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1. Abstract

Between January 2013 and December 2014, water levels on Lake Superior and Lake

Michigan-Huron, the two largest lakes on Earth by surface area, rose at the highest rate

ever recorded for a two-year period beginning in January and ending in December of the

following year. This historic event coincided with below-average air temperatures and ex-

tensive winter ice cover across the Great Lakes. It also brought an end to a 15-year period

of persistently below-average water levels on Lakes Superior and Michigan-Huron that in-

cluded several months of record-low water levels. To differentiate hydrological drivers

behind the recent water level rise, we developed a Bayesian Markov chain Monte Carlo

(MCMC) routine for inferring historical estimates of the major components of each lake’s

water budget. Our results indicate that, in 2013, the water level rise on Lake Superior was

driven by increased spring runoff and over-lake precipitation. In 2014, reduced over-lake
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evaporation played a more significant role in Lake Superior’s water level rise. The water

level rise on Lake Michigan-Huron in 2013 was also due to above-average spring runoff

and persistent over-lake precipitation, while in 2014, it was due to a rare combination of
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below-average evaporation, above-average runoff and precipitation, and very high inflow

rates from Lake Superior through the St. Marys River. We expect, in future research, to

apply our new framework across the other Laurentian1 Great Lakes, and to Earth’s other

large freshwater basins as well.

2. Introduction

Between January 2013 and December 2014, water levels on Lake Superior and Lake

Michigan-Huron, the two largest lakes on Earth by surface area [Gronewold et al., 2013a],

rose by nearly two-thirds of a meter and one meter, respectively. This rise represents the

largest positive water level differential on Lakes Superior and Michigan-Huron over any

historical two-year period beginning in January and ending in December of the following

year [Gronewold et al., 2015]. The recent rise is all-the-more significant because it directly

impacts over 8,000 miles (roughly 13,000 km) of U.S. and Canadian coastline (along the

shores of both Lakes Superior and Michigan-Huron), and because it surpasses by at least

an order of magnitude the rate of interannual sea level rise along most of North America’s

marine coasts [Ekman, 1999; Cooper et al., 2008; Gronewold et al., 2013a].

The recent water level rise on Lakes Superior and Michigan-Huron also brings to an

end a 15-year period of persistently below-average water levels, including several months

that set record monthly lows [Gronewold and Stow , 2014a]. The beginning of that period

was marked by a rapid decline in water levels that coincided with one of the strongest

El Niño events on record and subsequent above-average surface water temperatures and

evaporation rates [Chandra et al., 1998; Assel , 1998; McPhaden, 1999; Assel et al., 2004;

Van Cleave et al., 2014; Piccolroaz et al., 2015]. The 2013-2014 rise, in contrast, coincided

with an anomalous meridional upper air flow [commonly referred to in the public media
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as the “polar vortex” phenomenon; for details see Blackmon et al., 1977; NOAA National

Climatic Data Center , 2014], below-average regional air temperatures, and extensive win-

ter ice cover [Clites et al., 2014a]. However, despite widespread speculation regarding

impacts of the cold winter of 2013-2014 on hydrologic response in the Great Lakes region,

we know of no definitive study that explicitly identifies anomalies in the components of

the regional water balance that would explain the coincident rapid change in Great Lakes

water levels.2

It is informative to note that, when compared to Lakes Superior and Michigan-Huron,

water levels on Lakes Erie and Ontario have remained relatively close to their seasonal

and long-term averages over the past 15 years [Clites et al., 2014b]. While understanding

differences between long-term water level trends on each of the Great Lakes is an area of

ongoing research, water level dynamics on Lakes Erie and Ontario can be explained in part

by abundant outflows from upstream lakes (relative to the water supply from within the

Lake Erie and Lake Ontario basins) and in part by the regulation of Lake Ontario outflows

along the St. Lawrence Seaway near Cornwall, Ontario and Massena, New York [see figure

1 and Lee et al., 1994]. Despite differences in long-term (i.e. interannual and decadal scale)

trends, seasonal water levels on all of the Great Lakes have historically followed a strong

pattern driven by changes in the regional water budget, with water levels typically rising in

the spring, peaking in mid-summer, and declining in the fall [Lenters , 2001; Quinn, 2002;

Gronewold and Stow , 2014b]. Importantly, unlike most other large freshwater basins,

the annual water budget of the Great Lakes basin is comprised of nearly equal flows of

tributary runoff, over-lake precipitation, and over-lake evaporation [Hunter et al., 2015].
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Multiple historical estimates of the major components of the Great Lakes water budget

have been developed [Quinn, 1979; Derecki , 1985; Lofgren et al., 2002; Quinn and Sell-

inger , 2006; Spence et al., 2011; Deacu et al., 2012; Fry et al., 2014; Hunter et al., 2015],

yet due to the massive surface area of the lakes themselves and the historically sparse in

situ, year-round, off-shore (i.e. over-lake) meteorological monitoring network [Gronewold

and Stow , 2014a], many of these estimates are believed to be biased and (particularly

in older records) highly uncertain. Estimates of flows in the channels connecting the

Great Lakes are derived using a combination of various numerical methods, the choice of

which depends on the unique physical characteristics of each channel. While individual

methods differ, they are generally derived from point-specific flow measurements (collected

during intermittent seasonal field campaigns), which are related to continuously measured

variables (e.g. water levels). Potential sources of uncertainty in these estimates include

inaccuracies in the measured flows and discontinuities in flow measurement technology

over time. Spatiotemporal variability in channel conditions, including seasonal ice cover

and weed growth along the channel floor and sidewalls, represents yet another source of

uncertainty in flow estimates. Uncertainty in water level measurements due to short-term

anomalies in lake surface topography (during strong wind events, for example) can also

impact lake storage.3 For further reading on bias and uncertainty in Great Lakes water

budget estimates, see Blanken et al. [2011], Holman et al. [2012], and Lofgren et al. [2013].

