening a library of

compounds multiple times using multiple assays—an effort far too costly for most

research groups to undertake.   In light of these problems, we chose to look for bias using

kinetic models of drug-target interactions.  Kinetic models are used in pharmacology to

describe the dynamics of known physical interactions between different parts of the

signal transduction pathway.  By taking a modeling instead of an experimental approach,

we are not limited by the number of available compounds and can therefore scan the

whole range of possible drug properties with a variety of assay formats.

Although binding is clearly required for any drug to have an effect on the cell,

other drug properties – such as its ability to change the receptor’s conformation –

determine what the drug does once bound to the receptor and thus contribute to drug

efficacy. Experimental data suggest that GPCRs exist in at least two conformations,

commonly referred to as the active and inactive states, and that the proportion of

receptors in each of these two states can be altered by ligands of different efficacy.  The

existence of these two states has been shown by agonist-induced affinity changes (Stadel

et al. 1980) and mutation studies (Cotecchia et al. 1990; Ren et al. 1993; Samama et al.

1993), both of which show a distinct change from one state to another.  Although the

receptor presumably has more than two possible conformations (Kenakin 1996), two
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receptor states are sufficient to describe most pharmacological observations on a single

signaling pathway.

For GPCRs, the efficacy of a drug can be divided into three classes: 1) positive

agonists, 2) neutral antagonists and 3) inverse agonists as shown in Figure 4.2.  Positive

agonists cause an increased response by binding to the active receptor conformation.

Neutral antagonists cause no response, but do compete with other ligands for binding to

the active site on the receptor.  Inverse agonists reduce the response below the basal level

by binding to the inactive conformation of the receptor.  Much is known about positive

agonists and neutral antagonists; however, inverse agonists have only recently been
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Figure 4.2  Three classes of ligand efficacy in GPCRs.  Ligands can increase a response
(positive agonist), cause no response but block the effects of other ligands (neutral
antagonist), or decrease a response (inverse agonist).



55

identified.  It has been speculated that inverse agonists could help treat diseases such as

familial hypoparathyroidism, congenital night blindness, and some forms of cancer

(Arvanitakis et al. 1998), and therefore represent a new and important class of drugs.

As just described, the efficacy of a drug is determined at least in part by its

relative binding affinity for a specific receptor conformation.   Thus binding affinity and

efficacy of a drug are related (Colquhoun 1987).  Therefore if binding assays measure the

affinity between a ligand and a receptor, it is reasonable to hypothesize that these same

assays also unintentionally screen for drugs with a particular efficacy.  Similarly, the

speed with which a ligand binds to a receptor could also affect which drugs are detected

and which are not.  Drugs that bind quickly would be expected to cause a rapid signal

change, while those drugs that bind slowly may cause the signal to drop too slowly to be

detected within the time frame of the assay.

In this chapter I examine the effect of ligand efficacy on binding affinity and

binding kinetics in both a membrane binding assay and a whole cell.  Understanding how

drug efficacy affects the observed affinity between ligand and receptor can help to

uncover systematic biases in the assay.  For example, should membrane binding assays

uncover more positive agonists than inverse agonists?  Similarly, do the kinetics of ligand

binding relate to the efficacy of the drug being bound?  By understanding how a

screening assay will perform with certain classes of drugs we may be able to design

assays to focus on drugs with particular characteristics.
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4.2  Methods

Our approach is to develop two simple and related models, one applicable to the

membrane binding assay used for high throughput screening and the other describing

conditions in the whole cell.  The binding of ligands of different efficacies in the two

models is then compared to determine when and if the equilibrium binding affinity

differs.  The kinetics of binding are also examined.  A description of the techniques used

to analyze equilibrium and kinetic pharmacological models can be found elsewhere

(Woolf and Linderman 2000).

Following the convention of most screening assays, each model is run using two

competing ligands, A and B.  Ligand A is a labeled tracer compound that is known to

bind to the receptor.  Ligand B is an unlabeled test compound that is being assayed.  By

predicting the amount of ligand A bound before and after B is added, it is possible to

determine which test ligands would qualify for further study as drug candidates.

A simple model that is often used in pharmacological modeling of GPCRs is the

extended ternary complex (eTC) model (Lefkowitz et al. 1993; Samama et al. 1993). The

eTC model is characterized by having an active (R*) and inactive (R) receptor

conformation, along with the ability to form a complex between ligand, receptor, and G-

protein.  G-proteins in this model are allowed to bind with the active form of the receptor,

which is consistent with experimental findings (De Lean et al. 1982).  Traditionally this

model has been used primarily to describe systems at equilibrium.  A related model, the

cubic ternary complex (cTC) model (Weiss et al. 1996), additionally allows G-proteins to

bind to inactive receptors.  Although this latter model is more thermodynamically

complete, it is also more complex.  Thus in the present work we have focused on the eTC
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model.  Because of the similar structures of the models, the trends we discuss here are

similar for both models.

I have modified the eTC model to include the kinetics of various receptor state

changes as well as the effects of competing ligands.  In the whole cell model, subsequent

G-protein activation steps are included to better represent drug binding in a living system.

We do not expect these models to yield quantitatively exact predictions because these

models only represent a small part of a much larger system of the cell and as such can

only approximate the behavior.  However, the trends predicted by these models are

credible and can provide practical insight into how screening assays might be improved.

4.2.1  Whole cell model

In a living cell, receptor activation is followed by G-protein activation, as shown

in Figure 4.3.  In the first step of G-protein activation, the G-protein exchanges GDP for

GTP, and then breaks into two signaling subunits, Gα-GTP and Gβγ.  This first step is

governed by a single reaction rate constant kr1 because the dissociation step between

Gα-GTP and Gβγ has been shown to be rate limiting compared to GDP removal and GTP

addition (Thomsen and Neubig 1989).  Next, the intrinsic GTPase activity of the Gα

subunit reverts Gα-GTP to Gα−GDP.  This change from Gα-GTP to Gα-GDP acts as a molecular

timer that ensures that the signal will be propagated inside the cell, but also that the signal

will stop soon after the stimulus is removed.  The Gα-GDP subunit then recombines with

the Gβγ subunit to reform the inactive G-protein, which can again interact with receptors

to repeat the cycle.  Other work using this and related whole cell models has

demonstrated that the model can be used to successfully model receptor desensitization
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(Riccobene et al. 1999), the activity of constitutively active mutants (Linderman 2000),

and the effects of ligand binding kinetics (Shea et al. 2000).  This model closely

approximates what is known about the early events in GPCR signal transduction, and as

such will be used to describe how a ligand would bind to a living cell.  The detailed mass

balance equations are shown in Appendix A.

R AR
kfA

kfA/ KaA

AR*R*
kfA/ KaA

αA kfA

AR*GR*G
kfA/ KaA

βA αA kfA

αA k1k1/ KACTk1

βA  ka2ka2/ KGka1/ KG ka1

k1/ KACT

kr1kr1

Gα-GTP + Gβγ Gα-GTP + Gβγ

Gα-GTP Gα-GDP

ki

Gα-GDP + Gβγ G
kc3

Figure 4.3  Whole cell model for GPCR signal transduction (Shea et al., 2000).  G-
proteins can be activated by the active receptor conformation, R*.  Note that here the
ligand A is the only ligand shown to bind, however in the simulation a second ligand B is
also allowed to bind competitively to give BR, BR*, and BR*G.  Rate constants
associated with each step are shown next to the appropriate arrow.  As described in the
text, ligands of different efficacy are assumed to have different values of the
conformational selectivity α.
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4.2.2  Membrane binding assay model

High throughput equilibrium binding assays are generally run on membrane

preparations, not living cells.  The reason for using membrane preparations is they are

easier to maintain than living cells, and some assays such as SPA require that the

membrane-bound receptor be attached to a detector, thereby precluding the use of whole

cells.  These membranes contain receptors, G-proteins and other proteins that associate

with the membrane, but leave behind the cellular components found in the cytosol.

One important component that is lost when making membrane preparations is the

soluble GTP.  As described earlier, GTP is required for G-protein activation.  When GTP

is removed from the system, the first G-protein activation step is removed from the model

(kr1=0).  Running the assay without GTP can also cause the G-protein to adopt the

“empty pocket” state, which further stabilizes the bond between the receptor and G-

protein (Hamm 1990; Hamm 1998).  In modeling terms, the “empty pocket” state could

be approximated by an increase in the receptor/G-protein equilibrium binding constant,

KG.  By including these changes in the whole cell model, we can simulate GPCR binding

in membrane preparations.  This binding assay model is shown in Figure 4.4 and the

detailed mass balance equations can be found in Appendix A. Membrane binding assays

used in high throughput screening measure the binding affinity of a test ligand, B, relative

to a tracer ligand, A.  The affinity of a test ligand is measured via a signal that is

proportional to the amount of tracer ligand bound to the receptor.  In the binding model,

this signal is proportional to the sum of the concentrations of AR, AR*, and AR*G. By

measuring how much the signal changes after the test ligand is added, the affinity of the

test ligand for the receptor can be calculated.
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One can define an equilibrium signal ratio as the amount of tracer ligand bound

after the test ligand is added divided by the amount of tracer ligand bound before adding

the test ligand.  The equilibrium signal ratio for the limiting case of a constant number of

free (“activate-able”, or Gα-GDP-βγ) G-proteins can be given as

Equilibrium signal ratio  S = N M
N M M

A

A B

+
+ +

(4.1a)

where

N 1 K G K Kact g act= + + (4.1b)

M A]K K G KA aA act A g A= + +( )[ ( )1 1α β (4.1c)

R AR
kfA

kfA/ KaA

AR*R*
kfA/ KaA

αA kfA

AR*GR*G
kfA/ KaA

βA αA kfA

αA k1k1/ KACTk1k1/ KACT

βA  ka2ka2/ KGka1/ KG ka1

BR

BR*

BR*G

βB  ka2ka2/ KG

αB k1k1/ KACT

kfB

kfB/ KaB

kfB/ KaB

αB kfB

kfB/ KaB

βB αB kfB

Figure 4.4  Model of the membrane binding assay based on the extended ternary
complex model of Samama et al. (Samama, 1993).  Here two ligands, the tracer (A) and
the test ligand (B), compete for binding sites on the receptor.   G proteins are not
activated because GTP is absent.  Rate constants associated with each step are shown
next to the appropriate arrow.  As described in the text, ligands of different efficacy are
assumed to have different values of the conformational selectivity α.
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M B]K K G KB aB act B g B= + +( )[ ( )1 1α β (4.1d)

An equilibrium signal ratio value approaching 1 indicates that the test ligand did not

displace a significant amount of the tracer (a “miss”), while a value approaching 0

indicates that the test ligand markedly displaced the tracer (a  “hit”). The equilibrium

signal ratio is a useful indicator to predict whether a given ligand will or will not be

detected in an assay depending on the tracer ligand concentration and binding parameters

([A],αA,βA,KaA), the test ligand concentration and binding parameters ([B], αB, βB,

KaB), and the system properties (G,KG,Kact).  N, MA, and MB are dimensionless

groups that describe the propensity of the system, tracer ligand, and test ligand

respectively to activate the G-protein.  For example, increasing the value of N increases

the level of constitutive signaling in the system.  The competition between N, MA, and

MB determines how the signal is perceived by the assay.

In order to simplify our result, Eqn. 4.1a was derived assuming that the number of

free G-proteins is constant. The actual variation in the number of free G-proteins during

signaling is not known.  Experimental work in neutrophils finds a ratio of G-proteins to

receptors of ~10:1 (Bokoch et al. 1988), which suggests that the change in free G-protein

number during activation might be a small fraction of the original amount.  In other

situations, however, one can envision a smaller number of G-proteins or perhaps receptor

access to G-protein restricted by microdomain boundaries.  For this reason, we use Eqn.

4.1a only to help elucidate general trends in the binding assay model for study of the

binding assay.  When G-protein activation is included (as in the whole cell model) or

when doing numerical simulations on the binding assay model, we use the full nonlinear
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model (Appendix A) and allow the G-protein number to change according to the laws of

mass action, thereby ensuring that the results are as realistic as possible.

The time course of ligand binding is analyzed numerically using the ordinary

differential equation models shown in Appendix A. Models are evaluated using the

standard ODE solving package in Mathematica™ which uses a combination of the non-

stiff Adams method (order 1-12) and the stiff Gear method (order 1-5).  Analytical

expressions to large nonlinear algebraic systems are generated using Mathematica's™

Solve function.

4.2.3  Parameters

The parameters for the models describe specific, and in principle measurable,

events in GPCR binding and signaling.  Of particular interest in this work are the

equilibrium association constant Ka, and the conformational selectivity α, both ligand-

specific parameters.  Ligand binding to inactive receptors is described by the equilibrium

constant Ka, while binding to active receptors is described by αKa.  The ratio of ligand

affinities for the active to inactive receptors is then simply α.  Thus a conformational

selectivity of α=10 indicates that the ligand binds ten times more tightly to the active

receptor conformation than to the inactive receptor conformation—making α essentially

a measure of ligand efficacy.  Positive agonists prefer to bind to the active conformation

and therefore have α>1.  Neutral antagonists bind equally well to either conformation,

represented by α=1.  Inverse agonists prefer to bind to the inactive receptor and as such

have α<1.  To test drugs of different efficacy this study, simulations were run using α

values of 0.01, 0.1, 1, 10, and 100 to span the range from strong positive agonist to strong
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inverse agonist.  Note that the ligand induced G-protein binding coefficient, β, could also

be used as a measure of efficacy.  However, in a strict two state model the ligand can

only distinguish between active and inactive receptors, forcing β =1.  Values of β not

equal to 1 imply that the ligand can distinguish not only between active and inactive

receptors, but also G-protein bound and G-protein unbound receptors, which would

require at least three distinct receptor conformations (R, R*, and R*G).  Therefore, in an

effort to simplify the analysis and maintain a strict two state model, only α was used as a

measure of ligand efficacy for this initial study.

To make a fair comparison among ligands of different efficacy, a set of ligands

with the same observed binding affinity in one system were tested in the other system.

For example, we created five ligands with different efficacies that all bound with the

same observed affinity in the whole cell and then tested those same ligands in the

membrane binding assay.  The observed binding affinity, Kobs, is the receptor-ligand

affinity that would be measured in an experimental system at equilibrium. This observed

affinity is distinct from the ligand’s intrinsic equilibrium association constant, Ka, in that

Ka is a measure of the ligand’s affinity for the inactive form of the receptor in the absence

of G-proteins.  An analytical expression for Kobs derived from the membrane binding

assay model is

Kobs A= M
[A] N

A (4.2)

where N and MA are given in equations 4.1b and 4.1c, and [A] is ligand concentration.

This result assumes a constant free G-protein concentration.  This observed affinity is a

function of both the conformational selectivity, α, and the intrinsic affinity for the

receptor, Ka.  To compare ligands with different values of α, equation 4.2 was solved for
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a value of Ka that would maintain a constant value of Kobs.  In this way we were able to

decouple efficacy and intrinsic affinity, thereby isolating the effects of efficacy on the

screening assay.

The values of the remaining parameters in the models were either taken from the

literature or estimated so as to agree as well as possible with experimental data.  For each

figure, parameter values are given in the legend.

Note that beyond the specific parameter values, the structure of the model defines

what behaviors the system may exhibit.  When possible, models were analyzed

analytically to derive qualitative behaviors that are insensitive to changes in parameter

values.  In this way it was possible to determine a characteristic response of the system,

where specific parameter values only rescale the result but do not change the qualitative

behavior.  Therefore many of the results presented here are general to the model itself and

do not rely on the system being in a specific parameter regime.

4.3  Results and Discussion

Ligand binding is first examined using equilibrium (membrane binding assay) or

steady state (whole cell) analyses.  These results describe the system at long times, when

the concentration of each species is no longer changing.  Studying the system at

equilibrium or steady state rather than at earlier times has the advantage that it is

mathematically simpler, and as such more amenable to analytical solutions.  Using an

equilibrium analysis, we  also explore the behavior of the assay when  the G-protein

concentration or tracer ligand identity is altered.  Some of these results, such as the GTP-

shift, are well-known by the pharmacological community and are used to validate the
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model.  Other predictions such as the effect of different tracer ligands on the assay are

new.

We next examine the kinetics of ligand binding, i.e. a description of the system

when species concentrations are changing.  We explored the possibility that membrane

binding assays fail to detect some drugs because measurements are taken too quickly.

The use of the assay as a tool for predicting ligand efficacy based only on kinetic binding

data is proposed.  The effects of the tracer ligand efficacy on the test ligand binding

kinetics are also discussed.

4.3.1  Equilibrium analyses:  Observed affinity differs between membrane binding
assay and whole cell conditions

A key difference between the membrane binding assay and the whole cell is the

whole cell’s ability to activate G-proteins—an ability that requires the presence of GTP.

The effects of G-protein activation on ligand binding were explored by comparing how

ligands of different efficacy bind in the membrane binding assay and the whole cell

models.

A set of five ligands that range from a strong positive agonist (α=100) to a strong

inverse agonist (α=0.01) is tested for binding in both a membrane binding assay and a

whole cell assay.  In the example shown in the top of Figure 4.5a, the positive agonists

appear to bind tightly in the membrane binding assay, with a half maximal effective

concentration, EC50, of approximately 10 nanomolar, while the inverse agonists bind

weakly (EC50 of ~5000 nanomolar).  For many drugs found by high throughput screening,

the EC50 is the initial criteria used to screen out drugs that do not bind tightly enough

and as such would likely require unreasonably high ligand concentrations to have a
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biological effect.  However, if these same five ligands were subjected to a secondary

assay using whole cells (Figure 4.5a bottom), then it would be found that all of the

ligands bind with the same affinity.  The result is that an inverse agonist that would bind

appreciably in vivo would be overlooked using a membrane binding assay, generating a

“false negative” result.
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Figure 4.5  Comparison of ligand binding to a membrane assay and whole cell. (a) Five
test ligands, ranging from a strong positive agonist (αΒ=100) to a strong inverse agonist
(αΒ=0.01), that bind with the same observed affinity in the whole cell (bottom) were
selected.  When these same ligands are examined in the membrane binding assay (top),
the positive agonist binds much more tightly than the inverse agonist, making the inverse
easy to overlook.  (b) A different set of 5 ligands with similar values of Kobs in the
membrane assay (top) were selected.  When these ligands are tested in the whole cell
(bottom), the strong inverse agonists bind most tightly, while the positive agonists bind
weakly.  This result implies that the membrane binding assay only detects those inverse
agonists that bind very tightly, but can find positive agonists that bind relatively weakly.
Parameters used in the membrane assay model: Rtot=10,000 #/cell; Gtot=100,000 #/cell;
Kact=0.001; KG=10 (#/cell)–1; KobsA=KobsB=107 M–1; αΒ =0.01, 0.1, 1, 10, 100; αA=1;
βA=βB=1; [A]=10–7 M.  Parameters in the whole cell model are the same as the assay
model plus the following kinetic rate constants: k1=0.00002 sec–1; ka1=ka2=0.00001 sec–1;
kf=106 M–1 sec–1; kr1=0.01 sec–1; kc3=0.001 M–1 sec–1; ki=0.001 sec–1, A=10-7 M.



67

In Figure 4.5b, 5 drugs with similar observed affinity in the membrane binding

assay  (top) are tested in the whole cell model (bottom).  Here, these 5 drugs could all be

registered as “hits” in the membrane binding assay because they all have an EC50 of 100

nanomolar.  However, when these same 5 drugs are examined in the whole cell  (Figure

4.5b bottom), it is found that the positive agonists detected by the membrane binding

assay bind weakly, while the inverse agonists bind much more tightly.   In this situation,

the positive agonists found by the membrane binding assay bind too weakly to be useful,

but they are still detected.  Therefore, weakly binding positive agonists can give “false

positive” results in a high throughput screen that uses membrane binding.

