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This paper presents an automated approach to recovering the true color of objects on the seafloor in images
collected from multiple perspectives by an autonomous underwater vehicle (AUV) during the construction of
three-dimensional (3D) seafloor models and image mosaics. When capturing images underwater, the water col-
umn induces several effects on light that are typically negligible in air, such as color-dependent attenuation and
backscatter. AUVs must typically carry artificial lighting when operating at depths below 20-30 m; the lighting
pattern generated is usually not spatially consistent. These effects cause problems for human interpretation of
images, limit the ability of using color to identify benthic biota or quantify changes over multiple dives, and
confound computer-based techniques for clustering and classification. Our approach exploits the 3D structure
of the scene generated using structure-from-motion and photogrammetry techniques to provide basic spatial
data to an underwater image formation model. Parameters that are dependent on the properties of the water
column are estimated from the image data itself, rather than using fixed in situ infrastructure, such as reflectance
panels or detailed data on water constitutes. The model accounts for distance-based attenuation and backscatter,
camera vignetting and the artificial lighting pattern, recovering measurements of the true color (reflectance) and
thus allows us to approximate the appearance of the scene as if imaged in air and illuminated from above. Our
method is validated against known color targets using imagery collected in different underwater environments
by two AUVs that are routinely used as part of a benthic habitat monitoring program. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

In recent years, marine biologists and ecologists have in-
creasingly relied on imagery from platforms such as au-
tonomous underwater vehicles (AUVs) for monitoring ma-
rine benthic habitats, such as coral reefs, kelp forests, and
seagrass meadows (Clarke, Tolimieri, & Singh, 2009; Gras-
mueck et al., 2006; Smale et al., 2012; Yoerger, Jakuba,
Bradley, & Bingham, 2007). Underwater imagery can be
used to classify and count the abundance of various species
in an area, and data collected over multiple sampling times
can be used to infer changes to the environment and popula-
tion, for example, due to pollution, bio-invasion, or climate
change (Bewley et al., 2012; Bryson, Johnson-Roberson,
Pizarro, & Williams, 2013).

When capturing images underwater, the water column
induces several effects on images that are not typically seen
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when imaging in air. Water causes significant attenuation
of light passing through it, reducing its intensity expo-
nentially with the distance traveled (Jaffe, 1990). For this
reason, sunlight, commonly used as a lighting source in
terrestrial photogrammetry, is typically not strong enough
to sufficiently illuminate scenes below depths of approxi-
mately 20-30 m, necessitating the use of artificial lighting
onboard an imaging platform. The attenuation of light un-
derwater is frequency dependent; red light is attenuated
over much shorter distances than blue light, resulting in
a change in the observed color of an object at different
distances from the camera and light source (for example,
see Figure 1). In addition, the magnitude of attenuation
and scattering depend on several complex factors, includ-
ing water temperature and salinity, water chemistry, and
the type and quantity of particulates in the water, such
as plankton (Jaffe, 1990; Mobley, 1994). The resulting color
and brightness of objects measured in images varies sig-
nificantly when imaged from different camera perspectives
and distances from a moving platform such as an AUV.
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Figure 1. (a) Underwater imaging using an autonomous underwater vehicle: Vehicle-fixed lighting patterns and water-based light
attenuation cause foreground objects to appear bright and red with respect to background objects that appear dark and blue green.
Inconsistencies in the color and brightness in images are visible across a single image (b), and when multiple images are combined
into a single mosaic (c), these result in visual artifacts.

This imagery is typically difficult to interpret by end-users
and causes issues for quantitative computer-based tech-
niques for clustering and classification based on color (Bei-
jbom, Edmunds, Kline, Mitchell, & Kriegman, 2012; Bewley

et al., 2012; Soriano, Marcos, Saloma, Quibilan, & Alino,
2001).

The aim of this paper is to develop a methodology
for recovering the true color of objects on the seafloor
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captured in underwater images (in contrast to previ-
ous work on improving color balance or consistency
(Bryson, Johnson-Roberson, Pizarro, & Williams, 2012;
Torres-Mendez & Dudek, 2005; Vasilescu, Detweiler, & Rus,
2010)) by removing the perspective-dependent effects in-
duced by attenuation and scattering in the water column
and the fixed lighting pattern carried by the AUV. By “true
color,”, we refer to the reflectance, or albedo, of points on
the seafloor corresponding to the three channels of the color
imaging camera. Using no information about the spectral
response function of the camera or spectral color of the illu-
minating light source, our method allows for the recovery of
images that would be gained by imaging the surface in air
(where attenuation and scattering are negligible over short
distances) and where the lighting is from a fixed direction
with respect to the seafloor surface (i.e., from above). When
knowledge of the spectral response of the camera and spec-
tral color of the lights is available, our method additionally
allows for the recovery of reflectance or albedo measure-
ments of the surface such that images can be constructed as
if in air and illuminated by a white light source, allowing for
the quantitative comparison of surfaces imaged at different
times by different cameras and light sources. The resulting
color of objects in both cases is no longer dependent on the
perspective from which a particular element of the surface
was imaged from, allowing for quantitative comparison of
images taken from different perspectives and thus poten-
tially over multiple AUV deployments. In addition, mea-
surements of accurate color are useful as a feature for dis-
tinguishing between coral species (Hochberg & Atkinson,
2000) and other benthic organisms and have been shown
to be related to other biophysical properties such as chloro-
phyll pigment composition and benthic organism health
(Hochberg et al., 2006).

Our method exploits known structure of the 3D land-
scape and the relative position of the camera, derived us-
ing structure-from-motion and photogrammetry (Johnson-
Roberson, Pizarro, Williams, & Mahon, 2010; Mahon,
Williams, Pizarro, & Johnson-Roberson, 2008), to provide
the necessary inputs to an underwater image formation
model, including lighting pattern, frequency-dependent at-
tenuation, and backscatter. Our approach estimates water
column attenuation and backscatter parameters from the
images themselves (in contrast to previous work that es-
timates these values from in situ calibration infrastructure
(Sedlazeck, Koser, & Koch, 2009; Yamashita, Fujii, & Kaneko,
2007)). When imaging in large-scale biological habitats, the
use of color calibration tools, such as color boards, is un-
desirable because of logistical complexity and the sensitiv-
ities of marine habitats to man-made disturbances to the
seafloor. In addition, our method allows for the processing
and correction of historical imagery that lacks in situ color
calibration data. Results of the method are illustrated in two
different AUV dives over different benthic habitat types and
ocean conditions.

Section 2 provides a review of underwater imaging and
past work in underwater image color correction. Section 3
presents our methodology, including a review of underwa-
ter 3D reconstruction, our image formation model and tech-
niques used to estimate image formation model parameters,
and how these are used to recover true color. An overview
of our experimental setup is provided in Section 4 with re-
sults presented in Section 5. Discussion, conclusions, and
future work are presented in Sections 6 and 7.

