CHEMPHYSCHEM

Supporting Information

Enhancing NMR Sensitivity of Natural-Abundance Low- γ Nuclei by Ultrafast Magic-Angle-Spinning Solid-State NMR Spectroscopy

Rongchun Zhang,^[a] Yitian Chen,^[b] Nair Rodriguez-Hornedo,^[b] and Ayyalusamy Ramamoorthy^{*[a]}

cphc_201600637_sm_miscellaneous_information.pdf

Supporting Information

Enhancing NMR Sensitivity of Natural-Abundance Low-γ Nuclei by Ultrafast Magic-Angle-Spinning Solid-State NMR Spectroscopy

Rongchun Zhang,^a Yitian Chen, Nair Rodriguez-Hornedo^b and Ayyalusamy Ramamoorthy^a*

^aBiophysics and Department of Chemistry, ^bDepartment of Pharmaceutical Science,

University of Michigan, Ann Arbor, MI 48109-1055, USA

*Corresponding Author: ramamoor@umich.edu (A. Ramamoorthy)

Experimental

Materials

Ibuprofen, anhydrous danazol (DNZ), anhydrous vanillin (VAN), and ethyl acetate were purchased from Sigma-Aldrich (St. Louis, MO, USA), LGM Pharma (Boca Raton, Florida), Fisher Scientific (Fair Lawn, New Jersey), and Acros Organics, respectively. All samples were used as received without further purification.

Preparation of co-crystals

The 1:1 danazol-vanillin cocrystal was prepared by the reaction crystallization method.^[1] Stoichiometric amounts of cocrystal components (danazol and vanillin) were added to nearly saturated vanillin solution in ethyl acetate. The suspension was protected from light and stirred with a magnetic stir bar for 24 hours at room temperature. The suspension was then vacuum filtered.

Solid-State NMR Experiments

All solid-state NMR experiments were performed on an Agilent VNMRS 600 MHz solid-state NMR spectrometer under 60 kHz MAS using a triple-resonance 1.2 mm MAS probe (Agilent) operating at 599.8 MHz for ¹H and 150.8 MHz for ¹³C. All the pulse sequences used in this study are shown in Figure 1. For the ¹³C-detected experiments (Fig. 1a and 1b), a 90° pulse was applied on the ¹H channel right after the final ¹³C signal acquisition to flip the residual ¹H magnetization to the +*z* axis to speed-up T_1 relaxation.^[2-4] As ¹H magnetization loss due to polarization transfer is very little in natural-abundance sample, the number of CP contacts (i.e. *N*) in ¹³C-detected MCP experiments is generally determined by the proton $T_{1,}$ relaxation during the CP spin-lock time and signal acquisition periods. Therefore, *N* could be easily optimized by measuring ¹H $T_{1,r}$ relaxation behavior using the same RF field strength as that applied for CW decoupling (or CP spin-locking). However, it is difficult to optimize the number of CP contacts for the ¹H-detected MCP experiments (Fig. 1c) due to the poor sensitivity of ¹³C signals. ¹³C signal loss is generally

resulted from the ¹³C \rightarrow ¹H CP instead of T_{1i} , relaxation of ¹³C as it is generally very long due to the weak ¹³C-¹³C dipolar couplings. Therefore, in the ¹H-detected MCP HETCOR experiment, the total contact time for ¹³C \rightarrow ¹H polarization transfer is set to be slightly smaller than the initial CP contact time for ¹H \rightarrow ¹³C polarization transfer. For the ¹H-detected MCP HETCOR experiment, HORROR^[5] sequence is applied to remove residual proton magnetization after the initial ¹H \rightarrow ¹³C polarization transfer. In this study, the 90° pulse width was 2 µs on both ¹H and ¹³C RF channels. Ramped DQ CP^[6] was applied for all heteronuclear ¹H \rightarrow ¹³C and ¹³C \rightarrow ¹H polarization transfer with w_{1H} ~14 kHz and w_{1C} ~46 kHz. RF field strengths around 14 kHz and 17 kHz were applied for ¹H and ¹³C heteronuclear decoupling during ¹³C and ¹H chemical shift evolution, respectively. For ¹³C-detected MCP HETCOR experiment, the initial ¹H \rightarrow ¹³C CP contact time was 2.0 ms, and each of ¹³C \rightarrow ¹H CP contact time was 0.4ms. For all the MCP based experiments, all the acquired FIDs within the same scan were added up to make a single FID before further 1D or 2D Fourier transformation. The ¹³C Chemical shift was externally referenced to adamantane by setting the downfield ¹³C resonance signal to 38.5ppm. ^[7]

Theoretical analysis

We consider an isolated ¹³C-¹H (*S*-*I*) spin pair for the theoretical treatment. According to the multiple-contact cross polarization theory developed by Pines *et al*,^[8] the low- γ nuclei magnetization obtained through *n*-th CP contact is given by

$$M_{n} = \frac{\gamma_{I}}{\gamma_{S}} (1 - \xi)^{n} M_{0}$$
(S1)
$$\xi = \frac{S(S+1)N_{s}}{I(I+1)N_{I}}$$
where
$$\xi = \frac{S(S+1)N_{s}}{I(I+1)N_{I}}$$
(S1)

 $M_{\rm o}$ is the thermal equilibrium Boltzmann magnetization. $N_{\rm S}$ and $N_{\rm I}$ are the number of S and I spins, respectively.