These comparisons suggest that the membrane binding assay is biased to

preferentially detect positive agonists and overlook some pharmaceutically important

inverse agonists.  In particular, the stronger the inverse agonist (the smaller the value of

α) the more difficult that drug will be to detect in the membrane binding assay, making

finding strong inverse agonists that bind with high affinity a difficult task.  Experimental

work with constitutively active α1 and α2-adrenergic receptors is consistent with this

conclusion in identifying many weak but few strong inverse agonists for the receptors

(Rossier et al. 1999).  The proposed bias in the membrane binding assay might in part

account for paucity of known strong inverse agonists for GPCRs.   

The magnitude of the observed affinity difference between the membrane binding

assay and whole cell models depends on the parameter values chosen for the models, but

the qualitative trend is independent of the parameters used.  As shown in Figure 4.3, any

increase in the G-protein activation rate constant, kr1, will destabilize R*G and AR*G.

These receptors freed from G-proteins will initially be in the active, R*, state, which in
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turn will drive the formation of more inactive receptors, R—an effect that should be

particularly strong in most common systems that have a low level of constitutive activity.

A sketch of this phenomena is shown in Figure 4.6, which shows a situation where the

receptor is most stable in either the inactive state, R, or the G-protein bound state, R*G,

with the R* state as an unstable intermediate.  Following this logic, unstimulated

receptors will remain in the inactive, non-signaling state, while active receptors will be

energetically driven to seek out G-proteins and thereby propagate the signal inside the

cell.  Therefore, according to the whole cell model, increasing the G-protein activation

rate constant kr1 will always increase the observed binding affinity of inverse agonists

(recall that inverse agonists have a higher affinity for R than for R*) and decrease the

observed affinity of positive agonists, regardless of the parameter values are used in the
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Figure 4.6  A qualitative sketch of the energies associated with inactive receptor, R,
active receptor, R*, and G-protein bound receptor, R*G, for a system with low
constitutive activity.  When not stimulated, the receptor tends to stay in the inactive
conformation due to the high energy barrier associated with receptor activation.  This
effect is enhanced by increasing the G-protein activation rate constant, kr1.  However,
when the receptor does become active (R*) there is a strong energetic drive to couple with
G-proteins (R*G) and transduce the signal inside the cell.  This drive is enhanced when
the total number of G-proteins is increased.  Were this not the case, active receptors would
not cause a biological response and as such could not detect changes in the environment.



69

model.  In the limit of the G-protein activation rate constant dropping to zero, we recover

the membrane binding assay model, which most strongly favors positive agonists over

inverse agonists.

These modeling results are supported by experimental data describing the well-

known effects of GTP on ligand binding, or what has been termed the “GTP shift”

(Lawson et al. 1994; Krumins and Barber 1997).  For known positive agonists, the

removal of GTP can cause up to an 800-fold increase in the observed binding affinity

(Florio and Sternweis 1989), while for known inverse agonists the observed binding

affinity can drop by ~3 fold (Costa and Herz 1989).  The reason for this change in

binding affinity relates to GTP’s ability to activate G-proteins as is illustrated in the

whole cell model in Figure 4.3.  At high GTP concentrations, the G-protein is easily

activated (kr1 large) and as such spends more time in the dissociated, signaling state.  In

this state the G-protein can not interact with the receptor causing the system to behave as

if there were less G-protein present.  At low GTP concentrations, however, the G-protein

is not easily activated (kr1 small) and as such spends more time with the receptor,

mimicking an increase in G-protein concentration.  An increase in effective G-protein

concentration is similar to adding a positive agonist to the system, for both positive

agonists and G-proteins stabilize the active receptor conformation.  Therefore increasing

G-protein number tends to drive the receptor into the active conformation, making

positive agonists bind more tightly at the expense of inverse agonist binding.

The reported GTP shifts are mirrored in the modeling results in Figure 4.5.  The

membrane binding assay represents a situation where GTP is removed from the system

and thus G-protein can not be activated, while the whole cell model mimics the system
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with GTP present.  Following the binding of a strong positive agonist (α=100) in Figure

4.5a, the binding affinity shifts from approximately 10 nanomolar in the membrane assay

(top) to 100 nanomolar in the whole cell—representing a ~10 fold decrease in binding

affinity.  Similarly, for a weak inverse agonist (α=0.1) in Figure 4.5a, the binding affinity

shifts from 1000 nanomolar in the membrane assay (top) to 100 nanomolar in the

assay—representing a ~10 fold increase in binding affinity on the whole cell.

In some experimental systems, the observed effect of GTP is smaller than the

change presented in Figure 4.5, in which case the assay bias would still be present but

possibly not detectable.  For example, it has been shown that the α2A-adrenergic receptor

increases its binding affinity for agonist by a factor of 3 to 9 when GTP is removed, while

the decreasing its affinity for inverse agonist by only a factor approximately 2 (Wade et

al. 2001).  In modeling terms this smaller shift could be accounted for by reducing the

value of KG, thereby reducing the influence of G–proteins on the receptor conformation.

An example of how binding in the assay and whole cells would behave with an alternate

parameter set is shown in Figure 4.7.  In these cases, the GTP shift would still bias

against detecting inverse agonists, but the magnitude of this shift may be sufficiently

small such that the bias does not present a screening problem.

At this time it is not clear when the screening assay would produce a significant

bias and when it would not.  As I have shown, changes in the receptor-G–protein

equilibrium constant (KG) can alter the magnitute of the bias, but the value of KG is not

known at this time and would likely be different for each receptor-G–protein

combination. Additional experimental work is needed to determine when the assay bias is

significant.
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Although not included in the model, assays that use membrane preparations may

also have access to more G-proteins than would be available in a living cell.  In a living

cell, G-proteins are associated with the membrane and their locations appear to be

regulated.  This cellular regulation ensures that at the receptor has access to only a

fraction of the total available G-proteins (Neubig 1994).  When the cell membrane is

disrupted, however, the cytoskeletal elements that maintain this organization may no

longer function.  Therefore in membrane preparations the receptor may have access to all

of the G-proteins, thereby affecting the stoichiometry of the system.

4.3.2  Equilibrium analyses: Membrane binding assay can be refocused to detect
inverse agonists

The modeling results suggest that the membrane binding assay biases against the

detection of inverse agonists, but can the model also suggest solutions?  Because the

models used in this work are mechanistic, as opposed to “black box” phenomenological

models, changes in the signaling pathway can be simulated to see their effects.  In the

Figure 4.7  Alternate parameter set that exhibits a smaller shift from the whole cell
model to the assay model.  This scenario may better represent some experimental systems
such as the α2A-adrenergic receptor (Wade et al. 2001).  Parameters used in this model
are the same as in Figure 4.5 except KG is reduced from 10 (#/cell)–1 to 0.001 (#/cell)–1.
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case of GPCRs, changes in the signaling pathway could include adding a drug that alters

the rate of a particular reaction, or changing the concentration of a protein in the pathway.

Comparisons between ligand binding in the membrane binding assay and the whole cell

assay suggest that by manipulating the G-protein number, the membrane assay can be

refocused to detect drugs with a particular efficacy.  For example, to refocus the

membrane binding assay toward the detection of inverse agonists, the number of G-

proteins must be reduced to better match the whole cell binding conditions.  Common

experimental techniques used to remove G-proteins include chemical inactivation with

pertussis toxin or the addition of a non-hydrolyzable GTP analog, such as Gpp[NH]p or

GTPγS.  A similar way to remove G-proteins would be to add an excess of

GTP—essentially using the “GTP shift” to refocus the assay.  Note however, that

increased inverse agonist binding affinity due to changing G-protein number comes at the

expense of the binding affinity of positive agonists, implying that the assay can only be

optimized for a single class of drugs at a time.

Another possibility would be to use the results from two membrane binding

assays, each with a different number of G-proteins, to predict the efficacy of a drug.  For

example, imagine measuring the equilibrium signal drop when G-proteins are present

(SG
+) and when G-proteins are absent (SG

-).  By comparing the values of SG
+ and SG

-, the

approximate efficacy of the drug could be determined by:

SG
+ = SG

- neutral antagonist

SG
+ > SG

- positive agonist

SG
+ < SG

- inverse agonist
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For example, if SG
+ = SG

- then ligand binding is insensitive to G-protein concentration,

implying that the ligand binds equally well to either the active or inactive receptor

conformation—consistent with the binding behavior of a neutral antagonist.  Note that

these predictions do not require that the absolute number of G-proteins in the system be

known, but instead rely on a difference in G-protein number.  This approach has the

advantages of the simplicity of a binding assay, but would also give functional

information about the test ligand.

4.3.3  Equilibrium analyses:  Tracer ligand efficacy does not bias the membrane
binding assay

In general, screening assays are run using a neutral antagonist as a tracer.  Would

using a positive or inverse agonist as a tracer affect the bias of the assay toward drugs of

a different efficacy?  This question can be explored using the analytical results from

membrane binding assay to see how tracers with different efficacies would affect the

observed equilibrium signal ratio.

As a starting point consider two tracer ligands, a positive agonist (+) and an

inverse agonist (-), which both bind to a particular receptor with the same observed

affinity, Kobs.  If the G-protein concentration can be assumed to be constant, then the

analytical results developed earlier can be used to predict equilibrium signal ratio

produced when using each tracer ligand.  The observed equilibrium constant as defined in

Eqn. 4.2 can be related to the parameters in the assay model by:

K+obs = M
[A ] N

+

+  = K-obs = M
[A ] N

-

- (4.3)
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where N and M are as given in Eqns. 4.1b and 4.1c.  The parameter N only depends on

properties of the system (Kact, KG, and [G]), and therefore is independent of the tracer

ligand used, while the parameter M does depend on a number of ligand-specific

parameters (Ka, α, and β) and is therefore denoted as M+ for the positive agonist and M-

for the inverse agonist.  If the concentrations of both tracer ligands are equal†, [A+]=[A–],

then by Eqn. 4.3, M+= M-.  If M+ and M- are equal, then the equilibrium signal ratio in

equation 4.1 must also be equal for both tracer ligands, as shown by

 Equilibrium signal ratio = N M
N M M

+

+
B

+
+ +

 = N M
N M M

-

-
B

+
+ +

(4.4)

Thus the efficacy of the tracer ligand will not affect the signal ratio or the efficacy of the

ligands detected in an equilibrium binding assay††.

4.3.4  Kinetic analyses:  Binding kinetics gives information about ligand efficacy

Thus far we have only examined the membrane binding assay in the equilibrium

limit because most high throughput screens are designed as equilibrium assays.

Therefore, the results of these assays interpreted using two data points—one before the

test ligand is added to establish a base line, and a second after the test ligand has had time

to equilibrate with the receptor.  Unfortunately, this process has at least two potential

                                                  

 When the concentration of the tracer and test ligands are not equal and yet both ligands
bind with the same observed affinity, then binding will favor the most concentrated
species, irrespective of either ligand s efficacy.
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problems.  The first problem is that system may not actually reach equilibrium before the

second measurement is taken.  In this case, the signal change may appear less than if the

assay had been run for a longer time and some potentially important leads may be lost.

The second, subtler problem is that equilibrium assays discard valuable kinetic

information which can give additional clues about the test ligand.

This additional kinetic information may allow us to predict not only the binding

affinity but also the efficacy of a drug.  By observing how quickly the signal changes

when the test ligand is added, we attempted to distinguish between positive and inverse

agonists.  Figure 4.8a shows an example of how the signal would change in the

membrane binding assay for 5 different test ligands, ranging from a strong positive

agonist to a strong inverse agonist.  The test ligands were chosen to produce the same

drop in signal at long times (approaching equilibrium) and the tracer ligand is a neutral

antagonist.  Notice that the inverse agonist causes the assay signal to drop slowly, while

the positive agonist causes a rapid signal drop.  This differential in binding rates between

positive and inverse agonists has two important implications.  The first is that inverse

agonists may be missed by screening assays that are not incubated long enough to allow

the system to reach equilibrium.  Only those ligands that bind quickly (positive agonists)

would be detected.  The second implication is that by observing the rate of ligand

binding, we can infer the efficacy of the ligand without doing any further tests.  Therefore

                                                                                                                                                      

 This result assumes that the total number of free G-proteins does not change
appreciably.  If this assumption is violated then the efficacy of the tracer ligand can affect
the equilibrium signal ratio in a system dependent manner.  The analytical solution of this
more general model is lengthy and and is reproduced in Applendix A.
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in this system, test ligands that bind slowly but have a large signal drop are most likely

inverse agonists while ligands that bind quickly with a large signal drop are most likely

positive agonists.

The reason that inverse agonists are predicted to bind more slowly than positive

agonists in the membrane binding assay is illustrated in Figure 4.9.  Because the

membrane assay contains no GTP, and as such no G-protein activation step, the G-

proteins in the assay tend to hold the receptor in the active conformation, R*G.  In

modeling terms, this stable bond is described by a large value of the equilibrium G-

protein binding constant, KG.  When the tracer ligand is added and the system is allowed
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(a) Predicted assay conditions (b) Alternative assay conditions

Figure 4.8  Predicted signal as a function of time in the membrane binding assay.
Ligands ranging from strong inverse agonists to a strong positive agonists are chosen to
all have the same equilibrium signal drop in the assay.  The tracer ligand used is a perfect
neutral antagonist (α=1).  (a) Predicted assay conditions: Normally the membrane
binding assay is expected to favor the active G-protein bound form of the receptor, R*G,
due to the stabilizing effect of the empty cage  state.  Under these conditions inverse
agonists bind more slowly than positive agonists.  (b) Alternative assay conditions: If the
assay is modified to stabilize the inactive receptor conformation, R, positive agonists
bind more slowly than inverse agonists.  Parameters in both plots are the same as those
shown in Figure 4.5, except in (b) KG has been changed to 0.0005.
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to equilibrate, a large fraction of the receptors should be in the AR*G state at the

beginning of the assay.  Upon addition of the test ligand, B, the system shifts away from

the AR*G state and the signal drops.  If the test ligand is a positive agonist (binds more

tightly to the active receptor), then the receptor only needs to 1) release the tracer ligand

and 2) bind the test ligand.  However, if the test ligand is an inverse agonist (which binds

more tightly to the inactive receptor), the receptor must 1) release the tracer ligand, 2)

release the G-protein, 3) change to the inactive receptor conformation, and 4) bind the

test ligand.  Therefore, for an inverse agonist to bind, the receptor must go through two

extra steps, each of which could slow ligand binding substantially.  Although the specific

rates of each of these reactions are unknown, ligand dissociation and G-protein

dissociation are the most likely candidates for rate limiting steps because they each

involve the breakup of a stable complex.  G-protein dissociation may be further slowed

by the stability of the “empty cage” G-protein-receptor complex present at low GTP

concentrations.

Positive Agonist Inverse Agonist

R AR

AR*R*

AR*GR*G

BR

BR*

BR*G

R AR

AR*R*

AR*GR*G

BR

BR*

BR*G

Figure 4.9  Steps for binding of positive and inverse agonists in the membrane binding
assay.  To bind a positive agonist (left) requires fewer steps than to bind an inverse agonist
(right), causing the inverse agonist to bind more slowly than the positive agonist.
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In contrast, if the membrane binding assay begins with receptors primarily in the

inactive state, R, then positive agonists will bind more slowly than inverse agonists, as

shown in Figure 4.7b.  To achieve this reversal, the G-protein binding constant, KG, was

reduced, thereby shifting the equilibrium in Figure 4.6 to the left.  Experimentally this

could be mimicked by using a receptor with low affinity for G-proteins, adding GTP to

the assay, or by removing G-proteins from the assay.  The explanation for this

phenomenon is similar to that in Figure 4.9, except that now inverse agonists must only

traverse two steps to bind, while positive agonists must take four steps.  More

complicated scenarios such as when more than one reaction rate is limiting are also

possible, but are beyond the scope of this work.  Analysis techniques for these more

complex kinetic systems can be found elsewhere, e.g. (Hill 1977; Fogler 1999).  Based on

qualitative behaviors such as the magnitude of the GTP shift and the speed at which

signals are detected by GPCRs, most screening assays are expected to behave similarly to

the assay shown in Figure 4.8a.

These results demonstrate that the binding kinetics of a drug can give useful

information about the relative efficacy of that drug.  The interpretation of the data will

vary with the receptor system under study and the assay conditions; experiments with

known ligands would be useful to first determine plausible ranges of key parameters

based on the overall system behavior.  In all cases however, kinetic binding data yields

valuable information about the efficacy of the ligand.

4.3.5  Kinetic analyses:  Tracer ligand efficacy can affect binding kinetics

The efficacy of the tracer ligand can affect the binding kinetics of the test ligand.

As discussed above, a positive agonist tracer ligand will hold the receptor in the AR*G
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state, allowing positive agonist test ligands to bind more quickly than inverse agonists

and giving results similar to Figure 4.8a.  Tracer ligands that hold the receptor primarily

in other states (e.g. AR) will allow different kinetics of test ligand binding (e.g. Figure

4.8b).  These examples require that the tracer ligand exerts a strong influence over the

receptor by binding tightly and specifically to primarily one conformation. Finding a

ligand that binds with such high specificity is required to overcome the effects of G-

proteins on the receptor conformation (the parameter KG in the model), which may not be

possible for some systems. Further, using a tightly binding tracer ligand can be a

disadvantage in that the absolute size of the signal drop will be reduced, making it

difficult to distinguish signal from noise.

4.4  Conclusions

Our modeling results indicate that current membrane binding assays bias against

the detection of inverse agonists, both at long and short assay times.  Thus current high

throughput screening methods which are based on membrane binding are predicted to

miss many inverse agonists.  Modifications such as removing G-proteins from the assay

or observing the kinetics of ligand binding may help to refocus the assay and also provide

functional information about the test ligands.  Alternative modifications such as using a

tracer ligand with a different efficacy were shown to have no effect on the equilibrium

signal when the free G-protein concentration can be assumed constant, but could affect

the kinetics of test ligand binding.

Further experimental work will be needed to determine when this bias is

significant enough to cause drugs to be missed.  For example, the system illustrated in

Figure 4.5 shows a robust change in ligand affinity from whole cell binding to membrane
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assays, while the system in Figure 4.7 shows a significantly smaller change.  Future

measurements of the receptor/G–protein binding affinity (KG) may help to shed light on

which systems are prone to the bias described in this work.  For systems where ligands

ranging from strong agonists to inverse agonists exist, simple binding assays should be

sufficient to describe the bias as was done for the α2A-adrenergic receptor (Wade et al.

2001).  However by using binding assays one will always be limited to testing ligands

that have already been found and may not completely represent what could be found

using a completely unbiased assay.

This work only represents one example of how modeling can aid in improving our

design and understanding of high throughput screening assays.  By using modeling, we

can explore a wide variety of assay conditions using details known about the system

which could be difficult to assess experimentally.  As we have shown in the case of

GPCRs, modeling can elucidate biases in the screen and suggest ways to correct and or

compensate for these biases.  Similar techniques might be used to analyze assays on other

kinds of receptors or even enzyme assays, such as tyrosine kinase assays (Park et al.

