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Appendix

In this appendix, we present all the technical proofs. Throughout the proofs we define R∗n(xn, ρn) and

A∗n(xn, ρn) to be the optimal solutions for the variables Rn and An, given that the number of customers at

the beginning of period n is xn and the observed fraction of unhappy customers is ρn.

Proof of Lemma 1. The problem we are studying is

max
x≥0,y≥0

f(x) + g(y) +E[h(x+ y+ εK)], (5)

and we have continuity and strict concavity assumptions on the three functions and that both constant K

and random variable ε are non-negative.

Rewrite (5) as

max
z≥0

(
D(z) +E[h(z+ εK)]

)
(6)

with

D(z) = max
0≤x≤z

(
f(x) + g(z− y)

)
. (7)

The optimization problem in (6) is submodular in (z,K) because ε is non-negative, thus the optimal solution,

denoted by z∗(K), is decreasing in K. From the problem given in (7), the maximand is supermodular in

(x, z) and the constraint 0≤ x≤ z is a lattice, hence the optimal x∗ is increasing in z. Considered together,

this implies that a smaller value of K results in a larger value of z and a larger value of x. Therefore, x∗(K)

is decreasing in K. We rewrite (7) as

D(z) = max
0≤y≤z

(
f(z− y) + g(y)

)
. (8)

Using this equation (8) and the supermodularity in (z, y) we similarly obtain that the optimal y, denoted by

y∗(K), is decreasing in K.

To show that the slopes of the optimal x∗(K) and y∗(K) are between -1 and 0, we argue that the optimal

z∗(K) has slope between 0 and -1. This is sufficient to conclude the same about x∗(K) and y∗(K) because,

by the fact that each is decreasing in K, and x∗(K) + y∗(K) = z∗(K), it would be impossible for one of

x∗(K) and y∗(K) to decrease by more than that of z∗(K).

Suppose that K increases by c > 0, but z∗ decreases by d > c. This condition is formally written as

z∗(K + c) = z∗(K)− d < z∗(K)− c. We argue such a situation cannot occur because if true, we are able to

find a very small δ > 0, such that z∗(K + c) + δ is a strictly better solution than z∗(K + c). We argue this
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solution is better by the following inequalities. Note that it is easy to see from (7), that D(·) in equation (6)

is convex.

D(Z∗(k)− d+ δ)−D(Z∗(K)− d)

< D(z∗(K))−Dn(z∗(K)− δ)

≤ E[h(z∗(K) + εK − δ)]−E[h(z∗(K) + εK)]

≤ E[h(z∗(K)− d+ ε(K + c))]−E[h(z∗(K)− d+ δ+ ε(K + c))],

where the first inequality comes from the convexity of D(·), the second from the optimality of the solution

z∗(K), and the third from the convexity of h(·) along with the fact that we can pick δ small enough so that

cε− d+ δ≤ 0. Considering the first and last expressions, we see that

E[h(z∗(K)− d+ δ+ ε(K + c))] +D(Z∗(k)− d+ δ)>E[h(z∗(K)− d+ ε(K + c))] +D(Z∗(K)− d),

contradicting the optimality of the original solution.

Thus, the analysis above shows that the optimal x∗(K) and y∗(K) are decreasing in K, but with slopes

between -1 and 0.

Proof of Theorem 1. The optimality equation is

Vn(xn) =Eρn

[
Mn(xn) (9)

+ max
0≤Rn≤xnρn,0≤An,CA

n (An)+CR
n (Rn)≤Sn

(
−CA

n (An)−CR
n (Rn) +E[αVn+1(γnxn(1− ρn) +Rn +An)]

)]
.

First note that, for any given selections of An, Rn, and an outcome ρn, the objective function of the

maximization problem on the right hand side of (10) is increasing in xn, and the feasible region is strictly

larger for larger xn, thus after maximization it is also increasing in xn. Then, by the assumption that Mn(xn)

is increasing, we conclude that Vn(xn) is increasing in xn.