If we take ¹H $T_{1_{\rho}}$ relaxation into consideration, and ignore the ¹³C $T_{1_{\rho}}$ relaxation (because it is generally very long), we have

$$M_{n} = \frac{\gamma_{I}}{\gamma_{S}} (1 - \xi)^{n} M_{0} e^{\frac{-n(\tau_{cp} + \tau_{aq}) + \tau_{aq}}{T_{1\rho}}}$$
(S2)

 τ_{cp} and τ_{aq} are the time of each CP contact and signal acquisition, respectively. T_{1_p} is the ¹H spin-lattice relaxation time in the rotating frame.

Therefore, by summing up all the acquired ¹³C signals in each CP contact, we can obtain

$$M_{total} = \sum_{n=1}^{N} M_n = \sum_{n=1}^{N} \frac{\gamma_I}{\gamma_S} (1 - \xi)^n M_0 e^{\frac{-n(\tau_{cp} + \tau_{aq}) + \tau_{aq}}{T_{1\rho}}}$$
$$= \frac{\gamma_I}{\gamma_S} M_0 \sum_{n=1}^{N} (1 - \xi)^n e^{\frac{-n(\tau_{cp} + \tau_{aq}) + \tau_{aq}}{T_{1\rho}}}$$
(S3)

where N is the number of CP contacts in a MCP experiment.

Since in the ¹³C natural abundant sample, $\xi << 1$

we have

$$(1-\xi)^n: e^{-n\xi}$$
 (S4)

Therefore,

$$M_{total} = \frac{\gamma_{I}}{\gamma_{S}} M_{0} \sum_{n=1}^{N} e^{-n\xi} e^{-n(\tau_{cp} + \tau_{aq})/T_{1\rho} + \tau_{aq}/T_{1\rho}} = \frac{\gamma_{I}}{\gamma_{S}} M_{0} e^{\tau_{aq}/T_{1\rho}} \sum_{n=1}^{N} e^{[-n(\xi + \frac{\tau_{cp} + \tau_{aq}}{T_{1\rho}})]}$$
$$= \frac{\gamma_{I}}{\gamma_{S}} M_{0} e^{\tau_{aq}/T_{1\rho}} \frac{1 - e^{[-N(\xi + \frac{\tau_{cp} + \tau_{aq}}{T_{1\rho}})]}}{e^{\xi + \frac{\tau_{cp} + \tau_{aq}}{T_{1\rho}}} - 1}$$
(S5)

Assuming that the root-mean-square (rms) noise signal amplitude is constant in each signal acquisition period, M_{noise} , the signal-to-noise (S/N) ratio enhancement obtained by MCP in comparison to single-contact CP is,

$$\eta = \left(\frac{M_{total}}{N^{1/2}M_{noise}}\right) / \left(\frac{M_1}{M_{noise}}\right) = \frac{e^{(\tau_{aq} + \tau_{cp})/T_{1\rho}} \left[1 - e^{-N(\xi + \frac{\tau_{aq} + \tau_{cp}}{T_{1\rho}})}\right]}{N^{1/2} (1 - \xi) (e^{\xi + (\tau_{aq} + \tau_{cp})/T_{1\rho}} - 1)}$$
(S6)

For the natural abundant sample, we have $\xi \rightarrow 0$

If the ¹H $T_{1_{p}}$ is long compared to the total CP contact time and signal acquisition time, then

$$\eta \approx \frac{1 - (1 - N\xi)}{N^{1/2}\xi(1 - \xi)} = \frac{N^{1/2}}{1 - \xi} \approx N^{1/2}$$
(S7)

Here the overall *S*/*N* ratio obtained from MCP is roughly the same as that from the conventional single-contact CP experiment with *N* times the number of scans, assuming that the proton $T_{1_{P}}$ relaxation could be ignored.

As is also shown in Eq.(S5), if the T_{1_p} is short, with the increase in the number of CP contacts, η will decrease, as the term $e^{-N(\xi + \frac{\tau_{aq} + \tau_{cp}}{T_{1,p}})}$ will play a significant role.