Therefore, to understand and differentiate hydrological drivers behind the recent water

level rise, we developed a Bayesian Markov chain Monte Carlo (MCMC) routine for infer-

ring new historical estimates of the major components of each lake’s water budget. Unlike

water budget estimation methods used in previous studies, our approach leverages infor-
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mation from multiple models and datasets while acknowledging and resolving the explicit

bias and uncertainty of each source. This approach has two important advantages; first,

it allows us to develop estimates that resolve the regional water budget across monthly

and interannual time scales. We know of no other study that does so over a multi-year

period for the North American Great Lakes. Second, our approach represents an impor-

tant stepping stone towards addressing a long-standing need in the Great Lakes for clear

and defensible differentiation between hydrological [Watras et al., 2014], climatological

[Stakhiv , 2011; Brown et al., 2011], geological [Mainville and Craymer , 2005], and an-

thropogenic [Quinn and Edstrom, 2000] drivers behind seasonal and long-term changes in

Great Lakes water levels including those observed in 2013 and 2014. For further discussion

on the importance of differentiating drivers of the Great Lakes water cycle, particularly

with respect to water resources management and socioeconomic impacts, see Annin [2006],

Millerd [2010], and Gronewold and Stow [2014a].

3. Methods

Our study focuses on developing new estimates of the major components of the Lake

Superior and Lake Michigan-Huron monthly water budget from January 2005 through

December 2014, followed by a detailed analysis of those components from January 2013

through December 2014 to better understand drivers of the recent water level rise. In the

following sections, we describe the water balance model used to develop those estimates,

the sources of data for each water budget component, and our model calibration and

validation procedure. For reference, a summary of all model variables and parameters

described in the following sections is included in table4 1.
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3.1. The model

We develop new estimates of the monthly water budget for Lakes Superior and Michigan-

Huron through a Bayesian analysis (described in section 3.3) of the following conventional

water balance models [Arnold et al., 1998; Kebede et al., 2006; Swenson and Wahr , 2009]:

δsj =
J
∑

1

(

γsj − λsj + ρsj + αs
j − βs

j + ωs
j

)

(1)

δmj =
J
∑

1

(

γmj − λmj + ρmj + αm
j + 0.7× βs

j − βm
j + ωm

j

)

(2)

where δj is the cumulative change in lake storage from January 1, 2005 through the end

of month j (j ∈ [1, J = 120]) for either Lake Superior (indicated by superscript s) or

Lake Michigan-Huron (indicated by superscript m). Variables γj, λj , and ρj represent,

respectively, monthly over-lake precipitation, over-lake evaporation, and tributary runoff.

These variables, and all other variables in equations 1 and 2, are expressed as relative

water heights, in mm, over the surface of each respective lake. The variable αs
j represents

the total monthly flow of water into Lake Superior through interbasin diversions (see

figure 1), and βs
j represents outflows from Lake Superior through the St. Marys River.

Similarly, αm
j represents the total monthly flow of water into the Lake Michigan-Huron

system through interbasin diversions (diversions of water out of the basin are represented

as negative values), and βm
j represents outflows from the Lake Michigan-Huron system

through the St. Clair River. Finally, we represent inflows to the Lake Michigan-Huron

system through the St. Marys River as a product of outflows from Lake Superior through

the St. Marys river (βs
j , which is expressed as a water depth over the surface of Lake
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Superior) and a scaling factor (0.7) accounting for the ratio between the surface area of

Lake Superior and the surface area of Lake Michigan-Huron.

Historical research on the Great Lakes indicates that major diversions and interconnect-

ing channel flows (α and β), over-lake precipitation (γ), over-lake evaporation (λ), and

runoff (ρ) collectively account for nearly all of the flows into and out of each lake basin. Mi-

nor contributions to changes in lake storage, including groundwater fluxes [Grannemann

et al., 2000], thermal expansion [Quinn and Guerra, 1986], isostatic rebound [Mainville

and Craymer , 2005], and consumptive use [Annin, 2006], are collectively represented in

equations 1 and 2 by ω.

3.2. Data

3.2.1. Lake storage, connecting channel flows, and diversions

The most readily-available and historically-consistent basis for inferring cumulative

monthly changes in storage for each of the Great Lakes (δj) is the set of beginning-

of-month (BOM) water level records maintained by the United States Army Corps of

Engineers Detroit District (USACE) and Environment Canada (EC) through the bina-

tional Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data

(hereafter referred to as the “Coordinating Committee”). This record is based on an in-

ternational network of shoreline gauging stations operated by the National Oceanic and

Atmospheric Administration (NOAA) National Ocean Service (NOS) Center for Opera-

tional Oceanographic Products and Services (CO-OPS), and the Department of Fisheries

and Oceans (DFO) Canadian Hydrographic Service (CHS). We represent observed cumu-

lative changes in lake storage yδj as the measured difference between the water level at

the end of month j and the water level at the beginning of January 2005. Alternative
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sources of information for inferring Great Lakes water levels and lake storage are avail-

able, including satellite data, geological formations, and shoreline features [Baedke and

Thompson, 2000; Holcombe et al., 2003; Quinn and Sellinger , 2006; Wiles et al., 2009;

Crétaux et al., 2011; Johnston et al., 2012]. Incorporating these additional sources into

Great Lakes water budget estimates is an important area for future research, but one we

consider outside the scope of our current study.