1999).  In general, modeling allows us to focus our screens and glean more information

from the data with little additional cost.
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CHAPTER V

SELF ORGANIZATION OF MEMBRANE BOUND PROTEINS VIA

DIMERIZATION

5.1  Introduction

Dimerization is observed in systems ranging from colloidial suspensions to

protein complexes on the cell surface.  In this work we first ask how dimerization affects

particle organization, and then for biological systems how this organization affects

physiology.  Heterodimerization is unique in condensed matter physics because it is not a

field interaction but instead is a one-to-one interaction.  Thus when a dimer forms it

becomes inert.  Although this type of bond formation is common in biology, little

theoretical work has been done to elucidate how dimerization affects particle

organization and why this organization is important for the cell.  For receptor tyrosine

kinase proteins, dimerization is thought to bring reactive species together to transduce a

signal (Weiss and Schlessinger 1998), although dimerization alone may not be sufficient

to transduce a signal (Burke and Stern 1998).  In other systems the physiological role of

dimerization is less clear.  For example, it has been recently revealed that a large number

of G–protein coupled receptors (GPCRs) are able to form homo- and heterodimers

(Nimchinsky et al. 1997; Hebert and Bouvier 1998; Gines et al. 2000; Overton and

Blumer 2000).  In most cases, dimerization of GPCRs does not correlate with signaling,

but instead is thought to affect signal cross-talk among receptor types or desensitization
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of the receptor via an unknown mechanism (George et al. 2000; Jordan et al. 2001).

Similarly, the bacterial receptor Tar (Gardina and Manson 1996), human nerve growth

factor receptor (Schlessinger and Ullrich 1992), and the bacterial and plant Photosystem

II proteins (Jahns and Trissl 1997) are all able to form transient dimers in the membrane,

but the reasons for these interactions are unknown.

Using Monte Carlo simulations, we show that protein dimerization can cause long

range ordering within the cell membrane.  Although other mechanisms such as lipid rafts

may participate in ordering the proteins within the membrane, protein-protein interactions

are likely to play a key role in establishing this order and dynamically changing this order

over short time spans.  The key mechanism for forming extended order via dimerization

is partner switching (Fig. 5.1).  Here each protein competes to bind with its neighbors

before they move too far apart to interact.  If this binding and unbinding reaction is fast

relative to the diffusion rate, then the proteins can share a single bond among multiple

proteins and in doing so form a stable oligomer.  This bond sharing is analogous to

sharing a single electron across many bonds in chemistry.  In modeling terms, the

translational movement rate is determined by the diffusion coefficient and the rates of

1

2 3

1

2 3

1

2 3

Figure 5.1  Dimerization can lead to the formation of trimers via diffusion-limited
partner switching.  This same mechanism can be extended to form larger oligomers when
more monomers are present.
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binding and unbinding can be described by two reaction rate constants, kdimer and kmono in

the reaction:

(5.1)

Note that kdimer and kmono are intrinsic rate constants, meaning that they describe the rate at

which binding and unbinding take place after diffusion has brought them together.

5.2  Methods

5.2.1  Monte Carlo simulations

Simulations were run on a 700 x 700 triangular lattice with periodic boundary

conditions and a lattice spacing corresponding to 0.5 nm.  Particles were assumed to

occupy hexagons with a diameter of 10 lattice spacings, which corresponds to a protein

diameter of 5 nm and is approximately equal to the diameter of a single G–protein

coupled receptor.  During the simulation, particles were picked at random to react and

move.  If the edges of two particles were separated by an interaction radius of 5 grid

spacings (2.5 nm) or less and both were monomers, they were allowed to form dimers

with a probability proportional to kdimer.  Dimers were allowed to monomerize with a

probability proportional to kmono.  Particles were allowed to diffuse a single grid spacing

in a random direction with a probability proportional to the diffusion coefficient.  If the

site was occupied, then the move was rejected and not repeated.  Single particles within a

dimer pair were allowed to move toward or in parallel with each other with the same

probability as a single unbound particle.  Cluster size was measured by counting the total

number of particles that are within the interaction radius of at least one member of the
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same cluster.  Before statistics were taken, all simulations were allowed to pre-

equilibrate, and then at least 500 measurements were made, between which each protein

was allowed to move an average two diameters between measurements.  Phase diagram

simulations were run with 1000 particles corresponding to a surface coverage of 18% and

reached equilibrium within 10 ms of simulation time.  Runs with two particle species

were run with 300 A and 300 B particles with binding parameters set at kmono=4.6 and

kdimer=46, thereby placing the ensemble in the oligomer phase. Average separation

distance was measured for 10,000 independent runs. Simulations were written in C++

using Metrowerks CodeWarrior and were run on a cluster of Apple PowerPC G4

machines.

5.2.2  Scaling to GPCRs

Dimensionless rates are given relative to a normalized diffusion rate of 1,

correlated to the time required for a particle to travel 0.1 particle diameters.  This time

can be calculated using the diffusion coefficient along a two-dimensional surface:

t r /(4D )2
t= (5.2)

where t is the characteristic time, r is the distance traveled, and Dt is the translational

diffusion coefficient.  For a GPCR, r is 0.5 nm (10% of the protein diameter) and

estimates of Dt range from 10–8 to 10–11 cm2/s (Saffman and Delbruck 1975; Shea and

Linderman 1997), yielding a characteristic time of 10–4 to 10–7 seconds.  Therefore a

normalized dimerization rate of 10 corresponds to 10/10–4 to 10/10–7 or 105 to 108 sec–1.

By presenting the results in normalized form, they can be directly applied to any two-

dimensional system where dimerization is possible.  The GPCR dimerization rate of 105
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sec–1 was estimated using a GPCR rotational diffusion coefficient of 2.7 x 105 sec–1

(Saffman and Delbruck 1975) assuming two proteins must align to within 60° of the

protein-protein binding site to dimerize.  The monomerization rate, rather than the

dimerization rate, was assumed to be receptor specific.  For dimerization to take place,

two proteins must first rotate to align their binding sites.  This step does not directly

depend on the receptor type or on the specific state of the receptor.  Assuming the time

scale for rotational diffusion is limiting, then the subsequent receptor specific binding

step will not contribute substantially to the overall dimerization rate.  In contrast,

monomerization is not affected by the rotational diffusion of the proteins, and as such is

fully determined by the identity and state of the receptor.

5.3  Results and Discussion

5.3.1  Dimerization can cause clustering in vivo

We first consider the case of one homodimerizing species that is allowed to react

and diffuse in two dimensions yielding phase behavior illustrated in Fig. 5.2a.

Depending on the binding kinetics relative to the diffusion rate, the ensemble can exist in

a two-dimensional gas of monomers, a two-dimensional gas of dimers, or an intermediate

diffusion-limited oligomer state.  In the monomer gas state, the ratio of dimerization to

monomerization rates is low, driving the equilibrium toward a homogeneous mixture of

monomers.  In the dimer gas state, the ratio of dimerization to monomerization rates is

high, permitting the particles to form stable dimers but lacking any long-range order.

Between these two states there exists an intermediate state that orders particles into

oligomers via the partner switching mechanism described earlier.  Our simulation results
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(Fig. 5.2b) demonstrate that this phase behavior does indeed emerge when the

contributions of many particles are included.  Movies of this interaction can be viewed on

the web at www–personal.engin.umich.edu/~pwoolf/dimerization.html.  Oligomer size is

maximized when the dimerization rate is approximately ten times the monomerization

rate, and when both rates are fast relative to the diffusion rate.  From inspection of Figure

5.2b, the minimum normalized dimerization and monomerization rate constants required

to observe the oligomer phase are approximately kdimer=10 and kmono=1, with larger

constants resulting in further increases in oligomer size.  When these results are scaled to

the diffusion coefficient of GPCRs in the cell membrane, it is found that the oligomer

phase should be present if the dimerization rate constant is at least 105 sec–1 and the

monomerization rate constant is at least 104 sec–1.

The dimerization and monomerization rate constants for GPCRs have not been

directly measured, but our estimates suggest that diffusion-limited oligomers are present

in the cell.  The dimerization rate constant can be estimated based on the rotational

diffusion coefficient of a GPCR to be on the order of 105 sec-1, thereby allowing the

system to access the oligomer phase.  The monomerization rate constant is specific to the

receptor species and its activation state, likely varying from nearly zero to much larger

values and thus allowing for monomer, dimer, and oligomer phases to be present.
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Figure 5.2  (a) Schematic phase behavior of a dimeric species to indicate three phases: a
two-dimensional monomer gas, a two-dimensional dimer gas, and a diffusion-limited
oligomer phase. (b) Simulation results that show how the cluster size varies with kmono
and kdimer normalized to a diffusion rate constant, kmove, of 1.  The labels on the diagram
denote the three observed receptor phases. Cluster size is indicated by color and varies
from 4.2 to 1.9 (4.2 1.9) particles per cluster. (c) Sample
image of particle location in the monomer gas phase. (d) Sample image of particle
location in the oligomer phase.  Note that the particles are more clustered in the oligomer
phase than they are in the monomer phase, as is reflected quantitatively in the phase
diagram.

Increased mobility of the receptor-receptor binding surface or local structures in

the lipid bilayer could also act to increase kdimer (Gheber and Edidin 1999) and in doing

so further favor the oligomer phase.  Experimentally, membrane preparations of GPCRs
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including the D3 dopamine, δ–opioid, and µ–opioid receptors have been shown to form

trimers and even tetramers in spite of their being monovalent proteins (Nimchinsky et al.

1997; George et al. 2000).  It has been difficult to explain why these proteins form larger

oligomers, but this finding is consistent with the diffusion-limited oligomerization

proposed here.

Receptor organization could be altered by the presence or absence of ligands.

Experimental data have shown that GPCRs respond to ligands by dimerizing or

monomerizing (Hebert et al. 1996; Gines et al. 2000); therefore ligand binding could

change kmono   to push a system from, for example, a monomer gas state to an oligomer

state.  Samples of how these two states might appear on the cell membrane are shown in

Figures 5.2c and d.  By clustering proteins together in the oligomer phase, a ligand could

indirectly influence how the cell responds.  For example, clustering could reduce local

diffusion limitations for secondary messengers such as G–proteins, or for proteins

involved in the desensitization pathway such as receptor kinases.  Thus at the

physiological level, receptor signaling efficiency and desensitization could in part be

modulated by ligand induced changes in dimerization.

The average oligomer size increases by increasing the protein density or by

adding inert proteins to the system.  For example, increasing the active or “dimerizable”

protein density from 18 to 37% coverage results in an average oligomer size 50% over

what would be seen if no dimerization were present.  Similarly, adding inert proteins that

do not form dimers up to a 37% surface coverage causes the average oligomer size to

increase by approximately 15% (Figure 5.3). In the typical eukaryotic cell, proteins

occupy between 20 and 50% of the membrane surface area (Gennis 1989); therefore the
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protein densities tested in the simulations are physiologically realistic.  Both increased

active protein density and increased inert protein concentration effectively reduce the

observed diffusion rate of proteins within the membrane, driving the system into a more

diffusion-limited regime that favors oligomerization.  In the phase diagram in Figure

5.2b, this decrease in diffusion coefficient corresponds to shifting the results to the upper

right, thereby favoring an increase in oligomerization.  It is important to note that the

effect of density is local.  Thus, although the active receptor may be expressed at low

densities on the cell surface as a whole, the receptors could be limited to high density

domains due to corralling or association with membrane lipid islands, thereby favoring

oligomerization (Gennis 1989; Saxton 1989; Gheber and Edidin 1999; Pralle et al. 2000).
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Figure 5.3  Effects of increasing active and inert particle density on the average cluster
size.  Cluster size always increases with particle density due to simple crowding;
however, oligomers increase their cluster size more quickly due to a reduction in the
apparent diffusion coefficient at high particle density.
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5.3.2  Dimerization influences receptor cross-talk

Next, receptor cross-talk was examined by simulating the interaction between two

different protein species.  For GPCRs, one type of cross-talk takes place when two

receptors interact with a common G–protein.  For example, the µ– and δ–opioid receptors

both act through the Gi form of the G–protein, but respond to different ligands (George et

al. 2000).  This kind of cross-talk can be beneficial because it allows many receptors to

activate a common signal transduction pathway and thereby ensures that the signal will

be transmitted; however, in other cases cross-talk could be harmful because it prevents

the cell from discriminating between distinct pieces of information about the

environment.  Therefore, a mechanism for dynamically regulating receptor cross-talk

would be of benefit to the cell.

Cross-talk at the receptor level depends on how the receptors associate with each

other. We examined the interaction of two receptor species, A and B, under three

different association rules: no dimerization (A and B are inert); homodimerization (A

binds with A; B binds with B); and heterodimerization (A binds with B).  Examples of

each of these cases have been experimentally observed for GPCRs (George et al. 2000;

Gines et al. 2000; Jordan et al. 2001).  As a measure of receptor cross-talk we calculated

the minimum distance separating two different species of receptors on the assumption

that receptors spaced more closely would have more cross-talk via secondary messengers.

In the oligomer and dimer gas phases, changing the receptor-receptor association

rules affected receptor cross-talk (Fig 5.4).  No dimerization led to a well-mixed system

and the separation between A and B took on an intermediate value.  Heterodimerization

coupled dissimilar receptor species, resulting in a short separation distance between A
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and B and presumably increased cross-talk.  In contrast, homodimerization caused like

receptor species to separate themselves into distinct islands, increasing the separation

distance between A and B and reducing cross-talk.  Therefore treatments that alter the

receptor-receptor association rules, such as the presence of ligands that induce or inhibit

dimerization, could affect receptor cross-talk and any ensuing physiological responses.
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Figure 5.4  Snapshots of the positions of two protein species in yellow and blue under
the following protein-protein association rules: (a) No interaction between proteins;  (b)
Heterodimerization; (c) Homodimerization. (d) Average minimum separation distance
between two dissimilar neighbors quantifies what can be observed visually in figures a, b
and c, implying that heterodimerization enhances cross-talk while homodimerization
represses cross-talk.

The effects of receptor-receptor association rules on cross-talk are most

pronounced in the oligomer phase.  For example, when receptors associate as

homodimers they form extended homogeneous islands in the oligomer phase, but only



92

form stable pairs in the dimer gas phase.  As such, homodimerization in the oligomer

phase isolates dissimilar receptors more effectively than homodimerization in the dimer

gas phase, presumably leading to reduced cross-talk. When receptors associate as

heterodimers, cross-talk becomes sensitive to the concentration of each receptor species.

In the dimer gas phase, any deviation from a 1:1 concentration ratio leaves uncoupled

receptors, resulting in poor mixing and less cross-talk.  In contrast, receptors in the

oligomer phase use the partner switching mechanism (Fig. 5.1) which is less sensitive to

the concentration ratio, resulting in better mixing over a wider range of conditions and

more cross-talk.  These results may explain why evolution has favored dimerization in so

many receptor systems and suggest that these receptor systems should operate in the

oligomer phase for improved control of cross-talk.

Further exploration of this topic will described in the following chapter.

5.3.3  Dimerization rules describe a spatial grammar

Because ligands to GPCRs alter the dimerization state of their receptors, we

propose a higher level abstraction of receptor signal regulation though a form of spatial

grammar.  In linguistics, a grammar describes how words are linked together to express a

concept.  Similarly, in signal transduction a spatial grammar describes how receptors link

together to create a functional pattern.  For example, Figures 5.4a,b, and c show three

qualitatively different patterns that two receptor species can assume depending on the

specific grammar.  Shorthand representations of those grammars are

Grammar Pattern Meaning
A   B Figure 5.4a medium cross-talk
A•B Figure 5.4b high cross-talk
A•A  B•B Figure 5.4c low cross-talk
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where A and B represent different receptor types, and the • symbol indicates receptor

association.  In each case the cell will receive a different signal depending on the specific

grammar.  The following statements illustrate the analogous case in English

Grammar Pattern Meaning
they are here    . factual statement
are they here    ? question
here they are    ! explicative denoting a change

All of these cases are rearrangements of the same three words to express different

meanings.  Therefore ligands that affect receptor association rules are in effect changing

the grammar of their signal and in doing so altering the meaning.  Although illustrated

with only two receptor types, a spatial grammar can also describe the interaction of many

species, thereby providing a useful analogy to help extend our understanding of GPCR

signal transduction beyond the single protein level to the more global system level.

We have demonstrated a new emergent property of dimerization with implications

for signal transduction and membrane organization.  Oligomerization via dimerization

extends protein-protein interactions beyond single protein behavior and as such may

explain why dimerization is so prevalent among membrane receptors.  This result also

has implications for drug design.  If a drug is developed that alters the associative rules of

the receptor then that drug may also affect how the receptors localize themselves on the

cell membrane, and in doing so influence how the signal is interpreted by the cell.

Oligomerization via dimerization is not only applicable to membrane proteins but can be

generalized to other non-biological systems.  For example, heteroflocculation in colloidal

suspensions is used industrially to control material properties (Asselman and Garnier

2000).  This process may employ similar partner switching mechanisms and therefore

would have a grammar that could be manipulated to alter the behavior of the resulting
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materials.  Similarly, these results could be extended to apply to polyvalent particles,

assuming that bond formation is reversible and that the rates of bond formation and

destruction are fast relative to the diffusion rate.  Finally, understanding protein

organization and its effects on signal transduction in terms of a linguistic grammar

provides a powerful analogy to extend our understanding of signal transduction from the

level of single proteins to the broader system level.  It is through this more complete view

of signal transduction that we can begin to understand how the cell integrates diverse

stimuli to arrive at a coherent response.
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CHAPTER VI

ACTIVATION, SELF—ORGANIZATION, AND CO—REGULATION OF

RECEPTOR DIMERS

6.1  Introduction

What is the physiological consequence of receptor dimerization if dimerization

does not catalyze a reaction?  The current dogma is that most proteins bind with other

proteins to either catalyze or inhibit reactions.  However this explanation for protein

binding does not explain the apparent ubiquity of protein—protein interactions that do not

affect the active site of the protein nor the binding that takes place between proteins with

seemingly unrelated functions.  Another explanation for protein bonds is that they allow

proteins to form extended structures; however many proteins have only one binding site

and therefore can only form dimers.  In this work we use computer modeling to show that

dimerization can organize multiple receptor species on the cell membrane.  We also show

that dimerization induced organization affects receptor cross—talk and internalization

rates in a way that depends on the logical rules that govern receptor hetero— and

homodimerization.

As a sample case we have chosen to focus on the G—protein coupled receptor

(GPCR) family.  Many GPCRs have been shown to form homo— and heterodimers, but

dimerization does not appear to cause receptor signaling as reviewed in (Gomes et al.

2001).  Experimental evidence indicates that dimerization might affect GPCR

desensitization or localization, but there was no known physical mechanism for this

observation.  Therefore, in this work we have attempted to see if dimerization could have
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a physiologically observable effect by basing our model on known physical properties of

GPCRs.

GPCRs and receptors in general provide a particularly interesting case for the

study of dimerization because these proteins change conformation upon ligand binding.

This change in conformation not only allows the receptor to activate secondary

messengers, but also affects receptor internalization and possibly dimerization.  For

example, it has been shown that ligand binding affects the dimerization of the SSR5

receptor (Rocheville et al. 2000), the bradykinin B2 receptor (AbdAlla et al. 1999), and

the β2AR receptor (Angers et al. 2000).  Therefore, binding a ligand to a receptor may not

only change the activity of the receptor but also the dimerization induced organization of

the receptor in its environment.