The concavity of Vn(xn) follows by concavity preservation. By Assumptions 1 and 2, on CA
n (·) and CR

n (·),

and the induction hypothesis on Vn+1(.), the objective function of the maximization problem on the right

hand side of (10) is jointly concave in (An,Rn, xn). Because the feasible region constitutes a convex set, it

follows from Heyman and Sobel (2004) that Vn(xn) is a concave function.

To characterize the optimal policy, we consider the unconstrained optimization problem by relaxing the

constraint in (10) as follows:

Un(xn, ρn) =Mn(xn) + max
0≤An,0≤Rn

(
−CA

n (An)−CR
n (Rn) +αVn+1(γnxn(1− ρn) +Rn +An)

)
. (10)

We will call this the relaxed problem, and use it for subsequent analysis. Note the difference between this

problem and the original problem: problem (10) does not have either constraint Rn ≤ xnρn or CA
n (An) +

CR
n (Rn)≤ Tn, and it assumes the fraction of unhappy customer ρn is known.
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Now we can use Lemma 1 to argue the following property on the relaxed problem: The optimal solution to

the problem Un(xn, ρn), which we denote by (AU∗n (xn(1−ρn)),RU∗n (xn(1−ρn)), is decreasing in the expression

xn(1− ρn), with slope between 0 and -1. This is an immediate application of Lemma 1, simply by switching

from maximization to minimization and corresponding An and Rn to x and y and the functions CA
n (·), CR

n (·),

and −Vn(·) to f(·), g(·) and h(·). The expression xn(1− ρn) plays the role of the constant K.

Based on the problem given in (10) with decreasing solution vector (AU∗n (xn(1−ρn)),RU∗n (xn(1−ρn)), we

define the following value,

Kn = {w :CA
n (AU∗n (w)) +CR

n (RU∗n (w)) = Sn}, (11)

which will be useful in establishing the main result. If such a value Kn does not exist, we we set Kn = 0.

Next we consider a second intermediary problem in which we consider only the cash constraint, but not

the upper bound on retention. This problem is

Yn(xn(1− ρn)) (12)

= Mn(xn) + max
0≤An,0≤Rn,CA

n (An)+CR
n (Rn)≤Sn

(
−CA

n (An)−CR
n (Rn) +αVn+1(γnxn(1− ρn) +Rn +An)

)
.

In what follows we show that the solution to (12) is

(AY ∗n (xn(1− ρn)),RY ∗n (xn(1− ρn))) = (AU∗n (xn(1− ρn)),RU∗n (xn(1− ρn))

if xn(1− ρn)≥Kn and otherwise, it is

(AY ∗n (xn(1− ρn)),RY ∗n (xn(1− ρn))) = (AU∗n (Kn),RU∗n (Kn)).

First consider the case when xn(1−ρn)≥Kn. In this situation, because AU∗n (·) and RU∗n (·) are decreasing,

we are able to show the following:

CA
n (AU∗n (xn(1− ρn))) +CR

n (RU∗n (xn(1− ρn))≤CA
n (AU∗n (Kn)) +CR

n (RU∗n (Kn)) = Tn.

Therefore in this case the solution from (10) is feasible for (12), so it is also optimal for (12).

Now suppose instead that xn(1− ρn)<Kn, we want to show, by contradiction, that the optimal solution

pair is (AU∗n (Kn),RU∗n (Kn)). Suppose for some xn(1− ρn)<Kn, we have an optimal strategy of AY ∗n (xn(1−

ρn)) and RY ∗n (xn(1− ρn)) which are not equal to AU∗n (Kn) and RU∗n (Kn) respectively. In the following we

show that this would lead to contradiction.

