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ABSTRACT 

The treatment of pH sensitive ionization states for titratable residues in proteins is often omitted 
from molecular dynamics (MD) simulations. While static charge models can answer many questions 
regarding protein conformational equilibrium and protein-ligand interactions, pH-sensitive 
phenomena such as acid-activated chaperones and amyloidogenic protein aggregation are 
inaccessible to such models. Constant pH molecular dynamics (CPHMD) coupled with the Generalized 
Born with a Simple sWitching function (GBSW) implicit solvent model provide an accurate framework 
for simulating pH sensitive processes in biological systems. Although this combination has 
demonstrated success in predicting pKa values of protein structures, and in exploring dynamics of 
ionizable side-chains, its speed has been an impediment to routine application. The recent 
availability of low-cost graphics processing unit (GPU) chipsets with thousands of processing cores, 
together with the implementation of the accurate GBSW implicit solvent model on those chipsets 
[E.J. Arthur and C.L. Brooks III, J. Comp. Chem. 37:927, 2016], provide an opportunity to improve the 
speed of CPHMD and ionization modeling greatly. Here we present a first implementation of GPU-
enabled CPHMD within the CHARMM-OpenMM simulation package interface. Depending on the 
system size and non-bonded force cutoff parameters, we find speed increases of between one and 
three orders of magnitude. Additionally, the algorithm scales better with system size than the CPU-
based algorithm, thus allowing for larger systems to be modeled in a cost effective manner. We 
anticipate that the improved performance of this methodology will open the door for broad-spread 
application of CPHMD in its modeling pH-mediated biological processes. 

Page 1 of 38 Journal of Computational Chemistry

This is the author manuscript accepted for publication and has undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process, which may lead to differences
between this version and the Version record. Please cite this article as doi:10.1002/jcc.24435.

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1002/jcc.24435
http://dx.doi.org/10.1002/jcc.24435


A
cc

ep
te

d 
A

rt
ic

le
 

2 
  

Introduction 

Proteins typically maintain their native 
structure and optimal functionality under a 
narrow range of pH.1-3 Consequently, many 
biological systems tightly control local solvent 
pH to tune the effectiveness of enzymes, or to 
promote a useful protein conformation.1,4,5 
Mitochondrial ATP synthase utilizes a trans-
membrane proton gradient to power its rotary 
catalysis mechanism,6-8 and the departure from 
a normal pH range is known to be a driving 
force in forming the amyloid fibrils associated 
with Alzheimer’s disease.9,10 Additional 
examples of pH driven processes include the 
proton-activated gate mechanism of the KcsA 
potassium channel,11 and the catalytic pathway 
of dihydrofolate reductase.12 Finally, a notable 
survey by Aguilar et al. showed that about 60% 
of the protein-ligand complexes indicated that 
at least one titratable residue of the protein 
assumed a different protonation state between 
bound and unbound states.13 Although 
important to many biological processes, pH-
dependence in bio-macromolecule simulations 
remains a nonstandard tool that awaits both 
wider acceptance, and finer tuning of its 
models. 

Typical molecular dynamics (MD) simulations fix 
all amino acid protonation states to those of 
isolated residues in a neutral pH environment. 
While this pH-insensitive approach is sufficient 
to fold some proteins and observe their 
conformational equilibria,14 it arguably fails to 
capture phenomena dependent on local 
ionization effects of side-chains or 
perturbations to a residue’s pKa.

15,16 This failure 
is particularly problematic for histidine residues, 
in that they have two hydrogen atoms that 
titrate with near-neutral pH. This ionizability 
indicates that in biologically-relevant pH 
environments histidine’s protonation state and 
tautomeric configuration are often unclear.17  

In recent decades a series of models of varying 
complexity and accuracy promise to bring 
accurate pH responsiveness to MD simulations. 

Protonation-state modeling of amino acids in 
MD simulations is based on setting up a pH-
sensitive extended Hamiltonian that modifies 
the force field parameters and structure of a 
given molecule. This began by discretely 
titrating protons, and progressing a simulation 
using instantaneous switches between 
protonated and unprotonated states. Mertz and 
Pettitt used an open system Hamiltonian to 
model the titration of acetic acid,18 and Sham et 
al. applied a linear response approximation 
through the protein-dipoles Langevin-dipoles 
model to calculate lysozyme residue pKa 
values.19 Additional work has been done where 
Monte Carlo (MC) sampling guides the 
protonation state of an otherwise classical MD 
simulation. Baptista et al. used explicitly 
represented solvent molecules with an implicit 
solvent Poisson-Boltzmann (PB) function to 
determine protonation states.20,21 Meanwhile, 
Mongan et al. utilized generalized Born (GB) 
implicit solvation to add a solvation free energy 
component to the protonation function.22 While 
all these discrete models can predict pKa values 
for individual amino acids to within one pK unit, 
they are computationally expensive. Whether 
the expense stems from the need to relax 
numerical instabilities caused by instantaneous 
protonation / deprotonation events, or from 
the MC algorithms’ ability to titrate only one 
hydrogen at a time, such methods may require 
an unreasonable amount of time to study large 
systems with many titratable groups.  

One possible solution to these issues with 
discrete titration methods is to use continuous 
titration of H+ atoms. Brooks and co-workers 
developed one such method called constant pH 
molecular dynamics (CPHMD), which uses λ -
dynamics coupled to transitions between 
protonation states.23,24 This method uses the 
Generalized Born implicit solvent model with a 
Simple sWitching function (GBSW) model,25 or 
the related Generalized Born with Molecular 
Volume (GBMV) model,24 to efficiently couple 
the protonation state to the solvation free 
energy of the molecule. Khandogin and Brooks 
then introduced proton tautomerism 
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capabilities to this method, which allows multi-
site titrating residues, such as histidines, to be 
modeled more accurately.26 Since the method is 
continuous, there are no instantaneous 
protonation/deprotonation events, and 
multiple residues can titrate simultaneously. 
Additionally, such continuous titration methods 
allow for the efficient coupling of protonation 
states among neighboring residues. The result is 
a pH simulation method that can calculate pKa 
values of protein structures to within 0.75 pK 
units,16 and can resolve the dominant folding 
pathway of the pH-sensitive HdeA 
homodimer.15 

CPHMD’s efficiency, however, is bound by the 
rate-limited component of the calculation: the 
GBSW solvent model. As such, when running on 
a single-core central processing unit (CPU), 
CPHMD achieves on the order of 1 nanosecond 
(ns) of simulation time per day when simulating 
a solute system of about 1,000 atoms. Since 
typical uses of CPHMD, such as predicting pKa 
shifts of protein residues, may require many 
nanoseconds of simulation time,16 even smaller 
proteins, such as lysozymes, may require about 
a week to converge on useful results. Larger 
systems, such as asymmetric viral capsid 
subunits with tens of thousands of atoms, may 
require unreasonably long simulation times if 
captured in full atomic detail.27,28 Fortunately, 
the GBSW solvent model has recently been 
refactored to function on new, parallel graphics 
processing unit (GPU) hardware, and is now 
between 1 and 2 orders of magnitude faster 
than its CPU counterpart.16,29 By incorporating 
the CPHMD model into the GPU-GBSW 
algorithm, there holds the promise of speeding 
up pH simulations substantially. 

This study represents an increment in the 
ongoing adaptation of efficient and useful 
algorithms onto parallel-processing GPUs. Such 
chipsets can contain thousands of processing 
cores, and are able to process C-like languages 

such as Open Computing Language (OpenCL) 
and Compute Unified Device Architecture 
(CUDA). This combination of features has 
opened up a new frontier of parallel processing 
where expensive computer clusters can be 
replaced with single, affordable graphics cards. 
Simulation packages such as CHARMM,30 
AMBER,31 OpenMM,32 GROMACS,33 and 
NAMD34 all offer GPU-accelerated options for 
many types of studies, and most of those 
options receive speed increases of greater than 
an order of magnitude over their CPU 
counterparts.  

Due to OpenMM’s effectiveness in harnessing 
the capabilities of GPUs with a wide variety of 
hardware, a CHARMM-OpenMM interface was 
developed to combine the strengths of both 
simulation packages.30,32 CHARMM’s robust 
algorithms can be used to design and 
parameterize a simulation, and OpenMM’s 
efficient GPU-based algorithms can be used to 
propagate dynamics.30,32 Now with the recent 
incorporation of the GBSW solvent model into 
the CHARMM-OpenMM interface, many of 
CHARMM’s algorithms parameterized for use 
with GBSW, such as CPHMD, can be adapted for 
parallel processing on GPUs as well. In this 
study we take advantage of the recent 
incorporation of GBSW onto GPUs, and discuss 
the adaptation of CPHMD onto this new parallel 
architecture. First we explain the underlying 

theory behind λ -dynamics: how a λ  
coordinate is used to represent the titration 
state of a residue, and how that coordinate is 
propagated. Then we delve into how it was 
originally implemented for CHARMM, and 
examine fitting CPHMD into the GBSW 
algorithm. Here we discuss the algorithmic 
improvements, and show how many force 

contributions on λ  are calculated alongside the 
free energy of solvation. Finally we present 
benchmarks achieved by the new algorithm, 
and comment on future directions for pH 
simulations. 
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Figure 1. Shown are Cartoons of the protonated and 
unprotonated states of A) histidine and B) lysine. Also 
noted are the reference pKa values of each transition when 
occurring in an isolated residue, as well as the λ values at 
each state. 

Methods 

The λ coordinates and their underlying energy 

function for single-site titration 

For clarity in following discussions, we present 
the underlying theory of CPHMD. We start by 
setting up the framework for a single residue 
with one titrating hydrogen. The rudimentary 
picture of titration events is an equilibrium 
association/disassociation reaction of a model 

compound A
(aq)

 in aqueous solution from a 

titrating proton. 

AH
(aq)

↔ A
(aq)

− +H
(aq)

+  (1) 

Here, the protonation free energy is defined by  

∆G
exp

model( ) = −k
B
T ln 10 pK

a

exp − pH( )  (2) 

where kB  is Boltzmann’s constant, and T  is 

the temperature. We can approximate the 
above equations through classical simulations 
by interpreting the protonation interaction as a 
change in free energies: 

  

∆G
exp

protein( )− ∆G
exp

model( )
= ∆G

classical (protein)− ∆G
classical

model( )
 (3) 

This relationship then leads to an estimate of 
experimental free energy of protonation for a 
single titrating site: 

  

∆G
exp

protein( )= ∆G
classical (protein)

       − ∆G
classical

model( )+ ∆G
exp

model( )  
(4) 

From this perspective, we infer that titratable 
groups have an intrinsic free energy of 
protonation that is perturbed by the protein 
environment mainly through non-bonded 
interactions. We model this perturbation by 
extending the system’s Hamiltonian with a non-
geometric dimension of λ . As mentioned in the 
introduction, the CPHMD model uses a series of 

λ  coordinates where each λ  value tracks the 
progress of protonation-deprotonation events 
at a single titration site. For a particular residue 
i , these coordinates are generated from 

λ
i
= sin2 θ

i( )   (5) 

where i  is the residue being titrated. In this 
form the θ  variable is bound to all real 
numbers, and λ  is bound to the continuous 
range 0 ≤ λi ≤1 . The sine-squared function 

then favors λ  values near the boundary 
protonated (1) and unprotonated (0) states. 
Because λ  is only physically relevant as it nears 
these boundary states, we impose cutoffs on 

interpreting λ . In CPHMD an unprotonated 
state is λi ≤ 0.1, a protonated state is λi ≥ 0.9
, and a mixed state is 0.1< λi < 0.9 . Figure 1 

illustrates the protonation states and their 
corresponding λ  values. Potentials and their 
derivative forces on λ  are then interpreted as 
potentials and forces on θ .  

The potential energy that governs protonation 
states contains fiveλ -dependent components. 
We start with the pH dependence of the 
deprotonation free energy as follows from 

∆Gexp
in Equation 4. This potential connects λ  

to the pKa of a residue in its isolated, reference 
state: 
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U
pH λ

i( ) = λi
pK

a
(i)− pH( ) k

B
T ln 10( )  (6) 

Here, pKa (i)  is the pKa of titrating group i . 

