Online Supplementary Material: Distribution Metric

A. Glocer ${ }^{1}$, L. Rastätter ${ }^{1}$, M. Kuznetsova ${ }^{1}$, A. Pulkkinen ${ }^{1}$, H. J. Singer ${ }^{6}$, C. Balch 6, D. Weimer ${ }^{2}$, D. Welling ${ }^{4}$, M. Wiltberger ${ }^{3}$, J. Raeder ${ }^{5}$ and R. Weigel ${ }^{7}$, J. McCollough ${ }^{8}$, S. Wing ${ }^{9}$

${ }^{1}$ NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
${ }^{2}$ Center for Space Science and
Engineering Research, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia, USA.
${ }^{3}$ High Altitude Observatory, National
Center for Atmospheric Research, Boulder, Colorado, USA.
${ }^{4}$ Department of Atmospheric, Oceanic,
and Space Sciences, University of Michigan, USA.
${ }^{5}$ Space Science Center \& Physics
Department, University of New Hampshire, USA.

Abstract

. This document contains the online suplementary material. Specifically the distribution metric for each model.

[^0]

Figure 1. Distribution of WingKp Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different mid-latitude station.

Figure 2. Distribution of WingKp Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different high-latitude station.

Figure 3. Distribution of 9_SWMF Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different mid-latitude station.

Figure 4. Distribution of 9_SWMF Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different high-latitude station.

Figure 5. Distribution of 9a_SWMF Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different mid-latitude station.

Figure 6. Distribution of 9a_SWMF Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different high-latitude station.

Figure 7. Distribution of 2_LFM-MIX Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different mid-latitude station.

Figure 8. Distribution of 2_LFM-MIX Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different high-latitude station.

Figure 9. Distribution of 4_OPENGGCM Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different mid-latitude station.

Figure 10. Distribution of 4_OPENGGCM Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different high-latitude station.

Figure 11. Distribution of 2_WEIGEL Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different mid-latitude station.

Figure 12. Distribution of 2_WEIGEL Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different high-latitude station.

Figure 13. Distribution of 6_WEIMER Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different mid-latitude station.

Figure 14. Distribution of 6_WEIMER Model predictions when $K=4$ (left column), $K=6$ (middle column), and $K=8$ (right column). Each row presents results for a different high-latitude station.

[^0]: ${ }^{6}$ Space Weather Prediction Center, NOAA, Boulder, Colorado, USA.
 ${ }^{7}$ Department of Computational and Data
 Sciences, George Mason University, Fairfax, Virginia, USA.
 ${ }^{8}$ Air Force Research Laboratory,
 Albuquerque, NM, USA.
 ${ }^{9}$ Johns Hopkins University Applied
 Physics Laboratory, Laurel, Maryland, USA