In chapter 5, I demonstrated that dimerization alone can exhibit phase behavior in

which membrane proteins can exist in a monomer gas, dimer gas, or mixed gel phase

depending on the kinetics of the system.  In the gel phase, membrane proteins form

extended clusters that are capable of self—organization.  The clusters in the gel phase are

able to form by using a partner switching mechanism in which a single dimer bond can be

rapidly shared among many membrane proteins within the cluster.  As an analogy,

consider a cocktail party in a ballroom where each guest can only hold the attention of

one other guest at a time.  If the guests in the party are not talkative, then everyone in the

room will wonder aimlessly and never form any structure, thereby forming the analogous

monomer gas phase.  On the other hand, if the guests become engrossed in their own

focused conversations, then everyone in the room will explore the room as tight pairs,

akin to the dimer gas phase.  However if the guests discuss topics familiar to everyone,

such as the weather, then any speaker may be able to effectively hold the attention of

more than one person at a time by rapidly shifting focus from person to person.  If the

speaker is able to perform this shift faster than the guests can escape, then the speaker has
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effectively made a trimer using only a dimer interaction.  This last case characterizes the

gel phase.

The organization that results from dimerization is not static but instead is

dynamic.  Following the cocktail analogy above, clusters of guests in the gel phase do not

form rigid and unchanging groups but instead constantly break down and regroup into

different combinations. This kind of organization is qualitatively different from the

organization observed in most engineered systems in that it is probabilistic.  In an

engineered system, such as a car or a building, the parts are connected together in a

precise and rigid way that either does not change with time or changes only along a

limited pathway.  In contrast, dynamic organizations such as cocktail parties or proteins

in the cell membrane do not have set, permanent connections.

Two related advantages of a dynamic organization are that it is robust to changes

in the system and it can self—organize.   Small changes in a rigid system, such as

removing a gear from a car, can cause the whole system to fail.  In contrast, removing a

small number of proteins from the cell membrane has little effect on the overall

functioning of the system.  The reason the dynamic organization is more robust to these

changes is that the rules that govern this organization also allow the system to

self—organize.  Therefore small changes in the protein expression level cause the proteins

within the system to reorganize to compensate for the loss.  In biological systems, this

level of robustness is needed to cope with noise ranging from thermal fluctuations to

stochastic protein binding events and therefore is an integral part of the cell s functioning.

In this chapter I model GPCRs in the gel phase to explore the physiological

consequences of dimerization.  In each case I present simulation data that is

experimentally accessible and provides intuition to expand our understanding of the

importance of spatial localization for signal transduction.  The framework presented here

will help experimentalists to organize new findings on receptor dimerization and should

provide new avenues for future research.
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The objective of this work was to determine how dimerization affects receptor

organization and cell signaling.  To achieve this objective I have chosen to use

mechanistic computer models of receptors reacting and diffusing on the cell membrane.

Models are useful for this kind of study because they allow us to isolate a single

phenomenon such as dimerization to determine what, if any role it could play in the real

system.  Modeling results are also general. Thus the findings in this work not only apply

to GPCRs but also to other membrane proteins, or even broader classes of systems such

as reactants on a catalytic surface.  Because these models only account for a small part of

the cell s machinery, our results will not predict the cells behavior exactly.  However,

models can help to determine what is and is not possible and can suggest experimentally

useful and testable trends that may be difficult to uncover using experimental techniques

alone.

The modeling results focus on three main areas.  First, one to three different

receptor species were simulated under all combinations of dimerization rules to

determine how the logical rules that govern dimerization can affect the global

organization of proteins on the membrane.  Second, the degree of cross—talk between

receptors was measured as a function of the dimerization rules.  Third, the effect of

dimerization on receptor internalization was examined.  With these results in hand, I next

discuss the implications of these findings for cell physiology and drug development.

Finally three experimental examples from the literature are provided in the light of our

dimerization findings.  This work provides experimentally testable hypotheses and

valuable rules of thumb for interpreting dimerization interactions.

6.2  Methods

Simulations of receptor reaction and diffusion were run using a Monte Carlo

approach.  To begin the simulation, receptors were placed at random on a two
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dimensional 400 by 400 triangular grid with periodic boundary conditions. In all

experiments, 100 of each receptor species was present, allowing the total receptor count

to range from 100 receptors for simulations of only one species to 300 when three species

were simulated.  Each particle had a radius of 5 grid spacings (occupied 91 vertices)

corresponding to a diameter of 5 nm approximately the diameter of a GPCR.  If two

receptor monomers were separated by less than one receptor radius then dimerization was

possible.  Monomers were allowed to diffuse in a random direction with a probability

proportional to the diffusion rate.  If the chosen random site was occupied the move was

rejected and no further attempts at movement were made.  Diffusion of a receptor within

a dimer was similar to the monomer case except when the receptor attempted to move

away from or overlap with its binding partner.  If the receptor attempted to move away

from or overlap its partner, the partner would attempt to move in parallel with the

receptor.  If the new position of both receptors did not overlap with other receptors in the

system the move was allowed; otherwise it was rejected and no further moves were tried.

All simulations used a normalized diffusion rate of 1, normalized dimerization rate of

46.41, and normalized monomerization rate of 4.64, thereby placing the ensemble of

membrane proteins in the gel phase (see chapter 5 for discussion).  These normalized

rates correspond to physical rates of D=10—10 cm2 sec—1, kdimer=106 sec—1, and kmono=107

sec—1 which is approximately that of a GPCR (see sample calculation in Chapter 5).   An

iteration is defined as the time required for each particle to move one particle diameter.

Simulations are pre—equilibrated for 40 thousand iterations and then 200 thousand

measurements are taken over the next 400k iterations for each experiment.

Measurements include counting the number of bonds and calculating average shortest

distance between species.

The interaction between multiple species is expressed in the form of a

dimerization rule and multiple dimerization rules are expressed as a dimerization

network.  Dimerization rules are expressed using a compact notation in which I indicate



100

that two species can form dimers by dotting  them together.  Thus the rule A¥B¥C

indicates that the dimers AB and BC can form, but not the dimers AC, AA, BB, or CC

nor any trimer species.  Multiple rules including interconverting species can be nested

into a dimerization network.  For example, if A* is the active state of A then the two

dimerization rules A*¥A*¥B and A¥B can be expressed in the dimerization network

A*¥A*¥B¥A.

These dimerization rules represent extreme cases in which binding can or cannot

occur, while in the real case the binding probability most likely changes with the receptor

species.  This extreme case is useful for these initial studies because it allows us to cast

dimerization rules in general terms.  However as more experimental data becomes

available these simulations can be modified to include different dimerization probabilities

between different species

To describe the ordering of an ensemble, the average shortest radius between each

pair of species was calculated.  Thus, for three species the average shortest radius was

calculated between AA, AB, AC, BA, BB, BC, CA, CB, and CC.  The average shortest

radius from A to B and from B to A are not equivalent and each provides a unique

descriptions of the system.  For example, imagine a single B particle surrounded by a sea

of A particles.  For each A particle, the single B is the closest B, while for B there is only

one nearby A that is closest.

Signaling was simulated by counting the number of secondary messengers located

adjacent (within one grid spacing) to an active receptor.  This model of signaling assumes

that active receptors and secondary messengers do not form stable bonds but instead need

only to bump into each other to propagate the signal.

Receptor internalization was also modeled by assuming that if a receptor is

internalized and it is dimerized, then its dimerization partner will also be internalized.  In

the simulations, measurements of initial internalization rates were made by choosing at

random an active species and targeting it plus its partner for internalization.  This
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selection process was repeated 1000 times on a variety of ensembles to gather statistics

on the average internalization rate for each species.  At no time were particles actually

removed from the simulation because this would alter the rates of other processes; thus

only the initial rate of internalization was recorded.

To ensure that the results presented here are not an artifact of the parameter set,

parameter sweeps of kdimer, kmono, D, and particle densities were also run.  In each of these

cases the qualitative trend did not change, however the magnitude did.  Thus changes that

tended to push the system farther into the gel regime (increased kdimer and kmono, or

reduced D) tended to amplify the effects of receptor organization, while changes that

made the system more homogeneous (lower particle density, increased D) attenuated the

effects of the dimerization rules.

6.3  Results

Three sets of simulation results are used to demonstrate how dimerization can

impact signaling.  In the first set, the interactions between one, two, and three distinct

particle species are simulated under different dimerization rules to gather experimentally

accessible statistics describing the ensemble. In the second set, the interactions between

two receptor species and a common secondary messenger are simulated under different

interaction rules to determine how dimerization influences cross—talk.  In the third set,

hetero— and homodimerization is shown to integrate signals via receptor internalization.

6.3.1  Dimerization rules affect global organization

Although a local reaction, dimerization can also influence global membrane

protein organization particularly when many protein species are present.  To demonstrate

this organization, we simulated the interaction of one, two, and three generic particle

species under different dimerization rules.  Qualitative aspects of the particle organization
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are shown by comparing single frames from an equilibrated ensemble.  Average

quantitative measures of particle organization are also made to reveal less apparent

changes in organization in response to different dimerization rules. These simulations

show that an intermediate level of organization involving between 3 and 8 receptors is

measurable and has global effects.

Changes in dimerization rules can cause a qualitative change in particle

organization as shown in Figure 6.1.  In each panel a different dimerization rule is

applied for two or three species.  These images represent what would be observed

experimentally if each receptor could be tagged and colored according to its identity.  In

A¥A   B¥B

A¥B

A  B

A¥A   B¥B   C¥C

A¥B¥C

A   B   C A¥A¥B¥C¥C

A¥A¥B   C¥C

A¥A¥B¥C 

A B C

Figure 6.1  Representative receptor organizations under different dimerization rules.
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some cases, the effect of a dimerization rule on organization is immediately apparent.

For example, compare the case of two non–reactive species (A  B) with two

homodimerizing species (A•A  B•B ).  The non–reactive species are evenly mixed and

exhibit no apparent clumping or organization.  In contrast, the three homodimerizing

species show marked clustering, self–segregating themselves into distinct homogeneous

islands.  In other cases, however, the change in organization is less apparent.  For

example, the dimerization rules A•A•B•C•C and A•A•B  C•C lead to structures that are

superficially similar, although closer inspection will reveal that A and B are more isolated

from C under the latter rules.

To quantify particle organization, the average shortest distance between particle

species was measured (Table 6.1).  Average shortest distance was chosen because it not

only indicates the degree of clustering, but also the identity of particles involved in the

cluster.  By presenting an average value over many readings I overcome random error

associated with looking at a single image.  The results are color coded by relative

separation distance to make broad patterns more discernable; thus a change in color

pattern indicates a change in organization.  Note that in some cases the addition of a

single bond can significantly alter the organization.  For example, compare the rules

A•A•B•C•C and A•A•B  C•C  (interactions 15 and 19 in Table 6.1).  As previously noted,

these two dimerization rules yield similar qualitative results (see Figure 6.1) although

quantitatively the two pictures are easily discernable.  Therefore the quantitative data

provides a higher degree of resolution to describe the equilibrium organization of the

ensemble.

The results presented here are cross–comparable and interconvertable.  Although

the simulations are run with between one and three species, the density of each species

present does not change from simulation to simulation.  Therefore, results obtained for

the interactions of a single species can be meaningfully cross–compared to results with

more species.  For example the average shortest radius between A particles does not
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change between the ensembles A, A B, and A B C because in all cases the density of A

particles remains the same although the total density triples when three species are

present.  Note also that only a fraction of the possible interactions have been simulated,

but more can be generated by interconversion.  For example, the interaction A•A•B•C

can be interconverted to A•B•C•C by swapping A and C.  Using this procedure, the

subset of interactions presented in Table 6.1 can generate every unique set of rules for

three or fewer particles.

Experimental measurements of dimerization can be interpreted using the average

shortest radius data in Table 6.1.  Techniques such as fluorescence energy transfer

(FRET) essentially measure the average shortest radius between tagged species and are

already in use for identifying receptor—receptor dimerization (Angers et al. 2000; Cornea

et al. 2001).  If the separation distance between multiple membrane bound proteins are

measured, then the pattern of radii can be directly compared to the data in Table 1 to

predict a dimerization rule.  This rule in turn can be used to make predictions about other

properties of the system such as internalization rate and signal cross—talk, as described

below.  Because the minimum separation distance is also affected by particle density,

stoichiometry, dimerization rate, and monomerization rate (see Chapter 5) the values

reported in Table 6.1 are only quantitatively accurate for one particular system; however

the pattern of each dimerization rule is unique, independent of the system parameters.

Including information about a particular experimental system into the model will allow

the simulation predictions and experimental data to be compared directly.
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6.3.2 Dimerization as a route to control cross—talk

One form of signal cross—talk takes place when multiple receptor species use a

common second messenger.  Because signals are propagated by the encounter between a

receptor and second messenger, I propose that cross—talk among multiple receptor species

Table 6.1  Average shortest separation radius between particle types for all combinations
of 1 through three particle species.
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will depend on the spatial organization of membrane proteins and as such should be

sensitive to changes in dimerization rules.  This form of cross—talk has been demonstrated

experimentally with the somatostatin and dopamine receptors (Rocheville et al. 2000) and

is likely to play a role in other receptor systems.  To explore how this cross—talk takes

place I simulated the interaction between two receptors (R1 and R2) and a common

second messenger (S) under a variety of dimerization rules.  The activity contribution of

each receptor species was measured as the fraction of secondary messenger adjacent to

that species.  Thus secondary messengers adjacent to R1 were counted as signals from R1

and secondary messengers near R2 as signals from R2.  Note that with this scheme it is

possible for both R1 and R2 to claim a secondary messenger if all three species were

closely localized.  This model of secondary messenger activation would closely

approximate the initial rate of secondary messenger activation.

The simulation results show that changing the dimerization rule affects both the

total signal and the relative contribution of each receptor type (Figure 6.2).  The total

signal varied by as much as 30% depending on the specific dimerization rule.  The

relative contribution of R1 and R2 to the total signal ranged from 1:1 for the R1  R2  S rule

to approximately 3:2 for the R1  R2¥R2  S rule.

Changes in dimerization rules affect cross—talk primarily because of clustering

and competition effects.  This pattern is most easily uncovered by examining pairs of

rules that differ by only one bond.  For example, the rules R1 R2 S and R1¥R2 S differ only

by one R2R1 bond, however the R1¥R2 S rule gives a significantly smaller total signal.

Under the R1¥R2 S rule, receptors can form heterodimers and as such will tend to cluster

into islands that exclude S, thereby decreasing the total signal.  Note that this finding

assumes that receptors and G—proteins can not occupy the same x,y position on the

membrane.
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6.3.3  Receptor number co—regulation via dimerization

Receptor number and dimerization rules can change in response to ligand

stimulation.  To link these two processes I propose that if a receptor within a dimer is

active and therefore targeted for internalization, then its binding partner will also be

targeted for internalization.  This connection has been experimentally demonstrated with

heterodimers of β2—adrenergic receptors and δ—opioid receptors (Jordan et al. 2001).

This assumption is not dependent on the dimerization rate because in all cases

dimerization alone will tend to co—localize proteins and as such cause both to be

Figure 6.2 The effect of changing dimerization rules on the signaling capability of each
receptor type.
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trafficked together.  Using this information I have simulated the interaction between an

active receptor species (R1) and an inactive receptor species (R2) to find the initial rate of

internalization for both species under various dimerization rules.

The internalization rates of both the active and inactive species change in

response to different dimerization rules (Figure 6.3).  Because R1* is the only active

species, only monomeric R1* and the dimers R1*R1* and R1*R2 can be internalized.

Therefore, any dimerization rule that favors the formation of the R1*R2 dimer causes

more R2 to be co—internalized.  Similarly, because only one R1* is targeted for

internalization at a time, rules that favor the formation of the dimer R1*R1* accelerate the

internalization of R1* by the same co—internalization mechanism.

Figure 6.3  Internalization rates of two receptor species under different dimerization rules.
For these internalization studies, it is assumed that the receptor R1 is active and R2

inactive..
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6.4  Discussion

The simulation results demonstrate that dimerization has system wide effects and

cannot be examined solely at the one or two protein level.  Therefore this work presents a

new viewpoint to examine the collective behavioral changes induced by dimerization.

The effects of changing dimerization rules are complicated and can be difficult to

predict a priori.  For example, moving from the rule A¥A¥B¥C¥C to A¥A¥B˚˚C¥C (see

Table 6.1 and Figure 6.1) involves forbidding a bond between C and B.  As expected this

move increases the average shortest distance between C and B, but it also changes the

distances between nearly every other species too.  The reason that the whole system

changes is that the addition or removal of a single dimer combination adjusts the number

of available binding partners to a species, which in turn affects its local environment.

This change in local environment then causes a global organizational change to emerge.

Other methods of receptor organization that involve receptor attachment to the

cytoskeleton or trafficking via lipid rafts are also possible but are less complete than the

dimerization mechanism proposed here.  Receptor attachment to the cytoskeleton is a

plausible way to localize receptors, but it is saturable and requires that the distinct parts

of the cytoskeleton are themselves spatially segregated.  Therefore small changes in the

expression level of either cytoskeletal proteins or receptors could cause the system to

become disordered.  Lipid rafts have the disadvantage that they too are saturable.

Furthermore rafts are also fairly nonspecific and slow to reorganize in response to a

signaling event.  In contrast, dimerization based methods of receptor organization are not

strongly affected by changes in receptor expression level, can quickly reorganize in

response to small changes in receptor conformation, and are very specific to a near

infinite palette of protein—protein binding surfaces.  Therefore dimerization acts by

decentralizing control of the receptor organization.  In doing so, dimerization makes the

signaling system both more responsive and more stable.
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In the following sections I demonstrate that changes in dimerization rules can

have physiological implications and that these changes are observable in experimental

systems.  The simulation results are used to show that dimerization can result in emergent

behaviors that could not be detected by studying a single protein or single dimer.  This

emergent behavior has direct applications to drug development and in particular provides

a novel pharmacological route to modulate receptor internalization.  Finally these

emergent properties are discussed in light of three experimental receptor systems.  In

total, this work provides experimentally testable hypotheses and valuable rules of thumb

for interpreting dimerization interactions.

6.4.1  Dimerization networks exhibit physiologically relevant emergent properties

Regulation and integration of a signal transduction pathway is generally thought

to involve a number of levels of cellular control; however, the simulations used in this

work indicate that at least some of these processes can be controlled at the receptor level

using dimerization alone.  Two processes of interest are the regulation of receptor number

via internalization and integration of signals from multiple active receptors.  By including

dimerization in these processes I have found emergent properties that have physiological

relevance.  In this section, each of these properties will be explored separately and then

brought together to show how a dimerization network alone can be used to infer

regulatory behavior.

Dimerization provides a novel route to modulate the receptor internalization rate.

Common wisdom says that ligand binding to a receptor only affects the internalization

rate of that single receptor; however, in experimental systems such as the β2AR and V2

receptor systems it appears that the internalization rates of multiple receptor species are

linked (Klein et al. 2001).   The simulation results demonstrate that dimerization can

cause ligand induced receptor internalization to be non—reciprocal in much the same way
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as the experimental system.  Non—reciprocal internalization means that a ligand to R1

may induce R1 and R2 to internalize, but a ligand to R2 may only cause R2 to internalize.

An explanation for this asymmetry is that the dimerization rules for receptor can change

in response to ligand binding.  For example, let R1* and R2* denote active, ligand bound

receptors, and R1 and R2 denote inactive receptors.  If only the ligand for R1 is present

then a dimerization rule such as R2¥R1*¥R1* may apply, whereas if only the ligand for R2

is present then the dimerization rule may change to R1˚˚R2*.  In the first case, activation

of R1 would cause both R1 and R2 to internalize because the R2R1* dimer would pull in

R2 via a co—internalization mechanism.  In contrast, only R2 would be internalized in the

second case (see Figure 6.3).  The result is that ligand binding causes asymmetric

internalization.