Consider several cases. First, suppose

AY ∗n (xn(1− ρn)) +RY ∗n (xn(1− ρn))>AU∗n (Kn) +RU∗n (Kn). (13)

This would contradict the optimality of the solution pair AU∗n (Kn) and RU∗n (Kn), by the following arguments:

−CA
n (AU∗n (Kn))−CR

n (RU∗n (Kn)) +E[Vn+1(γnKn +AU∗n (Kn) +RU∗n (Kn))]

=−Sn +E[Vn+1(γnKn +AU∗n (Kn) +RU∗n (Kn))]

<−Sn +E[Vn+1(γnKn +AY ∗n (xn(1− ρn)) +RY ∗n (xn(1− ρn)))]
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≤−CA
n (AY ∗n (xn(1− ρn)))−CR

n (RY ∗n (xn(1− ρn)))

+E[Vn+1(γnKn +AY ∗n (xn(1− ρn)) +RY ∗n (xn(1− ρn)))],

where the equality follows form the definition of Kn, the first inequality follows from the strict monotonicity

of the value function Vn+1(·), and the second follows from the fact that the cash constraint must be satisfied

by AY ∗n (xn(1−ρn)) and RY ∗n (xn(1−ρn)). Looking at the first and last expressions, the firm is strictly better

off switching strategies from the pair AU∗n (Kn) and RU∗n (Kn) to the pair AY ∗n (xn(1−ρn)) and RY ∗n (xn(1−ρn)),

which contradictions the optimality of the first solution pair.

Next, suppose that AY ∗n (xn(1− ρn)) +RY ∗n (xn(1− ρn)) < AU∗n (Kn) +RU∗n (Kn). We will prove that this

contradicts the optimality of the solution pair AY ∗n (xn(1− ρn)) and RY ∗n (xn(1− ρn)). Note that

CA
n (AU∗n (Kn)) +CR

n (RU∗n (Kn))−CA
n (AY ∗n (xn(1− ρn)))−CR

n (RY ∗n (xn(1− ρn)))

≤ E[Vn+1(γnKn +AU∗n (Kn) +RU∗n (Kn))]−E[Vn+1(γnKn +AY ∗n (xn(1− ρn)) +RY ∗n (xn(1− ρn)))]

< E[Vn+1(γnxn(1− ρn) +AU∗n (Kn) +RU∗n (Kn))]

−E[Vn+1(γnxn(1− ρn) +AY ∗n (xn(1− ρn)) +RY ∗n (xn(1− ρn)))],

where the first inequality comes from the optimality of the solution with Kn, and the second inequality

follows from the concavity of the value function because xn(1− ρn) < Kn. Considering the first and last

expressions together, we conclude that AU∗n (Kn) and RU∗n (Kn) is a strictly better solution, contradicting the

optimality of the solution pair of AY ∗n (xn(1− ρn)) and RY ∗n (xn(1− ρn)).

The final case is

AY ∗n (xn(1− ρn)) +RY ∗n (xn(1− ρn)) =AU∗n (Kn) +RU∗n (Kn), (14)

but AY ∗n (xn(1− ρn)) 6= AU∗n (Kn) and RY ∗n (xn(1− ρn)) 6= RU∗n (Kn). Let AY ∗n (xn(1− ρn))−AU∗n (Kn) = δ, so

that it is also true that RY ∗n (xn(1− ρn))−RU∗n (Kn) =−δ. We first prove that

−CA
n (AU∗n (Kn) + δ)−CR

n (RU∗n (Kn)− δ))<−CA
n (AU∗n (Kn))−CR

n (RU∗n (Kn)))]. (15)

Suppose instead that

−CA
n (AU∗n (Kn) + δ)−CR

n (RU∗n (Kn)− δ))>−CA
n (AU∗n (Kn))−CR

n (RU∗n (Kn)).