Long-term historical estimates of monthly flows through the channels that connect the

Great Lakes (i.e. interconnecting channels), including the St. Marys, St. Clair, Detroit,

and Niagara Rivers (figure 1), are maintained by the Coordinating Committee. These

flow estimates, hereafter referred to as internationally-coordinated flows (or ICFs) and

represented by yβ1, have historically been based on a range of calculation methods that

relate to flow measurement type, location, and length of record. For example, the ICFs

for Lake Superior outflow are calculated as the total flow measured through regulatory

structures at the head of the St. Marys River (including three hydropower facilities, nav-

igation locks, the St. Marys Rapids Compensating Works Structure, and local domestic

water withdrawals), while ICFs for the St. Clair and Detroit Rivers are based on con-

ventional stage-fall-discharge relationships using water level measurements from USACE,

NOAA-NOS-COOPs, and DFO-CHS gauging stations [Quinn, 1985]. Within the past 10

years, international gauging stations (IGS) with acoustic doppler current profilers (AD-

CPs) have been established through a partnership between the United States Geological

Survey (USGS) and Water Survey of Canada (WSC) to support index-velocity estimates

of connecting channel flows. We use these as a second source of interconnecting channel

flow estimates (yβ2). Additional channel flow estimates have been developed [Read et al.,
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2010]; however,5 aside from the ICF and IGS estimates, we know of none that are readily-

available or that have been systematically extended across all of the channels of the Great

Lakes for a relatively long historical period.

The Coordinating Committee also maintains long-term historical records of diversions

of water into, and out of, the Great Lakes basin [Quinn and Edstrom, 2000; Annin, 2006].

The two most significant diversions include the re-routing of water from the Hudson Bay

basin into the Great Lakes basin via Long Lake and the Ogoki River, and the re-routing of

water out of the Great Lakes basin into the Mississippi River basin through the Chicago

Sanitary and Ship Canal (figure 1). Monthly records of the Long Lake (also referred

to as Long Lac) and Ogoki diversions are obtained by the Coordinating Committee from

Ontario Power Generation, and estimates of the diversions at Chicago are obtained by the

Coordinating Committee from the USACE. While we represent these historical estimates

in our model as yα, we also acknowledge they are orders of magnitude less than the

other major components of the Great Lakes water budget. Therefore, while the results of

our study reflect the influence of interbasin diversions on lake storage, we do not present

estimates of their posterior distributions. For further reading on the Long Lake and Ogoki

diversions, including different approaches to accounting for them in runoff estimates into

Lakes Superior and Michigan-Huron, see Hunter et al. [2015].

3.2.2. Over-lake precipitation, over-lake evaporation, and runoff

Multiple estimates of over-lake precipitation (γ), over-lake evaporation (λ), and runoff

(ρ) have been developed for the Great Lakes. Some were developed specifically for regional

water budget accounting, some for regional water level forecasting [Lofgren et al., 2002;

Notaro et al., 2006; Hunter et al., 2015], and others as byproducts of large-scale regional
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climate model simulations and reanalysis products targeting a broad (e.g. CONUS) spatial

domain [Mesinger et al., 2006]. Here, we consider estimates of γ, λ, and ρ from two sources.

The first is NOAA-GLERL’s historical monthly Great Lakes hydrometeorological

database [or GLM-HMD, as described in Hunter et al., 2015]. This database represents

the only record of Great Lakes hydrological data that extends spatially over the entire

domain of the Great Lakes basin (i.e. the land and lake surfaces of the basin across both

United States and Canada), and temporally over several decades. For some variables, this

database extends as far back as the beginning of the 20th century; however,6 many of these

historical estimates are believed to be biased [Watkins et al., 2007; Holman et al., 2012]

and relatively uncertain, particularly from periods when basin-wide monitoring networks

were sparse [Fry et al., 2013, 2014]. We represent over-lake precipitation and over-lake

evaporation estimates from the GLM-HMD as yγ1 , yλ1, and yρ1, respectively.

Our second source of historical estimates for over-lake precipitation and over-lake evap-

oration is the Canadian Meteorological Centre’s GEM modeling system [Pietroniro et al.,

2007; Deacu et al., 2012]. For this study, we employed over-lake precipitation estimates

from GEM in its RDPS (Regional Deterministic Prediction System) formulation, and

over-lake evaporation estimates from GEM-Surf using parameterizations documented in

Deacu et al. [2012]. For additional reading on the GEM-Surf system, see Carrera et al.

[2010] and Bernier and Bélair [2012]. While the GEM system of models simulates vari-

ables for a much shorter period of record (roughly 2005 through 2014) relative to the

NOAA-GLERL GLM-HMD, it is believed to provide a more realistic representation of

atmospheric and meteorological conditions over the surfaces of the lakes and, potentially,

more accurate estimates of over-lake evaporation and over-lake precipitation [Mahfouf
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et al., 2007; Deacu et al., 2012]. We represent over-lake precipitation and over-lake evap-

oration estimates from GEM and GEM-Surf, respectively, as yγ2 and yλ2 . Estimates of

runoff from the GEM modeling system were not available for the period of focus in this

study; however,7 we intend to include GEM runoff estimates in future research.