Two other cases are possible when ligands to both R1 and R2 are present or no

ligand is present, revealing a more general four species dimerization network.  One

dimerization network that is consistent with the example above is R1¥R2¥R1*¥R1*¥R2*.

When only the ligand to R1 is present then all R1 is converted to R1*, returning the

dimerization rule R2¥R1*¥R1*.  When only the ligand to R2 is present, we recover the rule

R1˚˚R2*.  Note that the dimerization network must be internally consistent.  Therefore the

network R1¥R1¥ R2¥R1*¥R1*¥ R2* is not valid because the dimerization rule when only R2

is active is R1˚˚R2*, implying that inactive R1 cannot form homodimers.

Physiologically, non—reciprocal internalization produces a unique form of signal

transduction cross regulation.  In one case, receptor activation down regulates and hence

desensitizes only one signaling pathway as is normally expected.  However, if a receptor

can form heterodimers then non—reciprocal internalization is possible, implying that a

second, seemingly unrelated pathway could also be down regulated.  This kind of cross

regulation of receptor expression could be used in development, for example, where

activation of one receptor may cause a short term response, while activation of a different
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receptor may cause a global change in phenotype that modulates the response of many

signaling systems.

Nonlinear receptor cross—talk can also emerge when dimerization is included.

Nonlinear receptor cross—talk implies that the signal produced when two receptor species

are active does not equal the sum of the signals produced if each receptor is active alone.

The particular behavior that two receptors will exhibit depends on the dimerization

network.  This is shown for one particular case in Figure 6.4.  Cases I and III illustrate

linear cases while cases II and IV illustrate nonlinear cases.  Using experimental methods

alone, understanding this nonlinear cross—talk could be difficult to explain because the

two receptors are only related via a common secondary messenger.  For example, if the

effect of activating R2 were under study, then the activity of R1 could play a large or

small role depending on the dimerization network.  Under the network in Case II, the

coactivity of R1 would play a large role, increasing the observed signal by approximately

150% if R1 were active.

Knowing the dimerization network of a set of receptors is sufficient to derive

useful information about receptor internalization and cross—talk.  Take for example the

dimerization network and its associated rules shown in Figure 6.5(a).  The individual

dimerization rules for this network could have been derived from protein—protein binding

assays or from the literature for many receptor species.  Even if only some of the

dimerization rules were available, partial information could be used to define a subset of

possible dimerization networks, while if all of the rules were immediately available then

a single dimerization network could be derived.  Because each dimerization rule exhibits

a characteristic organization as shown in Table 6.1, it may also be possible to determine

the dimerization rule directly from a multi—signal FRET type assay too.  Using the

dimerization network, the relative signals of each receptor type can be predicted using the
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Figure 6.4  Drug induced signals under different dimerization networks when two
receptors share a common secondary messenger. Here R1 and R2 are receptors and S is
the secondary messenger.

data in Figure 6.2.  The dimerization network in Figure 6.5(a) is predicted to generate the

mixed positive/inverse agonist behavior described in Figure 6.5(b).  Changes in

internalization rates in response to receptor activation can also be predicted using the data

in Figure 6.5c.  In some cases the internalization will exhibit no cross regulation, while in

others, receptors may co—internalize in complicated ways. For example, in Figure 6.5(c)

the internalization rates of R1 and R2 change depending on the activation state of each

receptor.  Because the models used in this work assume full activation of a receptor

species, the changes in internalization rate are solely due to the dimerization rules.

Therefore in some cases the dimerization rules may not only convey information that
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would be difficult to obtain from experimental measurements alone, it may also be the

only way to explain certain findings.

Figure 6.5 Example of how dimerization can be used to infer properties of a signaling
system. (a) Deriving dimerization rules from a dimerization network. (b) signal for each
dimerization rule (c) internalization rate for each dimerization rule.

6.4.2  Dimerization as a tool for drug development

Receptors change dimerization state in response to drug binding.  Therefore, drug

designers may be able to harness dimerization as a tool to control the cell s response to a
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drug. The simulation results have shown that the dimerization state of a receptor should

affect signaling and internalization, both of which strongly influence the cells eventual

response.  By creating drugs that induce receptor heterodimerization with specific

partners or homodimerization, drug designers could tailor drugs to have unique properties

that are not currently accessible.

In this work, for simplicity I have assumed that a drug causes all of a single

receptor species to become 100% active.  Therefore all of the observed changes in

signaling and internalization are due to changes in localization alone.  This point is

important because it shows that drug induced changes in dimerization rules can have

significant effects at the physiological level.  For example, consider the dimerization

networks shown in Figure 6.4.  When only one receptor species is active, the maximum

possible signal for the system varies considerably depending on the drug induced

dimerization rule.  This effect is likely magnified by further amplification steps

downstream of the secondary messenger, meaning that the dimerization network selected

by a drug could be sufficient to decide if a drug does or does not signal.

The internalization rates of many receptor species may also be affected by the

drug acting on a single receptor.  For example consider the dimerization rules in Figure

6.3.  Moving from the rule R1*¥R1*˚˚R2 to R1*¥R1*¥R2 involves changing the

conformation of R1 such that it forms both homo— and heterodimers.  As a result of this

change, the internalization rate of R1 nearly halves and the internalization rate of R2

substantially increases.  In some cases this co—internalization of different receptor species

could manifest itself as an undesirable side effect of the drug a property that could be

removed by changing the drug such that it did not allow heterodimers to form.
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Alternatively the slower internalization rate could also be useful in some applications.

Receptor internalization is a primary mechanism for long-term desensitization to a drug

(Tsao and von Zastrow 2000).  Therefore reducing the rate of receptor internalization

may also extend the useful life of the drug in the body before desensitization takes over.

Controlling drug-induced dimerization may also provide a novel method for

controlling receptor expression levels.  Inverse agonists and some antagonists have been

implicated in increasing the expression levels of receptors on the cell surface.  For

example, a common postoperative treatment for heart failure involves a regimen of

beta–blockers which antagonize the β2–adrenergic receptor (β2AR).  Unfortunately, after

extended beta-blocker treatment, removal of the drug causes hypersensitivity to

endogenous β2AR agonists such as adrenaline due to an increased expression rate of

β2AR receptors, putting the patient at risk once more (Strauer 1990).  If the goal were to

develop a drug to safely return the patient to a normal β2AR expression level, then the

ability of the drug to induce dimerization could play an important role.  Ideally, one

would like the receptor number to drop quickly but without stimulating a response from

the receptor.  As demonstrated in Figure 6.2, ligands that induce homodimerization of

their target should cause a smaller response.  Therefore a drug that caused β2AR to

dimerize would be preferred.  Similarly, drugs that induce homodimerization also cause

more internalization (Figure 6.3).  Therefore homodimerization is once again preferred.

A completely different approach of activating a receptor that heterodimerizes with the

β2AR such as the δ– or κ–opioid receptor (Jordan et al. 2001) could also reduce β2AR

expression without any activation at all.   This approach may cause other problems due to
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activation of the opioid receptor, but these may be less dangerous than the presenting

problem.

Receptor dimerization may provide a novel pharmacological handle to control

drug activity.  To efficiently screen for drugs that cause a desirable dimerization network,

high throughput FRET assays could be used in much the same way as other fluorescence

based drug screens that are currently in use.

6.4.3  Biological systems affected by receptor organization

The effects of dimerization predicted by our simulations have been observed in a

number of experimental systems.  Here three examples are provided that demonstrate

different aspects of how dimerization might influence cellular response.  In each case the

base model described in this work is compared to available experimental findings.

Because the base model only roughly approximates the receptor—receptor stoichiometries

and receptor dimerization kinetics, it is not reasonable to expect an exact agreement

between experimental and modeling results.  That said, the agreement between

experiment and model results is surprising, indicating that dimerization most likely works

both in silico and in vivo.

6.4.3.1  Localization and Signal Regulation of Dopamine and Somatostatin
Receptors

Rocheville et al. demonstrated that the dopamine D2 receptor and the somatastatin

receptor SSTR1 form functionally interacting heterodimers (Rocheville et al. 2000).

Both receptors belong to the GPCR family and both share a common G—protein, Gi,

implying that they might exhibit receptor level cross—talk.  Previous experimental work

has shown that the dopamine and somatastatin receptors form homodimers (Rocheville et

al. 2000; Armstrong and Strange 2001).  Rocheville et al. use FRET to show that the two
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receptors form heterodimers when at least one receptor species is active.  These

experimental findings suggest the following dimerization network

R2¥R2¥R1*¥R1*¥R2*¥R2*¥R1¥R1

where R1=SSTR1 and R2=D2.  Using this network, dimerization rules can be derived for

any receptor activation case.  Each rule in turn can be used to predict the separation

distance, signaling level, and internalization rate of each receptor species.

The separation distance between dissimilar receptor species is predicted for each

rule using the data in Table 6.1 and found to compare favorably to the experimentally

observed FRET efficiency as shown in Table 6.2.  As predicted by the model, when at

least one receptor species is active the FRET efficiency drops indicating a shorter

separation distance.  Although the model captures the general experimentally observed

trend, it does not predict a measurable difference between having one or both receptors

active.  The reason for this discrepancy could be experimental, but is more likely because

the model assumes that all receptor—receptor dimers bond with equal strength.  If FRET

data were also available for homodimers, this discrepancy could be examined

quantitatively.  However, using the available FRET data in combination with the

simulation results leads us to predict that the strength of dimer bonds goes as R1R2

heterodimers  > R1 homodimers >  R2 homodimers.  This series would explain why any

receptor activation that allows heterodimers to form causes a large change in FRET

signal (separation distance).  The series also predicts that active R1 competes with R2

more effectively for R2 bonds than active R2 competes with R1 for R1 bonds, producing

the observed change in FRET efficiency.
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Condition Rule Mean separation
distance (nm)

FRET efficiency

R1 & R2 inactive R1¥R1  R2¥R2 23 2 – 2%
R1 active R1*¥R1*¥R2¥R2 8 18 – 2%
R2 active R1¥R1¥R2*¥R2* 8 16 – 2%

R1 and R2 active R1*¥R1*¥R2*¥R2* 8 20 – 2%
Table 6.2  Separation distance from simulations compared to FRET efficiency.
Separation distance data taken from Table 6.1.  FRET data taken from (Rocheville et al.
2000).

When bond strengths between dimer species are not equal, the modeling results

can still provide insight.  For example, a strong R1R2 heterodimer and a less strong R2

homodimer may give a rule that is an equal mix between R1¥R2¥R2 and R1¥R2˚˚R2

resulting in a mean separation distance part way between 6 and 12 nm (see Table 6.2), or

9 nm.  This separation distance is slightly larger than the dual homodimer case in Table

6.2 and could account for the small drop in FRET efficiency that is observed

experimentally.

Model predictions and experimental data for receptor signaling also show a

similar trend as shown in Table 6.3.  Because both receptors use a common second

messenger, the cross—talk data in Figure 6.2 was used to predict signal strength.  The

model underpredicts the signal when only one receptor is active.  This is most likely

because the model only measures the initial rate of secondary messenger activation, while

in a real system one would measure the signal over a finite time.  However, the model

predicts the overall trend of the experimental result, lending support to the models

applicability to real biological systems.

Similar to the separation distance results presented above, activation of either R1

or R2 gives an identical signal in the model, but gives a different signal experimentally.

If we allow the homodimer and heterodimer bond strengths to differ, then the same bond

strength series presented for the separation distance data  (R1R2 heterodimers  > R1

homodimers >  R2 homodimers) best fits the experimental signaling data too.  In general,

second messenger activation is favored by fewer receptor—receptor bonds and more
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Condition Rule Second
messenger
activation

Observed signal

R1 & R2 inactive R1¥R1  R2¥R2  S 0% 0%
R1 active R1*¥R1*¥R2¥R2  S 24% 36 – 3%
R2 active R1¥R1¥R2*¥R2*  S 24% 39 – 3%

R1 and R2 active R1*¥R1*¥R2*¥R2*  S 48% 52 – 4%
Table 6.3: Predicted activation level of secondary messenger as compared to an
experimentally observed signal increase.  Second messenger activation taken from Figure
6.2.  Observed signal increase taken from (Rocheville et al. 2000).

active receptors.  Thus activating either R1 or R2 will produce equal numbers of active

receptors, but active R2 receptors will be more accessible than the active R1 receptors

because R2 has a weaker homodimer bond than R1.  Therefore activation of R1 alone

should cause a smaller signal than activation of R2.

Although the internalization rate of each receptor species was not experimentally

measured, internalization can be predicted from the dimerization network alone as is

shown in Table 6.4.  Because of the structure of the dimerization network, one would

expect that both receptor species would be internalized when only one species was active,

but the active species would be internalized more rapidly than the inactive species.  If

bond strengths are assumed to be unequal then the trend of internalization rates will be

slightly shifted from the results in Table 6.4.  Using the bond strength series consistent

with activation and separation distance data (R1R2 heterodimers  > R1 homodimers >  R2

homodimers) the R1 internalization rate may be higher when  R1 alone is active and when

both receptors are active.  When R2 alone is active, the R1 internalization rate is expected

to be lower and the internalization rate of R2 higher.  The reason for these shifts is that

the internalization rate of a receptor depends in part on its probability of being bound to a

receptor that is about to be internalized.  Thus, if the R1 homodimer bond is stronger than

the R2 homodimer bond, then active R1 is more likely to co—internalize another R1 than

an R2.  These results demonstrate how a dimerization network can be used to infer

behaviors about a signaling system when experimental data is not available.  Presumably,
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more accurate stoichiometry and receptor—receptor binding data could be used in the

model to allow more precise predictions.

Condition Rule Internalization rate of
R1

Internalization rate of
R2

R1 & R2

inactive
R1¥R1  R2¥R2 0 0

R1 active R1*¥R1*¥R2¥R2 140 40
R2 active R1¥R1¥R2*¥R2* 40 140
R1 and R2 active R1*¥R1*¥R2*¥R2* 180 180
Table 6.4  Predicted internalization rates of each receptor species under different receptor
activation conditions.  Note that the internalization rates are normalized to a value of 100
for an active non—dimerizing receptor species.

6.4.3.2  Dimerization Limited Cross—Talk among αααα2b—Adrenergic, M4 Muscarinic,
and δδδδ—Opioid Receptors

The α2b—adrenergic, m4 muscarinic, and δ—opioid receptors all share a common

secondary messenger, Gi, and yet exhibit no cross—talk among pools of this secondary

messenger (Graeser and Neubig 1993).  Therefore, activation of one receptor species

depletes the second messenger pool for only that species and does not strongly affect the

signaling capability of the other two species.  One explanation for this finding may be

that these three receptor species are localized to spatially distinct regions on the

membrane.  Such localization may be due to any one of a number of mechanisms; here I

explore the possibility that dimerization is the cause.

Because dimerization can affect receptor localization as shown in Figure 6.1 and

Table 6.1, I hypothesized that dimerization could be responsible for the lack of cross—talk

between these three species.  Experimental work indicates that the α2b and δ— opioid

receptors form homodimers (Venter et al. 1983; Venter et al. 1984; Wade et al. 1994;

George et al. 2000) (Cvejic and Devi 1997).  Within the muscarinic receptor family, the

m3 and m2 receptor subtypes have been shown to form homodimers (Zeng and Wess

1999) (Maggio et al. 1999), suggesting that the m4 may also form homodimers although
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this has not been experimentally confirmed.  Ligand activation of the δ—opioid receptor

causes a small shift toward monomers (Cvejic and Devi 1997), while the effects of

receptor activation on the other two receptors has not been determined.  Finally, no

heterodimers between these three receptor species have been reported.  This list of

interactions suggests the dimerization network

α2b¥α2b¥α2b*¥α2b*˚    ˚δ¥δ¥δ*˚    ˚m4¥m4¥m4*¥m4*

Therefore, depending on the activity levels of the receptors, one of the general

dimerization rules A¥A˚˚B¥B˚C̊¥C  or A¥A˚˚B˚˚C¥C apply.

Using either dimerization rule, our simulations indicate that dimerization alone

could be responsible for the compartmentalization of receptors and the resulting lack of

cross—talk among G—protein pools.  Figure 6.1(e) qualitatively shows that the

dimerization rule involving only homodimerization will causes the receptor species to

self—segregate into homogeneous islands.  Table 6.1 confirms this observation and also

shows that both dimerization rules isolate each receptor species more effectively than any

other rules involving dimerization of three species.  This self—segregation of receptors

could be confirmed experimentally using a FRET assay.  The dimerization rule could also

be tested indirectly by comparing the predicted receptor internalization rates and

signaling levels for the rule to experimental findings.

6.4.3.3  Co—Regulation of κκκκ—, δδδδ—, and µµµµ—Opioid Receptors via Dimerization

The three opioid receptor subtypes, κ, δ, and µ, have been shown to form a

complex network of homo— and heterodimers, but why?  Presumably if this interaction

were unnecessary then it along with many other dimerization networks in the cell would

be selected out, but instead it persists.  Using the framework presented in this work, the

dimerization rule for the opioid receptors can be derived from already known interactions

among receptor species.  The κ—, δ—, and µ—opioid receptors have been shown to form
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homodimers (Cvejic and Devi 1997; Jordan and Devi 1999; George et al. 2000); the κ—

and δ—opioid receptors form heterodimers (Jordan and Devi 1999); and the µ— and

δ—opioid receptors also form heterodimers (George et al. 2000; Gomes et al. 2000).

Together these observations suggest the following dimerization rule:

κ¥κ¥δ¥δ¥µ¥µ

The resulting organization of this dimerization rule is described by the average minimum

separation distance data for the rule A¥A¥B¥B¥C¥C in Table 6.1 and could be confirmed

experimentally using an assay such as FRET.

One reason for this complicated dimerization rule may be to allow dynamic

co—regulation of receptor expression levels.    Assuming receptor activation does not

significantly change the dimerization rule, the simulations predict that activation of the

δ—opioid receptor should cause internalization of all three subtypes, while activation of

the κ—opioid receptor should internalize only the κ— and δ—opioid receptors.  By linking

the expression level of multiple receptors, the cell can dynamically adjust its sensitivity to

a variety of stimuli simultaneously.  This result is experimentally testable by tracking

receptor expression after prolonged treatment with agonists specific to each receptor

species.

6.5  Conclusion

This work demonstrates that dimerization can play a critical function in regulating

information within the cell and may have important implications for drug discovery.

Future experimental work is needed to determine which receptors form hetero— and

homodimers and under what conditions.  These data will contribute to a more complete

vision of how proteins within the membrane are dynamically localized which in turn will

describe how signaling is regulated by the cell.
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Although the dimerization networks studied in this work contain a maximum of

three species, the simulations developed here can easily be extended to accommodate

more species to model more physiologically complete systems.  Linking together

currently known receptor—receptor homo— and heterodimer combinations (Gomes et al.

2001), dimerization networks involving at least different GPCR species and a variety of

different G—proteins can be derived.  If all interactions were accounted for, then most

likely the dimerization network would be even larger.  The interconnectedness of these

systems implies that spatial localization does have a significant biological role and as

such must be considered when discussing cellular communication.
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CHAPTER VII

UNTANGLING LIGAND INDUCED RECEPTOR ACTIVATION AND

DESENSITIZATION

7.1  Introduction

How do drug properties influence desensitization?  Drug development often

focuses on optimizing potency and activity, while desensitization is seen as a side effect.

Using computer simulations I have explored how drug specific properties influence

desensitization with the goal of seeing if drug desensitization and drug activity can be

decoupled, potentially allowing drug designers to optimize both properties independently.