2. BACKGROUND LITERATURE

2.1. Underwater Image Formation

The measured image intensity recorded by a camera at a
point in an underwater scene is not directly proportional
to the actual ”brightness” and “color” of the point; instead,
several factors act on the light path that make this relation-
ship dependent on the water properties and the perspec-
tive of the camera and lights with respect to the point. The
predominant effects of the water column on light used for
underwater imaging are scattering and attenuation (Jaffe,
1990; Mobley, 1994). Attenuation occurs when light is ab-
sorbed or diffracted by water molecules or other particles
in the water (Jaffe, 1990) and is dependent on water temper-
ature, salinity, water quality (i.e., from pollution, sediment
suspension), and suspended microscopic life (plankton). At-
tenuation is the dominant cause of the color imbalance often
visible in underwater images.

In addition to attenuation, light is scattered during its
travel through the water, that is, some proportion of the
light power is redirected away from the principal direction
of travel, owing to interactions with small, particulate mat-
ter in the water column. Scattering is typically split into two
components, forward scatter and backscatter (Jaffe, 1990;
Lewis, Jordan, & Roberts, 1999), which occur because of
identical physical processes but have differing implications
regarding underwater imaging. Forward scattering occurs
when light heading toward the direction of the camera is
refracted by very small angles through the water, result-
ing in blurring and a lack of contrast in collected images.
Backscattering occurs when light not heading toward the
camera is reflected (typically, by larger angles) back toward
the camera’s line of sight, resulting in a visible bright haze
in images.

2.2. Underwater Image Processing

There is a large body of existing work on correcting images
for the effects of the underwater environment; for an exten-
sive review, the reader is referred to (Schettini & Corchs,
2010). The authors in (Chiang & Chen, 2012) proposed a
method for dehazing or removing the effect of color change
in underwater images using a combination of filtering and
approximation of the scene depth from the intensity of im-
age data. Related approaches to the removal of haze from
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terrestrial images (for example, from fog or pollution (Tarel
& Hautiere, 2009)) have also been used in the correction of
underwater images (Gracias et al., 2013).

The authors in (Schechner & Karpel, 2004) present an
approach to reducing the effects of light scattering by tak-
ing several images through a polarizing filter at various an-
gles. The method requires several images of the same scene
measured at different polarizing filter orientations and is
suited to imaging from a static platform and in a horizontal
direction.

Several authors have proposed approaches to com-
pensating for the effect of attenuation on image color. In
(Vasilescu et al., 2010), the authors present an active imaging
strategy that adaptively illuminates a scene during imaging
based on the average depth from the camera. The approach
alters the color balance of the strobe lighting source (for ex-
ample, to increase red light for scenes farther from the cam-
era) but uses only one depth value (derived from the camera
focal length) per scene, neglecting the case where different
objects in a single scene are observed at different ranges
to the camera. In (Yamashita et al., 2007), the authors pro-
pose a method for correcting underwater images for color
attenuation by estimating attenuation coefficients using ei-
ther a single image captured both underwater and in air or
two underwater images captured at different depth values.
The method relies on a controlled setup for capturing im-
ages and is only demonstrated on three images. Similarly,
the authors of (Sedlazeck et al., 2009) present a method for
color-correcting underwater images for attenuation using
known terrain structure under the assumption that a suffi-
cient number of “white” points can be identified in the data,
either from known properties of the scene or by using cali-
bration targets. While these approaches are insightful, they
are typically impractical in large-scale, unstructured under-
water environments. In (Torres-Mendez & Dudek, 2005),
the authors present a learning-based approach to color cor-
rection that learns the average relationship between colors
underwater and in air using training points of images of
the same objects both in and out of water. The approach ig-
nores the effect of distance-based attenuation, instead learn-
ing a single transformation that corresponds to an object at
a fixed imaging distance. These past approaches to under-
water color correction either ignore the explicit causes of
attenuation or require complicated and limiting calibration
setups for attenuation-compensation, which are logistically
impractical in large-scale surveying in unstructured under-
water environments.

2.3. Underwater Imaging Using AUVs

AUVs are increasingly used for oceanic and seafloor re-
search and monitoring as a replacement for traditional
means of exploration such as scuba diving and ship-towed
video. AUVs are particularly well suited to tasks such
as multibeam sonar surveying and high-resolution optical

imaging of the seafloor because of their ability for precise
trajectory control and reduced reliance on a surface ves-
sel (when compared to remotely operated vehicles [ROVs]).
AUVs provide the ability to collect large numbers of poten-
tially overlapping images that are time-registered to other
navigation sensor data collected by the AUV. The authors
in (Kaeli, Singh, Murphy, & Kunz, 2011), for example, use
data from a Doppler velocity log to approximate the pla-
nar depth of a camera mounted to a towed robotic system
that was then used to correct for the lighting beam pat-
tern in underwater images. The sensor data collected by
AUVs allows for the recovery of 3D and other spatial in-
formation using techniques in structure-from-motion, pho-
togrammetry, and simultaneous localization and mapping
(SLAM) (Campos, Garcia, & Nicosevici, 2011; Campos, Gar-
cia, Alliez, & Yvinec, 2015; Eustice, Pizarro, & Singh, 2008;
Johnson-Roberson et al., 2010; Mahon et al., 2008). For ex-
ample, the Australian Centre for Field Robotics operates
two oceangoing AUVs, Iver and Sirius (see Figure 5) that
are capable of undertaking high-resolution, georeferenced
surveys and are currently used as part of Australia’s Inte-
grated Marine Observing System (IMOS) (Williams et al.,
2012). As part of the IMOS program, Sirius is deployed at
several key locations along Australian coastal waters on a
yearly basis to perform repeated surveys and collect data
that can be used for long-term monitoring. Both platforms
use stereo image data and other navigation sensor informa-
tion onboard the AUV to build 3D reconstructions of the
underwater terrain associated with the imagery (Johnson-
Roberson, Bryson, Douillard, Pizarro, & Williams, 2013;
Johnson-Roberson, Pizarro, Williams, & Mahon, 2010; Ma-
hon, Williams, Pizarro, & Johnson-Roberson, 2008).

The ability to produce this information co-registered to
the collected imagery provides most of the input required
for explicitly correcting for spatially dependent underwater
image formation effects (such as attenuation). The authors
in (Sedlazeck et al., 2009) utilize these techniques to build
3D models that provide data to an inverse image formation
model but still require additional assumptions about the col-
ors of objects in the environment (i.e., white points). In the
authors’ previous work (Bryson et al., 2012), we developed a
method for improving color consistency in multiperspective
underwater imaging by using a color-balancing algorithm
that accounted for attenuation. This algorithm balanced the
gain between the red, green, and blue channels of the image
(using structure-from-motion-derived scene ranges) by as-
suming that the overall distribution of colors in the world
was gray and that colors were distributed evenly over dif-
ferent ranges to the camera. While providing color consis-
tency, this algorithm did not provide true color per se and
exhibited poor performance in environments in which the
spatially even grayworld assumption was violated.

In contrast to past work, the contribution of our work
in this paper is the development of a method for recovering
true color from underwater images by explicitly accounting
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for spatially dependent underwater image formation with-
out requiring an in situ color calibration setup.

3. METHODOLOGY

This section of the paper provides a background in un-
derwater structure-from-motion, presents our underwater
image formation model, and describes our approach to un-
derwater image correction.