3.3. Model calibration (parameter inference)

We calibrate the water balance models in equations 1 and 2 using a Bayesian MCMC

routine [Bernardo and Smith, 1994; Press , 2003; Bolstad , 2004; Gelman et al., 2004], an

approach that allows us to combine multiple sources of information about each water

budget component across time, either as a priori estimates (represented by prior proba-

bility distribution functions) or as updates to those estimates (in the form of likelihood

functions). We begin with the assumption that the observed net water level differential

at the end of month j (i.e. yδ
s

j and yδ
m

j ), a proxy for cumulative change in storage, is

a normally-distributed random variable (we hereafter remove superscripts s and m for

clarity) yδj ∼ No(δj , τ
yδ) with mean δj and precision τ y

δ

. We parameterize normal and

lognormal probability distributions using precision (where precision is defined as 1/σ2,

and σ is standard deviation),8 rather than standard deviation or variance, to be consis-

tent with the coding protocols of the BUGS (Bayesian inferencing Using Gibbs Sampling)

and JAGS (Just Another Gibbs Sampler) suite of software packages described later in this

section and in the supporting information. Here, τ y
δ

accounts not only for uncertainty

and minor errors in water level measurements, but also for water level measurement vari-

ability introduced through thermal expansion, groundwater fluxes, and other sources of

variability described in section 3.1.

D R A F T February 26, 2016, 2:16pm D R A F T

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
GRONEWOLD ET AL.: DRIVERS OF RECORD-SETTING WATER LEVEL RISE X - 13

We model αj, βj, γj , λj, and ρj as unknown quantities with relatively informative prior

probability distributions [Press , 2003] based on data from the NOAA-GLERL GLM-HMD

between 1950 and 2004. Following previous studies [Thom, 1958; Husak et al., 2007;

Gronewold et al., 2013b], we assign a gamma prior probability distribution to over-lake

precipitation π(γj) ∼ Ga(ψ1
m[j], ψ

2
m[j]) for each of the twelve months (m) of the year with

shape ψ1, rate ψ2, mean ψ1/ψ2, and variance ψ1/(ψ2)2. We calculate ψ1
m and ψ2

m using

the following maximum likelihood estimates from Husak et al. [2007]:

ψ1
m =

1

4φm



1 +

√

1 +
4φm

3



 (3)

φm = ln(ȳγm)−

∑N
i=1 ln(y

γ
i )

N
(4)

ψ2
m = ψ1

m/ȳ
γ
m (5)

where ȳγm is the average precipitation for month m from 1950 through 2004 from the

GLM-HMD, and N is the number of years over that period.

We then assign normal No(µ∗

m[j], τ
∗

m[j]) prior probability distributions to α, β, and λ

(collectively represented by *), with mean µ∗

m and precision τ ∗m calculated, respectively,

as the mean and precision of each variable in month m from 1950 through 2014 using

data from the NOAA-GLERL GLM-HMD. Finally, we assign a lognormal LN(µρ
m[j], τ

ρ
m[j])

prior probability distribution to monthly runoff with log-mean µρ
m and log-precision τρm,

also based on data over the 1950 to 2014 period from the NOAA-GLERL GLM-HMD.

A graphical representation of our approach to developing prior probability distributions

for every other month starting in January is included in figure9 2. For a graphical rep-
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resentation of prior probability distributions for all months on both Lakes Superior and

Michigan-Huron, see figures S1 and S2 in the supporting information.

We update estimates of each monthly water budget component using the observations

and measurements described in section 3.2 (i.e. y∗1j and y∗2j ) for the period of record be-

ginning in January 2005 and ending December 2014 using the following normal likelihood

functions:

y∗1j ∼ No(θ∗1j = ∗j + η∗1j , τ
∗1) (6)

y∗2j ∼ No(θ∗2j = ∗j + η∗2j , τ
∗2) (7)

where θ∗1 and θ∗2 are the inferred mean for each water budget component (*) based

on data source 1 and 2, respectively, and ∗j represents the inferred mean for the water

budget component integrated across all data sources. The parameters η∗1j and η∗2j represent

seasonal (i.e. monthly) bias in each data source for each water budget component, and are

assigned non-informative No(0, 0.01) prior probability distributions. Precision parameters

τ ∗1 and τ ∗2 are also assigned non-informative Ga(0.1, 0.1) prior probability distributions

[Browne and Draper , 2006; Gelman, 2006]. We selected historical data from 2005 through

2014 as a basis for our likelihood functions because it is the most recent period for which

estimates from both GLM-HMD and the GEMmodeling system are available, and because

it includes the two years (2013 and 2014) of the recent water level rise.