Next we have the potential of mean force (PMF) 

along the λ  coordinate from ∆Gmodel
. This 

term corresponds to the negative of free energy 
needed to deprotonate a model residue: 

U
model λ

i( ) = A
i
λ

i
−B

i( )2

 (7) 

Equation 7 is a quadratic fit to the 
thermodynamic work potential of 
deprotonating a model compound, and it splits 
the protonation state into two low-energy wells 
that represent the protonated and 
unprotonated states. Then a barrier potential is 
added that disfavors mixed states of λ : 

U
barrier λ

i( ) = 4β
i
λ

i
−1 / 2( )2

 
(8) 

The barrier scaling parameter βi  is an empirical 

coefficient designed to tune the propensity for 

a λ  value to remain in either protonated or 
unprotonated states, while facilitating 
transitions between them. In the current 
iteration of CPHMD, βi  assumes a value of 

either 2.5 or 1.75 kcal/mol, depending on the 
residue. Finally, we arrive at the two charge-
dependent potentials: the Coulombic and 
generalized Born. The classical Coulombic 
potential is  

  

U
elec λ

i( )= K
elec

q
a , i

λ
i( ) q

b

r
abb

∑
a, i

∑   (9) 

Here K
elec

 is Coulomb’s constant, qa and qb  

are the partial charges of atoms a  and b  
respectively, and is the distance between 

those atoms. Note that this potential for 
residue i  includes the interactions between all 
atoms a  in residue i  to all other atoms in the 

system. Meanwhile, qa λi( )  is a λ -dependent 

charge of atom a , which follows the form 

q
a , i

λ
i( ) = λi

q
a , i

unprot + 1−λ
i( )qa , i

prot   (10) 

where charges on titrating atom a  can be in 

protonated (qa, i
prot  ) and unprotonated (qa, i

unprot  )  

states. We note that in an effective charge 
model of pH, titrating residues are allowed to 
interact. As such, any atom b  from a titrating 
residue j  interacting with residue i  has its own 

qb, j
prot  and qb, j

unprot . Thus the partial charge qb
follows one of two possibilities: 

  

q
b
=

q
b
                         non− titrating

λ
j
q

b , j

unprot + 1−λ
j( )qa , j

prot
 titrating





  

(11) 

That is if atom b  lies in a non-titrating residue, 
that atom’s partial charge is simply the standard 
partial charge from that residue’s force field. If 
atom b  lies in a titrating residue j  and its 

charge is affected by the protonation state of j

, then its partial charge is derived from the 
same λ -dependent relationship from Equation 
10. Since atoms near a titrating site can have 
their partial charges affected by titration states, 
many more than the titrating hydrogen atoms 

can possess a λ -dependent charge state. We 
also note that at times j = i  if we observe the 

Coulombic interaction between two atoms on 
the same titrating residue. The final λ -
dependent potential is that from the GB solvent 
model as expressed in the Still equation:35 

U
GB λ

i( ) = τ
q

a , i
λ

i( ) q
b

f
ab

GB
b

∑
a , i

∑   (12) 

where 

f
ab

GB = r
ab

2 +R
a

Born
R

b

Born exp −r
ab

2 / 4R
a

Born
R

b

Born( )( )





1/2

  

 
(13) 

Here, qa λi( )  and qb follow the same form as in 

Eqn 10 and 11 respectively; rab  is the distance 

between atoms a  and b ; τ  is the factor that 

rab
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scales the Born energy by the difference in 
dielectric values at the dielectric boundary and 
by any contributing salt effects;36 and the values 

Ra
Born  and Rb

Born  represent the Born radii of 

atoms a  and b  respectively. The Born radii are 
the effective distance between an atom and the 
solute-solvent dielectric boundary, and they are 
calculated through volumetric integration 
following the GBSW implicit solvent model.25  

If we pull together the complete potential for a 
titrating residue i  from Eqns 6 through 13, then 
we arrive at the form 

U
i

total λ
i( ) =U

i

pH λ
i( ) + U

i

model λ
i( ) + U

i

barrier λ
i( )

+ U
i

elec λ
i( ) + U

i

GB λ
i( )+ U

i

VDW + U
i

internal
  

 (14) 

The so-called “internal energy” term (U
internal

) 
corresponds to the bond, angle, and torsional 
energy terms of a classical energy force field. In 
this model, the titration state is dynamically 
independent of this potential. Although several 

models of CPHMD include a λ -dependent van 

der Waals term (U
VDW

),26,37,38 during this study 
it was found that at most it contributes a 
minimal amount to a given residue’s force on λ
, while it nearly doubles the calculation time of 
CPHMD. This term is negligible compared to the 

force on λ  from other effects, and omitting it 
from the calculation showed no effect on the 
accuracy of CPHMD. Thus, in the interest of 
speeding up the original algorithm, the λ-

dependent potential U
VDW

 was ignored in this 
implementation of CPHMD.  

Although we now have the proper setup for 
addressing residues with a single titration site, 
such as in lysine, we need to address how 
CPHMD handles tautomerization in residues 
such as in aspartic acid and histidine. 

Proton tautomerism 

Similarly to how one λ  variable is used to track 
the progress of titration states of a residue, 

Khandogin and Brooks incorporated tautomeric 
behavior into CPHMD by providing residues 
with a second λ  variable, called x , to track the 
progress of tautomeric states.26 This 
arrangement is illustrated in Figure 1a with 

histidine. Just as in λ  dynamics for titration 
states, transitions between tautomeric states 
are linearly interpolated using the x  variable. 
What results are potentials that become 
bivariate in λ  and x , and each tautomeric 
residue has four charge states: tautomer A in 
protonated and unprotonated states, and 
tautomer B in protonated and unprotonated 
states. What we shall see later is that residues 
can have equivalent states in this setup. 
Histidine’s protonated state, for example, is a 
residue saturated with protons. As such 
tautomers A and B of the protonated state are 
equivalent. We now review the influence of 

including two λ  parameters for a tautomeric 
titrating residue. 

The pH dependent potential becomes  

U
pH λ

i
,x

i( ) = λi
[x

i
pK

a

A(i)− pH( )
+ 1− x

i( ) pK
a

B(i)− pH( )] k
B
T ln 10( )   

 (15) 

where the pKa values of tautomers A and B are 

pKa
A  and pKa

B  respectively. While these pKa 

values for aspartic acid and glutamic acid are 
equivalent and only serve as a sampling 
expedient,26 in residues with asymmetric 
titrating sites such as histidine they are not. The 
PMF for protonation becomes a bivariate 
polynomial from Equation 7, which then 
expands into the general form 

U
model λ

i
,x

i( ) = a
0
λ

i

2
x

i

2 + a
1
λ

i

2
x

i
+ a

2
λ

i
x

i

2 + a
3
λ

i
x

i

+ a
4
λ

i

2 + a
5
x

i

2 + a
6
λ

i
+ a

7
x

i
+ a

8

 

(16) 

The barrier potential is simply a summation of 
terms that disfavor the mixed states of both λ  
and x , and follows the form 
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U
barrier λ

i
,x

i
( ) = 4β

i

λ λ
i
−1/2( )2

+4β
i

x
x
i
−1/2( )2

  

 
(17) 

Note that there are two barrier scaling 

parameters βi
λ  and βi

x  for λ  and x . Although 

different biases for tautomeric and protonation 
transitions are possible in this equation, in the 
discussed CPHMD model they are identical for 
all titrating residues. 

The charge-dependent potentials in Eqns 9 and 
12 are only modified in that charges for atoms 
can now be dependent on the new x  
coordinate. The Coulombic and generalized 
Born potentials then follow the forms 

U
elec λ

i
,x

i( ) = K
elec

q
a , i

λ
i
,x

i( ) q
b

r
abb

∑
a , i

∑   (18) 

and 

U
GB λ

i
,x

i( ) = τ
q

a , i
λ

i
,x

i( ) q
b

f
ab

GB
b

∑
a , i

∑   (19) 

respectively. The bivariate charge qa, i λi , xi( )  

then follows the form  

q
a , i

λ
i
,x

i( ) = λ
i

x
i
q

a , i

A, unprot + 1− x
i( )qa , i

B , unprot





+ 1−λ
i( ) x

i
q

a , i

A, prot + 1− x
i( )qa , i

B , prot





(20) 

Where charges on titrating atom a  are derived 
from the protonated and unprotonated variants 

of both A and B tautomers, qa, i
A, prot , qa, i

A, unprot , 

qa, i
B, prot , and qa, i

B, unprot . Similarly, the charge on 

atom b  emerges as 

  

q
b
=

q
b

non− titrating

λ
j

x
j
q

b , j

A, unprot + 1− x
j( )qb , j

B, unprot



    titrating

+ 1−λ
j( ) x

j
q

b , j

A, prot + 1− x
j( )qb, j

B, prot

















 

(21) 

We now arrive at a general-purpose setup for 
evaluating the underlying potential for 
continuous transitions among various charge 
states of a particular residue. Deriving the 
forces with respect to λ  and x , while 
important, serves little purpose for illuminating 
the topics explored in the remainder of this 
study. With the framework above, we now can 
discuss the construction of the original 
algorithm, and the changes made to refactor it 
for efficient parallel processing on GPUs. 

Refactoring CPHMD 

The original CPHMD model was built with 
mathematical precision and function portability 
in mind. It is a stand-alone module that can be 
applied to both implicit and explicit solvent 
systems, and except for atom coordinate and 
Born radii updates, it receives no input from 
other functions during a simulation. During the 
course of a timestep, each titrating coordinate 

λi is scanned to identify the residue type (such 

as whether the residue has one or two titrating 
hydrogens), and then an appropriate functional 
is applied to calculate its pH (Eqn 6 and 15), 
model (Eqn 7 and 16), and barrier (Eqn 8 and 
17) potentials. Next, neighboring atom-atom 
interactions are scanned for whether one or 
both atoms reside in titrating groups. If a 
titrating atom-atom pair is found, then 
contributions to the electrostatic (Eqn 9 and 18) 
and GB (Eqn 12 and 19) potentials are 
integrated. Neighboring atom-atom pairs are 
then scanned again to calculate the VDW 
potential (ignored in this new iteration of 

CPHMD). Finally, the force on θ  is calculated, 
and λ  via θ is advanced a timestep using 
Langevin dynamics.39 In this setup there are 
several opportunities presented to us for 
improving the algorithm both in the efficiency 
of its execution in parallel, and by weaving 
portions of the calculation into existent 
functions elsewhere in the simulation.  

We first note that the majority of clock cycles 

used for calculating λ  dynamics are spent on 
neighboring atom-atom interactions when 
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accumulating the electrostatic and GB 
potentials. While the calculations required for 
each atom pair are computationally cheap, the 
large number of interatomic interactions in a 
protein containing thousands of atoms can 
make this multitude of cheap calculations 
altogether expensive. As show in Figure 2a, 
about 12% of a 2000-atom simulation is spent 
only on this calculation. 

Both CPHMD and the GBSW solvent model 
require calculating the Still equation (Eqn 12 
and 13) to address part of the neighboring atom 
potential, so a significant speed improvement 
can be made by placing all of CPHMD’s atom-
atom processes inside the neighboring atom 
process of the GBSW solvent model. This way, 
as GBSW produces the solute molecule’s 
electrostatic solvation free energy and its 
derivative force on atoms, CPHMD processes 

neighboring atom potentials on λ  
simultaneously. Thus the large number of 
redundant atom-atom distance calculations can 
be reduced significantly during a simulation. 
This setup gains additional speedup through 
GBSW by using OpenMM’s efficient parallel 
possessing of neighboring-atom interactions. As 
shown in Figure 2, by combining the CPHMD 
and GBSW algorithms we see that pH modeling 
with CPHMD accounts for a much smaller 
fraction of the overall simulation time.  