3.1. Underwater Structure from Motion

The color correction strategy discussed throughout the rest
of the paper exploits knowledge about precise distances be-
tween the camera and each point in an observed scene. This
information can be gained from a variety of different meth-
ods that use either stereo images or sufficiently overlapping
monocular images (see Section 2.3 above). In this paper, this
information is generated using an existing structure-from-
motion processing pipeline (Johnson-Roberson et al., 2013,
2010; Mahon et al., 2008). The processing pipeline is made
up of the following steps:

1. Data collection: Overlapping stereo-image pairs are col-
lected over an underwater scene using an AUV. Addi-
tional navigation sensor data are also collected (a depth
sensor, Doppler-velocity sensor, and attitude sensors) to
assist in localization and mapping accuracy over long-
distance transects made by the AUV.

2. Image Feature Processing: Scale invariant feature trans-
form (SIFT) feature points (Lowe, 2004) are extracted
from each stereo-image pair and used to compute pose-
relative 3D point features. These pose-relative point fea-
tures are also matched and tracked across overlapping
poses to generate pose-to-pose relative position and ori-
entation constraints.

3. Pose Recovery: The pose-to-pose relative constraints are
used in a SLAM algorithm (Mahon et al., 2008) with ad-
ditional navigation sensor information to compute the
trajectory of the platform and precision three-axis orien-
tation at each pose.

4. Terrain Surface Map Recovery: The estimated trajec-
tory and pose-relative 3D point features are then used to
construct a global feature map of the terrain. The point
feature map is resampled and triangulated to produce a
terrain surface model. Using the estimated poses and 3D
terrain surface model, it is therefore possible to compute
the relative position (and therefore range) of any point
on the terrain to the position of the camera and lights
during the capture of any of the images in the data set.

5. Mosaic Reconstruction and Visualization: For visual-
ization, the surface model is photo-textured by projecting
color camera images onto the estimated terrain structure,
and orthographic projections of this model are rendered
to produce imagery mosaics (Johnson-Roberson et al.,
2013, 2010).

Further details on the approach used can be found in
(Johnson-Roberson et al., 2013, 2010; Mahon et al., 2008).

3.2. Underwater Image Formation Model

In this section, we develop an underwater image formation
model that encapsulates the effects of ocean water on light
and describes the measured intensity of a point in an image
as a function of the albedo (reflectance) of the point. Figure
2 illustrates the overall image formation model, which is
described in detail in the subsections below. Figure 2(a)
shows the relative position of the AUV, the onboard camera,
the onboard lights used to illuminate the imaged terrain,
and the position of a point of interest seen by the camera.
The relative position of the lights, camera, and imaged point
are all described using vectors referenced with respect to an
orthogonal coordinate system centered at the focal point of
the camera (referred to as the “camera frame,” for which
vectors are labeled with a superscript c).

3.2.1. Lighting Parameters

Our model considers a number of directional light sources
attached to the AUV and used to illuminate the imaged
scene. We consider the scenario in which the AUV operates
at a sufficient depth that these are the only sources of light in
the scene (i.e., sunlight does not provide a significant frac-
tion of the illumination of the surface) or that the platform
operates at night. This restriction reduces the complexity
of our image formation model and allows the model to be
used in situations in which there does not exist accurate
and detailed information about external illumination con-
ditions (such as water surface conditions, cloud cover, and
atmospheric conditions/haze) at the time of imaging. More
discussion of this restriction is provided in Section 6 at the
end of the paper.

The position of each light with respect to the camera is
denoted by the vectors pc

li
where i = 1 to Nl and where Nl

is the number of lights. Each light has a centerline vector
uc

li
, which describes the principal pointing direction of the

light (see Figure 2 (b)). The power of light emanating from
the source is maximal along this vector and drops off in in-
tensity when emanating from directions with an increasing
angle φ from the centerline. Assuming the use of a Gaussian
diffuser in front of the light source (common in underwa-
ter applications), the directional reduction in light power is
modeled using a Gaussian function:

Pφ(λ) = P0(λ)e
− 1

2
φ2

σ2
l (1)

σl =
√

φ2
50%

−2 log 0.5
, (2)

where P0(λ) is the maximum light power at the centerline,
Pφ(λ) is the light power at angle φ (both a function of λ,
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Figure 2. Underwater image formation model: Our model accounts for images of an underwater scene taken from a moving
platform such as an AUV (a). Our model accounts for illumination of the scene from a number of light sources, each with a
nonuniform spatial pattern (b). Light is attenuated through the water column on its way to the target surface and reflected based on
a Lambertian surface assumption (c). Light is further attenuated on its way back to the camera, and the contribution of backscatter
in the water between the camera and the target is included (d). Last, our model considers the vignetting and sensor response
function of the camera (e).

the wavelength of light considered), and φ50% is the angle at
which the light power drops to 50% of the maximum value.
In our experimental setup, φ50% = 40◦, which was deter-
mined using information provided by the manufacturer of
the light source.

3.2.2. Object Reflection Model

Albedo (sometimes referred to as reflectance) is the ratio
of light reflected from a surface to the light falling on it
and is an inherent property of the surface type. For most
surfaces, albedo is a function of the wavelength of light
considered. In this paper, we consider the albedo of an object
at the principal wavelengths measured by the camera (i.e.,
red, green, and blue) the combination of which defines the
color and brightness of an object, normalized against the
brightness and color of the illuminating light source.

For general surfaces, the albedo of a surface is depen-
dent on the direction from which light hits the surface and
the direction from which the surface is viewed and is charac-
terized by a bidirectional reflectance distribution function
(BRDF). The use of the BRDF is beyond the scope of our

work; instead, we only consider Lambertian surfaces (oth-
erwise known as diffuse reflective surfaces) in which light is
scattered from the surface reflection equally in all directions
and in which the albedo is independent of the perspective
of the viewing direction and only on the perspective of the
illumination source (Pedrotti & Pedrotti, 1993). In this case,
the power of reflected light from the surface R is depen-
dent on the light arriving from each lighting source and is
modeled by Lambert’s cosine law:

R(λ) = a(λ)
Nl∑
i=1

(Li(λ) cos θi) , (3)

where θi is the angle between the surface normal vector and
the light arriving at the surface, Li , for each light (see Figure
2 (c)), and a(λ) is the albedo of the surface at wavelength λ.

3.2.3. Water-Based Attenuation and Backscatter

As light travels through water, it is attenuated according to
the distance traveled. Equation 4 describes the relationship
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between light power at a source L0 and destination Ld sep-
arated by distance d (Jaffe, 1990):

Ld (λ) = L0(λ)e−b(λ)d , (4)

where b(λ) is the attenuation coefficient of the water at wave-
length λ. In the underwater image formation model, light
is attenuated both on its way from the light source to the
imaged point and from the imaged point back up toward
the camera. The light power arriving at the surface from
each light source, Li , is thus:

Li = Pφi
e−b(λ)rli , (5)

where rli is the range from light i to the imaged point.
The light power arriving at the camera once reflected from
the surface is

Lc = R(λ)e−b(λ)rc , (6)

where Lc is the light arriving at the camera correspond-
ing to the surface point and rc is the range from the camera
to the point.