Then this would contradict the optimality of the solution pair AU∗n (Kn) and RU∗n (Kn), because the alternative

solution of AU∗n (Kn) + δ and RU∗n (Kn) − δ would have strictly lower cost with identical impact on the

expression inside of Vn+1(·), due to the given condition that AY ∗n (xn(1−ρn))+RY ∗n (xn(1−ρn)) =AU∗n (Kn)+

RU∗n (Kn). Hence, let us next suppose

−CA
n (AU∗n (Kn) + δ)−CR

n (RU∗n (Kn)− δ)) =−CA
n (AU∗n (Kn))−CR

n (RU∗n (Kn)). (16)

We propose an alternative solution, with strictly lower cost, again with identical impact on the expression

inside of Vn+1(·) (thus, again contradicting the optimality of the given solutions). This solution is AU∗n (Kn)+ δ
2

and RU∗n (Kn)− δ
2
. Then,

−CA
n

(
AU∗n (Kn) +

δ

2

)
−CR

n

(
RU∗n (Kn)− δ

2

)
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>− 1

2
CA
n (AU∗n (Kn))− 1

2
CR
n (RU∗n (Kn))− 1

2
CA
n (AU∗n (Kn) + δ)− 1

2
CR
n (RU∗n (Kn)− δ))

=CA
n (AU∗n (Kn))−CR

n (RU∗n (Kn)),

where the inequality follows from the strictly convexity of the cost functions in Assumption 1, and the

equality follows from (16). So in this case we again contradict the optimality of AU∗n (Kn) and RU∗n (Kn),

because the proposed solution of AU∗n (Kn) + δ
2

and RU∗n (Kn)− δ
2

has strictly lower cost and with identical

impact on the expression inside of Vn+1(·).

Consequently, we have

−CA
n (AY ∗n (xn(1− ρn)))−CR

n (RY ∗n (xn(1− ρn)))

+E[Vn+1(xn(1− ρn) +AY ∗n (xn(1− ρn)) +RY ∗n (xn(1− ρn)))]

=−CA
n (AU∗n (Kn) + δ)−CR

n (RU∗n (Kn)− δ)) +E[Vn+1(xn(1− ρn) +AY ∗n (Kn) +RU∗n (Kn))]

<−CA
n (AU∗n (Kn))−CR

n (RU∗n (Kn))) +E[Vn+1(xn(1− ρn) +AY ∗n (Kn) +RU∗n (Kn))]

=−CA
n (AU∗n (Kn))−CR

n (RU∗n (Kn))) +E[Vn+1(xn(1− ρn) +AY ∗n (xn(1− ρn)) +RY ∗n (xn(1− ρn))],

where the inequality follows from (15), and the second equality follows from condition (14). This contradicts

the optimality of the solution pair AY ∗n (xn(1− ρn)) and RY ∗n (xn(1− ρn)).

Summarizing the analysis above, we have shown that the solution to (12) is given by (AY ∗n (xn(1 −

ρn)),RY ∗n (xn(1 − ρn)) = (AU∗n (xn(1 − ρn)),RU∗n (xn(1 − ρn)) if xn(1 − ρn) ≥ Kn, and it is (AY ∗n (xn(1 −

ρn)),RY ∗n (xn(1− ρn))) = (AU∗n (Kn),RU∗n (Kn)) otherwise.

We are now ready to prove Theorem 1. We first prove (i). Note that the relaxed problem (12) repre-

sents the optimization in problem (10) without constraint Rn ≤ ρnxn. Writing the optimization problem as

sequential optimization of An and Rn respectively, it follows from the joint concavity in (An,Rn) that the

objective function after optimizing An is a concave function of Rn. Since the resulting objective function

after optimizing An in (12) is concave in Rn with maximizer RY ∗n (xn(1− ρn)), it is clear that the optimal

solution of the original value function in (2) is RY ∗n (xn(1− ρn)) when RY ∗n (xn(1− ρn)) ≤ ρnxn and , and

otherwise it is ρnxn.

Because RY ∗n (xn(1− ρn))≥ 0 is decreasing in xn, as xn increases, there must exist a unique point where

RY ∗n (xn(1− ρn)) = xnρn, which establishes the existence of Qn(ρn) from the theorem, defined by

Qn(ρn) = sup
{
xn ≥ 0; ρnxn ≤RY ∗n (xn(1− ρn))

}
, (17)

such that as xn ≤Qn(ρn) it holds that RY ∗n (xn(1−ρn))>ρnxn; while if xn >Qn(ρn) then RY ∗n (xn(1−ρn))≤

ρnxn.

