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The treatment of pH sensitive ionization states for titratable

residues in proteins is often omitted from molecular dynamics

(MD) simulations. While static charge models can answer many

questions regarding protein conformational equilibrium and

protein–ligand interactions, pH-sensitive phenomena such as

acid-activated chaperones and amyloidogenic protein aggrega-

tion are inaccessible to such models. Constant pH molecular

dynamics (CPHMD) coupled with the Generalized Born with a

Simple sWitching function (GBSW) implicit solvent model pro-

vide an accurate framework for simulating pH sensitive proc-

esses in biological systems. Although this combination has

demonstrated success in predicting pKa values of protein

structures, and in exploring dynamics of ionizable side-chains,

its speed has been an impediment to routine application. The

recent availability of low-cost graphics processing unit (GPU)

chipsets with thousands of processing cores, together with

the implementation of the accurate GBSW implicit solvent

model on those chipsets (Arthur and Brooks, J. Comput.

Chem. 2016, 37, 927), provide an opportunity to improve the

speed of CPHMD and ionization modeling greatly. Here, we

present a first implementation of GPU-enabled CPHMD within

the CHARMM-OpenMM simulation package interface. Depend-

ing on the system size and nonbonded force cutoff parame-

ters, we find speed increases of between one and three orders

of magnitude. Additionally, the algorithm scales better with

system size than the CPU-based algorithm, thus allowing for

larger systems to be modeled in a cost effective manner. We

anticipate that the improved performance of this methodology

will open the door for broad-spread application of CPHMD in

its modeling pH-mediated biological processes. VC 2016 Wiley

Periodicals, Inc.

DOI: 10.1002/jcc.24435

Introduction

Proteins typically maintain their native structure and optimal

functionality under a narrow range of pH.[1–3] Consequently,

many biological systems tightly control local solvent pH to

tune the effectiveness of enzymes, or to promote a useful pro-

tein conformation.[1,4,5] Mitochondrial ATP synthase utilizes a

transmembrane proton gradient to power its rotary catalysis

mechanism,[6–8] and the departure from a normal pH range is

known to be a driving force in forming the amyloid fibrils

associated with Alzheimer’s disease.[9,10] Additional examples

of pH driven processes include the proton-activated gate

mechanism of the KcsA potassium channel,[11] and the cata-

lytic pathway of dihydrofolate reductase.[12] Finally, a notable

survey by Aguilar et al. showed that about 60% of the pro-

tein–ligand complexes indicated that at least one titratable

residue of the protein assumed a different protonation state

between bound and unbound states.[13] Although important

to many biological processes, pH-dependence in bio-

macromolecule simulations remains a nonstandard tool that

awaits both wider acceptance, and finer tuning of its models.

Typical molecular dynamics (MD) simulations fix all amino

acid protonation states to those of isolated residues in a neu-

tral pH environment. While this pH-insensitive approach is suf-

ficient to fold some proteins and observe their conformational

equilibria,[14] it arguably fails to capture phenomena depend-

ent on local ionization effects of side-chains or perturbations

to a residue’s pKa.[15,16] This failure is particularly problematic

for histidine residues, in that they have two hydrogen atoms

that titrate with near-neutral pH. This ionizability indicates that

in biologically relevant pH environments histidine’s protona-

tion state and tautomeric configuration are often unclear.[17]

In recent decades a series of models of varying complexity

and accuracy promise to bring accurate pH responsiveness to

MD simulations. Protonation-state modeling of amino acids in

MD simulations is based on setting up a pH-sensitive extended

Hamiltonian that modifies the force field parameters and struc-

ture of a given molecule. This began by discretely titrating

protons, and progressing a simulation using instantaneous

switches between protonated and unprotonated states. Mertz

and Pettitt used an open system Hamiltonian to model the

titration of acetic acid,[18] and Sham et al. applied a linear

response approximation through the protein-dipoles Langevin-

dipoles model to calculate lysozyme residue pKa values.[19]

Additional work has been done where Monte Carlo (MC) sam-

pling guides the protonation state of an otherwise classical

MD simulation. Baptista et al. used explicitly represented
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solvent molecules with an implicit solvent Poisson–Boltzmann

function to determine protonation states.[20,21] Meanwhile,

Mongan et al. utilized generalized Born (GB) implicit solvation

to add a solvation free energy component to the protonation

function.[22] While all these discrete models can predict pKa

values for individual amino acids to within one pK unit, they

are computationally expensive. Whether the expense stems

from the need to relax numerical instabilities caused by instan-

taneous protonation/deprotonation events, or from the MC

algorithms’ ability to titrate only one hydrogen at a time, such

methods may require an unreasonable amount of time to

study large systems with many titratable groups.