In addition to attenuation, the model also consid-
ers backscattered light. Figure 2(d) illustrates the effect of
backscattered light on images. Light coming from the two
light sources is randomly scattered as it travels through
the water medium in front of the camera. For all scattering
events that occur with light passing through (but not in the
same direction as) the exact line of sight between the surface
point and the camera, some proportion of the scattered light
will be reflected back toward the camera. If we make the ap-
proximation that the proportion of scattered light (γ (λ)) has
a uniform directional distribution, then the total quantity of
backscattered light arriving at the camera (B(λ)) is given by
Eq. 7 (Jaffe, 1990):

B(λ) =
∫ rc

0
γ (λ)L(r)e−b(λ)rdr, (7)

where L(r) is a function describing the total light arriving
at each point of the camera line of sight as a function of the
distance along the line of sight (r). In practice, we found that
L(r) could be approximated as being constant and that the
resulting magnitude of backscattered light could be com-
puted by:

B(λ) =
∫ rc

0
γ (λ)Le−b(λ)rdrc (8)

= γ (λ)L
b(λ)

[
1 − e−b(λ)rc

]

= β(λ)
b(λ)

[
1 − e−b(λ)rc

]
,

where β(λ) = γ (λ)L.

3.2.4. Camera Model

Light traveling through the lens of the camera undergoes
a fade-out in intensity toward the corners of the image via
the effect of vignetting (Kim & Pollefeys, 2008). Vignetting is
caused primarily by the geometry of light passing through
the lens and aperture of the camera; light passing in from
greater angles to the principal axis of the camera is partially
shaded by the aperture and sometimes by the lens housing.
Vignetting can be summarized by:

E = C(α)L, (9)

where L is the light arriving at the front of the lens, E is the
light arriving at the camera image sensor (irradiance), and
C(α) is a vignetting coefficient, modeled as a polynomial
function of α, the angle between the light ray entering the
camera and the principal axis of the camera frame (vector
that crosses through the principal point in the image and
the camera focal point):

C(α) = 1 + Cα2α
2 + Cα4α

4 + Cα6α
6, (10)

where Cα2, Cα4, and Cα6 are polynomial coefficients. The
last step in image formation occurs when light arriving at
the image sensor of the camera is converted into an image
intensity value I , via the sensor response function of the
camera f (·):

I = f (kE), (11)

where k is the exposure constant, typically proportionate to
the shutter speed of the camera. The sensor response func-
tion f (·) can take a variety of forms, for example, a gamma
curve, and is typically controlled by camera firmware. A de-
tailed discussion of sensor response functions can be found
in (Grossberg & Nayar, 2004). In our model, we assume
that the sensor response function is linear and normalized
between zero and one, such that:

I = kE (12)

For cameras with a nonlinear response function, the method
described in (Grossberg & Nayar, 2004) can be used to apply
an inverse of the response function f (·) that is normalized
in this way.

3.2.5. Complete Image Formation Model

By combining Eqs. 1, 3, 5, 6, 7, 10, and 12, the complete
image formation model is described by Eq. 13:

I (λ) = k

⎡
⎣C(α)a(λ)

i=1∑
Nl

(
Pφi cos θie

−b(λ)(rc+rli )) + B(λ)

⎤
⎦ (13)

The parameters rc, rli , φi , θi , and α can all be measured from
the physical geometry of the relative positions and point-
ing angles of the lights, camera, and scene point, which
can easily be extracted from data provided by the under-
water structure-from-motion pipeline described in Section
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3.1. We assume the exposure constant k is known for each
image from the recorded shutter speed of the camera. The
parameters Cα2, Cα4 and Cα6 are unknown coefficients of the
camera used, and the parameters b(λ) and β(λ) are unknown
coefficients of the water column.

Given a means to estimate the unknown parameters
described above, an inverse version of Eq. 13 can be used
to compute the albedo of a scene point from the measured
intensity of the object within an image:

a(λ) =
[

I (λ)
k

− B(λ)
]

1
K

(14)

K = C(α)
i=1∑
Nl

(
Pφi cos θ1e

−b(λ)(rc+rli ))

By setting the light source power P0,i = 1 (a unit value)
for each of the light sources, the calculated albedo is rela-
tive to the power of the light source at the specified wave-
length of the channel, and the corrected image intensities
correspond to the intensity of the object imaged under the
spectral color of the light source. A further processing step
is required for calculating the albedo relative to a white light
source (using knowledge of the light spectral power) and is
discussed below in Section 3.4.

3.3. Estimation of Image Formation Parameters

In this section, we develop an approach to estimating the
unknown underwater image formation model parameters
discussed above. Consider Eq. 13. At first, it seems neces-
sary to provide a collection of measured image point in-
tensities and known corresponding object albedos in order
to compute the unknown coefficients of the water column
or camera response/vignetting. In this section, we develop
a method for estimating these parameters using only the
measured image point intensities of a collection of surface
points. Our method simultaneously estimates the albedos
of the scene points along with the camera/water param-
eters by using multiple co-registered observations of each
point from different image perspectives. Our approach com-
putes a maximum-likelihood estimate, using nonlinear least
squares and Levenberg-Marquardt optimization of the un-
known parameters using a small subset of the total number
of scene points available on the 3D terrain surface provided
by structure-from-motion. Once the camera and water col-
umn parameters have been computed, the albedo of any
point on the terrain surface can be computed using Eq. 14.
We estimate different sets of parameters for each of the red,
green, and blue channels collected by the camera.

3.3.1. Estimated Parameter and Observation Vectors

The parameter estimation procedure begins by selecting
a set of small triangular surface elements lying on the
terrain that have each been observed multiple times and

co-registered across the corresponding series of images (see
Figure 3). A subset of N triangles across the whole terrain
surface is selected randomly, rather than considering ev-
ery single triangular face. For each image channel, the esti-
mated parameter vector x is composed of the albedo of each
of these triangles along with the attenuation and backscat-
ter coefficients and camera vignetting parameters, all at the
corresponding wavelength of the channel:

x = [b, β, Cα2, Cα4, Cα6, a1, a2, . . . , aN ]T (15)

For each triangle, the positions of the 3D vertex points are
projected into the camera reference frame for each of the
captured images and used to select the set of images from
which the triangle was seen. For each corresponding im-
age, the midpoint of the triangle is used to compute the
range from the triangle to the camera and to each of the
lights. Using the vector from each light to the triangle mid-
point and the triangle normal vector (both referenced in the
camera frame), the angles φ and θ are computed for each
light source. The intensity of the pixels lying within the re-
projected triangles are averaged for each of the red, green,
and blue channels (see Figure 3). Because values are aver-
aged over each triangle, our method assumes the case that
the triangular surface regions are small with respect to the
distance from the camera (in our case, approximately 3cm
across the longest axis, whereas images are captured at a
range of approximately 1.5 to 5 m from the surface).