For GPCRs, the process of receptor desensitization can be broken up into the

three steps shown in Figure 7.1.  In the first step (Fig. 7.1a) ligand binds to the receptor to

stabilize or select for a specific receptor conformation.  Using a simplified view of this

interaction, ligand binding to the receptor can be described by the association rate

constant, kon, dissociation rate constant, koff, and the conformational selectivity factor, α.

These three parameters are specific to the drug’s interaction with the receptor, and as

such can be manipulated directly by changing the chemical structure of the ligand.

Historically drug design has focused on increasing α and thereby making the drug more

active or on increasing the ratio between kon and koff such that the ligand binds to the

receptor with higher affinity.  However in this chapter I will argue that the magnitude of

koff also plays a role and can be used to directly affect desensitization.



126

Figure 7.1  Three processes that affect GPCR desensitization. a) Receptors sense the
environment via ligand binding.  The ligand binding rate constant (kon) is modified by the
conformational selectivity factor, α, to determine the preferred receptor state, active (R*)
or inactive (R).  b) Active receptor conformations can bind to and activate the G–protein
trimer.  Because the Gα  subunit possesses an intrinsic GTPase activity, with time the
subunit will cleaves GTP into GDP, thereby allowing the inactive Gα subinit to
recombine with Gβγ to recover the inactive G-protein.  c) Receptor desensitization is
initiated by receptor kinase (RK) binding to the active Gβγ subunit of the G–protein.  This
complex can then phosphorylate the active receptor, thereby targeting the receptor for
internalization and desensitization.

In the second step (Fig. 7.1b), the active receptor can bind to and activate

G–proteins within the cell membrane.  In the inactive state, G–proteins exist as a GDP

bound trimer.  Upon activation by a receptor, the G–protein exchanges its GDP for a GTP

molecule and breaks into two signaling subunits, Gα–GTP and Gβγ.  Due to an intrinsic

GTPase activity of the Gα subunit, the signaling Gα–GTP automatically reverts to an

inactive Gα–GDP and then can rebind with the membrane bound Gβγ subunit to recover
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the inactive G–protein (Taylor 1990).  Using this mechanism the cell is able to detect and

amplify small signals and also reset when the signal is removed.

In the third step (Fig. 7.1c), the active receptor is phosphorylated and targeted for

desensitization.  Active GPCRs are phosphorylated by receptor kinase proteins recruited

to the cell membrane by active Gβγ subunits.  Once phosphorylated, the receptor can be

bound by arrestin proteins, which are thought to target the receptor for internalization and

desensitization (Krupnick and Benovic 1998).

Because receptor activation is required for both G–protein activation and receptor

desensitization, it is tempting to conclude that activation and desensitization are simply

linearly related.  In this view, receptor activation causes G-protein activation which in

turn causes receptor kinase recruitment that leads to phosphorylation and desensitization.

Thus, any drug that increases G-protein activation should similarly increase receptor

desensitization.  However this view assumes that the time delay between G-protein

activation and receptor phosphorylation is negligible, which may or may not be the case

depending on the drug and cell system.

In some experimental systems such as the β2–adrenergic receptor, desensitization

and activation show a strong correlation (Figure 7.2a) (Benovic et al. 1988).  In systems

such as these, the primary determinant of both ligand induced activity and desensitization

is likely the conformational selectivity factor, α, because this parameter determines the

fraction of receptors in the active conformation.  However the m-opioid and dopamine

D1A receptors do not exhibit a strong correlation between activation and desensitization

(see Figure 7.2b), implying that other ligand properties can determine the relative

activation to desensitization ratio.
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Figure 7.2  Comparison of activation and desensitization profiles for a variety of drugs
(blue circles) on two different receptor systems.  (a) Seven drugs acting on a
β2–adrenergic receptor in reconstituted system (Benovic et al. 1988) show a strong
correlation between receptor activation and desensitization. (b) Eight drugs to the
dopamine D1A receptor in C–6 glioma cells (Lewis et al. 1998) exhibit a weak correlation
between activation and desensitization.  Figures modified from (Riccobene et al. 1999).

Theoretical work using a simplified ordinary differential equation model of

receptor activation and desensitization has confirmed the importance of α in systems

such as that shown in Figure 7.2a (Riccobene et al. 1999).  However this earlier work

fails to explain uncorrelated systems such as is shown for the dopamine D1A receptor in

Figure 7.2b.  In uncorrelated systems, G–protein activation and receptor desensitization

are not related and as such cannot be simply explained by the effect of α alone.

One possible reason that earlier work was not able to account for this lack of

correlation was that it did not include spatial effects.  Therefore this work seeks to extend

earlier work by including spatial effects and discrete dynamics with the goal of

explaining both correlated and uncorrelated activation/response data.
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Discrete spatial models have suggested that the ligand association and

dissociation rates can affect G–protein activation (Mahama and Linderman 1994).  To

understand this mechanism, which has been termed “switching” (Stickle and Barber

1989), consider the two extremes of irreversible receptor–ligand binding (Figure 7.3a)

and fast receptor–ligand binding and unbinding (Figure 7.3b).  In both cases the ligand is

bound to only one out of three receptors at any time; therefore only the rate of ligand

movement among individual receptors changes.  In the irreversible binding case, the

ligand bound receptor can activate all of the G–proteins local to the receptor but no more.

In contrast, a ligand with a large dissociation rate constant can rapidly switch from

receptor to receptor while activating many of the local G–proteins and then moving on.

Figure 7.3  Three receptors binding with a single ligand molecule under two limiting
kinetic cases.  a) Ligand binds irreversibly to one receptor, leaving the other two
receptors permanently inactive.  b) Ligand binding and unbinding is fast; thus, each
receptor is only occupied 33% of the time.

Previous Monte Carlo simulations indicate that increased ligand switching will

lead to an increase in overall G–protein activation (Mahama and Linderman 1994; Shea

and Linderman 1997).  By rapidly switching from receptor to receptor, the ligand does

not permit local depletion zones to form around the receptor and thereby ensures that a

large signal is generated.  These simulation results have been corroborated by some

experimental findings (Stickle and Barber 1989; Stickle and Barber 1992; Mahama and
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Linderman 1995), although more experimental work needs to be done to determine the

generality of these findings.

If switching affects G–protein activation then it may also affect receptor

desensitization.  As shown in Figure 7.1, G–protein activation and receptor

desensitization are sequentially linked because the G–protein must be activated before

receptor kinase can be recruited to the membrane.  Therefore, changes in G–protein

activation should affect receptor phosphorylation, although not necessarily at the same

time scale.

As an analogy, compare desensitization to opening a door.  Although it may be

possible to grip the door knob (ligand binding) and turn it (G-protein activation) over a

short time scale, actually opening the door (desensitizing the receptor) takes a

significantly longer time.  Therefore, a knob turn will not always result in an opened

door, particularly if we do not hold onto the handle for long enough (large koff).

The purpose of this chapter is to determine how the kinetics of ligand-receptor

interactions differentially affect receptor desensitization and G-protein activation

depending on the cellular environment.  This relationship will first be explored using a

computational model of receptor activation and desensitization and then compared to

experimental data.



131

7.2  Methods

In this work I use Monte Carlo simulations to determine how the ligand

conformational selectivity, association, and dissociation rate constants affect G–protein

activation and desensitization.  Monte Carlo simulations were used so that the state and

location of each protein could be followed, thereby making the most realistic predictions

possible with a simplified model.  The cell membrane was modeled as a two dimensional

triangular grid with periodic boundary conditions.  To initialize the simulation, receptors

and G–proteins were placed on the grid at random non–overlapping locations.  Both

receptors and G–proteins had a diameter of two grid spacing, making a single grid

spacing approximately 2 nm.  Proteins were allowed to interact if they were separated by

one grid spacing or less.  Simulations were run on a 3000 by 3000 grid with 50 receptors

and 500 G–proteins, consistent with experimentally observed receptor densities (Stickle

and Barber 1989; Rousseau et al. 1997).

The simulation contained nine distinct species: R, Rp, LR, LRp, G, Gα–GTP,

Gα–GDP, Gβγ, Gβγ−RK.  Each species is described in more detail Table 7.1 and the

interaction network of these species is shown in Figure 7.4.  Note that Gα–GTP and

Gα−GDP are cytosolic species and as such their positions were not followed.  G–protein

activation and receptor phosphorylation are assumed to be diffusion–limited reactions

(Shea and Linderman 1997), and as such are modeled as collision coupled.

Initially, non–ligand bound receptors were assumed to be completely inactive

while the ligand bound receptor were fully active, corresponding to a strong positive

agonist.  Later simulations included an explicit conformational selectivity factor, such

that partial agonists could also be tested in the model.
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Species
Name

Description Location

R Inactive receptor membrane
Rp Phosphorylated receptor membrane
LR Ligand bound receptor membrane
LRp Ligand bound phosphorylated receptor membrane
G Inactive G–protein trimer membrane

GαGTP Active alpha subunit of the G–protein cytosol
GαGDP Inactive alpha subunit of the G–protein cytosol

Gβγ Active beta–gamma subunit of the G–protein membrane
GβγRK Beta gamma subunit bound to receptor kinase membrane

Table 7.1  Identities of species used in the desensitization model.

Figure 7.4  Interaction network of the GPCR signaling and desensitization pathways.

Following the mechanism in Figure 7.4 mechanism, only the LR and LRp species

can activate G–protein and only the LR species can be phosphorylated.  In agreement

with experimental findings (Jin et al. 2000), phosphorylated and non–phosphorylated

receptors are assumed to signal with equal activity.  In a living cell, receptor

phosphorylation would eventually lead to receptor internalization and desensitization

(Krupnick and Benovic 1998). However these later desensitization events would take

place at a much longer time scale, and as such are not explicitly modeled here.  Instead, I
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assume that the rate of receptor phosphorylation is proportional to the desensitization

rate.

The simulation dynamics were governed by the parameters listed in Table 7.2.  In

most cases these parameters are available directly from the literature, however two

parameters had to be estimated.  The receptor kinase association rate constant was

estimated to be approximately equal to the Gα-Gβγ association rate constant because in

both cases proteins are recruited from the cytosol to Gβγ in the cell membrane.  The

receptor kinase dissociation rate constant was estimated by assuming that the receptor

kinase binds to Gβγ  with a high equilibrium affinity.  Future experimental work will help

to refine the estimates.  The effect of changing  kf-RK on the signaling profile is examined

as a cell property later in this work.

Constant Description Value Reference
L Ligand concentration 10—10 M (Riccobene et al. 1999)
kf Ligand association rate

constant
108 M—1 sec—1 (Riccobene et al. 1999)

kr Ligand dissociation rate
constant

0.37 sec—1 (Riccobene et al. 1999)

α Conformational selectivity
factor

Assumed perfect positive
agonist

ki Alpha subunit inactivation
rate constant

1 sec—1 (Shea et al. 2000)

kd Inactive G—protein
association rate constant

1000 sec—1 assumed rapid (Shea et
al. 2000)

kr—RK Receptor kinase dissociation
rate constant

100 sec—1 Value not known

kf—RK Receptor kinase association
rate constant

1000 sec—1 Value not known

D Receptor and G-protein
diffusivity in the membrane

10—11 cm2 sec—1 (Shea and Linderman
1997)

Table 7.2  Parameters used in model.  Parameters taken the literature except for the
receptor kinase association and disassociation rate constant which are unknown.  Note
that here the conformational selectivity factor (α) only affects the receptor conformation
and not the ligand binding rates to ensure that ligand-receptor dissociation and receptor
activation can be controlled independently.
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The simulation was run by allowing the proteins to diffuse and react according to

the reaction rules presented in Figure 7.4.  To begin each iteration, a particle is chosen at

random.  This particle is given the opportunity to diffuse and carry out its reactions in a

random order to eliminate any unintended bias.  For example, the ligand bound receptor,

LR, may diffuse in a random direction and may also dissociate from its ligand.

Rates of G–protein activation and receptor desensitization were calculated from

average measurements of initial rates.  Simulations were run for 3000 iterations,

corresponding to between 16 and 60 seconds depending on the parameters chosen.  After

each iteration, the total numbers of phosphorylated receptors and activated G–proteins

were stored.  At the end of the simulation, the initial rates of phosphorylation and

activation were calculated by assuming the initial rates to be linear and fitting the rate

data to a straight line.  In general, the assumption of a linear initial rate was excellent for

the G-protein activation rate (r2 values > 0.95) and adequate for receptor phosphorylation

rate (r2  values > 0.8).  Each simulation was repeated a total of 100 times to determine the

mean and standard deviation of each rate.

To determine the effect of ligand binding kinetics, each simulation condition was

run using 8 ligand dissociation rate constant (koff) values (46, 93, 190, 370, 925, 1900,

2800, 3700 sec-1).  The ligand association rate constant (kon) was then scaled to ensure

that the equilibrium ligand occupancy remained at a low and constant value of 2.5%,

similar to the physiological levels of may drugs in the body.

Simulations were run to see the effect of the conformational selectivity factor (α),

diffusivity (D), G–protein inactivation rate constant (ki), and receptor kinase association

rate constant (kf–RK).  These simulations were able to show the effect of ligand specific
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parameters (α,kon, koff) and how these behaviors changed with changes in the cellular

signaling machinery (D, ki, kf–RK).

Simulations were written in C++ and run on a cluster of Apple Macintosh G4

machines.  Each simulated condition took approximately 6 hours to gather 100 runs.

7.3  Results

The results of the Monte Carlo simulations are divided into two categories.  First I

test the effects of ligand specific properties on G–protein activation and receptor

desensitization.  These ligand specific properties include kon, koff, and α.  Next I simulate

the effects of changing the cell properties D, ki, and kf–RK.  Together these results give a

detailed picture of how desensitization and activation interrelate.

7.3.1  Effects of Ligand Properties kon, koff and αααα

In the simplified model of drug—receptor interaction shown in Figure 7.1, the drug

can be completely described by the three parameters kon, koff and α.  Each of these

parameters in turn directly relate to the chemical structure of the ligand and its interaction

with the receptor.

Figure 7.5 shows the effects of α and the ligand dissociation rate constant on

activation and desensitization.  As shown in Fig. 7.5a, in all cases increases in the ligand

dissociation rate constant and α result in increased G–protein activation.  The data show

almost no difference in behavior between a ligand with an α value of 107 and ∞ implying

that the ligand activity is nearly saturated at this value.  These findings are consistent with
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Figure 7.5  Effects of ligand dissociation rate constant and α on G–protein activation and
receptor phosphorylation rates.  Values of α= 105, 106, 107, and ∞ represent LR
complexes that are active 10%, 50%, 90%, and 100% of the time respectively.  The data
in a) and b) are combined into c) to directly show the relationship between the G–protein
activation rate and receptor phosphorylation rate.
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previous work on ligand switching (Mahama and Linderman 1994; Shea and Linderman

1997).

The rate of receptor phosphorylation also increases with α, but varies nonlinearly

with ligand dissociation rate constant as shown in Fig. 7.5b.  Interestingly, at low values

of α, the rate of receptor phosphorylation passes through a minimum when koff= 930 sec-1,

while at greater values of α the receptor phosphorylation rate becomes flat at koff= 930

sec-1.

The rates of G–protein activation and receptor phosphorylation are compared in

Figure 7.5c.  This value is generated by dividing the rate of G-protein activation by the

rate of receptor phosphorylation to obtain the number of G-proteins activated for each

receptor phosphorylated.  Therefore large values on Figure 7.5c indicate that the drug

causes a disproportionate amount of activation, while low values indicate more

phosphorylation than desensitization.  These results confirm the presence of a local

maximum in G–protein activation versus receptor phosphorylation for ligands with a

dissociation rate constant of approximately 930 sec-1, which although high for most drugs

is possible.  The presence of this maximum is independent of the α value, but is most

pronounced at lower values of α.

Note that in all cases simulations were run to ligand dissociation rate constants as

low as 0.37, but at values below 37, both the G—protein activation rate and the receptor

phosphorylation rates became independent of the ligand dissociation rate constant.  From

inspection of the simulation data, the activation and desensitization rates stop changing at

low koff values because the mean ligand residence time exceeds the mean time required to
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phosphorylate the receptor and to establish a G-protein activation steady state.  Therefore,

at small koff values, nearly all LR complexes become phosphorylated.

7.3.2 Effects of Cell Properties ki, D, and kf—RK.

Cell properties clearly influence signal transduction, and as such may account for

some of the variation in activation and desensitization.  Therefore, in this section I vary

three cell specific properties ki, D, and kf–RK to see how they affect the balance between

activation and desensitization.  In each simulation I have included one base case using the

parameters listed in Table 7.2 for comparison.

Using the same procedure from Figure 7.5c, the relative number of G-proteins

activated per phosphorylated receptor was used to compare different conditions.  Figure

7.6a shows that the relative activation versus desensitization increases as the G–protein

inactivation rate constant, ki, increases.  Also the location of the maximum appears to

shift to larger ligand dissociation rate constants as ki increases.  The effects of diffusion

on activation and desensitization are shown in Figure 7.6b.  As the diffusivity decreases,

the location of the maximal activation peak shifts left.  Finally, Fig. 7.6c shows that

decreasing the receptor kinase association rate strongly increases the relative activity of

the ligand, but does not shift the peak to the left or right.

Inspection of the raw data reveals that in all cases increasing koff caused an

increase in G–protein activation; therefore, the local maximum in Figure 7.6 is primarily

due to changes in the receptor phosphorylation rate.
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7.4  Discussion

This modeling work was motivated by the observation that G–protein activation

and receptor phosphorylation are sometimes but not always proportional (see Figure 7.2).

I speculated that activation and desensitization could become decoupled if spatial events

and discrete dynamics were included, thereby more accurately modeling the system and

allowing switching to take place.

The results from Figure 7.5 and 7.6 show for the first time that changes in the

ligand dissociation rate constant can alter the proportion of G–protein activation and

receptor phosphorylation.  In Figure 7.7, data in Figure 7.5c is replotted in the same

format as Figure 7.2 to show this relationship more clearly.  This finding implies that

activation and desensitization can be partially decoupled in some systems by changing

the conformational selectivity factor, α, and ligand dissociation rate constant.  These

results have implications for our general understanding of receptor dynamics as well as

for drug design.  In the following sections I will discuss why this noncorrelated behavior

emerges and provide a physiological example from the literature that demonstrates

similar behavior.

7.4.1  Effect of αααα on the Relative Phosphorylation Rate

The conformational selectivity, α, has a nonlinear effect on the receptor

phosphorylation rate.  In the Monte Carlo simulations, small values of α always cause

less G–protein activation (Fig. 7.5a) and hence less receptor desensitization (Fig. 7.5b),

however Fig. 7.5c shows low α values tend to have a disproportionately low

phosphorylation rate relative to G–protein activation.
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This bias toward reduced phosphorylation at low α values likely takes place

because the time delay between G–protein activations is long under these conditions.

Recall from Figure 7.1b, that the active G–protein contains an intrinsic GTPase activity

and as such acts as a timed molecular switch.  Thus if the mean lifetime of an active

G–protein is tG, then ligands that do not activate receptors for intervals longer than tG will

tend to cause less phosphorylation.

The simulations suggest that this low relative phosphorylation rate could also be

observed with an ultra low concentration ligand with a large α value.  In this case any

time the ligand bound to the receptor it would cause a response, but ligand binding would
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be so infrequent that the ligand would cause very little desensitization.  The tradeoff for

using this strategy for drug design is that the ligand causes only a very small overall

response.