 

Figure 2. The approximate distributions of CPU time spent 
on running simulation components of ∆+PHS 
staphylococcal nuclease molecule. This protein contains 
2132 atoms and 37 titrating residues. A) run using the 
original algorithm on a single processing core in CHARMM. 
B) run using the newly refactored CUDA-CPHMD 
algorithm. 

Due to the nature of parallel processing, 
bottlenecks are often created from the longest 

portions of non-parallel code. While a single-
core process can be sped up dramatically by 
creating a case-by-case set of calculations, 
navigating through the additional overhead to 
make the situation-specific decision can slow 
parallel processes down. Regarding the 
equations described earlier, a titrating residue 
with one tautomer requires fewer calculations 
than a titrating residue with two. As we place 
each residue’s force calculations in parallel 
processes, however, the speed of the code is 
improved by regarding all titrating residues as 
possessing two tautomeric states. In this new 
implementation of CPHMD, single-titration 
residues, such as lysine, are given extraneous x  
coordinates. Lysine then uses the barrier 
potential from Eqn 16, where the x -coupled 
coefficients a0, a1, a2, a3, and a5 are set to a 
value of 0.0. Without the overhead for residue 
identification, the longest calculation required, 

that is calculating the force on θ for a residue 
with two tautomeric states, is shortened. What 
results is a speed improvement when 
calculating all components of the total potential 

on λ  coordinates. As shown in Figure 2b, using 
the parallel CUDA-CPHMD algorithm for a small 
system impacts the processing time by 
approximately 6%, as opposed to 15% for the 
original algorithm. 

Benchmarking CUDA-CPHMD 

We finally reach an efficient setup where using 
the CPHMD model results in little slowdown of 
the overall simulation time. We chose several 
systems to benchmark the new algorithm, and 
explore the speed benefits it offers. We chose 
the naja atra snake cardiotoxin (PDB: 1CVO),40 
the ∆+PHS hyperstable variant of staphylococcal 
nuclease (PDB: 3BDC),41 and the asymmetric 
subunit of the bacteriophage HK97 head capsid 
(PDB: 2FT1).42 This trio provided a range of 
system sizes and residue configurations. To add 
additional statistics, the 7 proteins of the HK97 
capsid were assembled into 6 additional 
subsystems, all of which appear in Figure 3 to 
show for a range of system sizes the speed 
dependence on system size. All simulations 
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were using the CHARMM22 force field43,44 using 
the Langevin integrator45 with a timestep of 2 
femtoseconds. These were NT (constant particle 
number and temperature) simulations at 298K 
in unbounded volumes using the CUDA-GBSW 
solvent model, and CUDA-CPHMD to model 

titration states and advance λ  coordinates. 
Atomic radii for the GBSW solvent model were 
provided through work by Chen et al.46 The 
hardware specifications of the computer used 
appear in Table SI1 of the Supporting 
Information. We found speed improvements of 
between 1 and 3 orders of magnitude in the 
CUDA-CPHMD algorithm over its CPU 
counterpart. 

As we combine the improved efficiency and 
parallel execution of both GBSW and CPHMD 
(shown in Figure 3a to 3d), substantial speed 
gains are found in this new version of pH 
modeling over its predecessor. For smaller 

1,000-atom systems, we see a speed 
improvement of over 20-fold when comparing a 
12-threaded CPHMD simulation to the new 
CUDA-CPHMD, and an improvement of over 
150-fold when compared to the single-core 
algorithm (shown in Figure 3a). For larger 
29,000 atom systems, we see a speed 
improvement of over 1,000-fold (shown in 
Figure 3c). Since the neighboring-atom 
component does not scale linearly with system 
size, larger systems experience a greater 
calculation time penalty than smaller ones. 
Fortunately, simple changes, such as using non-
bonded cutoffs, can mitigate such problems. 
For instance, a non-bonded cutoff of 14 Å sped 
up the large viral capsid simulation to 6.7 
ns/day (a 270% speed increase versus the no 
cutoff case). 

 

 

Figure 3. The benchmarks for the new CUDA-CPHMD algorithm. The individual systems tested were A) the naja atra snake 
cardiotoxin (PDB: 1CVO); B) the ∆+PHS hyperstable variant of staphylococcal nuclease (PDB: 3BDC); and C) the asymmetric 
subunit of the bacteriophage HK97 head capsule (PDB: 2FT1). As shown, the new algorithm is substantially faster than the 
original CPU algorithm by up to 3 orders of magnitude. In D) the same benchmarks from earlier are shown (squares) alongside 
subsystems from the 7 proteins of the bacteriophage subunit (circles). Notice that the CUDA algorithm scales more linearly with 
system size than its CPU-based counterpart. E) compares the force on λ  as calculated on all 595 λ  coordinates from both 

CPHMD algorithms. There is less than a 0.00017 (kcal/mol) AUE (average unsigned error) between the two algorithms. 
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Accuracy of the new CUDA-CPHMD algorithm  

Single-residue Systems 

Speed gains in implementing CPHMD are an 
important goal both for increasing the 
algorithm’s applicability to a wider range of 
system sizes, and for its ability to converge on 
useful results more rapidly. Its accuracy, 
however, must not be compromised as we 
reconfigure the execution of the algorithm. In 
Figure 3e we show that there is little difference 
between the original CPHMD and CUDA-CPHMD 

algorithms when calculating the force on λ . 
We maintain an average unsigned error (AUE) 
of less than 0.00017 kcal / mol in this force. We 
also note that 99.9% of the AUE between the 
two CPHMD methods is from the slight 
differences in Born radii calculated from the 
original and CUDA implementations of GBSW. 
Thus, we conclude that CUDA-CPHMD 
accurately reproduces the original algorithm’s 

force on λ . 

While CUDA-CPHMD may be able to produce 
the force on λ  coordinates, we ran additional 
tests to see whether or not residue protonation 
states are also reproduced. Due to each 
residue’s pH-dependent biasing potential, a 
single residue alone in solution presumably 
should find an optimal protonation state 
depending on the environmental pH. At pH 
environments below a residue’s pKa the residue 

should favor a protonated state λi ≤ 0.1( ), and 

conversely a residue exposed to a pH above its 
pKa should favor an unprotonated state 

λi ≥ 0.9( ) . By calculating the fraction of 

protonated to unprotonated states of residues 
at various pH values and fitting the results to 
the Henderson-Hasselbalch equation of states, 
we expect the point of inflection to reproduce 
the pKa of that residue.  

We ran simulations of aspartic acid, glutamic 
acid, histidine, and lysine to calculate their 
protonation states, as shown in Figure 4. These 
residues were simulated using the same setup 
from the benchmarking section as NT 
simulations in an unbound volume, and CUDA-
CPHMD was used both to model titration states 

and advance λ  coordinates. The backbone 
atom ends were capped with the ACE and CT2 
patches in CHARMM. Each dot in Figure 4 
represents the average residue titration state 
from 200 ps of simulation time, and the 
residues ran at an average speed of 690 ns/day.  

We find that without optimizing the simulations 
for speed, accuracy, or convergence of 
protonation states, that the pKa values could be 
captured to within 0.5 pK units. Interestingly, all 
states reported a small, systematic 
overestimation of the pKa, and the exact source 
of this discrepancy remains unclear. The CUDA-
GBSW solvent model overestimates solvation 
energy by an average of approximately 0.16 
kcal/mol. However, this overestimation of 
energy should bias deprotonation events to 
occur slightly more often, and thus lower the 
calculated pKa. What is clear from these data, 
though, is that like its predecessor, the CUDA-
CPHMD algorithm models the pH dependence 
of titration well for single residue systems. Next 
we explore multi-residue titration and the 
influence of protein conformation on pKa 
values. 

 

Figure 4. The pKa calculations for 4 single residues: aspartic 
acid, glutamic acid, histidine, and lysine. The protonation 
state (dots) was calculated from the fraction of λ  values 

in pure unprotonated and protonated states. The point of 
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inflection (boxes) of Henderson Hasselbalch equation fits 
(lines) indicates the calculated pKa values. Even without 
optimizing for efficiency, convergence of data, or 
simulation parameters, we find the calculated pKa values 
match those from the force field to within 0.5 pK units. 

Multiple-residue Systems 

The end purpose for CPHMD is to enable the 
study of complex pH-coupled phenomena of 
biological systems, such as pH-dependent 
protein conformation and cooperative titration 
effects among neighboring residues. As such, 
we test the accuracy of the CUDA-CPHMD 
algorithm by its ability to recapitulate residue 
pKa values from both experiments and previous 
replica exchange studies, as shown in Figure 5. 
We study 9 model protein systems here: 
barnase2,47,48 (PDB code 1A2P); the serine 
protease inhibitor CI-2 from barley seeds47,49 
(PDB code 2CI2); the hyperstable variant of 
staphylococcal nuclease, ∆+PHS3,16 (PDB code 
3BDC); hen egg white lysozyme47,50,51 (PDB code 
1LSA); the N-terminal domain of ribosomal 
protein L947,52 (PDB code 1CQU); turkey 
ovomucoid47,53,54 (PDB code 1OMU); 
ribonuclease A47,55 (PDB code 7RSA); 
ribonuclease H from Escherichia coli

47,56,57 (PDB 
code 2RN2); and Bacillus circulans 

xylanase47,58,59 (PDB code 1BCX). Each protein 
was simulated in 11 pH windows from the pH -1 
to the pH 9. Within each window, the proteins 
were simulated for 80 ps in 10 independent 
trajectories, which resulted in a total of 4.4 ns 
of simulation time per structure. All titrating 
residues were allowed to change protonation 
state using the new CUDA-CPHMD algorithm 
(Figure 5a, 5d, and 5e) and the original CPHMD 
algorithm (Figure 5b and 5d); and salt 
concentrations were added using 
concentrations that corresponded to the 
experiments.16,47 The simulations were run 
using the CHARMM22 force field 43,44 with the 
Langevin integrator45 with an integration 
timestep of 2 fs. These were NT (constant 
particle number and temperature) simulations 
each in an unbounded volume at a temperature 
of 298K using a Langevin heat bath. Atomic radii 
were optimized through work by Chen et al.46 
Similarly to the single-residue simulations, pKa 
values were calculated by fitting the 
Henderson-Hasselbalch equation of states to 
the average protonation state λ  of each 
titrating residue. Again, the point of inflection 
of the fit corresponds to the pKa value of that 
residue. We report these values in Figure 5. 

 

 

Figure 5. The pKa calculations for all histidine (blue), glutamic acid (red), aspartic acid (green), and titrating C-terminus (orange) 
residues in all 9 of the test proteins. Each dot corresponds to a pKa value resulting from fitting the Henderson Hasselbalch 
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equation to the fraction of λ  values in pure unprotonated states. We present comparisons between pKa values from A) CUDA-

CPHMD and experiment; B) CPHMD and experiment; C) CPHMD with replica exchange (REX-CPHMD) and experiment; D) CUDA-
CPHMD and CPHMD; and E) CUDA-CPHMD and REX-CPHMD. Even without optimizing the simulations to accommodate various 
titration equilibria for each protein, the CUDA-CPHMD algorithm successfully recapitulates experimental pKa values to within 
0.79 pK units of AUE.  The experimental and REX-CPHMD results are from reference47 and papers cited therein. 

The AUE for all residues using CUDA-CPHMD 
was 0.79 pK units, which compares favorably to 
the AUE of 0.97 pK units using the null 
approximation (all pKa values correspond to 
their reference values). This was the same 0.79 
pK units of AUE that the original algorithm 
achieved, which further supports CUDA-
CPHMD’s accurately representing its CPU 
counterpart. Interestingly, while the average 
accuracy of CUDA-CPHMD and CPHMD were 
less than the 0.75 pK units of AUE achieved 
using the replica exchange methods from 
earlier studies, the non-replica-exchange pKa 
calculations had a smaller standard deviation of 
error and fewer outlying predictions.16,47 
Additional accuracy should be possible by 
coupling CUDA-CPHMD with the enhanced 
sampling of replica exchange in temperature or 
pH.16,47 This result holds great promise in 
establishing dynamic titration as a common 
feature of protein simulations.  