One possible solution to these issues with discrete titration

methods is to use continuous titration of H1 atoms. Brooks and

coworkers developed one such method called constant pH

molecular dynamics (CPHMD), which uses k-dynamics coupled

to transitions between protonation states.[23,24] This method

uses the Generalized Born implicit solvent model with a Simple

sWitching function (GBSW) model,[25] or the related Generalized

Born with Molecular Volume (GBMV) model,[24] to efficiently

couple the protonation state to the solvation free energy of the

molecule. Khandogin and Brooks then introduced proton tau-

tomerism capabilities to this method, which allows multisite

titrating residues, such as histidines, to be modeled more accu-

rately.[26] Since the method is continuous, there are no instanta-

neous protonation/deprotonation events, and multiple residues

can titrate simultaneously. Additionally, such continuous titration

methods allow for the efficient coupling of protonation states

among neighboring residues. The result is a pH simulation

method that can calculate pKa values of protein structures to

within 0.75 pK units,[16] and can resolve the dominant folding

pathway of the pH-sensitive HdeA homodimer.[15]

CPHMD’s efficiency, however, is bound by the rate-limited

component of the calculation: the GBSW solvent model. As

such, when running on a single-core central processing unit

(CPU), CPHMD achieves on the order of 1 nanosecond (ns) of

simulation time per day when simulating a solute system of

about 1000 atoms. Since typical uses of CPHMD, such as pre-

dicting pKa shifts of protein residues, may require many nano-

seconds of simulation time,[16] even smaller proteins, such as

lysozymes, may require about a week to converge on useful

results. Larger systems, such as asymmetric viral capsid subu-

nits with tens of thousands of atoms, may require unreason-

ably long simulation times if captured in full atomic

detail.[27,28] Fortunately, the GBSW solvent model has recently

been refactored to function on new, parallel graphics process-

ing unit (GPU) hardware, and is now between 1 and 2 orders

of magnitude faster than its CPU counterpart.[16,29] By incorpo-

rating the CPHMD model into the GPU-GBSW algorithm, there

holds the promise of speeding up pH simulations substantially.

This study represents an increment in the ongoing adapta-

tion of efficient and useful algorithms onto parallel-processing

GPUs. Such chipsets can contain thousands of processing

cores, and are able to process C-like languages such as Open

Computing Language and Compute Unified Device Architec-

ture (CUDA). This combination of features has opened up a

new frontier of parallel processing where expensive computer

clusters can be replaced with single, affordable graphics cards.

Simulation packages such as CHARMM,[30] AMBER,[31]

OpenMM,[32] GROMACS,[33] and NAMD[34] all offer GPU-

accelerated options for many types of studies, and most of

those options receive speed increases of greater than an order

of magnitude over their CPU counterparts.

Due to OpenMM’s effectiveness in harnessing the capabil-

ities of GPUs with a wide variety of hardware, a CHARMM-

OpenMM interface was developed to combine the strengths

of both simulation packages.[30,32] CHARMM’s robust algo-

rithms can be used to design and parameterize a simulation,

and OpenMM’s efficient GPU-based algorithms can be used to

propagate dynamics.[30,32] Now with the recent incorporation

of the GBSW solvent model into the CHARMM-OpenMM inter-

face, many of CHARMM’s algorithms parameterized for use

with GBSW, such as CPHMD, can be adapted for parallel proc-

essing on GPUs as well. In this study, we take advantage of

the recent incorporation of GBSW onto GPUs, and discuss the

adaptation of CPHMD onto this new parallel architecture. First

we explain the underlying theory behind k-dynamics: how a k
coordinate is used to represent the titration state of a residue,

and how that coordinate is propagated. Then, we delve into

how it was originally implemented for CHARMM, and examine

fitting CPHMD into the GBSW algorithm. Here, we discuss the

algorithmic improvements, and show how many force contri-

butions on k are calculated alongside the free energy of solva-

tion. Finally, we present benchmarks achieved by the new

algorithm, and comment on future directions for pH

simulations.