For a given channel, the observation vector z is com-
posed of the average measured image intensities (I ) for the
reprojected triangle in each image of each scene triangle:

z = [I 1
1 , I 2

1 , . . . , I
M1
1 , I 1

2 , I 2
2 , . . . , I

M2
2 , . . . , I 1

N, I 2
N, . . . , I

MN
N ]T ,

(16)

where for each I the subscript represents the scene triangle
number (1 to N ) and the superscript represents the image
number for a given scene triangle (1 to Mi), where Mi is the
total number of images of the ith triangle on the 3D terrain
surface. The relationship between an observation I

j
i (i.e., the

j th observation of the ith scene triangle) and the estimated
parameters is described by the function hi,j (·):

I
j
i = hi,j (b, β, Cα2, Cα4, Cα6, ai) (17)

which is identical in form to Eq. 13 (note that the terms rc, rl1,
rl2, φ, θ , α, and k are all assumed to be known and thus inher-
ent to hi,j (·) itself). Therefore, the total observation function
h(·) is defined by the concatenation of observation functions
for all observations of all scene points and is described by
the relationship z = h(x).
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Figure 3. Extracting image intensity measurements from structure-from-motion data for image formation model parameter
estimation: (a) Recursively zoomed-in views of 3D terrain surface model with selected scene triangle. (b) Example images that
captured the scene triangle with triangle reprojected into each image using structure-from-motion computed poses. (c) Highlighted
section of image 2 showing reprojected triangle and bar graph of average red, green, and blue intensities corresponding to the
pixels inside the triangle.

3.3.2. Nonlinear Least Squares and Levenberg-Marquardt

The aim of the parameter estimation procedure is to estimate
a parameter vector x̂ that minimizes the weighted nonlinear
least squares cost function:

x̂ = argmin
1
2

(z − h(x̂))T 	−1(z − h(x̂)), (18)

where 	 is a diagonal covariance matrix, representing the
modeled noise in the measured image intensities and h(x̂)
is the predicted value of the observation vector given a
parameter estimate x̂.

Our solution procedure uses a Levenberg-Marquardt
optimization (Marquardt, 1963) to iteratively converge on

the final estimate using an initial parameter guess x̂0. At
each step of the iteration, an updated parameter estimate
x̂new = x̂prev + δx is computed from the previous parameter
estimate x̂prev and update vector δx, computed by solving
the linear system in Eq. 19:[

Y + ωdiag(Y)
]
δx = y, (19)

where diag(Y) is the diagonal of the matrix Y, ω is the
Levenberg-Marquardt adaptive damping factor and:

Y = ∇HT 	−1∇H (20)

y = ∇HT 	−1 (z − h(x)) (21)
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where ∇H is the Jacobian of h(x) computed at the current
estimate of x̂, and Y, y are commonly referred to as the
information matrix and vector, respectively. Sparse matrix
methods are used to store and perform operations on Y
using a Cholesky factorization in column-compressed form
(Davis, 2006).

3.3.3. Removing Outliers

Because of a variety of factors, not all of the measured image
intensities in the observation vector z fit well to the image
formation model described in Section 3.2. Factors that cause
a large discrepancy between the measured image intensity
I

j
i and predicted image intensity hi,j (x̂) include image noise,

errors in the reconstructed terrain model (incorrectly recov-
ered surface angle), camera pose errors (surface triangle
misregistration), and object surfaces with largely specular
reflection. To remove these effects, an automatic outlier de-
tection scheme is built into the parameter estimation pro-
cedure that rejects observations and scene triangles from z
and x that violate the model assumptions, detected through
the associated residual vector ρ = z − h(x̂) during the esti-
mation cycle.

During each step of the estimation cycle, the average
residual is computed from the residual vector ρ. Observa-
tions corresponding to a residual with an absolute value
greater than three times the average residual are removed
from the observation vector, and when two or more outliers
are discovered from a given scene triangle, the triangle itself
is removed from the parameter vector.

3.3.4. Nonlinear Least Squares Procedure

The overall parameter estimation procedure is shown in
Algorithm 1.

Algorithm 1: Non-linear least squares procedure based on Levenberg-Marquardt optimisation for estimating
underwater image formation parameters and scene triangle albedos using the measured intensities in co-
registered image points.
Input: z, x̂0

Output: x̂
Set initial guess x̂ = x̂0; tol = 1 × 10−9; norm(δx) = 1;
while norm(δx) > tol do

Compute residual vector ρ = z − h(x);
for i = 1 to m do

if abs(ρi) is greater than three times average residual, remove observation;
end
Compute ∇H, Y and y;
Solve Equation 19 for δx using Cholesky factorisation and triangular system solving;
Update parameter estimate x̂ = x̂ + δx;
Adjust ω based on convergence criteria (see (Marquardt, 1963));

end

In practice, the estimation procedure exhibited good
convergence properties for a range of different initial pa-
rameter guesses. The initial parameter guess x̂0 was set
with the parameters b, β, Cα2, Cα4, Cα6 = 0, and the scene
triangles albedos a1, a2, . . . , aN as the average of the mea-
sured intensities across the corresponding images relating
to that triangle (i.e., aN = 1

MN

∑MN

j=1 I
j
N ). We found, for the

observations made in our experimental data sets, that we
could set the initial guess of the attenuation and backscat-
ter coefficients at any value between b = 0, β = 0, and a
reasonable guess for standard seawater (i.e., b = 0.2 − 0.5,
β = 0.02 − 0.06 (Mobley, 1994)) and still achieve the same
stable convergence in the estimation of these parameters
using the Levenberg-Marquardt optimization.

3.4. Re-rendering True Color Images

3.4.1. Re-rendering Images

Once the image formation parameters have been estimated,
Eq. 14 is used to recover the albedo of each pixel in each im-
age. Values for the camera-to-surface and light-to-surface
distances and angles (i.e., rc, rl1, rl2, φ, θ ) are computed
at each pixel by linearly interpolating between the values
at the nodes of the triangles in the terrain surface model,
projected into the camera’s frame of reference. Figure 4 il-
lustrates the parameter rendering process for some of the
model parameters. Once the albedo at each pixel has been
recovered, a set of “true-color” images is reconstructed. Im-
ages are applied through an air-based and vignetting-free
image formation model, which assumes the scene is illu-
minated from directly above and captured with a constant
exposure time. For each pixel, the air-based image intensity
Iair (λ) is computed using Eq. 22:

Iair (λ) = a(λ) cos θz, (22)
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Figure 4. Rendering of image formation model parameters in
the image correction process: (a) A color image captured by
the AUV. (b) Range-image of the scene in which the intensity
represents the range from the camera to the scene surface at
each pixel. (c, d) Surface reflection/shading images in which the
intensity represents the cosθ value (cosine of angle between the
light pointing vector and surface normal vector) for each pixel,
in which (c) is for reflection with respect to a front-mounted
strobe and (d) is for a rear-mounted strobe.

where θz is the angle between the surface normal vector
and the vertical vector [0, 0, 1]T , representing sunlight from
directly overhead.

3.4.2. Accounting for Camera Spectral Response and
Artificial Lighting Spectrum

When applied over the red, green, and blue color chan-
nels, Eq. 22 results in an image in which the intensity of
colors represents that seen by the camera in air and illumi-
nated from above, but with an illumination color based on
that provided by the artificial lighting carried by the AUV.
In the case in which knowledge of the camera spectral re-
sponse function and illumination spectrum are available,
these functions can be used to produce images as seen by a
white light source. This processing step is useful, for exam-
ple, in situations in which images from different dives of a
single area, captured using differently colored light sources,
are to be compared.