For the conventional 2D ¹H-detected ¹H/ 13 C HETCOR NMR experiment, the *S/N* ratio enhancement in comparison to the regular ¹³C-detected HETCOR experiment is, ^[9]

$$\varsigma = (f^2 d)^{1/2} (\frac{\gamma_H}{\gamma_C})^{3/2} (\frac{w_C}{w_H})^{1/2} (\frac{Q_H}{Q_C})^{1/2} \frac{A_H}{A_C}$$
(S8)

where Q is the quality factor of the sample coil; f is the polarization efficiency between ¹³C and ¹H spins; d is the receiver duty factor for ¹H detection; and A includes the effects of coil geometry, filling factor, receiver noise etc. $w_{\rm C}$ and $w_{\rm H}$ are the effective line-widths for ¹³C and ¹H peaks, respectively. Typically, $A_{\rm H}/A_{\rm c}\approx 1$, $Q_{\rm H}/Q_{\rm c}\approx 2$, d=1, f=0.5, $\gamma_{\rm H}/\gamma_{\rm C}=3.98$;^[9] thus,

$$\mathcal{E} = 5.6 \left(\frac{w_C}{w_H}\right)^{1/2}$$
 (S9)

For the ¹H-detected MCP HETCOR experiment with $N \, {}^{13}\text{C} \rightarrow {}^{1}\text{H}$ CP contacts, the enhancement factor can be written as

$$\varepsilon = 5.6 N^{1/2} \left(\frac{w_C}{w_H}\right)^{1/2} \tag{S10}$$

Therefore, ¹H-detected MCP HETCOR spectrum can render a signal enhancement of $N^{1/2}$ compared to the regular ¹H-detected HETCOR spectrum. However, in the ¹H-detected MCP HETCOR experiment, the number of inverse ¹³C \rightarrow ¹H CP contacts (i.e. *N*) is limited by the initial ¹H—>¹³C CP contact time as well as each ¹³C \rightarrow ¹H CP contact time. In contrast, *N* can be as large as possible as long as there is ¹H proton magnetization remaining in the transverse plane for polarization transfer in the ¹³C-detected MCP HETCOR experiment. However, a large *N* also means a long CW spin-locking time, which may result in widespread magnetization exchanges (i.e. due to proton spin diffusion) among protons, and thus multiple remote ¹H-¹³C cross peaks. Assuming that the proton spin diffusion could be ignored (such as the heavily deuterated biological samples), when η is larger than ε , the ¹³C-detected MCP HETCOR experiment.

Figure S1. Carbon-13 CPMAS spectra of danazol/vanillin co-crystals with (red) and without (black) the ¹H 90° flip pulse obtained using $MCP_{N=16}$.

Figure S2. Carbon-13 CPMAS FIDs of danazol/vanillin co-crystals using MCP_{N=16}. As is clearly shown, due to the long proton T₁, of this cocrystal, the signal intensities observed for successive FIDs are similar.

Figure S3. Carbon-13 CPMAS FIDs of ibuprofen using MCP_{N=5}. As is clearly shown, due to the short proton $T_{1\nu}$ of ibuprofen, a significant signal decrease can be observed, and there is basically less signal observed in the forth and fifth FIDs.

Figure S4. ¹³C-detected 2D ¹H/¹³C HETCOR spectra of danazol/vanillin co-crystals obtained using the pulse sequence shown in Fig. 1b with N=1(a) and N=20(b), respectively. The intensities of Fig. S4a were scaled by a factor of 10. For both experiments, each CP contact time was 0.4ms and the signal acquisition time was 6ms. The recycle delay was 7s and the number of scans for each t_1 increment was 200.

Figure S5.¹³C-detected 2D ¹H/¹³C HETCOR spectra of ibuprofen obtained using the pulse sequence shown in Fig. 1b with N=1(a) and N=4(b), respectively. Each CP contact time was 0.4ms and each signal acquisition time was 7ms. The recycle delay was 3s and the number of scans for each t_1 increment was 136. The correlation between aromatic carbon and methyl proton is indicated with a green dash rectangle.

References:

- [1] N. Rodríguez-Hornedo, S. J. Nehm, K. F. Seefeldt, Y. Pagán-Torres, C. J. Falkiewicz, *Mol. Pharm.* 2006, 3, 362–367.
- [2] J. Tegenfeldt, U. Haeberlen, J. Magn. Reson. 1979, 36, 453–457.
- [3] K. Saito, C. Martineau, G. Fink, F. Taulelle, Solid State Nucl. Magn. Reson. 2011, 40, 66–71.
- [4] J.-P. Demers, V. Vijayan, A. Lange, J. Phys. Chem. B 2015, 119, 2908–2920.
- [5] N. C. Nielsen, H. Bildsoé, H. J. Jakobsen, M. H. Levitt, J. Chem. Phys. **1994**, 101, 1805.
- [6] G. Metz, X. Wu, S. O. Smith, J. Magn. Reson. Ser. A 1994, 110, 219–227.
- [7] C. R. Morcombe, K. W. Zilm, J. Magn. Reson. 2003, 162, 479–486.
- [8] A. Pines, M. G. Gibby, J. S. Waugh, J. Chem. Phys. 1973, 59, 569.
- [9] Y. Ishii, J. P. Yesinowski, R. Tycko, J. Am. Chem. Soc. 2001, 123, 2921–2922.