Combining this insight with the characterization of the optimal policy RY ∗n (xn(1−ρn)) given above yields

the optimal retention policy as stated in the theorem, which is to set Rn to ρnxn if xn ≤Qn(ρn), set Rn to

RU∗n (Kn) if xn ∈ (Qn(ρn), Kn

ρn
) and set Rn to RU∗n (xn(1− ρn)) otherwise. Note that the second region might

be empty.
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To find the optimal acquisition strategy, we let AW
∗

n (.) be defined as the maximizer of

Wn(xn, ρn) = max
0≤An

(
−CA

n (An) +E[Vn+1(γnxn(1− ρn) + ρnxn +An)])
)
. (18)

By the same analysis as above, it can be seen that AW∗n (xn, ρn) is also decreasing in xn but with slope no

less than -1. Note that on the range xn ≤Qn(ρn), the optimization problem for An in (2) can be written as

max
0≤An

(
−CA

n (An)−CR
n (ρnxn) +αVn+1(γnxn(1− ρn) + ρnxn +An)

)
,

and its optimal solution is AW∗n (xn, ρn) just defined in (18).

With these quantities defined, we can discuss the optimal acquisition strategy on the regions discussed

above. When xn ≤ Qn(ρn) and Rn = ρnxn, then the optimal An is AW∗n (xn, ρn), conditional on that it is

within cash constraint. If not, by the convexity of the problem given in (18), the best solution is at the

truncated solution. Thus, the optimal An on this region is min{AW∗n (xn, ρn), Tn −CR
n (ρnxn)}. When xn ∈

(Qn(ρn),Kn/ρn), the optimal solution is the one discussed in problem (12), which is AU∗n (Kn). In all other

cases, the optimal solution is given by AU∗n ((1− ρn)xn).

The argument that Qn(ρn) is decreasing follows from the fact that RY ∗n (xn(1 − ρn)) is decreasing in

xn(1−ρn) with slope between -1 and 0, and the definition of Qn(ρn) in (17). To see that, suppose ρn were to

increase by a positive number s > 0, then ρnxn would increase by sxn, while RY ∗n (xn(1−ρn)) would increase

by a value between 0 and sxn. Therefore to reach equality once again, one would need to decrease xn. This

establishes that Qn(ρn) is decreasing in ρn.

We next prove (ii). From part (i), we know that the optimal decision in acquisition is decreasing in xn.

Therefore, either eventually A∗n(xn, ρn) = 0, or this value is infinite, establishing the existence of QA
n (ρn) (pos-

sibly infinity). Likewise, retention spending is first increasing, and then decreasing, so eventually R∗n(xn, ρn)

may reach 0, showing that QR
n (ρn) exists (also possibly infinity). Both are increasing in ρn, because the

curves RU∗n (xn(1− ρn)) and AU∗n (xn(1− ρn)) are increasing in ρn.

To establish part (iii), we need to argue that the following expression

xn+1−xn = xn(1− ρn)γn +R∗n(xn, ρn) +A∗n(xn, ρn)−xn (19)

is decreasing in xn for any given ρn and γn, where R∗n(xn, ρn) and A∗n(xn, ρn) are the optimal retention

and optimal acquisition decision of the original problem, which are given according to cases above. Since

A∗n(xn, ρn) is decreasing while R∗n(xn, ρn) first increases with slope ρn and then decreases, we conclude that

the terms combined must be decreasing in xn.

When xn = 0, the firm can only gain customers, and then the change in number of customers is decreasing

for xn > 0. Therefore there must exist a non-zero point x∗n(ρn) such that

E[xn+1]−xn =

{
≤ 0 if xn ≥ x∗n(ρn);

≥ 0 if xn ≤ x∗n(ρn).

This completes the proof of the optimal strategy. Note that it is possible that x∗n(ρn) =∞.
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Proof of Lemma 2.