The camera spectral response function g(λ) represents,
for a given color channel, the sensitivity of the camera’s sen-
sor to light at a particular wavelength λ. The illumination
source spectrum function j (λ) represents the power of the

light output over different wavelengths. When these func-
tions are known (typically provided by camera/light man-
ufacturers or can be determined using simple laboratory
procedures (Finlayson et al., 1998)), the estimated response
of the camera to a white target, under the lights, in each
color channel can be estimated. For the red, green, and blue
color channels, the expected white object responses are

T (red) =
∫

gred (λ)j (λ)dλ (23)

T (green) =
∫

ggreen(λ)j (λ)dλ (24)

T (blue) =
∫

gblue(λ)j (λ)dλ (25)

where Tred , Tgreen and Tblue are the white target expected
image intensities and gred (λ), ggreen(λ) and gblue(λ) are the
camera response functions for the red, green, and blue chan-
nels, respectively. Alternatively, Tred , Tgreen, and Tblue can be
determined by imaging a spectrally white reflection panel
using the camera and light source. The corrected image in-
tensities in Eq. 22 can then be normalized to a white light
source/balanced camera via the equations:

Iair,white(red) =
1

T (red)

max( 1
T (red) ,

1
T (green) ,

1
T (blue) )

Iair (red) (26)

Iair,white(green) =
1

T (green)

max( 1
T (red) ,

1
T (green) ,

1
T (blue) )

Iair (green) (27)

Iair,white(blue) =
1

T (blue)

max( 1
T (red) ,

1
T (green) ,

1
T (blue) )

Iair (blue) (28)

to produce an image that would be obtained for a white-
colored illumination and a camera with equal sensitivities
in the red, green, and blue channels, respectively.

4. EXPERIMENTAL SETUP

To evaluate the proposed image correction technique, we
applied our algorithm to imagery collected during two dif-
ferent AUV dives using two different AUV platforms (Iver
and Sirius, see Figure 5). Both platforms carried a sensor
suite, consisting of a stereo-camera system, depth sensor,
attitude heading and reference system, and GPS (for sur-
face operation), which were logged and postprocessed to
produce 3D, georeferenced structure-from-motion models
of the underwater terrain over which they operated. The
specifications of the sensors carried in both experiments are
shown in Table I.

Both AUV systems fielded a stereo-camera rig that com-
prising a color Bayer-sensor camera and a monochrome
camera (all color processing was applied to the color im-
ages only). Images were captured in a raw format, which
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Figure 5. Experimental setup: AUV Iver and AUV Sirius.

was later de-mosaicked to three color channels at a resolu-
tion of 1360-by-1024 pixels with a depth of 12 bits and with
constant exposure parameters. Artificial light was provided
by two strobes on each platform that were placed at the front

Table I. Specifications of AUV platforms and sensors used in
the experimental setup.

Iver AUV Sirius AUV

Size 2.0x1.5x1.5m 2.0x1.5x1.5m
Mass 45kg 200kg
Depth Rating 100m 800m
Camera Type Prosilica 12B CCD,

1360x1024pix
Prosilica 12B CCD,

1360x1024pix
Frame Rate 2Hz 2Hz
Exposure manual, constant manual, constant
Artificial Lights Dual Strobes (LED

Array)
Dual Strobes
(Xenon Flash)

Typical Altitude 2-4m 1-3m
Other Sensors Depth, DVL Depth, DVL, USBL

and rear of the AUVs. Images were captured in a downward
orientation while each AUV moved back-and-forth across
the terrain, producing many overlapping images.

For each dive, we compared images produced by our
correction scheme to the original, unprocessed images and
to images processed using a grayworld algorithm (see
(Bryson et al., 2012; Buchsbaum, 1980)). The grayworld al-
gorithm computes a scale and offset for each of the red,
green, and blue color channels applied across all images
such that the resulting distribution of intensities in each
channel matches a specified mean and variance. When the
desired mean and variance is set to be equal in each channel,
the color channels are well matched, under the assumption
that, on average, the color of objects in all of the images is
gray. The grayworld correction is frequently applied in un-
derwater images to balance the blue hue shift, which is often
observed due to attenuation. The specified mean and vari-
ance of the image signals used in the grayworld algorithm
were 0.5 and 0.162, respectively.

4.1. Clovelly Validation Data Set (Iver)

Imagery was collected using the Iver AUV at Clovelly
Beach, Sydney, Australia, in a validation data set to quantita-
tively assess the accuracy of the color correction technique.
The dive site was close to the shore and within a relatively
sheltered area, which allowed for a diver to place color ref-
erence targets in the mission area. Imagery was collected
over an area of approximately 10m by 10 m in a rubble-
dominated bottom type in about 3-4 m of water depth and
at a range of platform altitudes from approximately 1 m to
4 m. A Macbeth color reference chart was placed in the mis-
sion area, which provided 24 different color patches, with
known spectral reflectance data. The dive was performed at
night such that the ambient light had a negligible effect on
the seafloor. In addition to the underwater images, images
were taken of the Macbeth color chart in air by holding the
platform out of the water using the same camera and lights,
to provide air reference images against which the corrected
underwater images could be assessed.

After the data were collected, the SLAM/meshing soft-
ware pipeline described in (Johnson-Roberson et al., 2013,
2010; Mahon et al., 2008) was used to build 3D phototex-
tured models of the seafloor area surrounding the dive site,
including the color reference targets, using approximately
700 stereo-image pairs. A random subset of 1,000 faces of
the resulting 3D terrain surface model were used follow-
ing the method outlined in Section 3.3 to estimate the im-
age formation model parameters. The selected faces were
examined to ensure that none corresponded to the Mac-
beth color chart to ensure that the algorithm would only be
provided with naturally occurring surfaces. The estimated
parameters were used in Equations 14 and 22 with the orig-
inal unprocessed underwater images to produce corrected
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images. Grayworld-corrected images were produced using
the statistics across all 700-color images.

For each set of images (uncorrected, grayworld-
corrected, and image model-corrected), 24 patches from
each of 97 of the images (those in which the Macbeth color
board was visible) were extracted corresponding to each of
the 24 Macbeth color panels. To compare the color intensities
of the extracted panels in each set of images to those in the
in-air reference image, the image intensities were normal-
ized by using a linear transformation based on the average
intensities of the brightest panel (Macbeth white panel, ID
18) and the darkest panel (Macbeth black panel, ID 23):

Inorm,j (λ) = mIj (λ) + o (29)

where

m = 1
μwhite − μblack

(30)

o = μblack

μwhite − μblack

(31)

μwhite = 1
3

λ=(R,G,B)∑ 1
Nimage

j=1∑
Nimage

Iwhite
j (λ) (32)

μblack = 1
3

λ=(R,G,B)∑ 1
Nimage

j=1∑
Nimage

I black
j (λ), (33)

where, for a given set of images, Inorm,j is the normalized
image intensity of the j th image, μwhite is the average image
intensity of the white panel, and μblack is the average image
intensity of the black panel across all Nimage images and
three-color channels. The normalized intensities therefore
maintained the color balance present in each set of images
but scaled the magnitudes of absolute intensity to be equal,
such that comparison was possible.