Because our model is intended to improve inference of historical basin-scale

spatially-averaged water budget components by utilizing any and all available

measurements, estimates, and model simulations, it does not necessarily warrant

traditional model validation procedures often applied to forecasting models12 [for fur-
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ther discussion, see Reckhow and Chapra, 1983]. Nonetheless, in order to further explore

and better understand the range of potential applications of our new procedure, including

water budget inference during historical periods for which there are no corresponding

measurements, we conduct a simple validation in which we rerun our new model while

systematically leaving out all estimates for one of each of the three major water budget

components (i.e. γ, λ, ρ) from 2010 through 2014. We then assess the impact of removing

observations on not only the inferred water budget components during this period, but

also on the posterior predictive distribution of expected estimates from both GLM-HMD

and GEM.13

We simulate samples from posterior probability distributions of each monthly water

budget component (as well as the posterior predictive distributions of GLM-HMD and

GEM estimates from 2010 through 2014 in our validation procedure)14 using the MCMC

procedures encoded in the BUGS and JAGS software packages [Lunn et al., 2000; Plum-

mer , 2003; Lunn et al., 2009]. While we ran model simulations using both BUGS (via the

OpenBUGS interface) and JAGS, we found (results not shown) no noticeable difference

between the two; methodology and results hereafter refer to models implemented within

the JAGS system.

We ran five MCMC chains until each converged, indicated by a potential scale reduction

factor R̂ close to 1.0 [Gelman et al., 2004]. A graphical summary of our approach to

developing posterior probability distributions for Lake Superior monthly water budget

components for every other month (starting in January) of 2014 is included in figure15

3. Our JAGS code is included in the supporting information, along with plots (figures

S3 and S4) documenting the evolution of posterior probability distribution for all months
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of 2014 on both Lakes Superior and Michigan-Huron. For further reading on Bayesian

methods (including applications of MCMC to water resource and environmental science

problems)16, see Qian and Richardson [1997], Qian et al. [2003], Obenour et al. [2014],

and Cha et al. [2016].

4. Results and discussion

A comparison between a time series of our new monthly water budget estimates and

deterministic estimates from previous research for both Lakes Superior (figure 4) and

Michigan-Huron (figure 5) indicates how, through an expression of uncertainty, our new

estimates collectively explain not only the variability across the historical deterministic

estimates for each water budget component (top four panels in figures 4 and 5) but also the

“observed” (i.e. based on BOM water levels) cumulative changes in lake storage (bottom

panel of figures 4 and 5). Thus our new estimates “close” the regional water budget and

provide a robust basis for differentiating hydrologic drivers of the recent water level rise.

It is informative to note that this study not only represents the first of its kind to close

the water budget of the Great Lakes for any historical period, but it does so through an

appropriate accounting of bias and uncertainty (for details on our estimates of bias, see

figures S5 and S6 in the supporting information).

Our model validation results (figure 6) underscore the value of water budget in situ

measurements, empirical estimates, and numerical modeling simulations when attempting

to close the regional water balance, particularly during periods of extreme changes in lake

storage. For example, when historical estimates of over-lake precipitation are removed

from our new modeling procedure from 2010 through 2014, we obtain (top row figure 6)

over-lake precipitation estimates not much different from those obtained with historical
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estimates in 2010, 2011, 2012 and 2013, but very different estimates in 2014. This result

indicates that without either the GLM-HMD or GEM estimates of over-lake precipitation,

our new modeling procedure would infer very high over-lake precipitation estimates in 2014

in order to explain the surge in water levels. Similarly, if we exclude historical evaporation

estimates from our new modeling procedure, our inferred over-lake evaporation estimates

(middle row figure 6) would have been much lower in order to coincide with the increase

in water levels. This result has important implications for how we might use our model to

infer historical estimates of the water budget in periods when monitoring infrastructure

was even more sparse than it is today. We may find, in future research, that extending our

model back in the historical record may require either more informative prior estimates of

monthly water budget components, or a more complex approach to representing spatial

correlation in over-lake and over-lake precipitation. Our results also indicate that our new

modeling tool has the potential to guide monitoring infrastructure planning decisions.19

A comparison between different approaches to calculating cumulative changes in lake

storage (figure 7) further underscores the benefits of our new method. For example,

the estimated change in lake storage from 2005 through 2014 using a combination of

the GEM-MESH system for over-lake precipitation (γ) and over-lake evaporation (λ),

the GLM-HMD for runoff (ρ), and internationally-coordinated connecting channel flow

estimates would have been greater than the observed change in storage by close to 1.2

meters on Lake Superior, and 1.6 meters on Lake Michigan-Huron, respectively (blue

lines figure 7). Similarly, the estimated change in lake storage over this period using

only estimates from the GLM-HMD and the internationally-coordinated channel flow

estimates would have been roughly 1.1 meters less than the observed change in storage
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on Lake Superior, and 0.8 meters greater than the observed change in storage on Lake

Michigan-Huron. From a long-term water balance perspective, our new procedure (for

which cumulative lake storage estimates are compared to observations in the bottom

panels of figures 4 and 5) appears to represent a more desirable and robust alternative.22

In addition to confirming water budget closure and helping visualize the relationship

between parameter uncertainty and measurement variability, the time series of our new

water budget component estimates (figures 4 and 5) provides a clear indication of the hy-

drological drivers behind the recent water level rise. The water level rise on Lake Superior,

for example, based on visual analysis of figure 4, was a consequence of persistently high25

over-lake precipitation and high spring runoff, particularly in 2013, and occurred despite

relatively high outflows to Lake Michigan-Huron through the St. Marys River. Similarly,

the water level rise on Lake Michigan-Huron (figure 5) was a consequence of persistently

high over-lake precipitation, particularly from late spring through the fall of 2014, and

(as on Lake Superior) relatively high runoff in spring 2013.