Methods

The k coordinates and their underlying energy function for

single-site titration

For clarity in following discussions, we present the underlying

theory of CPHMD. We start by setting up the framework for a

single residue with one titrating hydrogen. The rudimentary

picture of titration events is an equilibrium association/disasso-

ciation reaction of a model compound AðaqÞ in aqueous solu-

tion from a titrating proton.

AHðaqÞ $ A2
ðaqÞ1H 1

ðaqÞ (1)

Here, the protonation free energy is defined by

DGexp modelð Þ52kBT ln 10 pK exp
a 2pH

� �
(2)

where kB is Boltzmann’s constant, and T is the temperature.

We can approximate the above equations through classical

simulations by interpreting the protonation interaction as a

change in free energies:

DGexp proteinð Þ2DGexp modelð Þ

5DGclassicalðproteinÞ2DGclassical modelð Þ
(3)

This relationship then leads to an estimate of experimental

free energy of protonation for a single titrating site:
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DGexp proteinð Þ5DGclassicalðproteinÞ

2DGclassical modelð Þ1DGexp modelð Þ
(4)

From this perspective, we infer that titratable groups have an

intrinsic free energy of protonation that is perturbed by the

protein environment mainly through nonbonded interactions.

We model this perturbation by extending the system’s Hamil-

tonian with a nongeometric dimension of k. As mentioned in

the introduction, the CPHMD model uses a series of k coordi-

nates where each k value tracks the progress of protonation-

deprotonation events at a single titration site. For a particular

residue i, these coordinates are generated from

ki5sin 2 uið Þ (5)

where i is the residue being titrated. In this form the h variable

is bound to all real numbers, and k is bound to the continu-

ous range 0 � ki � 1 . The sine-squared function then favors k
values near the boundary protonated (1) and unprotonated (0)

states. Because k is only physically relevant as it nears these

boundary states, we impose cutoffs on interpreting k. In

CPHMD an unprotonated state is ki � 0:1, a protonated state

is ki � 0:9, and a mixed state is 0:1 < ki < 0:9. Figure 1 illus-

trates the protonation states and their corresponding k values.

Potentials and their derivative forces on k are then interpreted

as potentials and forces on h.

The potential energy that governs protonation states con-

tains fivek-dependent components. We start with the pH

dependence of the deprotonation free energy as follows from

DGexp in eq. (4). This potential connects k to the pKa of a resi-

due in its isolated, reference state:

UpH kið Þ5ki pKaðiÞ2pHð Þ kBT ln 10ð Þ (6)

Here, pKaðiÞ is the pKa of titrating group i. Next we have the

potential of mean force (PMF) along the k coordinate from

DGmodel. This term corresponds to the negative of free energy

needed to deprotonate a model residue:

Umodel kið Þ5Ai ki2Bið Þ2 (7)

Equation (7) is a quadratic fit to the thermodynamic work

potential of deprotonating a model compound, and it splits

the protonation state into two low-energy wells that represent

the protonated and unprotonated states. Then a barrier poten-

tial is added that disfavors mixed states of k:

Ubarrier kið Þ54bi ki21=2ð Þ2 (8)

The barrier scaling parameter bi is an empirical coefficient

designed to tune the propensity for a k value to remain in

either protonated or unprotonated states, while facilitating

Figure 1. Shown are Cartoons of the protonated and unprotonated states of A) histidine and B) lysine. Also noted are the reference pKa values of each

transition when occurring in an isolated residue, as well as the k values at each state. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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transitions between them. In the current iteration of CPHMD,

bi assumes a value of either 2.5 or 1.75 kcal/mol, depending

on the residue. Finally, we arrive at the two charge-dependent

potentials: the Coulombic and GB. The classical Coulombic

potential is

U elec kið Þ5
X
a; i

X
b

K elec qa; i kið Þ qb

rab
(9)

Here, K elec is Coulomb’s constant, qaand qb are the partial

charges of atoms a and b respectively, and rab is the distance

between those atoms. Note that this potential for residue i

includes the interactions between all atoms a in residue i to

all other atoms in the system. Meanwhile, qa kið Þ is a k-depend-

ent charge of atom a, which follows the form

qa; i kið Þ5ki qunprot
a; i 1 12kið Þqprot

a; i (10)

where charges on titrating atom a can be in protonated (qprot
a; i )

and unprotonated (qunprot
a; i ) states. We note that in an effective

charge model of pH, titrating residues are allowed to interact.