We prove by contradiction. Suppose that (CA
n )′(0) < (CR

n )′(0), but QA
n (ρn) < QR

n (ρn) for some ρn. This

implies that for such a ρn, and values of xn ∈ (QA
n ,Q

R
n ), the firm has a strategy where A∗n = 0 with R∗n > 0.

In this case, we show that there exists a small value δ > 0, such that a better solution is An = δ, with

Rn = R∗n − δ. Because this strategy has the same impact in Vn+1(·), we need only argue that it has lower

cost. The new solution would surely satisfy the cash constraint if it is indeed lower cost.

First we observe that because CR
n (·) is strictly convex, and (CA

n )′(0)< (CR
n )′(0), it holds that as δ > 0 is

small enough we have

CR
n (R∗n)−CR

n (R∗n− δ)>CR
n (δ)−CR

n (0)>CA
n (δ)−CA

n (0). (20)

These inequalities show the existence of solution An = δ and Rn = R∗n − δ, which as strictly lower cost,

and same impact on future periods. This contradicts the original optimality of our solution. A symmetric

argument establishes that (CA
n )′(0)> (CR

n )′(0) implies that QA
n (ρn)≤QR

n (ρn).

We finally consider the case (CA
n )′(0) = (CR

n )′(0), and prove that in this case it must hold that QA
n (ρn) =

QR
n (ρn) for all ρn > 0. Suppose QA

n (ρn) 6= QR
n (ρn) for some ρn. Without loss of generality, suppose 0 ≤

QA
n (ρn) < QR

n (ρn). This implies that there exists an xn ∈ (QA
n (ρn),QR

n (ρn)), such that R∗n(xn, ρn) > 0 and

A∗n(xn, ρn) = 0. We claim that there exists a small number δ > 0, such that a solution withRn =R∗n(xn, ρn)−δ,

and An = δ is strictly superior. This would contradict the optimality of the original solution.

Observe that by the strict convexity of CR
n (·), we have that:

(CR
n )′(R∗n(xn, ρn))> (CR

n )′(0) = (CA
n )′(0).

Therefore, by continuity we can find a small δ > 0 such that

(CR
n )′(R∗n(xn, ρn)− δ)> (CA

n )′(δ).

This implies, by convexity of CR
n (·) and CA

n (·), that

CR
n (R∗n(xn, ρn))−CR

n (R∗n(xn, ρn)− δ)>CA
n (δ)−CA

n (0).

Since solutions Rn =R∗n(xn, ρn)− δ and An = δ have the same impact to future periods, this proves that the

proposed solution has strictly lower cost, contradicting the optimality of the original solution. A symmetric

argument holds to contradiction if it were true that 0≤QR
n (ρn)<QA

n (ρn).

Proof of Corollary 1.

The fact that limxn+1→∞M
′
n+1(xn+1)≥ κ> 0, allows us to prove that the value function is κ increasing in

period n+ 1, meaning that Vn+1(xn+1 + s)−Vn+1(xn+1)≥ sκ for any s > 0. We can see this from the value

function as follows.

E[Vn+1(xn+1 + s)]−E[Vn+1(xn+1)] =E[Mn+1(xn+1 + s)]−E[Mn+1(xn+1)]
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+E
[

max
0≤Rn+1≤(xn+1+s)ρn+1,0≤An+1

(−CA
n+1(An+1)−CR

n+1(Rn+1)

+αE[Vn+2((xn+1 + s)(1− ρn+1)γn+1 +Rn+1 +An+1)])
]

−E
[

max
0≤Rn+1≤xn+1ρn+1,0≤An+1

(−CA
n+1(An+1)−CR

n+1(Rn+1)

+αE[Vn+2(xn+1(1− ρn+1)γn+1 +Rn+1 +An+1)])
]

≥ sκ,

where the last inequality comes from the fact that Mn+1(xn+1 +s)−Mn+1(xn+1)≥ sκ, while the other terms

are non-negative, because Vn+2(·) is increasing, and the case with s+xn+1 has a larger feasible region.