A month-by-month analysis of these components from January 2013 through December

2014 (figures 8 and 9) provides additional insight into the hydrologic drivers of the recent

water level rise, and how those drivers differed across seasons, and across each lake, in both

2013 and 2014. For example, the magnitude of our new monthly water budget components

across each season and lake system between 2013 and 2014 (top portions figures 8 and 9)

are consistent with previous findings [Lenters , 2001; Quinn, 2002; Spence et al., 2013; Van

Cleave et al., 2014], with high over-lake evaporation in late fall and early spring, high runoff

in late spring, and persistent over-lake precipitation throughout the year. However, the

anomalies in these components relative to our new monthly averages from 2005 through
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2014 indicate that, on Lake Superior (bottom section figure 8), the three months with the

highest anomalies in month-to-month water level differential (i.e. May 2013, July 2013,

and May 2014) were characterized by a combination of above-average runoff and over-lake

precipitation, and little appreciable departure from average evaporation. In contrast, in

the months with the four next highest anomalies in month-to-month water level differential

on Lake Superior (i.e. August 2013, February 2014, September 2014, and December 2014),

below-average over-lake evaporation was the most important factor.

It is informative to note that the persistent below-average over-lake evaporation on

Lake Superior in 2014 was likely a consequence of cold winter 2013-2014 conditions that,

among other regional impacts, reduced lake heat content and surface water temperatures

[Spence et al., 2013], and led to unusually expansive ice cover [Clites et al., 2014a]. It is

also informative to note that the persistent above-average outflows from Lake Superior

from August 2013 through December 2014 are the result of complex relationships between

water levels on Lakes Superior and Michigan-Huron, and the plans that guide regulation

of Lake Superior outflows. Generally, Lake Superior outflows to Lake Michigan-Huron, as

with unregulated Lake Michigan-Huron outflows to Lake Erie, are driven by the surface

water differential between the upstream and downstream lakes and the characteristics of

the channel that connects them. In early 2013, high precipitation and runoff propagated

into a rapid rise in water levels on Lake Superior in part because Lake Superior and Lake

Michigan-Huron water levels were both so low. If water levels across Lake Superior and

Lake Michigan-Huron in early 2013 had been higher, outflows from Lake Superior would

have been higher in early 2013 as well.
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On Lake Michigan-Huron, the three most anomalous monthly water level differentials

in 2013 (i.e. in April, May, and November) were characterized by above-average runoff

(in each of these three months, runoff was the most important driver) and above-average

over-lake precipitation (bottom figure 9). The next three highest monthly water level

differential anomalies in 2013 were characterized by either high runoff (February), below-

average evaporation (August), or a combination of above-average over-lake precipitation,

runoff, and inflows from Lake Superior (October). In 2014, however, the continuous above-

average water level differentials on Lake Michigan-Huron from April through December

were driven by a rare combination of above-average contributions from precipitation and

runoff, and below-average losses from over-lake evaporation30. This finding underscores

the broad collective impact of the cold winter of 2013-2014 (through reduced evaporation

on both Lakes Superior and Michigan-Huron), the hydrologic connectivity between the

lakes (flows through the St. Clair River from Lake Michigan-Huron started to increase

in mid-2014, just after flows into Lake Michigan-Huron through the St. Marys River had

started to increase31), and persistent above-average precipitation rates (particularly from

March through November) across the basin.

When viewed as cumulative two-year anomalies from 2013 through 2014 (figure 10),

our water budget estimates indicate that over-lake precipitation was the most important

(i.e. most anomalous) driver on Lake Superior, constituting 380 mm (70%) of the 540 mm

two-year water level rise anomaly through a combination of three very high months of pre-

cipitation in the spring of 2013, and persistent above-average precipitation across nearly

all of 2014. In contrast, tributary runoff was the most important driver on Lake Michigan-

Huron, accounting for 320 mm (40%) of the 830 mm two-year water rise anomaly. This
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finding is not altogether surprising because of the close relationship between regional pre-

cipitation and runoff, and because the land-to-lake area ratio of the Lake Michigan-Huron

basin is higher than that of the Lake Superior basin.

Cumulative anomalies in over-lake evaporation account for about 140 mm of the water

level rise anomaly on Lake Superior and roughly 110 mm of the water level rise anomaly on

Lake Michigan-Huron. The cumulative anomaly of combined over-lake precipitation and

over-lake evaporation, however, was very high (520 mm on Lake Superior, and 270 mm on

Lake Michigan-Huron; figure 10), a finding that underscores the impact of lake-atmosphere

interactions on the water budget of Earth’s two largest freshwater surfaces. Our findings

also underscore the importance of ongoing research, including deployment of off-shore,

in situ instrumentation, processing of satellite observations, and development of high-

spatiotemporal resolution models aimed at improving understanding of those interactions

[Blanken et al., 2011; Spence et al., 2011; Gronewold and Fortin, 2012; Spence et al., 2013].

Finally, the two-year cumulative anomalies of each water budget component reflect how

over-lake precipitation on Lake Superior, and runoff into Lakes Superior and Michigan-

Huron, were the most important factors in the first year of the water level rise, while

over-lake evaporation on both lake systems, along with over-lake precipitation on Lake

Michigan-Huron, were close to average in 2013. The second year of the rise was char-

acterized by persistent above-average precipitation along with a reduction in over-lake

evaporation on both lake systems, and a consistent rise in flows through the St. Marys

River.
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5. Conclusions

Our development and analysis of new estimates for the components of the monthly water

budgets of Lakes Superior and Michigan-Huron from January 2005 through December

2014 indicate that the amplification of the seasonal water level cycle and the net gain

in water levels from January 2013 through December 2014 was driven by a combination

of hydrologic factors that varied from year-to-year, and across the seasons within each

year. In 2013, water level gains on Lake Superior were due primarily to increases in runoff

and over-lake precipitation in the spring, while water level gains on Lake Michigan-Huron

were also due primarily to increases in runoff and over-lake precipitation; however,32 those

increases occurred in both the spring and late fall. In 2014, below-average evaporation,

above-average runoff, over-lake precipitation, and flow rates through the St. Marys River

were all factors in the above-average water level rise across each lake system.