7.4.2  Minimum Receptor Phosphorylation Rate

In all of the simulations run, spatial effects cause a local minimum in the receptor

phosphorylation rate when koff= 930 sec-1.  This minimum in receptor phosphorylation is

responsible for the maximum in the relative number of G–proteins activated per

phosphorylated receptor shown in Figures 7.5c, 7.6a, 7.6b, and 7.6c.

The minimum in receptor phosphorylation rate can be explained by tracking the

source of receptor kinase near a ligand bound receptor as shown in Figure 7.8.   The

receptor kinase proteins near a LR complex are there either because 1) that LR complex

activated a G–protein that recruited a kinase to the membrane or 2)another LR complex

activated a G–protein that recruited a kinase to the membrane.  In the second case, the

receptor kinase was most likely not activated near the receptor and as such had to diffuse

to get there.

The proportion of receptor kinases near to the receptor depends on the ligand

dissociation rate.  If the ligand dissociation rate is slow, then the ligand–receptor bond is

long lived (see Fig. 7.3a) and most of the receptor kinases near the receptor were

recruited by that receptor.  In contrast, if the ligand dissociation rate is fast, then the

ligand can accurately modeled using a field approximation and the Monte Carlo

simulation results approach the result that would be predicted using partial differential

equation (PDE) model (see Fig. 7.3b).  In this PDE limit there is little receptor kinase
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recruitment at any one receptor, but significant overall recruitment from other receptors.

The result in Figure 7.8a shows that the total receptor kinase level, and hence the receptor

phosphorylation level reaches a minimum at an intermediate ligand dissociation rate.

The shape of the kinase profiles depends on the system that is being tested.

Therefore, if the concentration of receptor kinases recruited by other receptors is low due

to slow diffusion, for example, then the total receptor kinase level may decrease slowly

and have only a shallow minimum (Fig. 7.8b).  The effects of cell properties on

desensitization will be discussed in more detail in the next section.

7.4.3  Cell specific effects on desensitization

Not only do ligand properties influence desensitization, but also the properties

associated with the cell should also play a role.  These cell properties might include

Figure 7.8  Schematic of the source of receptor kinase near a receptor as a function of
the ligand dissociation rate constant.  a) Conditions that produce a local minimum in
receptor kinase concentration and hence minimum in receptor phosphorylation rate.  b)
Conditions  in which receptor kinases activated by other receptors do not affect the
phosphorylation rate of the ligand bound receptor tend should show no minimum in
phosphorylation and less phosphorylation at higher rates.
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different receptor types, changes in local receptor environments, or different signal

transduction kinetics.  These differences associated with the cell could help to explain

why in some systems activation and desensitization are proportional for all known

ligands, while other systems they are not.

To test the effect of changing cell properties, various values of the G—protein

inactivation rate (ki), diffusion rate (D), and receptor kinase association rate (kf—RK) were

tested to see their effect on the relative desensitization rate (see Figure 7.6).  The

G—protein inactivation rate could vary from system to system either due to variations in

each subtype of G—protein or could be adjusted dynamically via regulators of G—protein

signaling (RGS) proteins (Berman and Gilman 1998).  Figure 7.6a shows that increasing

ki also increases the relative number of G—proteins activated per phosphorylated receptor.

The reason for this increase is that a larger ki results in a shorter active G—protein

lifetime, thereby limiting the radius that an active G—protein can diffuse.  Because active

G—proteins are responsible for recruiting receptor kinase to the membrane, a shorter

active G—protein lifetime directly translates to a shorter receptor kinase lifetime and

therefore less desensitization.

The effects of changing ki on G—protein activation have recently been

demonstrated experimentally and are supported by our simulations (Zhong et al. 2001).

This work shows that the concentration of active G—proteins is constant near the receptor

for any ki, but the radius of active G—proteins increases with decreasing ki.  Therefore by

modulating the G—protein inactivation rate, one can alter the interaction range of an

active receptor.  Zhong et al. suggest that this altered range forms a kinetic scaffolding

that dynamically structures the signaling environment in the cell.  In terms of
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desensitization, kinetic scaffolding can be extended to include the effects of RGS on

receptor kinase induced receptor phosphorylation.   Thus, RGS proteins not only limit the

radius of active G-proteins around an active receptor, but they also effectively limit the

range of Gβγ bound receptor kinase proteins.

Decreasing the diffusion coefficient (D) causes the system to be better mixed, and

as such causes more phosphorylation as is shown in our model results in Figure 7.6b.

However at very high ligand dissociation rates (~103), the relative number of G—proteins

activated per phosphorylated receptor is greater for larger diffusion coefficients.  This

increase in relative G—protein activation takes place because each receptor can effectively

activate more G—proteins when diffusion is fast because no local depletion zones form.

The diffusion coefficient can change due to changes in membrane compositions, or

changes in receptor localization both of which would depend on the specific receptor

type and cellular environment

Perhaps surprisingly, decreasing the receptor kinase association rate constant

caused a dramatic increase in the relative number of G–proteins activated per receptor

phosphorylated (see Fig. 7.6c).  The reason for this increase is that a reduced receptor

kinase association rate results in fewer receptor kinase proteins on the membrane, and

therefore less overall receptor phosphorylation.

7.4.4  µµµµ—Opiod Receptor Activation and Desensitization

Experimental work with the µ–opioid receptor has provided some evidence in

support of the hypothesis that activation and desensitization can be varied independently

via ligand dissociation rates.  The ligands morphine, etorphine, buprenorphine, and
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DAMGO all exhibit qualitatively different G–protein activation, desensitization, and

dissociation rates, and as such can be compared directly to predictions made by the

Monte Carlo simulations.  The properties of each ligand are summarized in Table 7.3.

Ligand G–Protein
Activation

Dissociation
rate

Receptor
Desensitization

References

morphine high(?) fast low (Rothman et al. 1995;
Blake et al. 1997;
Zhang et al. 1998)

etorphine high slow high (Blane et al. 1967;
Rothman et al. 1995;
Zhang et al. 1998)

buprenorphine intermediate slow high (Rothman et al. 1995;
Blake et al. 1997)

DAMGO high fast intermediate (Tolkovsky 1982;
Scheibe et al. 1984; Yu
et al. 1997)

Table 7.3  Activation and desensitization profiles for four common ligands to the
µ–opioid receptor.  Table modified from (Riccobene 1999).

In qualitative terms, the data in Table 7.3 suggest that ligands with a faster

dissociation rate will tend to have less desensitization, while drugs with a slow

dissociation rate will cause more desensitization.  This finding is in agreement with the

relative data in Figure 7.5c, lending experimental support to the hypothesis that

desensitization can be affected by ligand dissociation rate.

Quantitative data on µ–opioid receptor activation and desensitization for a number

of drugs have been experimentally measured (Yu et al. 1997) and are directly compared

to the simulation results in Figure 7.9.  Both the simulation results and the experimental

data predict that at high G-protein activation rates there should be proportionally less

desensitization for most drugs.  In terms of the door analogy discussed above, this result

is sensible.  Because G-protein activation must precede desensitization, switching events
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that take place at a time scale faster than desensitization will tend to favor activation.

However the model using the current parameter set is not able to fully account for the

small desensitization caused by morphine.
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Figure 7.9  Comparison of simulation results to the relative activation and desensitization
profiles of five drugs to the µ-opioid receptor expressed in hµCHO cells.  Data taken
from (Yu et al. 1997).  Note that literature values of the activity of morphine vary
significantly depending on the experimental system (Zhong et al. 2001).

Clinical work with the µ–opioid receptor by Shen et al. (Shen and Crain 1997)

has demonstrated that co–administration of low doses of a neutral antagonist along with

an agonist can cause the agonist signal for a longer period before becoming desensitized.

This phenomenon is shown in a mouse model in Figure 7.10
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Figure 7.10  In a mouse model, treatment with morphine (Mor) and a neutral antagonist
naloxone (NTX) results in a longer effect than morphine alone would produce.  (Figure
taken from (Shen and Crain 1997)).

By blocking receptors with the neutral antagonist, Shen et al. have essentially limited the

amount of switching that is possible in the system (akin to Figure 7.3a) without affecting

the agonist dissociation rate.  This change is equivalent to reducing the density of

receptors available for agonist binding.  In terms of Figure 7.8, this reduction in effective

receptor density reduces the concentration of receptor kinase proteins recruited by other

LR complexes, thereby reducing the overall desensitization rate.  Other mechanisms such

as G–protein cross–talk could also play a role in extending the lifetime of the agonist

when co–stimulated with an antagonist (Crain and Shen 2000), but these mechanisms are

complicated and require a much more detailed knowledge of the signal transduction

pathways before they can be confirmed.

7.5  Conclusions

By modeling the spatial aspects of desensitization, I have shown that receptor

desensitization and G–protein activation can be partially decoupled.  The simulations
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show that at an intermediate ligand dissociation rate, the relative number of G–proteins

activated per receptor phosphorylated should reach a maximum.

These results open the possibility that drugs could be tailored to have varying

amounts of desensitization.  For example, one could design drugs with a high dissociation

rate  and low α that would signal, but not desensitize—similar to the mechanism

proposed here for morphine.  Alternatively, one could design drugs with small

dissociation rate constants and high α values to cause large amounts of desensitization.

More experimental work is needed to confirm the predictions made by this model.

The primary need is for quantitative measures of G–protein activation, receptor

desensitization, and ligand dissociation for a number of ligands that bind to the same

receptor.  Table 7.3 lists only qualitative trends, and as such cannot be directly compared

to experimental findings.  Although the agreement between experiment and theory is

intriguing, more experimental data is needed to prove that the ligand dissociation rate is

controlling.
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CHAPTER VIII

CONCLUSIONS AND FUTURE DIRECTIONS

G—protein coupled receptor signaling is a primary route the cell uses to gather

information about its environment.  The cell in turn uses this information to determine

how to respond, and in doing so affects the physiological state of the organism. Therefore

through gaining a deeper understanding of GPCR signaling, we aid the development of

new therapies for human disease.

In this thesis I have uncovered a number of emergent properties associated with

G-protein coupled receptor signaling.  In many cases these findings have direct

pharmacological implications and can be immediately implemented in drug discovery

and development.  In addition to the applied uses of this work, these findings contribute

to the framework of our understanding of cellular communication and biology in general.

In the following sections I will discuss some of the key findings made in this thesis and

will highlight areas that may lead to interesting and fruitful future research.

8.1  Receptor dimerization

It is now well demonstrated that GPCRs, along with many other proteins, form

dimers, but the question is why?  One of the most significant findings of this thesis is that

dimerization alone can cause proteins to localize into clusters larger than two proteins.

When put into the context of receptor mediated signaling, I have shown that dimerization
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induced clustering could significantly affect how signals are both transmitted and

regulated.  These physiological effects of clustering could in part explain why

dimerization is so ubiquitous throughout biology and why this ability has been

evolutionarily conserved.

Because the goal of the dimerization work presented in this thesis was to

determine if dimerization could affect receptor localization, the models were simplified to

include only a few receptor species.  However, experimental work using high throughput

protein-protein binding assays has indicated that vast networks of protein dimerization

interactions exist.  For example, Figure 8.1 shows the dimerization interaction of

approximately one thousand proteins in the yeast genome.  Networks like these suggest

that dimerization interactions throughout the cell are a primary mechanism for organizing

proteins within the cell.  If true, then future proteomics work will need to develop

completely new tools to analyze, interpret, and simulate the behavior of these networks.

A key challenge that will need to be overcome when analyzing dimerization in

more general terms will be the issue of dimensionality.  Throughout the cell there are

examples of three-dimensional volumes (cytoplasm), one-dimensional lines (actin

filaments), and even locally fractal surfaces (the rough ER or the lining of a

mitochondria).  In each environment, proteins should exhibit different reaction kinetics

(Savageau 1998), which includes protein-protein interactions.   These changes in reaction

kinetics could drive the formation of signaling complexes that include a mixture of

dimensions, such as that illustrated in Figure 8.2.
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Figure 8.1  Protein-protein interaction map for approximately one thousand
proteins in the yeast genome.  Figure copied from (Tucker et al. 2001).

I suspect that the cell uses these changes in dimensionality as a general

mechanism for specifically localizing proteins in the cell membrane.  Using the

simulation environment developed in this thesis, I have generated preliminary

simulations of dimerization on non-flat surfaces.  The results of these simulations are

presented in Appendix B.  Unfortunately, these results are not completely convincing

because they are run on a grid that may bias the simulation when run on a distorted

surface.  However future simulations on a continuously varying surface may prove more

compelling.
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Figure 8.2  Dimerization induced localization could organize a large number of
species together, including parts of the cytoskeleton.

Beyond the mechanistic arguments of how dimerization could be affected by

dimensionality, dimerization also provides a simple and elegant way to control protein

positions.  In a dimerization based localization scheme, control is distributed among the

individual proteins.  Thus there is no need for a complicated, all knowing centralized

controller within the cell.  Controlling protein positions with dimensionality also has the

advantage that it is dynamic.  For example, if it were found that some proteins tended to

cluster at small radius of curvature surfaces, then the cell could use this property to

rapidly and automatically redistribute receptors to pseudopods that probe the environment

for nutrients.  If nutrients were found, this could then cause more receptors to cluster in

this area, providing the cell with a clear indication of where to move.

This dimerization work fits into a larger class of problems known as diffusion

limited aggregation (reviewed in (Sander 2000)).  The canonical example of diffusion
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limited aggregation involves single particles that randomly diffuse toward a stationary

cluster.  Once the particle encounters the cluster it sticks and another free particle is

added.  With time this cluster grows into a fractal, snowflake like structure.  The

dimerization models presented in this work follow in the same framework except that

here the binding is reversible and all particles are allowed to diffuse.  However, the

resulting structures produced by diffusion limited aggregation and dimerization induced

clustering are similar in that they are irregular and self-assembling.  Therefore the

methods used to analyze diffusion limited aggregates may be helpful for future analytical

work on dimerization.

8.2  Desensitization

The second major finding in this thesis is that G-protein activation and receptor

desensitization can, in some cases, be controlled independently via the ligand dissociation

rate.  Experimental work in some systems has demonstrated that in general G-protein

activation and desensitization increase with each other.  However, in a number of

significant receptor systems, activation and desensitization appear to be only loosely

correlated.  The modeling work in this thesis is able to account for the behavior of both

systems based on the properties of the ligand and signal transduction system.

This finding has an immediate pharmacological impact, for it implies that drug

desensitization can be tailored for a specific application by changing the dissociation rate.

Drug development currently focuses on maximizing ligand binding affinity and efficacy,

however when desensitization is considered this approach may not be optimal.  As shown

in Chapter 7, the relative G-protein activation rate to receptor phosphorylation rate
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reaches a maximum for ligands with a large dissociation rate constant.  Therefore

optimizing a drug for high binding affinity may also be inadvertently optimizing for a

maximum desensitization rate.   If instead, drug designers focused less on binding affinity

and more on toxicity, then it may be possible to develop drugs that desensitize less

quickly and have fewer side effects.

On the other extreme, this work opens the possibility of developing a completely

new class of drugs that cause only receptor desensitization without activating G-proteins.

These drugs would act by reducing the number of receptors on the cell surface, thereby

making the cell less sensitive to endogenous ligands.  This kind of therapy could be

helpful in cases where a genetic defect or disease causes receptor over expression, such

as congenital night blindness or some forms of cancer (Milligan and Bond 1997).  It is

likely that there are already a small number of commercially available drugs that have

their primary effect via desensitization of a receptor or receptor subtype.  However,

knowing that this ability to desensitize is related to the ligand dissociation rate allows for

the rational design and dosing this unique class of drugs.

This work has demonstrated that desensitization can, in principle, be controlled by

the dissociation rate, but this needs to be confirmed experimentally.  The experimental

data shown in Chapter 7 suggest that the opioid and dopamine receptor systems can show

differing levels of G-protein activation and desensitization, and could provide a fruitful

system for future desensitization research.  However, to convincingly demonstrate the

relationship between the activation and desensitization profiles of a drug, we primarily

need quantitative measures of the ligand dissociation rate constants.   With these
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dissociation rate constants in hand, it would be possible to confirm that increased

dissociation rates generally lead to decreased desensitization.

8.3  Drug Screening

By nature, high throughput drug screens are empirical and are not generally

subject to modeling scrutiny.  However, in Chapter 4 of this work I demonstrated that

some screens are inherently biased against certain classes of drugs, indicating that

modeling can and should play a role developing and interpreting screening assays.  By

uncovering this screening bias, this work not only highlighted a possible shortcoming of

the assay system but it also suggested new ways to run the assay such that the assay could

be focused toward detecting only drugs with desirable properties.

Although we generally lack precise parameter values for our models, models of

screens can still provide useful insight about invariant properties of a system.  For

example, in Chapter 4 I show that the assay signal drop will always bias towards positive

agonists in a membrane based assay, although in some cases the magnitude of this drop

may be too small to measure.  This kind of invariant information can still be helpful

because it alerts the designers of drug screens that a bias is possible and suggests methods

to correct for the bias if it is detected.

In light of the dimerization and desensitization work done in this thesis,

membrane based screens could also be used to discover drugs that uniquely affect these

processes too.  Both receptor dimerization and desensitization are processes that take

place at the level of the receptor, and as such are likely strongly influenced by ligands.

One could envision modifying the receptors in an assay such that dimerization could be
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measured using a FRET signal.  This dimerization information could then be used to infer

information about the internalization rate and potential for cross-talk caused by the

ligand.  Similarly, if the ligand desensitization rate correlates to the desensitization rate,

then screens could be developed to search for drugs with desirable desensitization

profiles.  Ideally these measurements could be combined into a small number of assays

that could be performed in a high throughput environment without significant protocol

changes.  An illustration of how this assay might look is shown in Figure 8.3.

This new class of screens would be fundamentally different from current

screening assays because they would allow the selection of lead compounds based on

multiple criteria.  For example, current screening assays only detect compounds that bind

tightly to the receptor on the assumption that tight binding is key for a viable drug.

However, the desensitization work presented in this thesis suggests that drugs with a

large dissociation rate constant could cause less desensitization and as such could be

useful for certain disorders.  In searching only for tight binding drugs, current screens

probably miss other drugs that have useful properties.  Using a composite screen, these

drugs could be detected and their properties assessed early in the drug discovery process.

8.4  Future Pharmacological Models

Where will pharmacological modeling take us in the future?  Our ultimate goal is

to develop predictive pharmacological models that bridge molecular biology (e.g. the

details of the receptor-ligand interaction) and cellular biology (e.g. the ultimate cellular

response generated by ligand binding).  I envision that we will eventually create

predictive models would give us a clear view of how a drug affects a cell, allowing us to
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relate individual drug parameters such as the conformation selectivity parameter α to

cellular behavior.  Such models would be useful in drug screening as well as for testing

complicated drug therapies.

Figure 8.3  A hypothetical composite screening assay.  The assay merges a FRET assay to
measure protein dimerization and an SPA ligand binding assay. a) Before the tracer ligand
is added the test ligand is allowed to equilibrate with the receptor to gather a base FRET
and SPA signal.  b) Addition of the tracer ligand will displace the test ligand, causing the
SPA signal to rise.  If the tracer ligand does not induce dimerization, then the FRET signal
will drop. c) Hypothetical signal traces for the FRET and SPA signals. d) Using the tools
developed in this thesis, physiological information such as receptor internalization rates
and desensitization rates could be inferred from the FRET and SPA signals.
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In this thesis, I have discussed a number of ways to model the role of

receptor/ligand/G-protein interactions in determining how a cell will respond to a drug,

but these models can make only limited predictions because they are based in part on

assumptions that make the problem simpler to solve.  For example, sometimes we assume

that a particular molecular species is in present at a constant concentration (i.e. no

depletion/no species conservation) in complex models in order to find a simple solution.