Conclusions 

In this study we present a significantly faster 
version of the CPHMD algorithm adapted for 
parallel processing in the CHARMM-OpenMM 
interface. While algorithmically the new CUDA-
CPHMD algorithm represents little change over 
its predecessor, the speed improvements are so 
great that previously-unreasonable simulations 
are now straightforward to perform. For 
instance, what may have been a year-long 
simulation of the HK97 head capsule can now 
be performed in about 160 minutes. With this 
newfound speed is an opportunity to fine-tune 
the CPHMD titration model for a variety of 
protein systems, and to explore the impact of 
pH environments on side-chain dynamics both 
at the microsecond timescale and with all-atom 
detail.   

Similarly to GBSW, the CPHMD model carries 
with it over a decade of research and 
parameterization.26,47,52 One model of particular 
interest is pH replica exchange (REX),60 which 
has been shown to predict pKa values of protein 
structures within single nanoseconds of 
simulation time.60,61 Coupled with the improved 
speed of CPHMD, adapting REX will enable a 
useful and rapid method for characterizing the 
chemical environment of protein interiors. 
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Efficient	Implementation	of	Constant	pH	Molecular	Dynamics	on	Modern	
Graphics	Processors	
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Content	
	
Table	 SI-1.	 Computer	 specifications	 used	 to	 benchmark	 the	 new	 GPU-enabled	 CPHMD	
algorithm.	
	

part	 description	 notes	

main	processor	 2	x	Intel	Xeon	E5-2620	 2.0GHz,	6	cores	each,	12	cores	
total	

GPU	 GeForce	GTX	780	Ti	 875	MHz,	2880	cores,	3.1	GB	
memory	

motherboard	 ATX	Server	Motherboard	Dual	LGA	
2011	

DDR3	1600	MHz	

power	supply	 CORSAIR	AX1200i	 1200W	

RAM	 8	x	4GB	Ripjaws	Z	Series	DDR3	 240-Pin,	1600	MHz,	32GB	total	

hard	drive	 Crucial	M500	480GB	SATA	 	480GB	of	storage	

heatsink	 2	x	Supermicro	SNK-P0050AP4	 	
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utilizing GPU-based GBSW implicit solvent enables fast constant pH simulations of proteins. 
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Response	to	Reviewers	
	
1. Figure 1: Shown are cartoons -> Cartoons 
Modification	was	made.	
2. In Figure 1, are these pKa values correct for Histidine? Should HSD to HSE be pKa = 7? 
Thank	you	for	pointing	out	this	oversight.	We	corrected	the	figure.	
3. Page 4: from Equation 4 -> in Equation 4. 
Modification	was	made.	
4. Page 6: the potential UVDW was ignored in this implementation of CPHMD. -> the λ –

dependent potential UVDW was ignored in this implementation of CPHMD 
Modification	was	made.	
5. Page 7: “a complete force derivation is given in the Supporting Information Eqns SI1-SI7.” 

There is only Table SI-1 in the SI file. 
This	was	an	oversight,	since	the	derivatives	were	so	simply	we	decided	not	to	include	them.	
This	text	was	removed	from	the	manuscript.	
6. Figure 2: Shown are the -> The 
Modification	was	made.	
7. Page 9: These were NT simulations at 298K -> These were NT (constant particle number 

and temperature) simulations at 298K 
Modification	was	made.	
8. Page 9: component doesn’t scale -> component does not scale 
Modification	was	made.	
9. page 9: “to 6.7 ns/day (a 270% speed increase).” Compared to what cutoff value? 

Manuscript	text	was	modified	here	to	make	clear	this	is	compared	to	the	no	cutoff	case.	
10. Figure 3: Shown are the -> The 
Modification	was	made.	
11. In Figure 3: AUE -> AUE (average unsigned error)  
Added	text.	
12. Page 10: “Interestingly, all states reported a small, systematic overestimation of the pKa “ 

Do you see the same result in corresponding CPU calculations? 
I	believe	the	text	clearly	states	this	is	an	artifact	of	the	GPU	implementation,	most	likely	
arising	from	small	differences	in	GBSW.	
13. Figure 4: Above are the -> The 

Modification	was	made.	
14. Figure 5: Above are the -> The 
Modification	was	made.	
15. In Figure 5, and CPHMD with replica exchange -> and REX-CPHMD 
Modification	was	made.	
16. Page 12: “to the 0.97 pK units of AUE found using the null approximation.” What is the null 

approximation in this context? 
Manuscript	was	changed	to	clarify	that	the	null	model	was	no	pKa	shift	from	the	reference	
values.	
17. Page 12: “What is clear, though, is additional accuracy should be possible by coupling 
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CUDA-CPHMD with the enhanced sampling of replica exchange in temperature or pH.” If 
REX-CPHMD produces more scattered larger standard deviation of errors, why this 
sentence is correct? 
We	believe	this	is	a	result	of	the	different	sampling	protocols	and	the	lesser	amount	of	
sampling	from	the	earlier	studies.	It	is	not	our	anticipation	that	REX-CPHMD	will	
produce	more	scatter.	Hence	we	left	this	sentence	as	is.	

18. Page 12: “Most importantly, though, is that like its predecessor, CUDA-CPHMD locates 
most residues with highly-perturbed pKa values.” Check the sentence. And, "though" is also 
in the previous sentence. 

This	sentence	and	the	one	that	preceded	 it	were	confusing.	We	have	rewritten	these	two	
sentences	and	removed	the	last.	
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ABSTRACT	

The	 treatment	 of	 pH	 sensitive	 ionization	 states	 for	 titratable	 residues	 in	 proteins	 is	 often	omitted	
from	molecular	dynamics	(MD)	simulations.	While	static	charge	models	can	answer	many	questions	
regarding	 protein	 conformational	 equilibrium	 and	 protein-ligand	 interactions,	 pH-sensitive	
phenomena	 such	 as	 acid-activated	 chaperones	 and	 amyloidogenic	 protein	 aggregation	 are	
inaccessible	to	such	models.	Constant	pH	molecular	dynamics	(CPHMD)	coupled	with	the	Generalized	
Born	with	a	Simple	sWitching	function	(GBSW)	implicit	solvent	model	provide	an	accurate	framework	
for	 simulating	 pH	 sensitive	 processes	 in	 biological	 systems.	 Although	 this	 combination	 has	
demonstrated	 success	 in	 predicting	 pKa	 values	 of	 protein	 structures,	 and	 in	 exploring	 dynamics	 of	
ionizable	 side-chains,	 its	 speed	 has	 been	 an	 impediment	 to	 routine	 application.	 The	 recent	
availability	of	 low-cost	graphics	processing	unit	 (GPU)	chipsets	with	 thousands	of	processing	cores,	
together	with	 the	 implementation	of	 the	 accurate	GBSW	 implicit	 solvent	model	 on	 those	 chipsets	
[E.J.	Arthur	and	C.L.	Brooks	III,	J.	Comp.	Chem.	37:927,	2016],	provide	an	opportunity	to	improve	the	
speed	of	CPHMD	and	 ionization	modeling	greatly.	Here	we	present	a	 first	 implementation	of	GPU-
enabled	 CPHMD	 within	 the	 CHARMM-OpenMM	 simulation	 package	 interface.	 Depending	 on	 the	
system	size	and	non-bonded	force	cutoff	parameters,	we	find	speed	increases	of	between	one	and	
three	orders	of	magnitude.	Additionally,	the	algorithm	scales	better	with	system	size	than	the	CPU-
based	 algorithm,	 thus	 allowing	 for	 larger	 systems	 to	 be	 modeled	 in	 a	 cost	 effective	 manner.	We	
anticipate	that	the	improved	performance	of	this	methodology	will	open	the	door	for	broad-spread	
application	of	CPHMD	in	its	modeling	pH-mediated	biological	processes.	
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Introduction	

Proteins	 typically	 maintain	 their	 native	
structure	 and	 optimal	 functionality	 under	 a	
narrow	 range	 of	 pH.1-3	 Consequently,	 many	
biological	 systems	 tightly	 control	 local	 solvent	
pH	 to	 tune	 the	effectiveness	of	enzymes,	or	 to	
promote	 a	 useful	 protein	 conformation.1,4,5	
Mitochondrial	 ATP	 synthase	 utilizes	 a	 trans-
membrane	proton	gradient	 to	power	 its	 rotary	
catalysis	mechanism,6-8	and	the	departure	from	
a	 normal	 pH	 range	 is	 known	 to	 be	 a	 driving	
force	 in	 forming	 the	 amyloid	 fibrils	 associated	
with	 Alzheimer’s	 disease.9,10	 Additional	
examples	 of	 pH	 driven	 processes	 include	 the	
proton-activated	 gate	 mechanism	 of	 the	 KcsA	
potassium	channel,11	and	the	catalytic	pathway	
of	 dihydrofolate	 reductase.12	 Finally,	 a	 notable	
survey	by	Aguilar	et	al.	showed	that	about	60%	
of	 the	 protein-ligand	 complexes	 indicated	 that	
at	 least	 one	 titratable	 residue	 of	 the	 protein	
assumed	a	different	protonation	state	between	
bound	 and	 unbound	 states.13	 Although	
important	 to	 many	 biological	 processes,	 pH-
dependence	 in	 bio-macromolecule	 simulations	
remains	 a	 nonstandard	 tool	 that	 awaits	 both	
wider	 acceptance,	 and	 finer	 tuning	 of	 its	
models.	

Typical	molecular	dynamics	(MD)	simulations	fix	
all	 amino	 acid	 protonation	 states	 to	 those	 of	
isolated	 residues	 in	 a	 neutral	 pH	 environment.	
While	 this	 pH-insensitive	 approach	 is	 sufficient	
to	 fold	 some	 proteins	 and	 observe	 their	
conformational	 equilibria,14	 it	 arguably	 fails	 to	
capture	 phenomena	 dependent	 on	 local	
ionization	 effects	 of	 side-chains	 or	
perturbations	to	a	residue’s	pKa.15,16	This	failure	
is	particularly	problematic	for	histidine	residues,	
in	 that	 they	 have	 two	 hydrogen	 atoms	 that	
titrate	 with	 near-neutral	 pH.	 This	 ionizability	
indicates	 that	 in	 biologically-relevant	 pH	
environments	 histidine’s	 protonation	 state	 and	
tautomeric	configuration	are	often	unclear.17		

In	recent	decades	a	series	of	models	of	varying	
complexity	 and	 accuracy	 promise	 to	 bring	
accurate	pH	responsiveness	to	MD	simulations.	

Protonation-state	 modeling	 of	 amino	 acids	 in	
MD	 simulations	 is	 based	 on	 setting	 up	 a	 pH-
sensitive	 extended	 Hamiltonian	 that	 modifies	
the	 force	 field	 parameters	 and	 structure	 of	 a	
given	 molecule.	 This	 began	 by	 discretely	
titrating	 protons,	 and	 progressing	 a	 simulation	
using	 instantaneous	 switches	 between	
protonated	and	unprotonated	states.	Mertz	and	
Pettitt	 used	 an	 open	 system	 Hamiltonian	 to	
model	the	titration	of	acetic	acid,18	and	Sham	et	
al.	 applied	 a	 linear	 response	 approximation	
through	 the	 protein-dipoles	 Langevin-dipoles	
model	 to	 calculate	 lysozyme	 residue	 pKa	
values.19	Additional	work	has	been	done	where	
Monte	 Carlo	 (MC)	 sampling	 guides	 the	
protonation	 state	of	 an	otherwise	 classical	MD	
simulation.	 Baptista	 et	 al.	 used	 explicitly	
represented	 solvent	molecules	with	 an	 implicit	
solvent	 Poisson-Boltzmann	 (PB)	 function	 to	
determine	 protonation	 states.20,21	 Meanwhile,	
Mongan	 et	 al.	 utilized	 generalized	 Born	 (GB)	
implicit	solvation	to	add	a	solvation	free	energy	
component	to	the	protonation	function.22	While	
all	these	discrete	models	can	predict	pKa	values	
for	individual	amino	acids	to	within	one	pK	unit,	
they	 are	 computationally	 expensive.	 Whether	
the	 expense	 stems	 from	 the	 need	 to	 relax	
numerical	 instabilities	 caused	by	 instantaneous	
protonation	 /	 deprotonation	 events,	 or	 from	
the	 MC	 algorithms’	 ability	 to	 titrate	 only	 one	
hydrogen	at	a	time,	such	methods	may	require	
an	unreasonable	amount	of	time	to	study	large	
systems	with	many	titratable	groups.		