While the findings from our study represent an important stepping stone towards an

improved understanding of recent hydrological phenomena on Earth’s largest system of

lakes, they also were developed through a statistical modeling framework that can be used

to develop more comprehensive (i.e. across a longer period and across all lakes) historical

records of the Great Lakes water budget while accommodating additional observations

and data sets as they become available. Important features of this framework include rep-

resentation of objective and subjective a priori information [Press , 2003] on water budget

components (see figures S1 and S2 for evolution of the prior probability distributions for

this study) and the ability to accommodate multiple estimates of each component with

quantification of each estimate’s bias (figures S5 and S6). We expect, in future research,
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to apply this framework not only to the other Great Lakes, but to large lakes in other

parts of the world as well.

We also expect that the results of our analysis will lead to research exploring how the

water budget and water levels of the Great Lakes, and of Earth’s other large freshwater sys-

tems, respond to regional short-term climate perturbations and long-term climate trends.

This insight could provide important guidance on water resource management policy. In

the Great Lakes, for example, the general public often demands new or supplemental an-

thropogenic controls (i.e. flow control structures) when water levels reach extreme highs or

lows [Gronewold and Stow , 2014a]. When water levels are low, these demands are backed

by claims that water loss is driven by human intervention (e.g. historical dredging opera-

tions, agricultural practices, and consumptive use) and should therefore be compensated

through human intervention. Interestingly, when water levels on the Great Lakes are high

(as they were in the mid-1980s), demands for human intervention to increase outflows

through water diversions and increased dredging arise, even though persistent increases

in Great Lakes water levels are not commonly attributed to direct human intervention.
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Crétaux, J.-F., W. Jelinski, S. Calmant, A. Kouraev, V. S. Vuglinski, M. Bergé-Nguyen,
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Figure 1. Map of the North American Great Lakes drainage basin including major

cities, political boundaries, interbasin diversions, and interconnecting channels.
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Figure 2. Development of prior probability distributions for Lake Superior monthly

water budget components. Plot includes every other month (starting in January) for

clarity and simplicity. Prior probability distributions for all months for both Lakes

Superior and Michigan-Huron are included in supporting information figures S1 and S2.11.

Vertical tick marks along x-axis and histograms in each panel are based on values from the

historical record from 1950 to 2004 in the GLM-HMD [Hunter et al., 2015]. Red dots rep-

resent the historical mean, and thin black curves represent the “fitted” prior probability

distributions.
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Figure 3. Evolution of posterior probability distributions for Lake Superior monthly

water budget components in 2014. Figure includes every other month starting in January

for clarity and simplicity. Posterior probability distributions for all months of 2014 for

both Lakes Superior and Michigan-Huron are included in supporting information figures

S3 and S418. In all panels, thin black curves represent prior probability distributions (from

figure 2) and dark grey curves represent posterior probability distributions. Blue curves

(in two left-most columns for over-lake precipitation and over-lake evaporation) represent

likelihood functions from GEM models, and red curves (in three left-most columns for

over-lake precipitation, over-lake evaporation, and runoff) represent likelihood functions

from GLM-HMD. In the right-most column (for flow estimates through the St. Marys

River) purple curves represent likelihood functions from international gaging station es-

timates, and green curves represent likelihood functions from internationally-coordinated

estimates.
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Figure 4. Time series of Lake Superior monthly water budget components from

2005 through 2014. Blue and red lines in the top three panels represent, respectively,

estimates from the GEM modeling system and GLM-HMD. Green lines and purple lines

in the fourth panel (from top) represent, respectively, internationally-coordinated channel

outflow estimates and the estimates from the new international gauging stations. The

black line in the bottom panel represents the observed water level at the end of each

month relative to the January 2005 BOM water level. Grey vertical bars in the top four

panels represent 95% credible intervals from the posterior probability distribution of our

new estimates, and grey vertical bars in the bottom panel represent 95% intervals from

the posterior predictive distribution for the observed net change in water level.
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Figure 5. Time series of Lake Michigan-Huron monthly water budget components from

2005 through 2014. Blue and red lines in the top three panels represent, respectively,

estimates from the GEM modeling system and GLM-HMD. Green lines and purple lines

in the fourth panel (from top) represent, respectively, internationally-coordinated channel

outflow estimates and the estimates from the new international gauging stations. The

black line in the bottom panel represents the observed water level at the end of each

month relative to the January 2005 BOM water level. Grey vertical bars in the top four

panels represent 95% credible intervals from the posterior probability distribution of our

new estimates, and grey vertical bars in the bottom panel represent 95% intervals from

the posterior predictive distribution for the observed net change in water level.
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Figure 6. Model validation results, including time series of posterior distribution

for water budget components (95% credible intervals represented by vertical grey bars),

posterior predictive distribution for GLM-HMD and GEM-MESH estimates (95% intervals

represented by vertical blue and red bars), and GLM-HMD and GEM-MESH estimates

(continuous red and blue lines). As described in our validation methodology, results in

each panel (i.e. for the 2010 through 2014 time period) were inferred without using the