4.2. Tasmania Urchin Barrens Data Set (Sirius)

Imagery collected by the Sirius AUV over an urchin barren
off the coast of St Helens, Tasmania, Australia, was used to
assess the performance of the color correction algorithms
both quantitatively and qualitatively. Approximately 6,300
images were collected over a 25 m by 15 m area that was
made up predominantly of large boulders, in water depths
of approximately 30 m. Owing to the rugous nature of the
terrain, the AUV’s altitude varied from about 1 m to 3 m dur-
ing the dive. The image formation model parameters in Eq.
15 were estimated using our technique. Extracted raw image
data were used from 1,000 randomly selected faces for the
parameter estimation phase of the algorithm, and images
from the entire dive were corrected using the image model-
correction scheme and grayworld correction algorithm. The
resulting images were used to phototexture a 3D model of
the terrain (generated through the SLAM/meshing process

described in (Johnson-Roberson et al., 2013, 2010; Mahon
et al., 2008)), and orthographic projections of this model
were used to render overhead imagery mosaics.

No color reference data were available for this dive.
Therefore, to assess the performance of the color correction
scheme, we computed the variations in colors in each ter-
rain model face based on all of the images that observed
a given face. The image sets that were produced by the
different methods (uncorrected, grayworld-corrected, and
model-corrected) were gain-normalized, such that variance
measures were comparable. For each set of images, a gain
was applied to the intensities such that the standard devi-
ation of all intensities in all images was equal to one. As in
Section 4.1, the same gain value was applied to all of the red,
green, and blue image channels to preserve the color balance
in each method. Once the images were normalized, for each
terrain face, we computed all of the images that saw that
face (using the structure-from-motion relationships, typi-
cally 10-100 images) and reprojected the face coordinates
into each image. The red, green, and blue intensities of the
reprojected patches were extracted. The standard deviation
of extracted colors was computed, and these standard de-
viation values averaged over all faces in the terrain model.

The spectral response functions of the camera and
xenon strobe light sources were ascertained from manu-
facturer’s data (see Figure 6) and used to compute white-
balanced scaling parameters using Eqs. 26 to 28. The image
model corrected images were then scaled using these equa-
tions, and the resulting images used to create an imagery

Figure 6. Camera spectral response functions (for each color
channel) and artificial strobe lighting spectrum (taken from
manufacturer’s data).

Journal of Field Robotics DOI 10.1002/rob



866 • Journal of Field Robotics—2016

mosaic for which the colors represented an approximation
of the scene in air and illuminated by white lights from
directly overhead.

5. RESULTS

5.1. Clovelly Data Set

Figure 7 shows example images from various perspectives
from the Clovelly data set of the unprocessed underwater
images, grayworld-corrected images, and the image forma-

tion model-corrected images. The uncorrected images (Fig-
ure 7(a)) exhibit a strong blue hue, owing to the color at-
tenuation of the water. The grayworld images (Figure 7(b))
exhibit a color balance that is much closer to what would be
observed in air but still with a slight blue hue and, like the
uncorrected images, exhibit large variations in intensity and
color shifts, depending on the range to the camera and po-
sition with respect to the lights. The image model-corrected
images (Figure 7 (c)) exhibit colors, which represent the ap-
pearance of the scene in air, under that illumination of the

Figure 7. Example images at varying depths of the uncorrected, grayworld-corrected, and image model-corrected images
(Clovelly). The uncorrected and grayworld-corrected images exhibit intensity and color shifts with varying imaging perspec-
tive, whereas the image model-corrected images exhibit a consistent color cast, representing the appearance of the scene in-air and
under the illumination color of the lights carried by the AUV.
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Figure 8. Rendered Macbeth color panels using image data taken from raw underwater images, underwater images corrected
using the grayworld and image model correction schemes, and images in air.

light source on the AUV (a slight green hue). The variation
in color and intensity in the images with changes in per-
spective are minimal, owing to the model correction, and
as would be expected if the scene were to be imaged in air
and accounting for the camera vignetting and light spatial
distribution.

Figure 8 illustrates rendered Macbeth color charts using
the average colors present across the 97 images in which
the Macbeth color chart was in-frame. Figure 8(a) shows
the colors present in the uncorrected images, which have a
strong blue-green color cast. Figure 8(b) shows the colors
for the grayworld-corrected images. Figure 8(c) shows the

colors for the image model-corrected images, and Figure
8(d) shows the colors from an image captured in air. The
grayworld image colors are more closely matched to the in-
air colors than those of the unprocessed images; however,
the image model-corrected colors most closely approximate
the in-air images.

Figure 9 illustrates the range of colors present in each
image set for one of the Macbeth color panels (Neutral 8,
corresponding to a bright, gray color) plotted as a function
of the range of the color chart to the camera in each image.
The uncorrected and grayworld corrected image colors vary
significantly and are strongly correlated to range, whereas
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Figure 9. Variations in the appearance of grayscale Macbeth
panel 19 (Neutral 8) vs. range of the panel to the camera for
three image types: (i) raw, uncorrected images, (ii) images cor-
rected using a grayworld correction scheme, and (iii) images
corrected using our underwater image formation model cor-
rection scheme.

the image model-corrected image colors exhibit almost no
correlation to range and are closer to the actual gray of the
panel. The panel colors do display small shifts away from
gray at the very closest and farthest ranges; this is indica-
tive that the parameters estimated for the image formation
model probably do not provide a good estimate of image
intensities beyond the ranges of which images were actu-
ally observed during the fitting process (i.e., the model may
have difficulty extrapolating beyond range values observed
in our data set).

Figure 10 shows the means and standard deviations
of the normalized color errors for each of the uncor-
rected, grayworld-corrected, and image model-corrected
image sets when compared to the colors present in the in-
air images. The uncorrected images display both a large
mean offset and standard deviation of color intensities. The
grayworld-corrected images display a reduced mean color
error, but an equivalent level of error in the standard de-
viation of colors from the in-air images. The image model-
corrected images display both a reduced mean error and
reduced error standard deviation when compared to the

Figure 10. Comparison of the red, green, and blue channel normalized intensity errors for the uncorrected images, grayworld-
corrected images, and image formation model-corrected images (errors measured from in-air reference image). The solid bars
represent the absolute value of the mean error, whereas the error bars represent the standard deviation of intensity values (from all
images in the set) around this mean error.
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Figure 11. Example images at varying depths of the uncorrected, grayworld-corrected, and image model-corrected images
(Tasmania).

other approaches, demonstrating the ability of the method
to reproduce both accurate and consistent color.

5.2. Tasmania Urchin Barrens Data Set

Figure 11 shows example images from various perspectives
from the Tasmania urchin barrens data set of the unpro-
cessed underwater images, grayworld-corrected images,
and the image formation model-corrected images. The un-
corrected and grayworld-corrected images exhibit changes
in color and intensity across the regions of each image, ow-
ing to the range of object depths visible within a single scene,

whereas in the model-corrected images, these variations are
greatly mitigated.

Figure 12 shows imagery mosaics of the study site
constructed using the images from each of the processing
schemes. For both the uncorrected images and grayworld-
corrected images, the mosaics exhibits sharp inconsisten-
cies in color and intensity across co-located faces owing
to the different images used to texture each face, which
are captured from varying perspectives and ranges. Most
prominent are the horizontal strips of light and dark that
correspond to the tracklines of the AUV as it passes over
the terrain. The terrain at this site was sloped along the
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Figure 12. Imagery mosaic of urchin barrens using image
data taken from raw underwater images, underwater images
corrected using the grayworld, and image model correction
schemes.

direction of the tracklines of the AUV; the use of a forward-
looking altitude-hold system on the AUV meant that the
vehicle did not follow a consistent altitude when heading
in different directions during multiple, overlapping passes
(i.e., heading up the slope versus heading down the slope).
The resulting trajectories meant that images were captured
across different ranges to the surface. In contrast to Figures
12(a) and 12(b), the mosaic produced using the model cor-
rected images in Figure 12(c) does not contain this artifact;

Figure 13. Average variation of colors in each face based on
image projections for the uncorrected, grayworld-corrected,
and image model-corrected images. The intensity of all image
sets were normalized using a gain parameter that resulted in
the range of all colors in a given image set to have a unit stan-
dard deviation for each channel. The variation in face colors
for the image model-correction scheme is lowest owing to the
higher consistency in multiple images of the same surface.

the image colors and intensities do not vary with imaging
perspective and are consistent across the terrain.