One	 possible	 solution	 to	 these	 issues	 with	
discrete	 titration	methods	 is	 to	use	 continuous	
titration	 of	 H+	 atoms.	 Brooks	 and	 co-workers	
developed	one	such	method	called	constant	pH	
molecular	 dynamics	 (CPHMD),	 which	 uses	 λ -
dynamics	 coupled	 to	 transitions	 between	
protonation	 states.23,24	 This	 method	 uses	 the	
Generalized	Born	 implicit	 solvent	model	with	a	
Simple	 sWitching	 function	 (GBSW)	 model,25	 or	
the	 related	 Generalized	 Born	 with	 Molecular	
Volume	 (GBMV)	 model,24	 to	 efficiently	 couple	
the	 protonation	 state	 to	 the	 solvation	 free	
energy	of	 the	molecule.	Khandogin	and	Brooks	
then	 introduced	 proton	 tautomerism	
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capabilities	to	this	method,	which	allows	multi-
site	 titrating	 residues,	 such	 as	 histidines,	 to	 be	
modeled	more	accurately.26	Since	the	method	is	
continuous,	 there	 are	 no	 instantaneous	
protonation/deprotonation	 events,	 and	
multiple	 residues	 can	 titrate	 simultaneously.	
Additionally,	such	continuous	titration	methods	
allow	 for	 the	 efficient	 coupling	 of	 protonation	
states	among	neighboring	residues.	The	result	is	
a	 pH	 simulation	method	 that	 can	 calculate	 pKa	
values	 of	 protein	 structures	 to	 within	 0.75	 pK	
units,16	 and	 can	 resolve	 the	 dominant	 folding	
pathway	 of	 the	 pH-sensitive	 HdeA	
homodimer.15	

CPHMD’s	 efficiency,	 however,	 is	 bound	 by	 the	
rate-limited	 component	 of	 the	 calculation:	 the	
GBSW	solvent	model.	As	such,	when	running	on	
a	 single-core	 central	 processing	 unit	 (CPU),	
CPHMD	achieves	on	the	order	of	1	nanosecond	
(ns)	of	simulation	time	per	day	when	simulating	
a	 solute	 system	 of	 about	 1,000	 atoms.	 Since	
typical	 uses	 of	 CPHMD,	 such	 as	 predicting	 pKa	
shifts	 of	 protein	 residues,	 may	 require	 many	
nanoseconds	of	simulation	time,16	even	smaller	
proteins,	such	as	lysozymes,	may	require	about	
a	 week	 to	 converge	 on	 useful	 results.	 Larger	
systems,	 such	 as	 asymmetric	 viral	 capsid	
subunits	with	tens	of	 thousands	of	atoms,	may	
require	 unreasonably	 long	 simulation	 times	 if	
captured	 in	 full	 atomic	 detail.27,28	 Fortunately,	
the	 GBSW	 solvent	 model	 has	 recently	 been	
refactored	to	function	on	new,	parallel	graphics	
processing	 unit	 (GPU)	 hardware,	 and	 is	 now	
between	 1	 and	 2	 orders	 of	 magnitude	 faster	
than	 its	 CPU	 counterpart.16,29	 By	 incorporating	
the	 CPHMD	 model	 into	 the	 GPU-GBSW	
algorithm,	there	holds	the	promise	of	speeding	
up	pH	simulations	substantially.	

This	 study	 represents	 an	 increment	 in	 the	
ongoing	 adaptation	 of	 efficient	 and	 useful	
algorithms	onto	parallel-processing	GPUs.	 Such	
chipsets	 can	 contain	 thousands	 of	 processing	
cores,	and	are	able	 to	process	C-like	 languages	

such	 as	 Open	 Computing	 Language	 (OpenCL)	
and	 Compute	 Unified	 Device	 Architecture	
(CUDA).	 This	 combination	 of	 features	 has	
opened	up	a	new	frontier	of	parallel	processing	
where	 expensive	 computer	 clusters	 can	 be	
replaced	with	 single,	 affordable	graphics	 cards.	
Simulation	 packages	 such	 as	 CHARMM,30	
AMBER,31	 OpenMM,32	 GROMACS,33	 and	
NAMD34	 all	 offer	 GPU-accelerated	 options	 for	
many	 types	 of	 studies,	 and	 most	 of	 those	
options	receive	speed	increases	of	greater	than	
an	 order	 of	 magnitude	 over	 their	 CPU	
counterparts.		

Due	 to	 OpenMM’s	 effectiveness	 in	 harnessing	
the	 capabilities	 of	GPUs	with	 a	wide	 variety	 of	
hardware,	 a	 CHARMM-OpenMM	 interface	 was	
developed	 to	 combine	 the	 strengths	 of	 both	
simulation	 packages.30,32	 CHARMM’s	 robust	
algorithms	 can	 be	 used	 to	 design	 and	
parameterize	 a	 simulation,	 and	 OpenMM’s	
efficient	 GPU-based	 algorithms	 can	 be	 used	 to	
propagate	 dynamics.30,32	 Now	 with	 the	 recent	
incorporation	 of	 the	 GBSW	 solvent	model	 into	
the	 CHARMM-OpenMM	 interface,	 many	 of	
CHARMM’s	 algorithms	 parameterized	 for	 use	
with	GBSW,	such	as	CPHMD,	can	be	adapted	for	
parallel	 processing	 on	 GPUs	 as	 well.	 In	 this	
study	 we	 take	 advantage	 of	 the	 recent	
incorporation	of	GBSW	onto	GPUs,	and	discuss	
the	adaptation	of	CPHMD	onto	this	new	parallel	
architecture.	 First	 we	 explain	 the	 underlying	
theory	 behind	 λ -dynamics:	 how	 a	 λ 	
coordinate	 is	 used	 to	 represent	 the	 titration	
state	 of	 a	 residue,	 and	 how	 that	 coordinate	 is	
propagated.	 Then	 we	 delve	 into	 how	 it	 was	
originally	 implemented	 for	 CHARMM,	 and	
examine	 fitting	 CPHMD	 into	 the	 GBSW	
algorithm.	 Here	 we	 discuss	 the	 algorithmic	
improvements,	 and	 show	 how	 many	 force	
contributions	on	λ 	are	calculated	alongside	the	
free	 energy	 of	 solvation.	 Finally	 we	 present	
benchmarks	 achieved	 by	 the	 new	 algorithm,	
and	 comment	 on	 future	 directions	 for	 pH	
simulations.	
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Figure	 1.	 Shown	 are	 Cartoons	 of	 the	 protonated	 and	
unprotonated	 states	 of	 A)	 histidine	 and	 B)	 lysine.	 Also	
noted	are	the	reference	pKa	values	of	each	transition	when	
occurring	in	an	isolated	residue,	as	well	as	the	λ	values	at	
each	state.	

Methods	

The	λ	coordinates	and	their	underlying	energy	
function	for	single-site	titration	

For	 clarity	 in	 following	 discussions,	we	 present	
the	 underlying	 theory	 of	 CPHMD.	We	 start	 by	
setting	 up	 the	 framework	 for	 a	 single	 residue	
with	 one	 titrating	 hydrogen.	 The	 rudimentary	
picture	 of	 titration	 events	 is	 an	 equilibrium	
association/disassociation	 reaction	 of	 a	 model	

compound	 A(aq) 	in	 aqueous	 solution	 from	 a	

titrating	proton.	

AH(aq) ↔ A(aq)
− +H(aq)

+ 	 (1)	

Here,	the	protonation	free	energy	is	defined	by		

ΔGexp model( ) = −kBT ln10 pKa
exp − pH( ) 	 (2)	

where	 kB 	is	 Boltzmann’s	 constant,	 and	 T 	is	
the	 temperature.	 We	 can	 approximate	 the	
above	 equations	 through	 classical	 simulations	
by	interpreting	the	protonation	interaction	as	a	
change	in	free	energies:	

		

ΔGexp protein( )−ΔGexp model( )
= ΔGclassical (protein)−ΔGclassical model( ) 	 (3)	

This	 relationship	 then	 leads	 to	 an	 estimate	 of	
experimental	 free	 energy	 of	 protonation	 for	 a	
single	titrating	site:	

		

ΔGexp protein( ) = ΔGclassical (protein)

							−ΔGclassical model( )+ΔGexp model( ) 	 (4)	

From	 this	 perspective,	 we	 infer	 that	 titratable	
groups	 have	 an	 intrinsic	 free	 energy	 of	
protonation	 that	 is	 perturbed	 by	 the	 protein	
environment	 mainly	 through	 non-bonded	
interactions.	 We	 model	 this	 perturbation	 by	
extending	the	system’s	Hamiltonian	with	a	non-
geometric	dimension	of	λ .	As	mentioned	in	the	
introduction,	the	CPHMD	model	uses	a	series	of	
λ 	coordinates	 where	 each	λ 	value	 tracks	 the	
progress	 of	 protonation-deprotonation	 events	
at	a	single	titration	site.	For	a	particular	residue	
i ,	these	coordinates	are	generated	from	

λi = sin
2 θ i( ) 		 (5)	

where	 i 	is	 the	 residue	 being	 titrated.	 In	 this	
form	 the	 θ 	variable	 is	 bound	 to	 all	 real	
numbers,	 and	 λ 	is	 bound	 to	 the	 continuous	
range	 0 ≤ λi ≤1 .	 The	 sine-squared	 function	
then	 favors	 λ 	values	 near	 the	 boundary	
protonated	 (1)	 and	 unprotonated	 (0)	 states.	
Because	λ 	is	only	physically	relevant	as	it	nears	
these	 boundary	 states,	 we	 impose	 cutoffs	 on	
interpreting	 λ .	 In	 CPHMD	 an	 unprotonated	
state	is	λi ≤ 0.1 ,	a	protonated	state	is	λi ≥ 0.9
,	 and	 a	mixed	 state	 is	 0.1< λi < 0.9 .	 Figure	 1	
illustrates	 the	 protonation	 states	 and	 their	
corresponding	 λ 	values.	 Potentials	 and	 their	
derivative	 forces	 on	λ 	are	 then	 interpreted	 as	
potentials	and	forces	on	θ .		

The	 potential	 energy	 that	 governs	 protonation	
states	 contains	 fiveλ -dependent	 components.	
We	 start	 with	 the	 pH	 dependence	 of	 the	
deprotonation	 free	 energy	 as	 follows	 from	
ΔGexp in	Equation	4.	This	potential	connects	λ 	
to	the	pKa	of	a	residue	in	its	isolated,	reference	
state:	

6.6

ΔpKa 0.4

Page 28 of 38

John Wiley & Sons, Inc.