As such, any atom b from a titrating residue j interacting with

residue i has its own qprot
b; j and qunprot

b; j . Thus, the partial charge

qbfollows one of two possibilities:

qb5
qb non2titrating

kj qunprot
b; j 1 12kj

� �
qprot

a; j titrating

(
(11)

That is if atom b lies in a nontitrating residue, that atom’s par-

tial charge is simply the standard partial charge from that resi-

due’s force field. If atom b lies in a titrating residue j and its

charge is affected by the protonation state of j, then its partial

charge is derived from the same k-dependent relationship

from eq. (10). Since atoms near a titrating site can have their

partial charges affected by titration states, many more than

the titrating hydrogen atoms can possess a k-dependent

charge state. We also note that at times j5i if we observe the

Coulombic interaction between two atoms on the same titrat-

ing residue. The final k-dependent potential is that from the

GB solvent model as expressed in the Still equation:[35]

U GB kið Þ5
X
a; i

X
b

s
qa; i kið Þ qb

f GB
ab

(12)

where

f GB
ab 5 r2

ab1RBorn
a RBorn

b exp 2r2
ab= 4RBorn

a RBorn
b

� �� �� � 1=2
(13)

Here, qa kið Þ and qb follow the same form as in eqs. (10) and

(11), respectively; rab is the distance between atoms a and b; s
is the factor that scales the Born energy by the difference in

dielectric values at the dielectric boundary and by any contrib-

uting salt effects;[36] and the values RBorn
a and RBorn

b represent

the Born radii of atoms a and b, respectively. The Born radii

are the effective distance between an atom and the solute–

solvent dielectric boundary, and they are calculated through

volumetric integration following the GBSW implicit solvent

model.[25]

If we pull together the complete potential for a titrating

residue i from eqs. (6) through (13), then we arrive at the

form

Utotal
i kið Þ5UpH

i kið Þ 1 Umodel
i kið Þ 1 Ubarrier

i kið Þ

1 Uelec
i kið Þ 1 UGB

i kið Þ1 UVDW
i 1 Uinternal

i

(14)

The so-called “internal energy” term (Uinternal) corresponds to

the bond, angle, and torsional energy terms of a classical

energy force field. In this model, the titration state is dynami-

cally independent of this potential. Although several models of

CPHMD include a k-dependent van der Waals term

(UVDW),[26,37,38] during this study it was found that at most it

contributes a minimal amount to a given residue’s force on k,

while it nearly doubles the calculation time of CPHMD. This

term is negligible compared to the force on k from other

effects, and omitting it from the calculation showed no effect

on the accuracy of CPHMD. Thus, in the interest of speeding

up the original algorithm, the k-dependent potential UVDW was

ignored in this implementation of CPHMD.

Although we now have the proper setup for addressing resi-

dues with a single titration site, such as in lysine, we need to

address how CPHMD handles tautomerization in residues such

as in aspartic acid and histidine.

Proton tautomerism

Similarly to how one k variable is used to track the progress

of titration states of a residue, Khandogin and Brooks incor-

porated tautomeric behavior into CPHMD by providing resi-

dues with a second k variable, called x, to track the progress

of tautomeric states.[26] This arrangement is illustrated in Fig-

ure 1a with histidine. Just as in k dynamics for titration

states, transitions between tautomeric states are linearly

interpolated using the x variable. What results are potentials

that become bivariate in k and x, and each tautomeric resi-

due has four charge states: tautomer A in protonated and

unprotonated states, and tautomer B in protonated and

unprotonated states. What we shall see later is that residues

can have equivalent states in this setup. Histidine’s proto-

nated state, for example, is a residue saturated with protons.

As such tautomers A and B of the protonated state are

equivalent. We now review the influence of including two k
parameters for a tautomeric titrating residue. The pH

dependent potential becomes

UpH ki; xið Þ5ki½xi pK A
a ðiÞ2pH

� �
1 12xið Þ pK B

a ðiÞ2pH
� �

� kBT ln 10ð Þ
(15)

where the pKa values of tautomers A and B are pK A
a and pK B

a

respectively. While these pKa values for aspartic acid and glu-

tamic acid are equivalent and only serve as a sampling expedi-

ent,[26] in residues with asymmetric titrating sites such as

histidine they are not. The PMF for protonation becomes a

bivariate polynomial from eq. (7), which then expands into the

general form
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Umodel ki; xið Þ5a0k
2
i x2

i 1 a1k
2
i xi 1 a2kix

2
i 1 a3kixi

1 a4k
2
i 1 a5x2

i 1 a6ki 1 a7xi 1 a8

(16)

The barrier potential is simply a summation of terms that dis-

favor the mixed states of both k and x, and follows the form

Ubarrier ki; xið Þ54bk
i ki21=2ð Þ214bx

i xi21=2ð Þ2 (17)

Note that there are two barrier scaling parameters bk
i and bx

i

for k and x. Although different biases for tautomeric and pro-

tonation transitions are possible in this equation, in the dis-

cussed CPHMD model they are identical for all titrating

residues.