By contradiction we now show that a point at which R∗n(xn, ρn) = 0 can never exist unless ρnxn = 0

or (CR
n )′(0) ≥ (CA

n )′((CA
n )−1(Sn)), because the firm is better off by spending a small incremental amount

more in retention. Suppose, on the contrary, it holds that the optimal strategies (R∗n(xn, ρn),A∗n(xn, ρn)) has

R∗n(xn, ρn) = 0. We will show that in this case there exists a small δ > 0 such that the solution would be

improved ifR∗n(xn, ρn) = δ, contradicting the optimality of the original solution. This additional small increase

is feasible because of our two conditions, which say that the retention constraint is not tight with given

decision (because ρnxn > 0, and neither is the cash constraint (because if (CR
n )′(0)< (CA

n )′((CA
n )−1(Sn)) with

total acquisition and retention spending at Sn, the firm could save by shifting some money from acquisition

to retention). Using the fact that Vn+1(·) is κ increasing, we have

CR
n (δ)−CR

n (0) < δακ (21)

≤ αE[Vn+1(xn(1− ρn)γn + δ+A∗n(xn, ρn))]−αE[Vn+1(xn(1− ρn)γn +A∗n(xn, ρn))]. (22)

These inequalities follow from the fact that CR
n (·) is strictly convex, (CR

n )′(0)≤ ακ, and Vn+1(·) is κ increasing,

as we have discussed.

The inequalities (21) implies that a strategy of no retention and A∗n(xn, ρn)) is acquisition is strictly

dominated by one with the same acquisition and a small amount δ > 0 in retention, contradicting the

optimality of former solution. This implies QR
n (ρn) =∞.

Proof of Corollary 2.

Due the symmetric relationship between An and Rn, similar argument as those of Corollary 1 can be used

to prove this result. We omit the details.

Proof of Theorem 2.

The optimality equation for this more general case is

Vn(xn)

= Eρn

[
Mn(xn)

+ max
0≤An,0≤Rn≤ρnxn,CA

n (An)+CR
n (Rn)≤Sn

(
−CA

n (An)−CR
n (Rn) +αE

[
Vn+1(γnxn(1− ρn) + ε1nRn + ε2nAn)

])]
.

The objective function of the maximization problem above is easily seen to be jointly concave in (An,Rn, xn),

and the constraint is a convex set of (An,Rn, xn), hence it follows from the preservation property that Vn(xn)
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is concave in xn. By induction, it is also easy to show that Vn(xn) is increasing in xn, since both the objective

function and the feasible region in the optimization are increasing in xn. Consider the relaxed problem that,

for any realization of ρn,

Yn(xn, ρn)

= Mn(xn) + max
0≤An,0≤Rn,CA

n (An)+CR
n (Rn)≤Sn

(
−CA

n (An)−CR
n (Rn) +αE

[
Vn+1(γnxn(1− ρn) + ε1nRn + ε2nAn)

])
= Mn(xn) + max

0≤Rn,CR
n (Rn)≤Sn

{
−CR

n (Rn) + g
(
(1− ρn)xn,Rn

)}
,

where

g((1− ρn)xn,Rn) = max
0≤An,CA

n (An)+CR
n (Rn)≤Sn

(
−CA

n (An) +αE
[
Vn+1(γnxn(1− ρn) + ε1nRn + ε2nAn)

])
is jointly concave in ((1−ρn)xn,Rn). Therefore, if the optimal RY ∗n (xn, ρn)<ρnxn, then the solution the the

relaxed problem is feasible, thus it optimal. Otherwise by joint concavity, the optimal solution is (An,Rn) =

(AW∗n (xn, ρn), ρnxn), where AW∗n is the optimal solution of

Wn(xn, ρn) = max
0≤An,CA

n (An)≤Sn−CR
n (ρnxn)

(
−CA

n (An) +αE
[
Vn+1(γnxn(1− ρn) + ε1nρnxn + ε2nAn)

])
. (23)

This finishes the proof for Theorem 2.
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