These limitations are required in light of the relatively small amount of quantitative data

describing these systems, however as more data becomes available larger, more complete

models can be constructed.

One of the clearest assumptions made in current GPCR models is that we can

accurately model response using only the receptor, ligand, and G-protein in isolation

from the rest of the cell. To some extent this approximation is reasonable: the ligand

initiates the signaling cascade, and therefore events that take place soon after ligand

binding are the events that are most influenced by the specific properties of that ligand.

However, the activity of many other proteins inside the cell can have a profound effect on

how the receptor s signal is interpreted.  In the case of GPCRs, it is known that the

receptor is phosphorylated by a number of receptor kinases (Krupnick and Benovic 1998;

Lefkowitz 1998) and then binds to adapter proteins, which may have further signaling

ability (Lefkowitz et al. 1992; Zuker and Ranganathan 1999).  Later protein—protein

binding events then lead to receptor internalization.  Eventually, these other steps could

be included in a more complete version of the cubic ternary complex model as shown in

Figure 8.4, yielding a more accurate representation of GPCR signaling once the

parameters describing this system are known.  However these extra steps will require
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additional experimental measurements to accurately and meaningfully predict the

dynamics of this system.

Figure 8.4  Extension of the cubic ternary model of GPCR signaling to include reactions
farther down the signal transduction pathway including receptor up-regulation,
internalization, arrestin binding (AR), clathrin binding (CL), and adenylyl cyclase
activation (AC).

Proteins downstream of the receptor may also be regulated thereby changing how

a particular cell will respond to a drug (Bond et al. 1995).  For example, downstream

proteins may ultimately provide the feedback that regulates the G-protein concentration,

possibly causing agonist inversion via the mechanism described in Chapter 3.  By

including the effects of these other proteins into future models, we will gain a more

realistic picture of how the cell interprets its world.

In the modeling work in this thesis, I have assumed that the receptor has only two

states, active and inactive, however it is quite possible that the receptor has a wider

variety of states available.  For example, experimental work has shown that for some

receptor systems, different drugs seem to activate different signal transduction pathways

more effectively, causing some to suggest that GPCRs would be better modeled with a
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three state model (Scaramellini and Leff 1998).  From a theoretical standpoint, this

change from a two state to a three state receptor would change the space of possible

receptor conformations from a line of possible states (shown in Figure 1.2) to a surface of

possible states, shown schematically in Figure 8.5.  The inclusion of additional receptor

states would complicate our analysis of signal transduction, but would also open the

possibility of new drugs that act with greater precision.

Figure 8.5  A schematic representation of a surface of possible conformations a receptor
may occupy.  Each axis represents the activity the receptor has for each signal
transduction pathway, such as activity of the G—proteins Gi and Gq.

An issue not addressed in this work, but relevant to understanding GPCR signal

transduction is ligand cross—reactivity.  Currently we assume in our models that each

ligand affects only one receptor species and that receptor only effects one pathway, but

this is clearly not true in many receptor systems.  Receptors such as the opiate,

muscarinic, and dopamine receptors are actually families of similar receptors interact

with similar ligands and G—proteins but have unique individual members within each

family with their own behaviors.  For example, the κ—opioid receptor of the opioid

receptor family is difficult to desensitize, while the δ—opiod receptor rapidly desensitizes

(Jordan and Devi 1999; Jordan et al. 2000).  The models in this work could be expanded
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to include the interaction of multiple ligands with multiple receptors, and even multiple

G—proteins to generate a network of interactions similar to a neuronet and shown in

Figure 8.6.

Figure 8.6  Cross—reactivity of ligands, receptors, and G—proteins can produce a more
sophisticated information processing system.

Many proteins involved in signal transduction are made up of a number of related

protein subunits, leading to a combinatorial effect that could also be explored.  In the

GPCR signal transduction pathway, the G—protein is made up of a trimer of proteins,

each of which has a variety of subtypes (Rahmatullah and Robishaw 1994).  Assuming

that all of the protein species can bind to each other, we could see at most 480 different

G-protein variants, each with their own unique receptor binding and signaling properties.

One could explore how the diversity of G—protein combinations is regulated by the cell

and how G—protein variation affects cell signaling.

From a modeling point of view, a large number of G—proteins could prove

challenging to include.  As a first approximation however, one could simply add a small

noise term into all of the G—protein specific parameters.  This change would effectively

spread the data out to account for G—protein variation and even smaller effects such as
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thermal fluctuations.  However, it is unclear if this addition would significantly enhance

our understanding of GPCR signaling.

Eventually it will be possible to include explicitly the effects of each unique

G—protein species, but in the short term it may not be required.  Changes in G—proteins

most likely have subtle effects on the signaling process.  Predicting these effects will not

be possible until the downstream signaling events are better characterized.  As such these

subtle changes will have to remain noise.

The more details included in our picture of signaling, the more apparent the value

of modeling. By including the roles of many different proteins, we generate a

complicated reaction network of time varying reaction and diffusion events a system

that is nearly impossible to understand without modeling. This system is not amenable to

a reductionist solution, for it is the interaction of these many different proteins that give

rise to the cellular response. Therefore, pharmacological models must move toward

analyzing the collective behavior of the many parts in this complex system.



164

APPNDIX A

MODEL EQUATIONS FROM CHAPTER 4

Below I provide additional information about the models and model results

generated in Chapter 4.  In sections A.1 and A.2, I provide differential material balances

for the whole cell model.  Note that for simplicity the model in Figure 4.3 only shows

ligand A binding, however  in the simulations two ligands, A, a tracer, and B, a test

ligand are used.  The balances include both A and B.

Section A.3 provides the complete analytical solution of the signal response when

G–protein conservation is included.  This result shows that the efficacy of the tracer

ligand can play a role, but in a strongly nonlinear way.

A.1  Differential material balances for the whole cell model
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A.2  Differential material balances for the membrane binding assay model
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A.3  Effect of tracer ligand efficacy with G-protein conservation

The equilibrium signal ratio shown in Eqn. 4.4 assumes that the total number of

free G-proteins does not change appreciably.  If this assumption is violated then the

efficacy of the tracer ligand can play a role.
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Below is the analytical solution of the equilibrium signal ratio when the G–protein

concentration is constrained to a total of Gtot.
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APPENDIX B

EFFECTS OF TOPOLOGY ON DIMERIZATION INDUCED CLUSTERING

B.1  Introduction

In chapter 5 of this thesis, I demonstrated that dimerization alone can induce

receptor clustering on a two dimensional surface under diffusion limited conditions.

Although this result has direct importance to some receptor signaling processes, it fails to

explain how the cell localizes clusters of proteins to a specific location on the cell

membrane.  In some cases this localization is thought to take place around an already

existing structure such as part of the cytoskeleton or a cell-cell contact (Bray 1998),

although it remains an open question as to why the core structure is where it is.

In this appendix I investigate an alternate route to protein localization driven by

dimerization and surface topology alone.  The surface of most cells is not a smooth, near

flat surface but instead is ruffled with occasional extrusions such as pseudopods and

dendrites.  One could argue that each of these topological variations is associated with a

unique function that would require a unique compliment of proteins.  For example, a

pseudopod is generally used for both motility and for sensing, thus it might need to have

an unusually high density of integrin and chemoattractant receptors in order to be

effective.

Intuitively, dimerization induced clustering would seem to be favored on surfaces

with a small radius of curvature.  For example, consider the hypothetical surface shown
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in Figure B1.  At the flat part at the base, diffusing receptors would essentially see a 2D

environment and as such diffuse fairly rapidly.  However, as receptors travel up the

surface to smaller radius of curvature areas their local environment transitions from a 2D

world to a more 1D world.  In this 1D environment, diffusion can only take place along

one axis, causing particles to block eachother more often and thereby slowing their net

movemement.

Figure B1  Cell membrane surface that smoothly changes from a two-dimensional
surface to a one-dimensional line.

As an analogy, consider merging traffic as shown in Figure B2.  Moving from a

large ten-lane highway into a small one lane country road results in an increase of traffic

density and a greater propensity for traffic jams.  Like the receptor case, at low traffic

densities, changing from a ten lane to a one lane highway will cause no problems, while

at high traffic densities the effects will be more significant.  The reason for more traffic

problems on the one lane road versus the highway is that on the highway there are more

ways to pass each other, thereby relieving any local blockage that may randomly form.
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This traffic analogy assumes that receptors have a discrete size on the order of the size of

their environment and as such change behaviors at higher receptor densities.

Figure B2  Traffic analogy to illustrate the effect of dimensionality on transport.  Moving
from a highway with many lanes (two dimensional surface) to a single lane road (one
dimensional line) results in a backup of traffic, thereby creating a local change in particle
density.

B.2  Discrete and Continuous Diffusion Models

To determine the effect of topology on diffusion, I have employed two spatial

modeling approaches which both yielded different results.  In the first approach I have

used a partial differential equation that describes diffusion to show how a particle should

diffuse along a distorted surface.  This model predicts that the receptor density should be

even at all points.  Next I used a Monte Carlo approach to model diffusion with the

addition of dimerization to find that receptors should be unevenly distributed along the

surface.  Both these approaches are widely used in engineering and physics, and therefore

present an intriguing contradiction for future research.

As a sample case, imagine a cell membrane defined by the two-dimensional

surface of a pyramid as shown in Figure B3.  Receptors can be placed on the membrane

and allowed to diffuse to observe where they localize.  My goal is to find out how the

receptors will distribute themselves at equilibrium.  I will use PDE, ODE, and MC



171

methods to analyze this question.   The MC work will show how a single particle, then

multiple particles will distribute themselves on the membrane.  Finally the effects of

dimerization will be included.  Analytical results will be given where possible.

Figure B3 A two dimensional surface model of a four sided pyramid.  This image
represents the pyramid from above.  This surface can be descretized as five points, with
four on the edges and one in the center.

B.2.1  PDE Model of diffusion

This 2D diffusion problem is easily solved using a PDE model.  Using Fick s

Law, equilibrium diffusion in 2D can be expressed as:
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Where C is the concentration of the receptor, t is time, x and y are spatial coordinates,

and D is the diffusion coefficient.   The solution to this equation is a uniform

concentration profile across all of x and y for any geometry and is independent of the

diffusion coefficient D.

Intuitively this result makes sense.  In the mathematically analogous problem of

heat conduction, if a block of well-insulated material is started with some temperature

gradient, then at infinite time (equilibrium) the block will have a uniform temperature.

B.2.2  ODE Model of Diffusion

This diffusion problem can be changed from a PDE problem to an ODE problem

by breaking the pyramid in Figure B1 into discrete points and solving an ODE heat

balance on each of those points.
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By numbering the corners 1-4, and the center point 5, we can write out 5 steady

state mass balances for each of the points:
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Where Qn is the mass at point n, and k is the mass transfer coefficient.  The coefficients

that modify each contribution are defined by the number of connections that site has to

the other sites.   Therefore, site 5 (the center point) looses mass to its four neighbors

(—4kQs) while also gaining mass from its neighbors (+kQ1+kQ2+kQ3+kQ4).

When solved for steady state behavior we find that the mass concentration at all

sites will be equal.  This finding is identical to the results found using the PDE model and

is based on similar assumptions.

B.2.3  MC Model for Single Particle Diffusion

Similar to the ODE model, the diffusion problem can be approached using a MC

simulation of a single particle exploring the vertices in Figure B3.  This simulation can be

done by either allowing a single particle to jump from site to site and gathering statistics

or it can be done on the basis of probability both of which give the same result.

To follow the probability of finding a particle at any given site, I begin with a

particle at any site, say the center (position 5), at time equals zero.  In the next time step

the particle will be in 1 of 4 of the corners, each with a 25% probability.  In the next time

step, the particle in the corner then has a 33% probability of moving back to the center,
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and a 33% probability of moving to each of its neighboring corners.  This process can be

iterated until the system reaches steady state.  A sample output of an Excel workbook

doing this calculation is shown in Table B1 below:

Site 1 Site 2 Site 3 Site 4 Site 5
0 0 0 0 1

0.25 0.25 0.25 0.25 0
0.167 0.167 0.167 0.167 0.333
0.194 0.194 0.194 0.194 0.222
0.185 0.185 0.185 0.185 0.259
0.188 0.188 0.188 0.188 0.247
0.187 0.187 0.187 0.187 0.251
0.188 0.188 0.188 0.188 0.250
0.187 0.187 0.187 0.187 0.250
0.188 0.188 0.188 0.188 0.250
0.187 0.187 0.187 0.187 0.250

Table B1  Numerical output predicting the probability distribution of a single particle on
a 5-point grid in Figure B3.  Each row represents a single iteration; notice that a steady
state is reached.  Note that the resulting equilibrium distribution favors the center site
(site 5).

The results generated with this MC simulation clearly disagree with the PDE and

ODE models because it predicts that the particle will spend more time in the center site

than the edge sites!

The procedure used to generate this MC model can be generalized in a graph

theoretic way for any system analytically.  The way this is done is by counting the

number of feeds into a vertex (called valence in graph theoretic terms) and dividing this

by the total number of internal feeds in the system (i.e. the total number of arrowheads).

For the system in Figure B3, there are a total of 16 feeds (8 lines that connect points, each

line has an arrow head at each end).  For the center site (site 5) there are 4 feeds in,

resulting in a probability of occupancy of 4/16 or 0.25.  For the corner sites there are 3

feeds, resulting in a probability of occupancy of 3/16 or 0.1875.  I have tested this

procedure on other systems and have thus far found it to be general.
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Which method, MC or PDE, is right?  Both MC methods and PDE methods are

widely used to simulate diffusion, but they both give different answers.  The PDE results

make intuitive sense when compared to the heat equation.  However, the MC result also

makes sense because the center site is the most crossed site (most connected site) and as

such would be expected to see the most traffic.  The big difference is that the MC system

tracks only one indivisible particle, while the PDE/ODE techniques follow a continuum.

Is this a disagreement caused by the continuous to discrete assumptions of the models?

B.2.2.1  MC Simulation of two particles

If MC and PDE models diverge because the first is discrete and the second is

continuous, adding another particle to the MC model may bring the MC simulation closer

to the PDE result.

The techniques used to model two particles are more complicated than for one

particle.  First I enumerated all of the possible combinations of two particles on a 5-site

grid (10 possible configurations).  Then I connected these configurations together into a

graph of graphs, as is shown in Figure B4.

Using the analytical probability occupancy techniques introduced for a single

particle, it is possible to determine the probability of each state in Figure B4, which in

turn can be used to predict the probability of occupancy of each site on the 5-site grid.

For example, in Figure B4, there are a total of 48 feeds (green arrowheads).  States 1-4

each have a valence of 4 (4 feeds in), states 5-8 have a valence of 5, and states 9-10 have

a valence of 6.  Therefore there is a 4/48 chance of finding state 1, a 5/48 chance of

finding state 5, and a 6/48 chance of finding state 9.  Because only states 5-8 have a

particle in the middle, these states will determine the total probability of finding a particle

at this site.  The result is that there is a 4*(5/48)=20/48 probability of finding a particle in

the center, versus a 19/48 probability of finding a particle on the edge.
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Figure B4  A graphical representation of all of the possible transitions that can be made
in a two-particle system on a 5-site grid.

Although this result predicts that there is still an increased likelihood of finding a

particle in the center vs. the edge, the magnitude is smaller.  Therefore, so called

crowding effects in this system seem to drive the result more toward the PDE model,

while single receptor dynamics deviate the most from the PDE model.

B.2.2.2  MC model with dimerization:

Dimerization of receptors can be included in this simple 5-site model fairly

simply.  The easiest case would be to assume irreversible dimerization.  Irreversible

dimerization eliminates states 9 and 10 from Figure B4.  Following the procedure

described above I found that dimerization increases the probability of finding a particle

on the center site to 4/9.  To compare this to the non-dimerized state we get:
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Pcenter with dimerization=4/9 =0.44444

Pcenter w/o dimerization= 20/48 =0.41666

Therefore dimerization induces the particle to spend more time at the center site,

encouraging a greater divergence with the PDE result.

This model can be modified to include dimerization probabilities by enlarging the

graph in Figure B4 to include monomeric and dimeric species along with weighted

probabilities for dimerization and monomerization.  This work is expected to be tedious

to do analytically and would most likely show an intermediate behavior for this system.

This result would be interesting for larger systems and is modeled in the next section

using MC methods.

B.3  Direct Comparisons of models

To compare different models with different numbers of particles, I will use the

enrichment factor, ε, defined as the increased probability of finding a particle at a

particular site or region in comparison to an even distribution.  For example, using an MC

method, a single particle in a 5-site world has a 25% probability of being in the center

versus an 18.75% probability being at the corner.  Because there are 5 sites, a PDE model

would predict an equal distribution of 20% probability at any site.  Therefore the

enrichment factor of the center site in the MC over PDE model is (25/20-1)= 25%.  This

same procedure can be performed for the two-particle system and the MC simulations to

get the following results:

Center site of:

PDE/ ODE models   0.000%

5 site MC with 1 particle 25.000%

5 site MC with 2 particles w/o dimerization  4.166%

5 site MC with 2 particles w/ dimerization 11.111%
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This same procedure was used on a much larger model with 1119 sites that consisted of a

flat region and a thin tube  region much like the surface shown in Figure B1.  The trend

of enrichment factors is the same, although the specific values are different:

Tube fraction from large scale MC simulations:

PDE model 0.000%

1119 site MC with 1 particle 6.413%

1119 site MC with 32 particles w/o dimerization 4.082%

1119 site MC with 32 particles w/ dimerization 5.841%

Therefore at any scale, the relative order of the enrichment factor is the same for all of the

systems tested.  Single particles deviate most from the PDE models, while multiple

particles help to bring the system closer to the PDE solution.  Dimerization causes an

intermediate solution.

These results show that dimerization does cause particles to attract to small radius

of curvature areas because it makes them more single-point-like.  This effect is not large,

but is statically relevant and can be demonstrated for larger systems.

B.2.4  Conclusion

According to the MC simulations performed in this work, particles should

self—localize to small radius of curvature areas.  This effect is enhanced by dimerization,

but is maximal when only one particle is present.

This MC finding is in direct contrast to the PDE prediction, most likely due to the

assumptions both models make.  A key difference between MC and PDE models is that

in MC environment particles have finite areas, while in the PDE model they are infinitely

small.  From a radius of curvature viewpoint, only particles with finite area can detect a

finite change in curvature, while to infinitely small particles all points appear to be flat.
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Physically this means that particles in the MC simulation can block each other, while in

the PDE they cannot.

The MC approach used in this work was also based on a discrete grid, which may

also bias these findings.  Future simulations that are run in a continuous environment

could remove any uncertainty associated with the grid while also making the findings

more palatable to a general audience.  I suspect that both on and off the grid, one would

find that discrete diffusion will favor locations with a small radius of curvature, but more

work needs to be done to validate this hypothesis.

In biological systems, diffusion on nonflat surfaces could play a key physiological

role.  Small radius of curvature surfaces such as the surface of an endosome or the golgi

body may affect the trafficking of single proteins, while larger radius of curvatures such

as those on a dendrite may affect larger objects such as protein clusters.  Therefore future

work will need to focus on finding the relevant length scale where this kind of topology

induced clustering takes place.

Thus, although the effects of radius of curvature on diffusion are currently

inconclusive, they are intriguing and could provide a major advance to our understanding

of protein localization within the cell.
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