The charge-dependent potentials in eqs. (9) and (12) are

only modified in that charges for atoms can now be depend-

ent on the new x coordinate. The Coulombic and GB poten-

tials then follow the forms

U elec ki; xið Þ5
X
a; i

X
b

K elec qa; i ki; xið Þ qb

rab
(18)

and

U GB ki; xið Þ5
X
a; i

X
b

s
qa; i ki; xið Þ qb

f GB
ab

(19)

respectively. The bivariate charge qa; i ki; xið Þ then follows the

form

qa; i ki; xið Þ5 ki xi qA; unprot
a; i 1 12xið ÞqB; unprot

a; i

h i
1 12kið Þ xi qA; prot

a; i 1 12xið ÞqB; prot
a; i

h i (20)

Where charges on titrating atom a are derived from the proto-

nated and unprotonated variants of both A and B tautomers,

qA; prot
a; i , qA; unprot

a; i , qB; prot
a; i , and qB; unprot

a; i . Similarly, the charge on

atom b emerges as

qb5

qb non2titrating

kj xj qA; unprot
b; j 1 12xj

� �
qB; unprot

b; j

h i
titrating

1 12kj

� �
xj qA; prot

b; j 1 12xj

� �
qB; prot

b; j

h i

8>>>>><
>>>>>:

(21)

We now arrive at a general-purpose setup for evaluating the

underlying potential for continuous transitions among various

charge states of a particular residue. Deriving the forces with

respect to k and x, while important, serves little purpose for

illuminating the topics explored in the remainder of this study.

With the framework above, we now can discuss the construc-

tion of the original algorithm, and the changes made to refac-

tor it for efficient parallel processing on GPUs.

Refactoring CPHMD

The original CPHMD model was built with mathematical preci-

sion and function portability in mind. It is a stand-alone mod-

ule that can be applied to both implicit and explicit solvent

systems, and except for atom coordinate and Born radii

updates, it receives no input from other functions during a

simulation. During the course of a timestep, each titrating

coordinate ki is scanned to identify the residue type (such as

whether the residue has one or two titrating hydrogens), and

then an appropriate functional is applied to calculate its pH

[eqs. (6) and (15)], model [eqs. (7) and (16)], and barrier [eqs.

(8) and (17)] potentials. Next, neighboring atom-atom interac-

tions are scanned for whether one or both atoms reside in

titrating groups. If a titrating atom–atom pair is found, then

contributions to the electrostatic [eqs. (9) and (18)] and GB

[eqs. (12) and (19)] potentials are integrated. Neighboring

atom–atom pairs are then scanned again to calculate the VDW

potential (ignored in this new iteration of CPHMD). Finally, the

force on h is calculated, and k via h is advanced a timestep

using Langevin dynamics.[39] In this setup, there are several

opportunities presented to us for improving the algorithm

both in the efficiency of its execution in parallel, and by weav-

ing portions of the calculation into existent functions else-

where in the simulation.

We first note that the majority of clock cycles used for calcu-

lating k dynamics are spent on neighboring atom–atom inter-

actions when accumulating the electrostatic and GB potentials.

While the calculations required for each atom pair are compu-

tationally cheap, the large number of interatomic interactions

in a protein containing thousands of atoms can make this mul-

titude of cheap calculations altogether expensive. As show in

Figure 2a, about 12% of a 2000-atom simulation is spent only

on this calculation.

Both CPHMD and the GBSW solvent model require calculat-

ing the Still equation [eqs. (12) and (13)] to address part of the

neighboring atom potential, so a significant speed improve-

ment can be made by placing all of CPHMD’s atom–atom

processes inside the neighboring atom process of the GBSW

solvent model. This way, as GBSW produces the solute mole-

cule’s electrostatic solvation free energy and its derivative force

on atoms, CPHMD processes neighboring atom potentials on

k simultaneously. Thus, the large number of redundant atom–

atom distance calculations can be reduced significantly during

a simulation. This setup gains additional speedup through

GBSW by using OpenMM’s efficient parallel possessing of

neighboring-atom interactions. As shown in Figure 2, by com-

bining the CPHMD and GBSW algorithms we see that pH mod-

eling with CPHMD accounts for a much smaller fraction of the

overall simulation time.