Journal of Computational Chemistry

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
	

5	

UpH λi( ) = λi pKa(i)− pH( ) kBT ln10( ) 	 (6)	

Here,	 pKa (i) 	is	 the	 pKa	 of	 titrating	 group	 i .	
Next	we	have	the	potential	of	mean	force	(PMF)	
along	 the	 λ 	coordinate	 from	 ΔGmodel .	 This	
term	corresponds	to	the	negative	of	free	energy	
needed	to	deprotonate	a	model	residue:	

Umodel λi( ) = Ai λi −Bi( )2 	 (7)	

Equation	 7	 is	 a	 quadratic	 fit	 to	 the	
thermodynamic	 work	 potential	 of	
deprotonating	a	model	compound,	and	 it	splits	
the	protonation	state	into	two	low-energy	wells	
that	 represent	 the	 protonated	 and	
unprotonated	states.	Then	a	barrier	potential	is	
added	that	disfavors	mixed	states	of	λ :	

Ubarrier λi( ) = 4βi λi −1 /2( )2 	 (8)	

The	barrier	scaling	parameter	βi 	is	an	empirical	
coefficient	designed	 to	 tune	 the	propensity	 for	
a	 λ 	value	 to	 remain	 in	 either	 protonated	 or	
unprotonated	 states,	 while	 facilitating	
transitions	 between	 them.	 In	 the	 current	
iteration	 of	 CPHMD,	 βi 	assumes	 a	 value	 of	
either	 2.5	 or	 1.75	 kcal/mol,	 depending	 on	 the	
residue.	 Finally,	 we	 arrive	 at	 the	 two	 charge-
dependent	 potentials:	 the	 Coulombic	 and	
generalized	 Born.	 The	 classical	 Coulombic	
potential	is		

		
U elec λi( ) = Kelec

qa , i λi( ) qb
rabb

∑
a , i
∑ 		 (9)	

Here	 Kelec 	is	 Coulomb’s	 constant,	 qa and	 qb 	
are	 the	 partial	 charges	 of	 atoms	 a 	and	 b 	
respectively,	 and	 is	 the	 distance	 between	
those	 atoms.	 Note	 that	 this	 potential	 for	
residue	 i 	includes	 the	 interactions	 between	 all	
atoms	a 	in	 residue	 i 	to	 all	 other	 atoms	 in	 the	
system.	 Meanwhile,	 qa λi( ) 	is	 a	 λ -dependent	
charge	of	atom	a ,	which	follows	the	form	

qa , i λi( ) = λi qa , i
unprot + 1−λi( )qa , i

prot 		 (10)	

where	 charges	 on	 titrating	 atom	 a 	can	 be	 in	
protonated	 (qa, i

prot 	)	 and	 unprotonated	 ( qa, i
unprot 	)		

states.	 We	 note	 that	 in	 an	 effective	 charge	
model	 of	 pH,	 titrating	 residues	 are	 allowed	 to	
interact.	 As	 such,	 any	 atom	b 	from	 a	 titrating	
residue	 j 	interacting	with	residue	 i 	has	its	own	
qb, j
prot 	and	 qb, j

unprot .	 Thus	 the	 partial	 charge	 qb
follows	one	of	two	possibilities:	

		

qb =
qb 																									non− titrating

λ j qb , j
unprot + 1−λ j( )qa , jprot 	titrating

⎧
⎨
⎪

⎩⎪ 	

(11)	

That	 is	 if	atom	b 	lies	 in	a	non-titrating	residue,	
that	atom’s	partial	charge	is	simply	the	standard	
partial	charge	 from	that	 residue’s	 force	 field.	 If	
atom	 b 	lies	 in	 a	 titrating	 residue j 	and	 its	
charge	is	affected	by	the	protonation	state	of	 j
,	 then	 its	 partial	 charge	 is	 derived	 from	 the	
same	λ -dependent	 relationship	 from	Equation	
10.	 Since	 atoms	 near	 a	 titrating	 site	 can	 have	
their	partial	charges	affected	by	titration	states,	
many	more	 than	 the	 titrating	 hydrogen	 atoms	
can	 possess	 a	λ -dependent	 charge	 state.	 We	
also	note	 that	at	 times	 j = i 	if	we	observe	 the	
Coulombic	 interaction	 between	 two	 atoms	 on	
the	 same	 titrating	 residue.	 The	 final	 λ -
dependent	potential	is	that	from	the	GB	solvent	
model	as	expressed	in	the	Still	equation:35	

UGB λi( ) = τ
qa , i λi( ) qb

fab
GB

b
∑

a , i
∑ 		 (12)	

where	

fab
GB = rab

2 +Ra
BornRb

Bornexp −rab
2 / 4Ra

BornRb
Born( )( )⎡

⎣
⎤
⎦
1/2

	 	

	
(13)	

Here,	 qa λi( ) 	and	qb follow	the	same	form	as	in	
Eqn	 10	 and	 11	 respectively;	 rab 	is	 the	 distance	
between	 atoms	a 	and	b ;	τ 	is	 the	 factor	 that	

rab
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scales	 the	 Born	 energy	 by	 the	 difference	 in	
dielectric	values	at	 the	dielectric	boundary	and	
by	any	contributing	salt	effects;36	and	the	values	
Ra
Born 	and	 Rb

Born 	represent	 the	 Born	 radii	 of	
atoms	a 	and	b 	respectively.	The	Born	radii	are	
the	effective	distance	between	an	atom	and	the	
solute-solvent	dielectric	boundary,	and	they	are	
calculated	 through	 volumetric	 integration	
following	the	GBSW	implicit	solvent	model.25		

If	we	pull	together	the	complete	potential	for	a	
titrating	residue	 i 	from	Eqns	6	through	13,	then	
we	arrive	at	the	form	

Ui
total λi( ) =Ui

pH λi( ) + Ui
model λi( ) + Ui

barrier λi( )
+ Ui

elec λi( ) + Ui
GB λi( )+ Ui

VDW + Ui
internal

	 	

	 (14)	

The	so-called	“internal	energy”	term	(Uinternal )	
corresponds	to	the	bond,	angle,	and	torsional	
energy	terms	of	a	classical	energy	force	field.	In	
this	model,	the	titration	state	is	dynamically	
independent	of	this	potential.	Although	several	
models	of	CPHMD	include	a	λ -dependent	van	
der	Waals	term	(UVDW ),26,37,38	during	this	study	
it	was	found	that	at	most	it	contributes	a	
minimal	amount	to	a	given	residue’s	force	on	λ
,	while	it	nearly	doubles	the	calculation	time	of	
CPHMD.	This	term	is	negligible	compared	to	the	
force	on	λ 	from	other	effects,	and	omitting	it	
from	the	calculation	showed	no	effect	on	the	
accuracy	of	CPHMD.	Thus,	in	the	interest	of	
speeding	up	the	original	algorithm,	the	λ-
dependent	potential	UVDW 	was	ignored	in	this	
implementation	of	CPHMD.		

Although	 we	 now	 have	 the	 proper	 setup	 for	
addressing	 residues	with	 a	 single	 titration	 site,	
such	 as	 in	 lysine,	 we	 need	 to	 address	 how	
CPHMD	 handles	 tautomerization	 in	 residues	
such	as	in	aspartic	acid	and	histidine.	

Proton	tautomerism	

Similarly	to	how	one	λ 	variable	is	used	to	track	
the	 progress	 of	 titration	 states	 of	 a	 residue,	

Khandogin	and	Brooks	incorporated	tautomeric	
behavior	 into	 CPHMD	 by	 providing	 residues	
with	a	second	λ 	variable,	called	 x ,	to	track	the	
progress	 of	 tautomeric	 states.26	 This	
arrangement	 is	 illustrated	 in	 Figure	 1a	 with	
histidine.	 Just	 as	 in	 λ 	dynamics	 for	 titration	
states,	 transitions	 between	 tautomeric	 states	
are	 linearly	 interpolated	 using	 the	 x 	variable.	
What	 results	 are	 potentials	 that	 become	
bivariate	 in	 λ 	and	 x ,	 and	 each	 tautomeric	
residue	 has	 four	 charge	 states:	 tautomer	 A	 in	
protonated	 and	 unprotonated	 states,	 and	
tautomer	 B	 in	 protonated	 and	 unprotonated	
states.	What	we	 shall	 see	 later	 is	 that	 residues	
can	 have	 equivalent	 states	 in	 this	 setup.	
Histidine’s	 protonated	 state,	 for	 example,	 is	 a	
residue	 saturated	 with	 protons.	 As	 such	
tautomers	A	and	B	of	 the	protonated	state	are	
equivalent.	 We	 now	 review	 the	 influence	 of	
including	 two	 λ 	parameters	 for	 a	 tautomeric	
titrating	residue.	

The	pH	dependent	potential	becomes		

UpH λi ,xi( ) = λi[xi pKa
A(i)− pH( )

+ 1− xi( ) pKa
B(i)− pH( )] kBT ln10( ) 		

	 (15)	

where	the	pKa	values	of	tautomers	A	and	B	are	
pKa

A 	and	 pKa
B 	respectively.	 While	 these	 pKa	

values	 for	 aspartic	 acid	 and	 glutamic	 acid	 are	
equivalent	 and	 only	 serve	 as	 a	 sampling	
expedient,26	 in	 residues	 with	 asymmetric	
titrating	sites	such	as	histidine	they	are	not.	The	
PMF	 for	 protonation	 becomes	 a	 bivariate	
polynomial	 from	 Equation	 7,	 which	 then	
expands	into	the	general	form	

Umodel λi ,xi( ) = a0λi
2xi

2 + a1λi
2xi + a2λi xi

2 + a3λi xi
+ a4λi

2 + a5xi
2 + a6λi + a7xi + a8

	
(16)	

The	 barrier	 potential	 is	 simply	 a	 summation	 of	
terms	that	disfavor	the	mixed	states	of	both	λ 	
and	 x ,	and	follows	the	form	
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Ubarrier λi ,xi( ) = 4βiλ λi −1/2( )2 +4βix xi −1/2( )2 		
	 (17)	

Note	 that	 there	 are	 two	 barrier	 scaling	
parameters	βi

λ 	and	βi
x 	for	λ 	and	 x .	Although	

different	biases	for	tautomeric	and	protonation	
transitions	 are	possible	 in	 this	 equation,	 in	 the	
discussed	 CPHMD	model	 they	 are	 identical	 for	
all	titrating	residues.	

The	charge-dependent	potentials	 in	Eqns	9	and	
12	are	only	modified	 in	 that	 charges	 for	atoms	
can	 now	 be	 dependent	 on	 the	 new	 x 	
coordinate.	 The	 Coulombic	 and	 generalized	
Born	potentials	then	follow	the	forms	

Uelec λi ,xi( ) = Kelec
qa , i λi ,xi( ) qb

rabb
∑

a , i
∑ 		 (18)	

and	

UGB λi ,xi( ) = τ
qa , i λi ,xi( ) qb

fab
GB

b
∑

a , i
∑ 		 (19)	

respectively.	 The	 bivariate	 charge	 qa, i λi , xi( ) 	
then	follows	the	form		

qa , i λi ,xi( ) = λi xi qa , i
A,unprot + 1− xi( )qa , i

B ,unprot⎡
⎣

⎤
⎦

+ 1−λi( ) xi qa , i
A, prot + 1− xi( )qa , i

B , prot⎡
⎣

⎤
⎦

(20)	

Where	charges	on	titrating	atom	 a 	are	derived	
from	the	protonated	and	unprotonated	variants	
of	 both	 A	 and	 B	 tautomers,	 qa, i

A, prot ,	 qa, i
A, unprot ,	

qa, i
B, prot ,	 and	 qa, i

B, unprot .	 Similarly,	 the	 charge	 on	

atom	b 	emerges	as	

		

qb =

qb non− titrating

λ j x j qb , j
A,unprot + 1− x j( )qb , jB,unprot⎡

⎣
⎤
⎦ 			titrating

+ 1−λ j( ) x j qb , j
A, prot + 1− x j( )qb , jB, prot⎡

⎣
⎤
⎦

⎧

⎨
⎪
⎪

⎩
⎪
⎪

	

(21)	

We	 now	 arrive	 at	 a	 general-purpose	 setup	 for	
evaluating	 the	 underlying	 potential	 for	
continuous	 transitions	 among	 various	 charge	
states	 of	 a	 particular	 residue.	 Deriving	 the	
forces	 with	 respect	 to	 λ 	and	 x ,	 while	
important,	serves	 little	purpose	for	 illuminating	
the	 topics	 explored	 in	 the	 remainder	 of	 this	
study.	With	the	framework	above,	we	now	can	
discuss	 the	 construction	 of	 the	 original	
algorithm,	and	the	changes	made	to	refactor	 it	
for	efficient	parallel	processing	on	GPUs.	