Figure 13 shows a comparison of the average within-
face image color standard deviations for each of the process-
ing schemes. As in other results, the image model-corrected
face textures display a reduced variation in color intensity,
with perspective changes when compared to the uncor-
rected and grayworld corrected sets. Because the grayworld
correction scheme applies only a single gain and offset value
to an image set, the average face variation is equivalent to
that of the uncorrected images when normalized to the same
output distribution, as is shown in this figure. The variation
in face colors for the image model-correction scheme is low-
est owing to the higher consistency in multiple images of
the same surface. This performance metric essentially repre-
sents the average ratio of image intensity variations within
a single terrain model face to the variation of all colors in all
faces. Because the total variation in intensities in the uncor-
rected and grayworld-corrected sets is already high, owing
to the inconsistencies in changes in depth, this performance
measure is in fact unfairly biased against the image model-
correction scheme, which exhibits lower overall variations.
Despite this, the correction scheme still outperforms the
other methods.

Although the images and mosaic textures present in
the model-corrected images are highly consistent, the im-
ages still display a blue-green color cast corresponding to

Journal of Field Robotics DOI 10.1002/rob



Bryson et al.: True Color Correction of Autonomous Underwater Vehicle Imagery • 871

Figure 14. Example image model-corrected images before and after accounting for camera/lights spectral response function data
to estimate the “normal” color of images (appearance under white lights with color-balanced camera).

the illumination color of the artificial strobe lights carried on
the AUV. Figures 14 and 15 compare example images and
imagery mosaics before and after the images are adjusted
to a white light source/balanced camera by applying Eqs.
26 to 28, which use the information about the camera color
sensitivity and light spectrum in Figure 6. The resulting
images display colors that closely approximate the appear-
ance of the scene as if imaged in-air and with white lights,
illuminating the scene from directly above.

6. DISCUSSION

6.1. Advantages and Potential Uses of Our Method

The color-corrected underwater images produced by our
method allow for color to be effectively used in a quantita-
tive fashion in which consistent color measurements are re-
quired. This has potential implication for applications such
as automatic image-based classification of benthic habitats
and organisms by providing consistent colors as features for
automatic classification based on supervised machine learn-
ing. Most current approaches to underwater image classi-
fication either avoid the use of color as an explicit feature
or utilize texture and other features (Beijbom et al., 2012;
Soriano et al., 2001) due to the inconsistencies present when
imaging from varying perspectives. The ability to generate

consistent colors that are independent of the artificial light-
ing source provides the ability to quantitatively compare
imagery collected over multiple, repeated dives using dif-
ferent AUV platforms, which is an important part of long-
term marine habitat monitoring.

Although existing approaches using in situ calibration
setups (such as color boards) also allow for this normaliza-
tion, our approach has the benefit that this infrastructure is
not required. This significantly reduces the complexity of
gathering data in sensitive or deep habitats in which man-
ual placement of color boards is difficult. The method also
allows us to correctly process existing historical imagery
data sets in which no color calibration infrastructure was
used during data collection.

6.2. Limitations

Our processing technique requires 3D structural informa-
tion of the imaged terrain, referenced within the image
data, to provide the necessary inputs to the image formation
model. In cases in which these data are not available or can-
not be ascertained from images (i.e., use of a monocular cam-
era where there is no overlap between subsequent images),
our technique cannot be used. In addition, our technique
is potentially susceptible to errors in the structure-from-
motion processing. In practice, we found that the outlier
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Figure 15. Imagery mosaic of urchin barrens by adjusting
color gains of image model-corrected imagery according to the
known camera response and strobe lighting spectra.

rejection technique described in Section 3.3.3 was effective at
removing these artifacts during the fitting process; however,
these errors were still occasionally present in the corrected
images themselves. The main source of error was due to
incorrect recovery of terrain surface for complex structures
at fine scales that contained high-frequency variations in
shading. Improved methods for recovering fine-scale ter-
rain features (such as dense stereo processing) are likely
to improve on this effect; however, further investigation is
outside of the scope of this paper.

Underwater images have inherently low signal-to-
noise ratio owing to the attenuation of signal through the
water column. When the image inversion process of our
model is used to reverse the effects of attenuation and in-
crease the signal gain appropriately, the noise in the images
is also increased, such that the signal-to-noise of the cor-
rected images is no better than the original image. This was
particularly apparent in regions in images that were far from
the lights and cameras, which displayed large amounts of
noise. For image data in which the real signal is extremely
attenuated (high-altitude imaging or highly turbid water),
it is likely that our correction methodology will not produce
accurate colors or meaningful images.

Our correction methodology assumes that water atten-
uation and scattering coefficients are constant over the area
of the dive. Our approach cannot account for changes that
occur over space or time, for example, in the situation that
sediment is significantly disturbed during an imaging mis-
sion. We do not address the issues of contrast loss due to
forward scattering of light through the water (see (Schech-
ner & Karpel, 2004) for correction methodologies that ad-
dress this issue). Although the reproduced color accuracy is
improved, the spatial resolution and spatial contrast of the
images is not affected.

Our correction methodology only addresses situations
in which the dominant light source is carried onboard the
AUV, meaning our approach (in its current form) cannot
be used when the dominant light source is from the sun or
ambient light. Ambient light can potentially be added to the
image formation model in Eq. 13; however, this would re-
quire explicit knowledge of the relative illumination power
of the sun just below the water’s surface to that of the ar-
tificial lights, which is difficult to measure and varies over
the course of a day, is affected by weather conditions, and
so forth. This aspect is left as a topic for future work.

7. CONCLUSIONS AND FUTURE WORK

This paper has presented an approach to reconstructing the
true color in underwater images by using an underwater
image formation model (and its inverse) that accounts for
water attenuation, scattering, and artificial lighting spatial
distribution. Parameters of the model are estimated from
the image data itself, exploiting spatial information gener-
ated by using structure-from-motion and photogrammetry
techniques, removing the requirement for color calibration
infrastructure to be used during image acquisition. Results
were presented using two different AUV dives, demonstrat-
ing the ability of the method to recover accurate and con-
sistent estimates of scene colors in different environments.

Our recent work has examined the use of hyperspec-
tral sensors for measurements of spectral reflection on the
seafloor (Bongiorno, Bryson, & Williams, 2013). In future
work, we plan to extend the image formation model de-
rived in this paper to the hyperspectral domain for use in
color correction and high-spectral resolution imaging. We
will also extend our correction methodology to situations in
which the underwater scene is illuminated by both artificial
light and sun or ambient light.
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