Due to the nature of parallel processing, bottlenecks are

often created from the longest portions of nonparallel code.

While a single-core process can be sped up dramatically by

creating a case-by-case set of calculations, navigating through

the additional overhead to make the situation-specific decision

can slow parallel processes down. Regarding the equations

described earlier, a titrating residue with one tautomer

requires fewer calculations than a titrating residue with two.

As we place each residue’s force calculations in parallel proc-

esses, however, the speed of the code is improved by regard-

ing all titrating residues as possessing two tautomeric states.
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In this new implementation of CPHMD, single-titration resi-

dues, such as lysine, are given extraneous x coordinates. Lysine

then uses the barrier potential from eq. (16), where the x-

coupled coefficients a0, a1, a2, a3, and a5 are set to a value of

0.0. Without the overhead for residue identification, the lon-

gest calculation required, that is calculating the force on h for

a residue with two tautomeric states, is shortened. What

results is a speed improvement when calculating all compo-

nents of the total potential on k coordinates. As shown in Fig-

ure 2b, using the parallel CUDA-CPHMD algorithm for a small

system impacts the processing time by approximately 6%, as

opposed to 15% for the original algorithm.

Benchmarking CUDA-CPHMD

We finally reach an efficient setup where using the CPHMD

model results in little slowdown of the overall simulation time.

We chose several systems to benchmark the new algorithm,

and explore the speed benefits it offers. We chose the naja

atra snake cardiotoxin (PDB: 1CVO),[40] the D1PHS hyperstable

variant of staphylococcal nuclease (PDB: 3BDC),[41] and the

asymmetric subunit of the bacteriophage HK97 head capsid

(PDB: 2FT1).[42] This trio provided a range of system sizes and

residue configurations. To add additional statistics, the seven

proteins of the HK97 capsid were assembled into six additional

subsystems, all of which appear in Figure 3 to show for a

range of system sizes the speed dependence on system size.

All simulations were using the CHARMM22 force field[43,44]

using the Langevin integrator[45] with a timestep of 2 femto-

seconds. These were NT (constant particle number and tem-

perature) simulations at 298K in unbounded volumes using

the CUDA-GBSW solvent model, and CUDA-CPHMD to model

titration states and advance k coordinates. Atomic radii for the

GBSW solvent model were provided through work by Chen

et al.[46] The hardware specifications of the computer used

appear in Table SI1 of the Supporting Information. We found

speed improvements of between 1 and 3 orders of magnitude

in the CUDA-CPHMD algorithm over its CPU counterpart.

As we combine the improved efficiency and parallel execu-

tion of both GBSW and CPHMD (shown in Figs. 3a–3d), sub-

stantial speed gains are found in this new version of pH

modeling over its predecessor. For smaller 1000-atom systems,

we see a speed improvement of over 20-fold when comparing

a 12-threaded CPHMD simulation to the new CUDA-CPHMD,

and an improvement of over 150-fold when compared to the

single-core algorithm (shown in Fig. 3a). For larger 29,000

atom systems, we see a speed improvement of over 1000-fold

(shown in Fig. 3c). Since the neighboring-atom component

does not scale linearly with system size, larger systems experi-

ence a greater calculation time penalty than smaller ones. For-

tunately, simple changes, such as using nonbonded cutoffs,

can mitigate such problems. For instance, a nonbonded cutoff

of 14 Å sped up the large viral capsid simulation to 6.7 ns/day

(a 270% speed increase versus the no cutoff case).

Accuracy of the new CUDA-CPHMD algorithm

Single-Residue Systems. Speed gains in implementing CPHMD

are an important goal both for increasing the algorithm’s

applicability to a wider range of system sizes, and for its ability

to converge on useful results more rapidly. Its accuracy, how-

ever, must not be compromised as we reconfigure the execu-

tion of the algorithm. In Figure 3e, we show that there is little

difference between the original CPHMD and CUDA-CPHMD

algorithms when calculating the force on k. We maintain an

average unsigned error (AUE) of less than 0.00017 kcal/mol in

this force. We also note that 99.9% of the AUE between the

two CPHMD methods is from the slight differences in Born

radii calculated from the original and CUDA implementations

of GBSW. Thus, we conclude that CUDA-CPHMD accurately

reproduces the original algorithm’s force on k.