Refactoring	CPHMD	

The	 original	 CPHMD	 model	 was	 built	 with	
mathematical	precision	and	function	portability	
in	mind.	 It	 is	a	stand-alone	module	that	can	be	
applied	 to	 both	 implicit	 and	 explicit	 solvent	
systems,	 and	 except	 for	 atom	 coordinate	 and	
Born	 radii	 updates,	 it	 receives	 no	 input	 from	
other	 functions	during	a	simulation.	During	the	
course	 of	 a	 timestep,	 each	 titrating	 coordinate	
λi is	scanned	to	 identify	the	residue	type	(such	
as	whether	the	residue	has	one	or	two	titrating	
hydrogens),	and	then	an	appropriate	functional	
is	 applied	 to	 calculate	 its	 pH	 (Eqn	 6	 and	 15),	
model	 (Eqn	 7	 and	 16),	 and	 barrier	 (Eqn	 8	 and	
17)	 potentials.	 Next,	 neighboring	 atom-atom	
interactions	 are	 scanned	 for	 whether	 one	 or	
both	 atoms	 reside	 in	 titrating	 groups.	 If	 a	
titrating	 atom-atom	 pair	 is	 found,	 then	
contributions	to	the	electrostatic	(Eqn	9	and	18)	
and	 GB	 (Eqn	 12	 and	 19)	 potentials	 are	
integrated.	 Neighboring	 atom-atom	 pairs	 are	
then	 scanned	 again	 to	 calculate	 the	 VDW	
potential	 (ignored	 in	 this	 new	 iteration	 of	
CPHMD).	 Finally,	 the	 force	 on	θ 	is	 calculated,	
and	 λ 	via	 θ is	 advanced	 a	 timestep	 using	
Langevin	 dynamics.39	 In	 this	 setup	 there	 are	
several	 opportunities	 presented	 to	 us	 for	
improving	 the	 algorithm	 both	 in	 the	 efficiency	
of	 its	 execution	 in	 parallel,	 and	 by	 weaving	
portions	 of	 the	 calculation	 into	 existent	
functions	elsewhere	in	the	simulation.		

We	 first	 note	 that	 the	majority	 of	 clock	 cycles	
used	 for	 calculating	λ 	dynamics	 are	 spent	 on	
neighboring	 atom-atom	 interactions	 when	
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accumulating	 the	 electrostatic	 and	 GB	
potentials.	 While	 the	 calculations	 required	 for	
each	atom	pair	are	computationally	 cheap,	 the	
large	 number	 of	 interatomic	 interactions	 in	 a	
protein	 containing	 thousands	 of	 atoms	 can	
make	 this	 multitude	 of	 cheap	 calculations	
altogether	 expensive.	 As	 show	 in	 Figure	 2a,	
about	 12%	 of	 a	 2000-atom	 simulation	 is	 spent	
only	on	this	calculation.	

Both	 CPHMD	 and	 the	 GBSW	 solvent	 model	
require	 calculating	 the	 Still	 equation	 (Eqn	 12	
and	13)	to	address	part	of	the	neighboring	atom	
potential,	 so	 a	 significant	 speed	 improvement	
can	 be	made	 by	 placing	 all	 of	 CPHMD’s	 atom-
atom	 processes	 inside	 the	 neighboring	 atom	
process	 of	 the	GBSW	 solvent	model.	 This	way,	
as	 GBSW	 produces	 the	 solute	 molecule’s	
electrostatic	 solvation	 free	 energy	 and	 its	
derivative	 force	 on	 atoms,	 CPHMD	 processes	
neighboring	 atom	 potentials	 on	 λ 	
simultaneously.	 Thus	 the	 large	 number	 of	
redundant	atom-atom	distance	calculations	can	
be	 reduced	 significantly	 during	 a	 simulation.	
This	 setup	 gains	 additional	 speedup	 through	
GBSW	 by	 using	 OpenMM’s	 efficient	 parallel	
possessing	of	neighboring-atom	interactions.	As	
shown	 in	 Figure	 2,	 by	 combining	 the	 CPHMD	
and	GBSW	algorithms	we	see	that	pH	modeling	
with	 CPHMD	 accounts	 for	 a	 much	 smaller	
fraction	of	the	overall	simulation	time.		

	

Figure	2.	The	approximate	distributions	of	CPU	time	spent	
on	 running	 simulation	 components	 of	 ∆+PHS	
staphylococcal	 nuclease	 molecule.	 This	 protein	 contains	
2132	 atoms	 and	 37	 titrating	 residues.	 A)	 run	 using	 the	
original	algorithm	on	a	single	processing	core	in	CHARMM.	
B)	 run	 using	 the	 newly	 refactored	 CUDA-CPHMD	
algorithm.	

Due	 to	 the	 nature	 of	 parallel	 processing,	
bottlenecks	are	often	created	 from	the	 longest	

portions	 of	 non-parallel	 code.	 While	 a	 single-
core	 process	 can	 be	 sped	 up	 dramatically	 by	
creating	 a	 case-by-case	 set	 of	 calculations,	
navigating	 through	 the	 additional	 overhead	 to	
make	 the	 situation-specific	 decision	 can	 slow	
parallel	 processes	 down.	 Regarding	 the	
equations	 described	 earlier,	 a	 titrating	 residue	
with	 one	 tautomer	 requires	 fewer	 calculations	
than	 a	 titrating	 residue	with	 two.	 As	 we	 place	
each	 residue’s	 force	 calculations	 in	 parallel	
processes,	 however,	 the	 speed	 of	 the	 code	 is	
improved	 by	 regarding	 all	 titrating	 residues	 as	
possessing	 two	 tautomeric	 states.	 In	 this	 new	
implementation	 of	 CPHMD,	 single-titration	
residues,	such	as	lysine,	are	given	extraneous	 x 	
coordinates.	 Lysine	 then	 uses	 the	 barrier	
potential	 from	 Eqn	 16,	 where	 the	 x -coupled	
coefficients	 a0,	 a1,	 a2,	 a3,	 and	 a5	 are	 set	 to	 a	
value	of	0.0.	Without	 the	overhead	 for	 residue	
identification,	 the	 longest	 calculation	 required,	
that	 is	 calculating	 the	 force	 on	θ for	 a	 residue	
with	two	tautomeric	states,	 is	shortened.	What	
results	 is	 a	 speed	 improvement	 when	
calculating	all	components	of	the	total	potential	
on	λ 	coordinates.	As	shown	in	Figure	2b,	using	
the	parallel	CUDA-CPHMD	algorithm	for	a	small	
system	 impacts	 the	 processing	 time	 by	
approximately	 6%,	 as	 opposed	 to	 15%	 for	 the	
original	algorithm.	

Benchmarking	CUDA-CPHMD	

We	finally	reach	an	efficient	setup	where	using	
the	CPHMD	model	 results	 in	 little	slowdown	of	
the	 overall	 simulation	 time.	 We	 chose	 several	
systems	 to	 benchmark	 the	 new	 algorithm,	 and	
explore	 the	 speed	 benefits	 it	 offers.	We	 chose	
the	 naja	 atra	 snake	 cardiotoxin	 (PDB:	 1CVO),40	
the	∆+PHS	hyperstable	variant	of	staphylococcal	
nuclease	 (PDB:	 3BDC),41	 and	 the	 asymmetric	
subunit	of	the	bacteriophage	HK97	head	capsid	
(PDB:	 2FT1).42	 This	 trio	 provided	 a	 range	 of	
system	sizes	and	residue	configurations.	To	add	
additional	statistics,	the	7	proteins	of	the	HK97	
capsid	 were	 assembled	 into	 6	 additional	
subsystems,	 all	 of	 which	 appear	 in	 Figure	 3	 to	
show	 for	 a	 range	 of	 system	 sizes	 the	 speed	
dependence	 on	 system	 size.	 All	 simulations	
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were	using	the	CHARMM22	force	field43,44	using	
the	 Langevin	 integrator45	 with	 a	 timestep	 of	 2	
femtoseconds.	These	were	NT	(constant	particle	
number	 and	 temperature)	 simulations	 at	 298K	
in	 unbounded	 volumes	 using	 the	 CUDA-GBSW	
solvent	 model,	 and	 CUDA-CPHMD	 to	 model	
titration	 states	 and	 advance	 λ 	coordinates.	
Atomic	 radii	 for	 the	GBSW	solvent	model	were	
provided	 through	 work	 by	 Chen	 et	 al.46	 The	
hardware	 specifications	 of	 the	 computer	 used	
appear	 in	 Table	 SI1	 of	 the	 Supporting	
Information.	We	found	speed	improvements	of	
between	 1	 and	 3	 orders	 of	 magnitude	 in	 the	
CUDA-CPHMD	 algorithm	 over	 its	 CPU	
counterpart.	

As	 we	 combine	 the	 improved	 efficiency	 and	
parallel	 execution	 of	 both	 GBSW	 and	 CPHMD	
(shown	 in	 Figure	 3a	 to	 3d),	 substantial	 speed	
gains	 are	 found	 in	 this	 new	 version	 of	 pH	
modeling	 over	 its	 predecessor.	 For	 smaller	

1,000-atom	 systems,	 we	 see	 a	 speed	
improvement	of	over	20-fold	when	comparing	a	
12-threaded	 CPHMD	 simulation	 to	 the	 new	
CUDA-CPHMD,	 and	 an	 improvement	 of	 over	
150-fold	 when	 compared	 to	 the	 single-core	
algorithm	 (shown	 in	 Figure	 3a).	 For	 larger	
29,000	 atom	 systems,	 we	 see	 a	 speed	
improvement	 of	 over	 1,000-fold	 (shown	 in	
Figure	 3c).	 Since	 the	 neighboring-atom	
component	does	not	scale	 linearly	with	system	
size,	 larger	 systems	 experience	 a	 greater	
calculation	 time	 penalty	 than	 smaller	 ones.	
Fortunately,	simple	changes,	such	as	using	non-
bonded	 cutoffs,	 can	 mitigate	 such	 problems.	
For	instance,	a	non-bonded	cutoff	of	14	Å	sped	
up	 the	 large	 viral	 capsid	 simulation	 to	 6.7	
ns/day	 (a	 270%	 speed	 increase	 versus	 the	 no	
cutoff	case).	

	

	

Figure	 3.	 The	 benchmarks	 for	 the	 new	 CUDA-CPHMD	 algorithm.	 The	 individual	 systems	 tested	were	 A)	 the	 naja	 atra	 snake	
cardiotoxin	 (PDB:	 1CVO);	 B)	 the	 ∆+PHS	 hyperstable	 variant	 of	 staphylococcal	 nuclease	 (PDB:	 3BDC);	 and	 C)	 the	 asymmetric	
subunit	 of	 the	 bacteriophage	HK97	 head	 capsule	 (PDB:	 2FT1).	 As	 shown,	 the	 new	 algorithm	 is	 substantially	 faster	 than	 the	
original	CPU	algorithm	by	up	to	3	orders	of	magnitude.	In	D)	the	same	benchmarks	from	earlier	are	shown	(squares)	alongside	
subsystems	from	the	7	proteins	of	the	bacteriophage	subunit	(circles).	Notice	that	the	CUDA	algorithm	scales	more	linearly	with	
system	 size	 than	 its	 CPU-based	 counterpart.	 E)	 compares	 the	 force	 on	λ 	as	 calculated	 on	 all	 595	λ 	coordinates	 from	 both	
CPHMD	algorithms.	There	is	less	than	a	0.00017	(kcal/mol)	AUE	(average	unsigned	error)	between	the	two	algorithms.	
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Accuracy	of	the	new	CUDA-CPHMD	algorithm		

Single-residue	Systems	

Speed	 gains	 in	 implementing	 CPHMD	 are	 an	
important	 goal	 both	 for	 increasing	 the	
algorithm’s	 applicability	 to	 a	 wider	 range	 of	
system	 sizes,	 and	 for	 its	 ability	 to	 converge	 on	
useful	 results	 more	 rapidly.	 Its	 accuracy,	
however,	 must	 not	 be	 compromised	 as	 we	
reconfigure	 the	 execution	 of	 the	 algorithm.	 In	
Figure	3e	we	show	that	there	is	little	difference	
between	the	original	CPHMD	and	CUDA-CPHMD	
algorithms	 when	 calculating	 the	 force	 on	 λ .	
We	maintain	 an	 average	 unsigned	 error	 (AUE)	
of	less	than	0.00017	kcal	/	mol	in	this	force.	We	
also	 note	 that	 99.9%	 of	 the	 AUE	 between	 the	
two	 CPHMD	 methods	 is	 from	 the	 slight	
differences	 in	 Born	 radii	 calculated	 from	 the	
original	 and	 CUDA	 implementations	 of	 GBSW.	
Thus,	 we	 conclude	 that	 CUDA-CPHMD	
accurately	 reproduces	 the	 original	 algorithm’s	
force	on	λ .	