GLM-HMD and GEM-MESH estimates from the same time period.21
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Figure 7. Comparison between changes in lake storage relative to January 2004

based on water level observations (black lines), and two ensembles (“A” and “B”)

based on combinations of estimates from GLM-HMD, GEM, and ICF (red and blue

lines). Specifically, ensemble “A” (red line) is based on GLM-HMD estimates of γ,

λ, and ρ, and internationally-coordinated (i.e. ICF) estimates of α and β. Ensemble

“B” (blue line) is based on GEM estimates of γ and λ, GLM-HMD estimates of ρ, and

internationally-coordinated estimates of α and β.24
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Figure 8. Month-by-month analysis of our new water budget component estimates for

Lake Superior. In top portion of plot, BOM water levels and water budget components

are plotted relative to January 2013 BOM water levels. The height of each arrow reflects

the magnitude of the corresponding water budget component for that month. Moving left

to right across each month, the “base” of each arrow aligns with the tip of the arrow from

the previous (i.e. to the left) water budget component. Vertical black bars aligned with

the arrow representing monthly outflow reflect the 95% posterior predictive interval for

BOM water levels. The bottom portion of the plot represents anomalies in each monthly

water level differential and each monthly water budget component relative to the 2005

through 2014 period.27
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Figure 9. Month-by-month analysis of our new water budget component estimates

for Lake Michigan-Huron. In top portion of plot, BOM water levels and water budget

components are plotted relative to January 2013 BOM water levels. The height of each

arrow reflects the magnitude of the corresponding water budget component for that month.

Moving left to right across each month, the “base” of each arrow aligns with the tip of

the arrow from the previous (i.e. to the left) water budget component. Vertical black bars

aligned with the arrow representing monthly outflow reflect the 95% posterior predictive

interval for BOM water levels. The bottom portion of the plot represents anomalies in

each monthly water level differential and each monthly water budget component relative

to the 2005 through 2014 period.29
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Figure 10. Mean (red dot) and 95% credible interval (vertical blue bars) of cumulative

water budget anomalies (relative to averages from 2005 through 2014) for Lake Superior

(left column) and Lake Michigan-Huron (right column). Components include over-lake

precipitation (first row), over-lake evaporation (second row), over-lake precipitation minus

over-lake evaporation (third row), tributary runoff (fourth row), inflows from the upstream

connecting channel (fifth row), and outflows through the downstream connecting channel

(bottom row). Components are expressed as depths of water over the surface of each

respective lake. Positive cumulative anomalies represent above-average contributions to

and below-average losses from the water budget.
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Table 1. Summary of model parameters and variablesa,b,c

Symbol Description

Index variables
j Index for month; j = 1, 2, . . . , J
J Number of months assessed (for our study J = 120)

Water balance model parameters
δ Cumulative change in lake storage (through end of month)
γ Monthly over-lake precipitation
λ Monthly over-lake evaporation
ρ Monthly lake tributary inflow
α Monthly lake inflow through interbasin diversions
β Monthly lake outflow through connecting channel
ω Monthly water balance model error term

Water balance model variables
yδ Measured (from water level gauges) cumulative change in lake storage through month j
yβ1 Internationally-coordinated estimate of connecting channel monthly outflow
yβ2 International gauging station-based estimate of connecting channel monthly outflow
yα Estimate of monthly inflow via interbasin diversions (maintained by Coordinating Committee)
yγ1 Estimate of monthly over-lake precipitation from NOAA-GLERL GLM-HMD
yλ1 Estimate of monthly over-lake evaporation from NOAA-GLERL GLM-HMD
yρ1 Estimate of monthly tributary inflow from NOAA-GLERL GLM-HMD
yγ2 Estimate of monthly over-lake precipitation from GEM system
yλ2 Estimate of monthly over-lake evaporation from GEM system
yρ2 Estimate of monthly lake tributary inflow from GEM system

Statistical model symbology
π Prior probability distribution

τ y
δ

Precision of measured cumulative change in storage, yδ ∼ No(δ, τ y
δ

)
ψ1, ψ2 Shape and rate of prior probability distribution for γ ∼ Ga(ψ1, ψ2)
µ∗, τ ∗ Mean, precision of prior probability distributions for α, β, λ ∼ No(µ∗, τ ∗)
µρ, τρ Log-mean, log-precision of prior probability distribution for ρ ∼ LN(µρ, τρ)
θ∗1 Inferred mean of water balance parameter * from y∗1 ∼ No(θ∗1 , τ ∗1)
θ∗2 Inferred mean of water balance parameter * from y∗2 ∼ No(θ∗2 , τ ∗2)
η∗1 , η∗2 Bias in inferred mean of water balance parameter * from source 1, 2
τ ∗1 , τ ∗2 Precision of estimate for parameter * from source 1, 2
a Water balance model parameters and variables for Lake (S)uperior and Lake (M)ichigan-

Huron are differentiated in either the manuscript text or model code by superscripts s and m,

respectively (subscripts removed from table above for simplicity and clarity).
b Unless otherwise indicated, parameters and variables are in units of mm over the respective

lake surface area.
c Water balance model parameters and variables are indexed (via subscripts) in the manuscript

text by month (subscripts removed in table above for clarity).D R A F T February 26, 2016, 2:16pm D R A F T
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