While CUDA-CPHMD may be able to produce the force on k
coordinates, we ran additional tests to see whether or not resi-

due protonation states are also reproduced. Due to each resi-

due’s pH-dependent biasing potential, a single residue alone

in solution presumably should find an optimal protonation

state depending on the environmental pH. At pH environ-

ments below a residue’s pKa the residue should favor a proto-

nated state ki � 0:1ð Þ, and conversely a residue exposed to a

pH above its pKa should favor an unprotonated state

Figure 2. The approximate distributions of CPU time spent on running simulation components of D1PHS staphylococcal nuclease molecule. This protein

contains 2132 atoms and 37 titrating residues. A) run using the original algorithm on a single processing core in CHARMM. B) run using the newly refac-

tored CUDA-CPHMD algorithm. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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ki � 0:9ð Þ. By calculating the fraction of protonated to unpro-

tonated states of residues at various pH values and fitting the

results to the Henderson–Hasselbalch equation of states, we

expect the point of inflection to reproduce the pKa of that

residue.

We ran simulations of aspartic acid, glutamic acid, histidine,

and lysine to calculate their protonation states, as shown in

Figure 4. These residues were simulated using the same setup

from the benchmarking section as NT simulations in an

unbound volume, and CUDA-CPHMD was used both to model

titration states and advance k coordinates. The backbone

atom ends were capped with the ACE and CT2 patches in

CHARMM. Each dot in Figure 4 represents the average residue

titration state from 200 ps of simulation time, and the residues

ran at an average speed of 690 ns/day.

We find that without optimizing the simulations for speed,

accuracy, or convergence of protonation states, that the pKa

values could be captured to within 0.5 pK units. Interestingly,

all states reported a small, systematic overestimation of the

pKa, and the exact source of this discrepancy remains unclear.

The CUDA-GBSW solvent model slightly overestimates solva-

tion energy by an average of approximately 0.0003 kcal/mol.

However, this overestimation of energy should bias deprotona-

tion events to occur slightly more often, and thus lower the

calculated pKa. What is clear from these data, though, is that

like its predecessor, the CUDA-CPHMD algorithm models the

pH dependence of titration well for single residue systems.

Next we explore multiresidue titration and the influence of

protein conformation on pKa values.

Multiple-Residue Systems. The end purpose for CPHMD is to

enable the study of complex pH-coupled phenomena of bio-

logical systems, such as pH-dependent protein conformation

and cooperative titration effects among neighboring residues.

As such, we test the accuracy of the CUDA-CPHMD algorithm

by its ability to recapitulate residue pKa values from both

experiments and previous replica exchange studies, as shown

in Figure 5. We study nine model protein systems here:

Figure 3. The benchmarks for the new CUDA-CPHMD algorithm. The individual systems tested were A) the naja atra snake cardiotoxin (PDB: 1CVO); B) the

D1PHS hyperstable variant of staphylococcal nuclease (PDB: 3BDC); and C) the asymmetric subunit of the bacteriophage HK97 head capsule (PDB: 2FT1).

As shown, the new algorithm is substantially faster than the original CPU algorithm by up to three orders of magnitude. In D) the same benchmarks from

earlier are shown (squares) alongside subsystems from the seven proteins of the bacteriophage subunit (circles). Notice that the CUDA algorithm scales

more linearly with system size than its CPU-based counterpart. E) compares the force on k as calculated on all 595 k coordinates from both CPHMD algo-

rithms. There is less than a 0.00017 (kcal/mol) average unsigned error (AUE) between the two algorithms. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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barnase[2,47,48] (PDB code 1A2P); the serine protease inhibitor