While	 CUDA-CPHMD	 may	 be	 able	 to	 produce	
the	 force	 on	λ 	coordinates,	 we	 ran	 additional	
tests	to	see	whether	or	not	residue	protonation	
states	 are	 also	 reproduced.	 Due	 to	 each	
residue’s	 pH-dependent	 biasing	 potential,	 a	
single	 residue	 alone	 in	 solution	 presumably	
should	 find	 an	 optimal	 protonation	 state	
depending	 on	 the	 environmental	 pH.	 At	 pH	
environments	below	a	residue’s	pKa	the	residue	
should	favor	a	protonated	state	 λi ≤ 0.1( ) ,	and	
conversely	a	residue	exposed	to	a	pH	above	 its	
pKa	 should	 favor	 an	 unprotonated	 state	
λi ≥ 0.9( ) .	 By	 calculating	 the	 fraction	 of	

protonated	 to	 unprotonated	 states	 of	 residues	
at	 various	 pH	 values	 and	 fitting	 the	 results	 to	
the	 Henderson-Hasselbalch	 equation	 of	 states,	
we	 expect	 the	 point	 of	 inflection	 to	 reproduce	
the	pKa	of	that	residue.		

We	 ran	 simulations	 of	 aspartic	 acid,	 glutamic	
acid,	 histidine,	 and	 lysine	 to	 calculate	 their	
protonation	states,	as	shown	in	Figure	4.	These	
residues	were	 simulated	 using	 the	 same	 setup	
from	 the	 benchmarking	 section	 as	 NT	
simulations	 in	 an	unbound	volume,	 and	CUDA-
CPHMD	was	used	both	to	model	titration	states	
and	 advance	 λ 	coordinates.	 The	 backbone	
atom	ends	were	 capped	with	 the	ACE	and	CT2	
patches	 in	 CHARMM.	 Each	 dot	 in	 Figure	 4	
represents	 the	 average	 residue	 titration	 state	
from	 200	 ps	 of	 simulation	 time,	 and	 the	
residues	ran	at	an	average	speed	of	690	ns/day.		

We	find	that	without	optimizing	the	simulations	
for	 speed,	 accuracy,	 or	 convergence	 of	
protonation	states,	that	the	pKa	values	could	be	
captured	to	within	0.5	pK	units.	Interestingly,	all	
states	 reported	 a	 small,	 systematic	
overestimation	of	the	pKa,	and	the	exact	source	
of	this	discrepancy	remains	unclear.	The	CUDA-
GBSW	 solvent	 model	 overestimates	 solvation	
energy	 by	 an	 average	 of	 approximately	 0.16	
kcal/mol.	 However,	 this	 overestimation	 of	
energy	 should	 bias	 deprotonation	 events	 to	
occur	 slightly	 more	 often,	 and	 thus	 lower	 the	
calculated	 pKa.	 What	 is	 clear	 from	 these	 data,	
though,	 is	 that	 like	 its	 predecessor,	 the	 CUDA-
CPHMD	 algorithm	 models	 the	 pH	 dependence	
of	titration	well	for	single	residue	systems.	Next	
we	 explore	 multi-residue	 titration	 and	 the	
influence	 of	 protein	 conformation	 on	 pKa	
values.	

	

Figure	4.	The	pKa	calculations	for	4	single	residues:	aspartic	
acid,	 glutamic	 acid,	 histidine,	 and	 lysine.	 The	protonation	
state	 (dots)	was	 calculated	 from	 the	 fraction	 of	λ 	values	
in	pure	unprotonated	and	protonated	states.	The	point	of	
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inflection	 (boxes)	 of	 Henderson	Hasselbalch	 equation	 fits	
(lines)	 indicates	 the	 calculated	 pKa	 values.	 Even	 without	
optimizing	 for	 efficiency,	 convergence	 of	 data,	 or	
simulation	parameters,	we	 find	 the	 calculated	pKa	values	
match	those	from	the	force	field	to	within	0.5	pK	units.	

Multiple-residue	Systems	

The	 end	 purpose	 for	 CPHMD	 is	 to	 enable	 the	
study	 of	 complex	 pH-coupled	 phenomena	 of	
biological	 systems,	 such	 as	 pH-dependent	
protein	 conformation	 and	 cooperative	 titration	
effects	 among	 neighboring	 residues.	 As	 such,	
we	 test	 the	 accuracy	 of	 the	 CUDA-CPHMD	
algorithm	 by	 its	 ability	 to	 recapitulate	 residue	
pKa	values	from	both	experiments	and	previous	
replica	exchange	studies,	as	 shown	 in	Figure	5.	
We	 study	 9	 model	 protein	 systems	 here:	
barnase2,47,48	 (PDB	 code	 1A2P);	 the	 serine	
protease	 inhibitor	 CI-2	 from	 barley	 seeds47,49	
(PDB	 code	 2CI2);	 the	 hyperstable	 variant	 of	
staphylococcal	 nuclease,	 ∆+PHS3,16	 (PDB	 code	
3BDC);	hen	egg	white	lysozyme47,50,51	(PDB	code	
1LSA);	 the	 N-terminal	 domain	 of	 ribosomal	
protein	 L947,52	 (PDB	 code	 1CQU);	 turkey	
ovomucoid47,53,54	 (PDB	 code	 1OMU);	
ribonuclease	 A47,55	 (PDB	 code	 7RSA);	
ribonuclease	H	 from	Escherichia	 coli47,56,57	 (PDB	
code	 2RN2);	 and	 Bacillus	 circulans	

xylanase47,58,59	 (PDB	 code	 1BCX).	 Each	 protein	
was	simulated	in	11	pH	windows	from	the	pH	-1	
to	 the	pH	9.	Within	each	window,	 the	proteins	
were	 simulated	 for	 80	 ps	 in	 10	 independent	
trajectories,	which	 resulted	 in	 a	 total	 of	 4.4	 ns	
of	 simulation	 time	 per	 structure.	 All	 titrating	
residues	 were	 allowed	 to	 change	 protonation	
state	 using	 the	 new	 CUDA-CPHMD	 algorithm	
(Figure	5a,	5d,	and	5e)	and	the	original	CPHMD	
algorithm	 (Figure	 5b	 and	 5d);	 and	 salt	
concentrations	 were	 added	 using	
concentrations	 that	 corresponded	 to	 the	
experiments.16,47	 The	 simulations	 were	 run	
using	 the	 CHARMM22	 force	 field	 43,44	 with	 the	
Langevin	 integrator45	 with	 an	 integration	
timestep	 of	 2	 fs.	 These	 were	 NT	 (constant	
particle	 number	 and	 temperature)	 simulations	
each	in	an	unbounded	volume	at	a	temperature	
of	298K	using	a	Langevin	heat	bath.	Atomic	radii	
were	 optimized	 through	 work	 by	 Chen	 et	 al.46	
Similarly	 to	 the	 single-residue	 simulations,	 pKa	
values	 were	 calculated	 by	 fitting	 the	
Henderson-Hasselbalch	 equation	 of	 states	 to	
the	 average	 protonation	 state	 λ 	of	 each	
titrating	 residue.	 Again,	 the	 point	 of	 inflection	
of	 the	 fit	 corresponds	 to	 the	 pKa	 value	 of	 that	
residue.	We	report	these	values	in	Figure	5.	

	

	

Figure	5.	The	pKa	calculations	for	all	histidine	(blue),	glutamic	acid	(red),	aspartic	acid	(green),	and	titrating	C-terminus	(orange)	
residues	 in	 all	 9	 of	 the	 test	 proteins.	 Each	 dot	 corresponds	 to	 a	 pKa	 value	 resulting	 from	 fitting	 the	Henderson	Hasselbalch	
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equation	to	the	fraction	of	λ 	values	in	pure	unprotonated	states.	We	present	comparisons	between	pKa	values	from	A)	CUDA-
CPHMD	and	experiment;	B)	CPHMD	and	experiment;	C)	CPHMD	with	replica	exchange	(REX-CPHMD)	and	experiment;	D)	CUDA-
CPHMD	and	CPHMD;	and	E)	CUDA-CPHMD	and	REX-CPHMD.	Even	without	optimizing	the	simulations	to	accommodate	various	
titration	equilibria	 for	each	protein,	 the	CUDA-CPHMD	algorithm	successfully	 recapitulates	experimental	pKa	values	 to	within	
0.79	pK	units	of	AUE.		The	experimental	and	REX-CPHMD	results	are	from	reference47	and	papers	cited	therein.	

The	 AUE	 for	 all	 residues	 using	 CUDA-CPHMD	
was	0.79	pK	units,	which	compares	favorably	to	
the	 AUE	 of	 0.97	 pK	 units	 using	 the	 null	
approximation	 (all	 pKa	 values	 correspond	 to	
their	reference	values).	This	was	the	same	0.79	
pK	 units	 of	 AUE	 that	 the	 original	 algorithm	
achieved,	 which	 further	 supports	 CUDA-
CPHMD’s	 accurately	 representing	 its	 CPU	
counterpart.	 Interestingly,	 while	 the	 average	
accuracy	 of	 CUDA-CPHMD	 and	 CPHMD	 were	
less	 than	 the	 0.75	 pK	 units	 of	 AUE	 achieved	
using	 the	 replica	 exchange	 methods	 from	
earlier	 studies,	 the	 non-replica-exchange	 pKa	
calculations	had	a	smaller	standard	deviation	of	
error	 and	 fewer	 outlying	 predictions.16,47	
Additional	 accuracy	 should	 be	 possible	 by	
coupling	 CUDA-CPHMD	 with	 the	 enhanced	
sampling	of	replica	exchange	in	temperature	or	
pH.16,47	 This	 result	 holds	 great	 promise	 in	
establishing	 dynamic	 titration	 as	 a	 common	
feature	of	protein	simulations.		

Conclusions	

In	 this	 study	 we	 present	 a	 significantly	 faster	
version	 of	 the	 CPHMD	 algorithm	 adapted	 for	
parallel	 processing	 in	 the	 CHARMM-OpenMM	
interface.	While	algorithmically	 the	new	CUDA-
CPHMD	algorithm	represents	 little	change	over	
its	predecessor,	the	speed	improvements	are	so	
great	 that	 previously-unreasonable	 simulations	
are	 now	 straightforward	 to	 perform.	 For	
instance,	 what	 may	 have	 been	 a	 year-long	
simulation	 of	 the	 HK97	 head	 capsule	 can	 now	
be	 performed	 in	 about	 160	minutes.	With	 this	
newfound	speed	 is	an	opportunity	 to	 fine-tune	
the	 CPHMD	 titration	 model	 for	 a	 variety	 of	
protein	 systems,	 and	 to	 explore	 the	 impact	 of	
pH	 environments	 on	 side-chain	 dynamics	 both	
at	the	microsecond	timescale	and	with	all-atom	
detail.		 	

Similarly	 to	 GBSW,	 the	 CPHMD	 model	 carries	
with	 it	 over	 a	 decade	 of	 research	 and	
parameterization.26,47,52	One	model	of	particular	
interest	 is	 pH	 replica	 exchange	 (REX),60	 which	
has	been	shown	to	predict	pKa	values	of	protein	
structures	 within	 single	 nanoseconds	 of	
simulation	time.60,61	Coupled	with	the	improved	
speed	 of	 CPHMD,	 adapting	 REX	 will	 enable	 a	
useful	 and	 rapid	method	 for	 characterizing	 the	
chemical	environment	of	protein	interiors.	
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