CI-2 from barley seeds[47,49] (PDB code 2CI2); the hyperstable

variant of staphylococcal nuclease, D1PHS[3,16] (PDB code

3BDC); hen egg white lysozyme[47,50,51] (PDB code 1LSA); the

N-terminal domain of ribosomal protein L9[47,52] (PDB code

1CQU); turkey ovomucoid[47,53,54] (PDB code 1OMU); ribonucle-

ase A[47,55] (PDB code 7RSA); ribonuclease H from Escherichia

coli[47,56,57] (PDB code 2RN2); and Bacillus circulans xyla-

nase[47,58,59] (PDB code 1BCX). Each protein was simulated in

11 pH windows from the pH 21 to the pH 9. Within each win-

dow, the proteins were simulated for 80 ps in 10 independent

trajectories, which resulted in a total of 4.4 ns of simulation

time per structure. All titrating residues were allowed to

change protonation state using the new CUDA-CPHMD algo-

rithm (Figs. 5a, 5d, and 5e) and the original CPHMD algorithm

(Figs. 5b and 5d); and salt concentrations were added using

concentrations that corresponded to the experiments.[16,47]

The simulations were run using the CHARMM22 force

field[43,44] with the Langevin integrator[45] with an integration

timestep of 2 fs. These were NT (constant particle number and

temperature) simulations each in an unbounded volume at a

temperature of 298 K using a Langevin heat bath. Atomic radii

were optimized through work by Chen et al.[46] Similarly to

the single-residue simulations, pKa values were calculated by

fitting the Henderson–Hasselbalch equation of states to the

average protonation state k of each titrating residue. Again,

Figure 4. The pKa calculations for four single residues: aspartic acid, glutamic

acid, histidine, and lysine. The protonation state (dots) was calculated from

the fraction of k values in pure unprotonated and protonated states. The

point of inflection (boxes) of Henderson-Hasselbalch equation fits (lines) indi-

cates the calculated pKa values. Even without optimizing for efficiency, conver-

gence of data, or simulation parameters, we find the calculated pKa values

match those from the force field to within 0.5 pK units. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 5. The pKa calculations for all histidine (blue), glutamic acid (red), aspartic acid (green), and titrating C-terminus (orange) residues in all nine of the test

proteins. Each dot corresponds to a pKa value resulting from fitting the Henderson-Hasselbalch equation to the fraction of k values in pure unprotonated states.

We present comparisons between pKa values from A) CUDA-CPHMD and experiment; B) CPHMD and experiment; C) CPHMD with replica exchange (REX-CPHMD)

and experiment; D) CUDA-CPHMD and CPHMD; and E) CUDA-CPHMD and REX-CPHMD. Even without optimizing the simulations to accommodate various titra-

tion equilibria for each protein, the CUDA-CPHMD algorithm successfully recapitulates experimental pKa values to within 0.79 pK units of AUE. The experimental

and REX-CPHMD results are from Ref. [47] and papers cited therein. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the point of inflection of the fit corresponds to the pKa value

of that residue. We report these values in Figure 5.

The AUE for all residues using CUDA-CPHMD was 0.79 pK

units, which compares favorably to the AUE of 0.97 pK units

using the null approximation (all pKa values correspond to

their reference values). This was the same 0.79 pK units of AUE

that the original algorithm achieved, which further supports

CUDA-CPHMD’s accurately representing its CPU counterpart.

Interestingly, while the average accuracy of CUDA-CPHMD and

CPHMD were less than the 0.75 pK units of AUE achieved

using the replica exchange methods from earlier studies, the

nonreplica-exchange pKa calculations had a smaller standard

deviation of error and fewer outlying predictions.[16,47] Addi-

tional accuracy should be possible by coupling CUDA-CPHMD

with the enhanced sampling of replica exchange in tempera-

ture or pH.[16,47] This result holds great promise in establishing

dynamic titration as a common feature of protein simulations.

Conclusions

In this study, we present a significantly faster version of the

CPHMD algorithm adapted for parallel processing in the

CHARMM-OpenMM interface. While algorithmically the new

CUDA-CPHMD algorithm represents little change over its pred-

ecessor, the speed improvements are so great that previously

unreasonable simulations are now straightforward to perform.

For instance, what may have been a year-long simulation of

the HK97 head capsule can now be performed in about 160

min. With this newfound speed is an opportunity to fine-tune

the CPHMD titration model for a variety of protein systems,

and to explore the impact of pH environments on side-chain

dynamics both at the microsecond timescale and with all-

atom detail.

Similarly to GBSW, the CPHMD model carries with it over a

decade of research and parameterization.[26,47,52] One model of

particular interest is pH replica exchange (REX),[60] which has

been shown to predict pKa values of protein structures within

single nanoseconds of simulation time.[60,61] Coupled with the

improved speed of CPHMD, adapting REX will enable a useful

and rapid method for characterizing the chemical environment

of protein interiors.
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